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Abstract
Feature selection in clustering is a hard taskwhich involves simultaneously the discovery of relevant clusters as well as relevant
variables with respect to these clusters. While feature selection algorithms are often model-based through optimised model
selection or strong assumptions on the data distribution, we introduce a discriminative clustering model trying to maximise a
geometry-aware generalisation of the mutual information called GEMINI with a simple �1 penalty: the Sparse GEMINI. This
algorithm avoids the burden of combinatorial feature subset exploration and is easily scalable to high-dimensional data and
large amounts of samples while only designing a discriminative clustering model. We demonstrate the performances of Sparse
GEMINI on synthetic datasets and large-scale datasets. Our results show that Sparse GEMINI is a competitive algorithm and
has the ability to select relevant subsets of variables with respect to the clustering without using relevance criteria or prior
hypotheses.

Keywords Discriminative clustering · neural networks · unsupervised learning · feature selection · group-lasso penalty

1 Introduction

It is common that clustering algorithms and supervised mod-
els rely on all available features for the best performance.
However, as data sets become high-dimensional, clustering
algorithms tend to break under the curse of dimensional-
ity (Bouveyron and Brunet-Saumard 2014b), for instance in
biological micro-array data where the number of variables
outweighs thenumber of samples (McLachlan et al. 2002).To
alleviate this burden, feature selection is a method of choice.
Indeed, all features may not always be of interest: some vari-
ables can be perceived as relevant or not with respect to
the clustering objective. Relevant variables bring informa-
tion that is useful for the clustering operation,while irrelevant
variables do not bring any new knowledge regarding the clus-
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ter distribution (Tadesse et al. 2005) and redundant variables
look relevant but do not bring beneficial knowledge (Maugis
et al. 2009). The challenge of selecting the relevant variables
often comes with the burden of combinatorial search in the
variable space. Therefore, solutions may be hardly scalable
to high-dimensional data (Raftery and Dean 2006) or to the
number of samples (Witten and Tibshirani 2010) when the
selection process is part of the model. Therefore reducing
the number of variables for learning to a relevant few is of
interest, notably in terms of interpretation (Fop and Mur-
phy 2018). The necessity of variable selection notably met
successful applications in genomics (Marbac et al. 2020),
multi-omics (Meng et al. 2016; Ramazzotti et al. 2018; Shen
et al. 2012).

Often, integrating the selection process as part of the
model will lead to either not scaling well (Solorio-Fernández
et al. 2020) in terms of number of features (Raftery and
Dean 2006) or number of samples (Witten and Tibshirani
2010) or imposing too constrained decision boundaries due
to the nature of strong parametric assumptions. To alleviate
both problems, we present the Sparse GEMINI: a model that
combines the LassoNet architecture (Lemhadri et al. 2021)
and the discriminative clustering objective GEMINI (Ohl
et al. 2022, 2023) for a scalable discriminative clustering
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with penalised feature selection. The contributions of Sparse
GEMINI are:

• A simple novel scalable algorithm efficiently combining
feature selection and discriminative clustering compati-
ble with models ranging from logistic regression to deep
neural networks.

• Demonstrations of performances on multiple synthetic
and real datasets including a large-scale transcriptomics
dataset.

• An extension of thework on the generalisedmutual infor-
mation by proposing a package containing the methods
of previous work and the Sparse GEMINI model thanks
to explicit computations of GEMINI gradients.

2 Related works

Feature selection algorithms can be divided into 2 distinct
categories (John et al. 1994; Dy 2007): filter methods and
wrapper methods. Filter methods apply in an independent
step feature selection using a relevance criterion to elimi-
nate irrelevant features before performing clustering. This
can be done, for example, using information theory (Cover
1999) with the SVD-Entropy (Varshavsky et al. 2006) or
spectral analysis (von Luxburg 2007; He et al. 2005; Zhao
and Liu 2007). Those methods are thus easily scalable and
quick despite the challenge of defining unsupervised feature
relevance (Dy 2007).Wrappermethods encompass the selec-
tion process within the model and exploit their clustering
results to guide the feature selection (Solorio-Fernández et al.
2020). Other related works sometimes refer to a third cate-
gory named hybridmodel (Alelyani et al. 2018) or embedded
models (Blum and Langley 1997) as a compromise between
the first two categories.

Although the definition of relevance of a variable is more
straightforward for supervised learning, its definition in unsu-
pervised learning clearly impacts the choice of selection
criterion for filter methods or distribution design in model-
based methods (Fop and Murphy 2018). Often, the terms
relevant variables, irrelevant variables (Tadesse et al. 2005)
for the notion of conveying information are used. Oth-
ers may consider redundant variables as those that bring
information already available (Maugis et al. 2009). Another
key difference in models would be to consider whether
the informative variables are independent given the cluster
membership (local independence) or dependent (global inde-
pendence from the non-informative variables), although the
latter hardly accounts for redundant variables (Fop and Mur-
phy 2018).

Feature selection should not be mistaken with dimension-
ality reduction, sometimes called feature reduction, which
is the process of finding a latent space of lower dimension

leveraging good manifolds for clustering, e.g. using matrix
factorisation (Shen et al. 2012). In this sense, methods seek-
ing a sparse subspace for spectral clustering (Peng et al. 2016)
or for KMeans clustering through PCA (Long et al. 2021) are
discriminative. However, the nature of such projection forces
the clustering to be done according to linear boundaries due
to the projections. Still, by enforcing the projection matrix to
be sparse, feature selection can be recovered in the original
space (Bouveyron and Brunet-Saumard 2014a). Similarly,
subspace clustering seeks to find clusters in different sub-
spaces of the data (Zografos et al. 2013; Chen et al. 2018)
and is thus an extension of feature selection (Parsons et al.
2004), particularly with the motivation that several latent
variables could explain the heterogeneity of the data (Vande-
walle 2020). However, such problems usually incorporate a
mechanism to merge clusters, which is challenging as well,
whilewe are interested in amethod that selects featureswhile
producing a single clustering output.

Finally, clustering models in feature selection are often
model-based (Scrucca and Raftery 2018; Raftery and Dean
2006; Maugis et al. 2009), which implies that they assume
a parametric mixture model that can explain the distribution
of the data, including the distribution of irrelevant variables.
To perform well, these methods need a good selection crite-
rion to compare models with one another (Raftery and Dean
2006; Marbac et al. 2020; Maugis et al. 2009). To the best
of our knowledge, there do not exist models for joint feature
selection and clustering in the discriminative sense of Minka
(2005) and Krause et al. (2010), i.e., models that only design
pθ (y|xxx)with end-to-end training. Finally, most of these gen-
erativewrappermethods hardly scale in both sample quantity
and/or variable quantity.

3 The sparse GEMINI

Sparse GEMINI is a combination of the generalised mutual
information objective for discriminative clustering (Ohl
et al. 2023) with the LassoNet framework for feature selec-
tion (Lemhadri et al. 2021) in neural networks, including the
sparse logistic regression as a specific case. The model is
summarised in Fig. 1.

3.1 The GEMINI objective

LetD = {xxxi }Ni=1 ⊂ X a dataset of N observations of dimen-

sion d. We note each feature xxxi j ∈ X j , thus: X = ∏d
j=1 X j .

We seek to cluster this dataset by learning a distribution
pθ (y|xxx) where y is a discrete variable taking K values. This
distribution is defined by a softmax-ended function which
ensures that the elements of the resulting vector add up to 1:

y|xxx ∼ Categorical(SoftMax ◦ fθ (xxx)), (1)
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Fig. 1 Description of the
complete Sparse GEMINI
model. Through a proximal
gradient, clusters learned by
GEMINI drop irrelevant
features both in a skip
connection and an MLP. Setting
M = 0 recovers a sparse
unsupervised logistic regression

where fθ : X �→ R
K has parameters θ . For example, set-

ting f to an affine function recovers the multiclass logistic
regression. In order to perform clustering with f as a dis-
criminative distribution, we train the parameters θ using a
generalised mutual information (GEMINI, Ohl et al., 2023).
This objective was introduced to circumvent the need for
parametric assumptions regarding p(xxx) in clustering and thus
leads to designing only a discriminative clustering model
pθ (y|xxx) (Minka 2005). With the help of Bayes theorem,
this objective can be estimated without assumptions of the
data distribution p(xxx) using only the output of the cluster-
ing distribution pθ (y|xxx). Note that, as we avoid parametric
hypotheses on the data distribution,we do not have a relation-
ship between the data and the parameters, hence the writing
p(xxx) without θ . Despite the absence of assumptions, we are
able to sample from p(xxx) owing to the dataset we have at
hand. Overall, the GEMINI aims at separating according to
a distance D the cluster distributions from either the data
distribution (one-vs-all):

Iova
D (xxx; y|θ) = Ey∼pθ (y) [D(pθ (xxx |y)‖p(xxx))] , (2)

or other cluster distributions (one-vs-one):

Iovo
D (xxx; y|θ) = Ey1,y2∼pθ (y) [D(pθ (xxx |y1)‖p(xxx |y2))] . (3)

The novelty of GEMINI is to consider different types of
distances D between distributions with a special focus on the
maximum mean discrepancy (MMD, Gretton et al., 2012)
or the Wasserstein distance (Peyré and Cuturi 2019) com-
pared to former discriminative approaches using the standard
mutual information (Bridle et al. 1992; Krause et al. 2010)
which require regularisation to learn. The former corresponds
to the distance between the expectations of the respective dis-
tributions projected into a Hilbert space and the latter is an
optimal transport distance describing theminimumof energy
necessary to reshape one distribution as the other. Both of
them incorporate geometrical information on the data respec-
tively through a kernel κ or a distance δ in the data space.
Any neural network that is trainable through cross-entropy

loss can be switched to unsupervised learning at the cost of
choosing a metric or kernel in the data space. While we can-
not compute the true GEMINI values, we can estimate them
using Bayes theorem to get an expression depending only
on the predictions of the model. For instance, the Wasser-
stein GEMINI can be estimated using importance weights to
estimate the densities of each cluster distribution. TheMMD
can be computed with sums of kernel terms weighted by the
predictions of the model (Ohl et al. 2023, Table 1). GEM-
INI can therefore train any discriminative model of the form
pθ (y|xxx) as long as the distance D can be evaluated using
only the model’s outputs. Thus, the written GEMINI objec-
tive becomes for a batch of size N :

ÎD =
K∑

k=1

fD({pθ (y = k|xxx = xxx1), . . . , pθ (y = k|xxx = xxxN )}),

(4)

where fD is a function depending on the chosen distance.
For instance, if D is the KL distance, we can show that:

fD({pθ (y = k|xxx = xxx1), . . . , pθ (y = k|xxx = xxxN )})

=
N∑

i=1

pθ (y = k|xxx = xxxi ) log
pθ (y = k|xxx = xxxi )

pθ (y = k)
. (5)

All GEMINIs from Ohl et al. (2022) are available in the
GemClus package that we will present in Sect. 4.3.

3.2 Sparsemodels

3.2.1 Unsupervised logistic regression architecture

We start with the simplest discriminative model for variable
selection: logistic regression. This corresponds to the case
where our distribution pθ (y|xxx) is characterised by the set of
linear functions:

F = { fθ : xxx �→ θ	xxx}, (6)
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with θ ∈ R
d×K for d features and K clusters. Notice the

absence of bias as this linear model is a sub-case of the
neural network model covered in the next section. To prop-
erly ensure that vector weights are eliminated at once, a
group-lasso penalty is preferred (Hastie et al. 2015, Section
4.3) also known as �1/�2 penalty (Bach et al. 2012). We
consider a user-defined partition of the input features into
G ≤ d groups, each with associated parameter subset θ j .
Note that the dimensions of θ j vary depending on the number
of features within the j-th group. For example, a categorical
variable takingM values transformed into a one-hot-encoded
vector of dimension M can be associated to a single group.
Note that all clusters use the same subset of selected groups
of variables. Thus, the optimal parameters should satisfy:

θ̂ = argmax
θ

ID(xxx; y|θ) − λ

G∑

j=1

‖θ j‖2. (7)

This is exactly the sameobjective formulation as the super-
vised multi-class Lasso if we replace the GEMINI by the
maximum likelihood or any other supervised loss.Notice that
λ is positive becausewe seek to simultaneouslymaximise the
GEMINI and minimise the �1/�2 penalty. During training,
the sparse linear parameter will progressively remove vari-
ables by setting all grouped parameters to 0. If we setG = d,
then each variable can be removed on its own as there are
no groups of variables. A similar objective without group-
lasso and using the standardmutual information can be found
in (Kong et al. 2015, Eq. 4), although specific initialisation
strategies were required to circumvent the unspecificity of
mutual information local maxima, as described by Ohl et al.
(2023).

3.2.2 The LassoNet architecture

We extend this procedure to neural network by adapting the
LassoNet (Lemhadri et al. 2021) framework with GEMINIs.
The neural network fθ : X �→ R

K is taken from a family of
architectures F consisting of one multi-layered perceptron
(MLP) and a linear skip connection:

F = { fθ : xxx �→ gωωω(xxx) +WWW	xxx}, (8)

with θ = {ωωω,WWW } including ωωω the parameters of the MLP
gωωω and WWW ∈ R

d×K the weights of a linear skip connection
penalised by group-lasso. This leads to the same optimisation
objective as previously with a focus on the skip connection
parameters:

θ̂ = argmax
θ

ID(xxx; y|θ) − λ

G∑

j=1

‖WWW j‖2, (9)

withWWW j , the weights of the j-th group of features fromWWW .
It is a matrix of dimension K times the group size. As the
sparse skip connectionWWW loses some feature subset, wemust
force the MLP to drop this same subset of features as well.
Therefore the weights of the first layer ωωω(1) are constrained
such that:

‖ωωω(1)
j ‖∞ ≤ M‖WWW j‖2,∀ j ≤ G. (10)

where M is called the hierarchy coefficient. Thus, when a
feature j is eliminated, all weights starting from this feature
in the MLP will be equal to 0 as well. When M = 0, the
method is equivalent to the penalised logistic regression from
the previous section because all entry weights of theMLP are
equal to zero, hence passing no information.

Interestingly, while the constraints are designed to specif-
ically select features, dimension reduction can be performed
as well by extracting representations from lower-dimension
layers in the network gωωω. However, this intermediate repre-
sentation would not be complete as it misses the information
from the skip connection.

4 Optimisation

4.1 Training andmodel selection

We follow Lemhadri et al. (2021) in proposing a dense-to-
sparse training strategy for the penalty coefficient. Training
is carried along a path where the �1 penalty parameter λ is
geometrically increased: λ = λ0ρ

t (ρ > 1) at time step t
after an initial step without �1 penalty. We stop when the
number of remaining features used by the model is below a
user-defined threshold 0 < Fthres < d which can be thought
of as theminimum number of useful variables required. Each
time the number of features decreases during training, we
save its associate intermediate model. It is thus possible to
restore any intermediatemodel to get a clustering on different
subsets of variables.

Once the training is finished, we look again at all GEMINI
scores during the feature decrease and select the model with
the minimum of features that managed to remain in the arbi-
trary range of 90% of the best GEMINI value. This best value
is most of the time the loss evaluated with the model exploit-
ing all features. Still, automatic model selection may not
be necessary and in this case, we can look at all intermediate
models produced during the path as a set of possible solutions
for clustering with different number of selected variables.

AsGEMINI depends on ametric defined in the data space,
the metric will still be computed using all features despite
selection by the model. Consequently, we propose a less
grounded yet efficient training mode in appendix A taking
into account variable selection in the metric computation.

123



Statistics and Computing (2024) 34 :155 Page 5 of 26 155

However, this training mode yields incomparable GEMINI
scores due to the change of metric definition, rendering the
selection strategy inapplicable.

Interestingly, as the MMD-GEMINI maximisation is
equivalent to a kernel KMeans objective, as shown by França
et al. (2020), a subset of the method resembles to a sparse
kernel KMeans. However, unlike related works (França et al.
2020; Witten and Tibshirani 2010), the selection process is
done through gradient descent, i.e. without indicative vari-
ables, and without the definition of explicit centroids, thus
being less strict regarding the number of clusters to find, i.e.
GEMINI models can find fewer clusters than asked.

4.2 Gradient considerations

We offer here more detailed insights on the gradients of the
model for ensuring true variable elimination and how the
GEMINI behaves.

4.2.1 Proximal gradients

To ensure the convergence of the parameters to 0 upon elim-
ination, we adopt a proximal gradient strategy. In the case of
sparse logistic regression, the gradient ascent hence follows
the two classical steps:

β = θ t + ηt∇θID(xxx; y|θ), (11)

θ t+1
j = Sρtλ‖β j‖2(β j ),∀ j ≤ d, (12)

where ηt is the learning at timestep t . The soft-thresholding
operation Sα:

Sα(x) = sign(x)max{0, |x | − α}, (13)

is the closed-form solution of the proximal operator to
project the parameters on the constrained space due to the
group-lasso penalty (Hastie et al. 2015, Section 5.3.3). Con-
sequently, we are sure to obtain true zeroes in the linear
weights of the logistic regression or the weights of the skip
connection for the neural network. For the case of the com-
plete neural networkmodel, Lemhadri et al. (2021) gracefully
provide a proximal gradient operation to satisfy inequality
constraints during training time which guarantees true zeros
in the first MLP layer as well.

4.2.2 GEMINI gradients

We extend our initial work on gradients (Ohl et al. 2023) here
by providing explicit gradients for theGEMINI functions and
some explanations. Let us consider for example the derivative
of the OvA MMD-GEMINI with respect to the probability
output of some pθ (y = k|xxx = xxxi ) for a sample xxxi in a

batch containing N samples. Adapting Eq. (2) to this specific
distance, the objective to maximise is:

I = Ey∼pθ (y) [MMD(pθ (xxx |y)‖pdata(xxx))] . (14)

We can show that the gradient of an estimatedOvAMMD-
GEMINI Î is:

∂Î
∂ pθ (y = k|xxx = xxxi )

= 1

MMDk

⎡

⎣ 1

N 3

N∑

j,l

κ(xxx j , xxxl)

− 2

N 3

N∑

j

N∑

l=1

κ(xxx j , xxxl)
pθ (y = k|xxxl)
pθ (y = k)

+
N∑

j

κ(xxxi , xxx j )

(
pθ (y = k|xxx = xxx j )

pθ (y = k)
− 1

)
⎤

⎦ , (15)

where MMDk stands for the MMD between the k-th clus-
ter and the data distribution and κ is the kernel of choice.
Regarding the interpretation of the gradient, we can observe
that for all clusters k, the gradient is divided by the respec-
tive MMD distance. In other words, the smaller the MMD
the stronger the gradient: we need to increase the MMD. All
clusters k get their own common gradient throughout sam-
ples. This is due to the interdependence nature of the OvA
MMD that requires batches of samples to be evaluated and
cannot be performed on one sample at a time. Moreover, this
common term comprises a constant which is the estimated
participation of the data to the MMD. The second term is the
cross-contribution of pθ (y|xxx) and p(xxx) in the evaluation of
the distance. The stronger this cross-contribution is (and so
the smaller theMMD), the smaller the gradient. Finally, each
individual sample receives finally its own gradient which is
its weighted average kernel strength by pθ (y=k|xxx)

p(y=k) − 1. Thus,
the greater the conditional distribution of a sample compared
to the cluster distribution, the stronger the gradient. Indeed,
the more representative a sample of the cluster distribution,
the greater its contribution to pulling the gradient to this rep-
resentation.

We give further details on other gradients as well in
Appendix B,C and D. The latter is dedicated to the Wasser-
stein GEMINI.

4.3 Implementations

Owing to the exact computations of the gradients, we devel-
oped a Python package encompassing all sparse GEMINI
methods as well as original non-sparse GEMINI meth-
ods (Ohl et al. 2023) namedGemClus.1 Overall, the package

1 The GemClus package can be found at https://gemini-clustering.
github.io/.
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Table 1 Brief description of datasets involved in experiments

Name Samples Features #Classes

US-Congress 435 16 2

Heart-statlog 270 13 2

MNIST 12,000 784 10

MNIST-BR 12,000 784 10

Prostate-BCR 171 25,904 2

is designed for small datasets as it encompasses the precise
and optimised computations of the gradientswith lightweight
dependencies, rather than using the automatic differentiation
processes of heavy packages like PyTorch. The code of this
paperwaswritten using the latter.2 Resultsmay consequently
slightly differ. We give detailed examples of code snippets
in App. E, including how to reproduce the numerical exper-
iments from Sect. 5.3.

5 Experiments

A brief summary of the datasets used in these experiments
can be found in Table 1.

5.1 Metrics

Depending on the experiments for comparison purposes,
we report 3 different metrics. The adjusted rand index
(ARI,Hubert andArabie, 1985) describes how close the clus-
tering is to the classes, with a correction to random guesses.
The variable selection error rate (VSER), for instance used
by Celeux et al. (2014), describes the percentage of variables
that the model erroneously omitted or accepted, therefore the
lower the better. We finally report the correct variable rate
(CVR) which describes how many of the expected variables
were selected: higher is better. For example, a model select-
ing all variables of a dataset with d variables and d ′ good
variables will get a CVR of 100% and a VSER of 1 − d ′

d .

5.2 Default hyperparameters

We set the hierarchy coefficient to M = 10, as Lemhadri
et al. (2021) report that this value seems to “work well for
a variety of datasets”. We also report the performances for
the logistic regression mode when M = 0. The optimiser for
the initial training step with λ = 0 is Adam (Kingma and
Ba 2014) with a learning rate of 10−3 while other steps are
done with SGD with momentum 0.9 and the same learning
rate. Most of our experiments are done with 100 epochs per

2 The code for this paper can be found at https://github.com/oshillou/
SparseGEMINI.

step with early stopping as soon as the global objective does
not improve by 1% for 10 consecutive epochs. The early
stopping criterion is evaluated on the same training set since
we do not seek to separate the dataset in train and validation
sets in clustering. All activation functions are ReLUs. The
default starting penalty is λ0 = 1 with a 5% increase per
step. We keep the linear kernel and the Euclidean distance
respectively in conjunction with the MMD and Wasserstein
distances when evaluating the GEMINI. Finally, we evaluate
in most experiments the method with the exact same number
of clusters as the number of known (supervised) labels.

5.3 Numerical experiments

We tested Sparse GEMINI on two synthetic datasets pro-
posed by Celeux et al. (2014) and also used by Bouveyron
and Brunet-Saumard (2014a) to first highlight some proper-
ties of the algorithm and compare it with competitors.

The first synthetic dataset consists of a few informative
variables amidst noisy independent variables. The first 5
variables are informative and drawn from an equiprobable
multivariate Gaussian mixture distribution of 3 components.
All covariances are set to the identity matrix. The means are
μμμ1 = −μμμ2 = α111 andμμμ3 = 000. All remaining p variables fol-
low independent noisy centred Gaussian distributions. The
number of samples N , the mean proximity α and the num-
ber of non-informative variables p vary over 5 scenarios. For
the 2 first scenarios, we use N = 30 samples and N = 300
for others. The scenarios 1 and 3 present the challenge of
close Gaussian distributions with α = 0.6 while others use
α = 1.7. Finally, we add p = 20 noisy variables, except for
the fifth scenario which takes up to p = 95 uninformative
variables.

The second dataset consists of n = 2000 samples of 14
variables, 2 of them informative and most others linearly
dependent on the former. The Gaussian mixture is equiprob-
able with 4 Gaussian distributions of means [0, 0], [4, 0],
[0, 2] and [4, 2] with identity covariances. The 9 following
variables are sampled as follows:

xxx3−11 = [0, 0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8]	

+xxx1−2	
[
0.5 2 0 −1 2 0.5 4 3 2
1 0 3 2 −4 0 0.5 0 1

]

+ εεε, (16)

where εεε ∼ N (000,���) with the covariance:

��� = diag
(
III 3, 0.5III 2, diag([1, 3])Rot

(π

3

)
, diag[2, 6]Rot

(π

6

))
. (17)

Finally, the last 3 variables are sampled independently
from N ([3.2, 3.6, 4], III 3).

For all synthetic datasets, we asked training to stop with
Fthres set to the expected quantity of variables. We report
the results of Sparse GEMINI in Table 2 after 20 runs. For
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Table 2 Performances of Sparse GEMINI (OvO only) on synthetic datasets after 20 runs

Sparse KMeans ClustVarSel VSCC SFEM MMD-GEMINI Wasserstein-GEMINI
Logistic MLP Logistic MLP

(a) ARI scores (greater is better)

S1 0.090.08 0.050.07 0.000.02 0.130.11 0.140.11 0.080.07 0.090.12 0.040.07
S2 0.800.15 0.200.22 0.020.03 0.720.17 0.590.17 0.520.23 0.440.18 0.430.15
S3 0.110.03 0.040.10 0.150.10 0.220.05 0.210.05 0.210.04 0.140.05 0.100.05
S4 0.870.04 0.880.04 0.840.12 0.870.04 0.740.07 0.860.05 0.730.19 0.820.11
S5 0.870.03 0.650.38 0.000.00 0.830.03 0.760.05 0.860.03 0.590.20 0.670.20
D2 0.310.03 0.600.02 0.580.02 0.580.01 0.570.01 0.540.03 0.570.01 0.550.02
(b) VSER scores (lower is better)

S1 0.310.22 0.280.06 0.720.15 0.240.07 0.440.15 0.430.11 0.510.11 0.560.13
S2 0.750.18 0.290.07 0.730.09 0.270.08 0.060.05 0.110.07 0.150.10 0.240.12
S3 0.470.34 0.250.07 0.650.22 0.200.04 0.070.05 0.200.11 0.200.12 0.560.14
S4 0.800.00 0.010.03 0.640.29 0.230.08 0.000.00 0.000.00 0.010.03 0.000.02
S5 0.950.00 0.050.03 0.950.00 0.100.02 0.000.00 0.000.00 0.010.01 0.010.01
D2 0.840.06 0.000.00 0.740.13 0.520.08 0.290.00 0.310.04 0.290.00 0.290.00
(c) CVR scores (greater is better)

S1 0.530.31 0.110.10 0.870.23 0.280.18 0.600.26 0.640.19 0.630.23 0.590.17
S2 1.000.00 0.140.17 0.660.39 0.390.17 0.930.10 0.820.22 0.830.13 0.780.14
S3 1.000.00 0.190.30 0.970.13 0.270.15 0.950.09 0.990.04 0.680.25 0.920.12
S4 1.000.00 0.190.30 0.970.13 0.270.15 1.000.00 1.000.00 0.990.04 0.990.04
S5 1.000.00 0.750.44 1.000.00 0.660.18 1.000.00 1.000.00 0.940.11 0.960.10
D2 0.980.11 1.000.00 1.000.00 1.000.00 0.000.00 0.000.00 0.000.00 0.000.00

We compare our performances against other methods. S stands for a scenario of the first synthetic dataset and D2 stands for the second synthetic
dataset. Standard deviation is reported in subscript
Bold value indicates the best results

Table 3 Average regret scores
(lower is better) between Sparse
GEMINI for OvO MMD
GEMINI against the best
performing method per dataset

Method ARI VSER CVR
Dataset Linear MLP Linear MLP Linear MLP

1s1 0.000.11 0.060.07 0.170.15 0.160.11 0.280.26 0.240.19
1s2 0.190.17 0.260.23 0.020.05 0.070.07 0.070.10 0.180.22
1s3 0.020.05 0.020.04 0.010.05 0.140.11 0.040.09 0.000.04
1s4 0.140.07 0.020.05 0.000.00 0.000.00 0.000.00 0.000.00
1s5 0.120.05 0.020.03 0.000.00 0.000.00 0.000.00 0.000.00
2s2 0.020.01 0.050.03 0.290.00 0.310.04 1.000.00 1.000.00

Fig. 2 Example of convergence
of the norm of the weights of the
skip connection for every
feature during training for the
OvA Wasserstein objective.
Green lines are the informative
variables, black lines are the
noise and red are the correlated
variables. a In the case of noisy
variables, Sparse GEMINI can
recover the informative
variables. b In the presence of
redundant variables, Sparse
GEMINI eliminates informative
variables to keep the redundant
ones
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detailed distributions’ box plots, refer to Appendix G. We
compare our results against our own runs of other methods
using their R package: SparseKMeans (Witten et al. 2013),
ClustVarSel (Scrucca and Raftery 2018), vscc (Andrews and
McNicholas 2013, 2014) and SparseFisherEM (Bouveyron
and Brunet 2012). Due to the lack of space, we only report
the scores for the one-vs-one GEMINI in Table 2. Extensive
results using the one-vs-all GEMINI with the two architec-
tures can be found in Appendix F.

It appears that the Sparse GEMINI is efficient in selecting
the relevant variables when several others are noisy, espe-
ciallywith theOvOMMDobjectivewhilemaintaining a high
ARI. Moreover, while we do not systematically get the best
ARI, our performances never fall far behind the most com-
petitive method.We report in Table 3 the performances of the
Sparse GEMINIMMDOvO that we deemed best against the
best method for both architectures with regret scores. Regret
scores are computed as the average difference between the
scores of ourmodel and the best performing one.Most scores
are close to 0 for the third, fourth andfifth scenarios of the first
dataset, except on the ARI. Our worst CVR is for the second
dataset wherewe did not select the correct variables at all.We
can also observe in Table 2 that the MMD objective learns
well despite the presence of few samples in scenarios 2 and
3 and that the usage of an MLP leads to a trade-off between
ARI and VSER when we have enough samples. Addition-
ally, the selection strategy often leads to selecting the correct
number of variables for the MMD, except in scenarios 1 and
3 where the Gaussian distributions are close to each other
which is hard given the large variance. For the Wasserstein
objective, we notice that the performances in selection are
improved with the presence of more samples. However, the
clustering performances are worse than the MMD, which
we can attribute to the contribution of the noisy variables
to the computation of the distances between samples, thus
troubling the holistic perspective of the Wasserstein distance
on the cluster distribution. It also appears that we performed
poorly at selecting the correct variables in the presence of
redundancy in the second dataset. However, since all vari-
ables except 3 are correlated to the informative variables,
we still managed to get a correct ARI on the dataset while
using other variables. On average, the variables selected by
our models were the 6th and the 8th variables. We focus on
this difference of convergence in Fig. 2 where we plot the
norm of the skip connection per feature WWW j . In the case of
noisy variables, we are able to recover them as the number of
selected features decreases, whereas we eliminated the infor-
mative variable of the second dataset during the first steps. In
general, Clustvarsel (Scrucca and Raftery 2018) performed
better on this type of synthetic dataset in terms of variable
selection because it explicitly assumes a linear dependency
between relevant variables and others.

5.4 Examples onMNIST and variations

We also demonstrate performance of the Sparse GEMINI
algorithm by running it on the MNIST dataset. The initial λ0
was set to 40. Following Lemhadri et al. (2021), we chose
to stop training after finding 50 features. We also use 5%
of dropout inside an MLP with 2 hidden layers of 1200
dimensions each (Hinton et al. 2012). We report in Fig. 3
the selected features by the clustering algorithms and the
evolution of the ARI. We also extended this experiment to
the MNIST variations proposed by Larochelle et al. (2007)
showing the performance on theMNIST-BR dataset,3 a chal-
lenging dataset for unsupervised variable selection (Mattei
et al. 2016). This variation consists in samples of MNIST
with the black background being replaced by uniform noise
hence displaying conditional noise on the data. To be fair, we
reduced MNIST to the first 12,000 samples of the training
set in order to match the number of samples in MNIST-BR.

We observed in Fig. 3 that for both the default MNIST
dataset and the MNIST-BR dataset despite the presence of
noise, the feature map concentrates precisely on the good
location of the digits in the picture. Following the GEMINI
curves in the Fig. 3a, b, the respective selected numbers of
features were 122 forMNIST and 243 forMNIST-BR. These
chosen models also have a respective ARI of 0.34 for 7 clus-
ters and 0.28 for 8 clusters. The presence of empty clusters
is a possible outcome with GEMINI (Ohl et al. 2023) which
contributed here to lowering the ARI when evaluating with
the true digits targets.

5.5 Real datasets

5.5.1 OpenML datasets

We ran Sparse GEMINI on two OpenML datasets that are
often shown in relatedworks: theUSCongress dataset (Almanac
1984) and the Heart-statlog dataset (Brown 2004). The US
Congress dataset describes the choice of the 435 representa-
tives on 16 key votes in 1984. The labels used for evaluation
are the political affiliations: 164 Republican against 267
Democrats. We replaced the missing values with 0 and
converted the yes/no answers to 1, -1. Thus, an unknown
label is equidistant from both answers. The Heart-statlog
dataset describes 13 clinical and heart-related features with
labels describing the presence or absence of cardiac disease
among patients. We preprocessed it with standard scaling.
For the US Congress dataset, we used one hidden layer of
20 nodes and a batch size of 87 samples. For the Heart-
statlog dataset, we used 10 nodes and 90 samples. As we

3 Datasets were available at https://web.archive.org/web/201805191
12150/http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/
MnistVariations.
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Fig. 3 Relative importance of
MNIST features after training of
Sparse GEMINI with a log-scale
color map. The blue features
were eliminated at the first steps
of λ, and the red features were
eliminated last. On the right:
evolution of the GEMINI
depending on λ. F stands for the
number of selected features

seek only two clusters, we only ran the one-vs-all versions
of the GEMINI because it is strictly equal to the one-vs-one
in binary clustering. Both datasets had a penalty increase of
ρ = 10%. We first show the number of selected features
evolving with λ as well as the evolution of the GEMINI
score as the number of features decreases respectively in
Fig. 4 for the US Congress dataset and in Fig. 5 for Heart-
statlog. Table 4 contains the performances for the two data
sets, reporting the average number of variables selected over
20 runs according to our postprocessing selection criterion.
We also added the performances of competitors from the
previous section. However, we only managed to run Sparse
Fisher EM on the Heart-statlog dataset, hence its absence for
the US Congress scores. For comparison purposes, the best
unsupervised accuracy reported on the Heart-statlog dataset
by Solorio-Fernández et al. (2020) is 75.3%, while Sparse
GEMINI achieves 79% with the MMD. The best score for
all methods in the review (Solorio-Fernández et al. 2020)
is 79.6%, but this encompasses filter methods which Sparse
GEMINI is not. We also get similar results to the best per-
formances of Marbac et al. (2020) who report 33% of ARI.
Since most competitors retained all variables in the dataset,
we chose to show as well the clustering performances with-
out selection and hence with the greatest GEMINI score as
well.

We averaged the number of times each feature was
selected according to the model over the 20 runs and
sorted them decreasingly. This post-process revealed that the
Wasserstein objective consistently selected the El Salvador
Aid and the Aid to Nicaraguan Contras votes as sufficient
to perform clustering. Indeed, these two votes are among
the most discriminating features between Republicans and
Democrats and were often chosen by other model-based
methods (Fop and Murphy 2018). The MMD objective only
added the Physician fee freeze vote to this subset. Regarding
the Heart-Statlog dataset, the MMD consistently picked a
subset of 8 features out of 13, including, for example, age or
chest pain type as relevant variables. Contrarily, the Wasser-
stein objective did not consistently choose the same subset of
variables, yet its top variables that were selected more than
80% of the runs agree with the MMD selection as well.

5.5.2 Scalability example with the Prostate-BCR dataset

To show the scalability of Sparse GEMINI, we also demon-
strate its performance on the Prostate-BCR dataset, taken
from Vittrant et al. (2020).4 This dataset is a combination
of transcriptomics data from 3 different sources: the Can-
cer Genom Atlas (Abeshouse et al. 2015), the GSE54460

4 The dataset is publicly available at https://github.com/ArnaudDroit
Lab/prostate_BCR_prediction.
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Fig. 4 Average training curves
of Sparse GEMINI on the US
Congress dataset over 50 runs.
Blue lines are Wasserstein, red
lines are MMD

Fig. 5 Average training curves
of Sparse GEMINI on the Heart
Statlog dataset over 20 runs.
Blue lines are Wasserstein, red
lines are MMD

Table 4 ARI of Sparse
GEMINI (OvA) on the
Heart-statlog and US Congress
datasets with the average
number of selected features

Heart-statlog US Congress
ARI # Variables ARI # Variables

SparseKMeans 0.18 0.00 13 0.00 0.54 0.00 16 0.0

Clustvarsel 0.03 0.00 2 0.00 0.00 0.00 2 0.00

VSCC 0.27 0.00 13 0.00 0.40 0.00 11 0.00

Sparse Fisher EM 0.19 0.00 1 0.00 – –

Logistic regression MMD 0.37 0.03 7.5 0.51 0.53 0.02 8.3 0.81

Wasserstein 0.33 0.08 5.8 2.09 0.48 0.00 8.0 0.92

MLP MMD 0.32 0.01 8.0 0.00 0.48 0.00 3.1 0.37

Wasserstein 0.32 0.09 8.4 2.70 0.47 0.00 2.0 0.00

MLP MMD∗ 0.37 0.02 13 – 0.55 0.01 16 –

Wasserstein∗ 0.33 0.09 13 – 0.55 0.02 16 –

Standard deviation in subscript. Scores with an asterisk are the initial performances when using all features
Bold value indicates the best results

dataset from the NCBI website, and the PRJEB6530 project
of the European Nucleotide Archive. The combined dataset
contains 25,904 transcripts over 171 filtered patients with
long-term follow-up, counting 52, 96 and 23 patients from
the respective sources. The objective is to find biochemical
recurrences (BCR) of prostate cancer through the transcrip-
tomic signature, hence binary targets.

To carefully eliminate the variables, we increase λ grad-
ually by 2%. We took a simple MLP with only one hidden
layer of 100 neurons. We chose to run until we reached 400
features or less, following Vittrant et al. (2020). We trained
Sparse GEMINI with OvA objectives 5 times to find either

2 or 3 clusters in order to break down possible substructures
among the supervised targets.

Interestingly, we observed in Table 5 that the clustering
results did not catch up with the actual BCR targets, with an
ARI close to 0 most of the time. However, upon evaluation
of the clusters with respect to the original source of each
sample, we found scores close to 1 of ARI in the case of the
MMD GEMINI. Thus, the unsupervised algorithm was able
to find sufficient differences in distribution between each data
source to discriminate them. Additionally, consistent subsets
of features were always selected as the final subset on all
5 runs depending on the GEMINI. This implies that even
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Table 5 ARI scores of the
Prostate BCR dataset for various
numbers of clusters depending
on the chosen type of targets

Model #Var BCR targets ARI Data source targets ARI
Architecture GEMINI K

Logistic regression MMD 2 810 590 −0.01 0.00 0.79 0.01

3 1229 2270 0.04 0.00 1.00 0.01

Wasserstein 2 1334 2561 0.01 0.02 0.60 0.13

3 1430 3127 0.04 0.01 0.96 0.06

MLP MMD 2 4013 6541 −0.01 0.00 0.78 0.01

3 4287 6590 0.03 0.02 0.93 0.11

Wasserstein 2 4403 6843 0.00 0.00 0.65 0.04

3 4331 6742 0.02 0.02 0.80 0.20

We either use the expected targets (BCR) regarding cancer prediction, or data source targets that identify the
data origin of each sample. The indicated GEMINIs are in the one-vs-all setting
Bold value indicates the best results

Table 6 ARI scores of the
Prostate BCR dataset for various
numbers of clusters depending
on the chosen type of targets

Model BCR targets ARI Data source targets ARI
Architecture GEMINI K

Logistic regression MMD 2 −0.01 0.00 0.80 0.01

3 0.030.01 0.97 0.07

Wasserstein 2 0.00 0.00 0.75 0.00

3 0.03 0.02 0.90 0.13

MLP MMD 2 0.01 0.02 0.56 0.11

3 0.04 0.01 0.95 0.05

Wasserstein 2 0.00 0.00 0.68 0.07

3 0.03 0.03 0.86 0.16

We either use the expected targets (BCR) regarding cancer prediction, or data source targets that identify the
data origin of each sample. The indicated GEMINIs are in the one-vs-all setting

without the bestGEMINIwithin a range for feature selection,
several runs can lead to identifying subsets of relevant data
as well. This example illustrates how even in the presence
of potentially legitimate labels, there exist other valid cluster
structures in the data (Hennig 2015). By comparing these
results with the performances using all features in Table 6,
we observe that in general the MMD objective gained in
ARI with the decrease of the number of features, whereas
WassersteinGEMINI is strongerwhen observing all features.

These results can be viewed as discovering batch effect
in the data. Batch effect, also known as batch variation, is
a phenomenon that occurs in biological experiments where
the results are affected by factors unrelated to the experi-
mental variables being studied. These factors can include
variations in sample processing, measurement conditions,
people manipulating the samples, or equipment used. One
common example of a batch effect is observed in microar-
ray or RNA sequencing experiments, where the samples are
processed in different batches and the results are affected by
variations in the reagents or protocols used. Batch effects in
microarray experiments have been shown to originate from
multiple causes, including variations in the labelling and

hybridisation protocols used, leading to differences in the
intensity of gene expression signals (Luo et al. 2010).

To minimise batch effects, it is important to control vari-
ables such as reagents, protocols, and equipment used, and
to use appropriate normalisation and data analysis methods
to account for these variations. Several approaches can be
used to detect batch effects in RNA-seq experiments, includ-
ing PCA (Reese et al. 2013) and clustering. For this latter,
Hierarchical clustering is often used as a method that groups
samples based on their similarity in gene expression patterns,
and batch effects can be identified based on dendrogram anal-
ysis (Leek et al. 2010).

5.6 Discussion

Our first observation from Table 2 is that the Sparse GEMINI
algorithm can achieve performance close to some competi-
tors in terms of ARI while performing better in variable
selection, especially for the one-vs-one MMD. The MMD
is a distance computed between expectations, making it thus
insensitive to small variations of the kernel, typically when
noisy variables are introduced, contrary to the Wasserstein
distance which takes a global point of view on the dis-
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tribution. Specifically, the algorithm is good at discarding
noisy variables, but less competitive with regard to redun-
dant variables as illustratedwith the second synthetic dataset.
Nonetheless, the ARI remains competitive even though the
model failed to give the correct ground for the clustering.

Additionally, the training path produces critical values of
λ at which the features disappear. Thus, the algorithm pro-
duces an explicit unsupervised metric of the relevance of
each feature according to the clustering. Typically, plateaus
of the number of used variables like in Figs. 4b and 5b for
the MMD shed light on different discriminating subsets. We
also find that the empirical threshold of 90% of the maximal
GEMINI to select fewer variables is an efficient criterion.
In case of a too sudden collapse of variables, we encourage
training over again models on iteratively selected subsets
of features. Indeed, as λ increases during training, the col-
lapse of the number of selected variables will often happen
when the geometric increase is too strong which might lead
to unstable selections.

6 Conclusion

We presented a novel algorithm named Sparse GEMINI that
jointly performs clustering and feature selection by combin-
ing GEMINI for objective and an �1 penalised skip connec-
tion. The algorithm shows good performances in eliminating
noisy irrelevant variables while maintaining relevant cluster-
ing. To eliminate redundant variables, our future works can
focus on adding the correlation of selected variables in the
penalty. Owing to the nature of multi-layered perceptrons,
Sparse GEMINI is easily scalable to high-dimensional data
and thus provides an unsupervised technique to get a projec-
tion of the data. However, the limits of the scalability are the
number of clusters and samples per batch due to the complex
nature of GEMINI. Thus, we believe that Sparse GEMINI is
a relevant algorithm for multi-omics data where the number
of samples is often little and the number of features large,
especially when it is hard to design a good generative model
for such data. As a concluding remark, we want to draw
again the attention to the discriminative nature of the algo-
rithm: Sparse GEMINI focuses on the design of a decision
boundary instead of parametric assumptions.

Appendix A The dynamic training regime

As features get eliminated during the training, the notion of
affinity (distance δ or kernel κ) and clustering with respect
to GEMINI between two samples changes. Indeed, GEMINI
aims at maximising a distance between two related distri-
butions using an affinity computed between samples, yet
removing features from the inference implies that we no

longer cluster the same original data space, but rather a sub-
space at step t : Xt = ∏

j∈It X j . If we still compute our
affinity function using all features fromX the extra removed
features may bring noise compared to the affinity between
the relevant features, and thus bring confusion with regards
to the ideal decision boundary.

To respect the original notion ofGEMINI in clustering,we
introduce the dynamic training regime, where at each time
step t , the affinity function is computed using only the subset
of relevant features It . We call static regime the training with
usage of all features in the affinity function as described in
Sect. 3. The advantage of the dynamic training regime is that
it respects the notion of GEMINI with regard to the decision
boundary, while the static regime yields comparable values
ofGEMINI independently of the number of selected features.
However, the dynamic regime is incompatible with the selec-
tion process described in Sect. 4.1 because any change of data
space implies a change of values for kernels or distances and
thus for GEMINI, making models incomparable. Moreover,
we may have more theoretical guarantees of convergence for
the usual static regime than in the dynamic regime which
may seem unstable.

We experiment this approach again with the synthetic
data sets and report the results in Table 7. For this exper-
iment, we only evaluated the performances on the final
subset of selected features. However, since Sparse GEM-
INI is trained until a user-defined number of features is
reached, we avoid unfair comparisons with other variable
selection methods and do not report the VSER and the CVR.
Our main observation on the introduction of the dynamic
regime is that it greatly improves the clustering performances
of the Wasserstein-GEMINI while not affecting the MMD-
GEMINI. This success can be explained by the removal of
variables as the removal of noise in the distance computa-
tion which is crucial for the Wasserstein distance because
it takes a global point of view on the complete distribution.
In contrast, the MMD only considers the expectation, which
helps in removing noisy variations of the distance around
informative variables.

Appendix B Differentiation of the OvAMMD

B.1 Alternative computation of the forward pass

We consider the computations starting from a row-stochastic
matrix τττ ∈ R

N×K , typically the softmax output of a model.
We focus here only on the computations of the objective
function, the OvA MMD. First, we can compute the cluster
proportions:

πππ = 1

N
111	
Nτττ . (B1)
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Table 7 ARI scores on the
synthetic datasets with the
dynamic regime of training for
the Sparse GEMINI using MLPs

Method MMD Wasserstein
OvA OvO OvA OvO

Scenario 1 0.12 (0.13) 0.15 (0.12) 0.05 (0.09) 0.07 (0.06)

Scenario 2 0.48 (0.11) 0.63 (0.21) 0.37 (0.11) 0.30 (0.13)

Scenario 3 0.23 (0.04) 0.20 (0.03) 0.11 (0.05) 0.11 (0.06)

Scenario 4 0.45 (0.07) 0.88 (0.03) 0.82 (0.13) 0.85 (0.10)

Scenario 5 0.62 (0.09) 0.84 (0.05) 0.56 (0.20) 0.48 (0.17)

Dataset 2 0.54 (0.04) 0.54 (0.05) 0.50 (0.08) 0.56 (0.01)

Bold value indicates the best results

Our goal is to compute the vector ��� ∈ R
K where the k-

the component is the squared distance in the Hilbert space
between one cluster distribution and the data distribution:

���k =
N ,N∑

i, j

κ̃i, j

[
τττ kiτττ k j

π2
k

+ 1 − 2
τττ ki

πk

]

. (B2)

To that end, we introduce the matrix ααα ∈ R
N×K which

is the element-wise division of τττ by the proportions of the
matching cluster.

ααα = τττ � (111Nπππ	) =
[
τττ ki

πk

]

. (B3)

Individually, we can interprete the value of αi k as the
ratio p(y = k|xxxi )/p(y = k) or p(xxxi |y = k)/p(xxxi ). This
represents the relative strength of the sample in the cluster
distribution. We can then deduce the writing of���:

To name the elements, aaa is the cluster contribution: how
the distribution of the cluster contributes to increase the dis-
tance, and the same goes for the constant ccc which represents
the agnostic data strength. Finally,bbb is the agreement between
the two distributions p(y| = k|xxx) and p(xxx)which diminishes
the value of theMMD: the more the cluster distribution takes
to the data (by having everything in the same cluster), the
stronger bbb is and the lower the MMD. Yet, to simplify the
derivatives to compute later, we introduce two intermediary
variables:

γγγ = κ̃̃κ̃κααα, (B4)

and

ωωω = ααα	γγγ , (B5)

of respective shapes N × K and K × K . Thus, we simply
rewrite:

��� = aaa + ccc − 2bbb, (B6)

= diag(ωωω) + 111K×N κ̃̃κ̃κ111N − 2γγγ 	111N . (B7)

Fig. 6 Summary of computations for the forward pass of the OvA
MMD using matrices

Finally, assuming the square root is applied element-wise,
we can write the final objective as:

Îova
MMD(xxx, y|θ) = πππ	√

��� (B8)

The graph of computations is summarised in Fig. 6.

B.2 Backward pass

We can now compute the derivatives of each part of the graph

with respect to the conditional probabilities: ∂Î
∂τττ

. By reversing
the graph, we get the list of the following sorted derivatives

to compute: (1) ∂Î
∂���

(2) ∂Î
∂aaa (3) ∂Î

∂bbb (4) ∂Î
∂ωωω

(5) ∂Î
∂γγγ

(6) ∂Î
∂ααα

(7)
∂Î
∂πππ

(8) ∂Î
∂τττ

.
To compute these derivatives, we will follow an automatic

differentiation procedure. All derivatives correspond to the
gradient of a scalar with respect to a matrix or vector, hence
all derivatives will keep the same shape as the denominator.
Notice that because c and κ̃ do not depend on τττ , they will
not produce any gradient.
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B.2.1 Deriving for1

We simply take the vector π for this derivative that summed
the square root of �. Additionally, the element-wise square
root is differentiated. Thus:

∂Î
∂���

= πππ

2
√

�
. (B9)

B.2.2 Deriving foraaa andbbb

The contributions ofaaa andbbb are simple element-wise sums of
vectors. They have the same shape as the previous gradient.
Therefore:

∂Î
∂aaa

= ∂Î
∂���

= πππ

2
√

�
, (B10)

∂Î
∂bbb

= −2
∂Î
∂���

= − πππ√
�

. (B11)

B.2.3 Deriving for!

Since we took only the diagonal of ω for computation, the
gradient with respect to ω will be a diagonal matrix, which
diagonal is exactly the previously committed error:

∂Î
∂ωωω

= diag

(
∂Î
∂aaa

)

= 1

2
diag

(
πππ√
���

)

. (B12)

B.2.4 Deriving for �

The vector γ contributed two times in the computation graph:
once to ωωω and another time for bbb. Both cases involve simple
matrix multiplications. We can sum the matrix gradient to
both errors to get:

∂Î
∂γγγ

= ∂Î
∂ωωω

ααα	 + ∂Î
∂bbb

111	
N , (B13)

= 1

2
αααdiag

(
πππ√
���

)

− 111N

(
πππ√
���

)	
. (B14)

Notice that for the derivative from bbb, we had to transpose
the error since bbb is computed using γγγ 	. Here, we can remark
that by unfolding the definition of ααα, and thanks to matrix
product with the diagonal product, the values of πππ gets can-
celled. Therefore:

∂Î
∂γγγ

= 1

2

τττ

111N
√

���
	 − 111N

(
πππ√
���

)	
. (B15)

B.2.5 Deriving for˛

As we did for γγγ , we need to sum here the gradient contri-
butions of ααα to ωωω and γγγ . Both are matrix multiplications,
however we add a transposition in the case of ω. Thus:

∂Î
∂ααα

=
(

∂Î
∂ωωω

γγγ 	
)	

+ κ̃̃κ̃κ	 ∂Î
∂γγγ

, (B16)

= 1

2
γγγ diag

(
πππ√
���

)

+ κ̃̃κ̃κ

(
1

2

τττ

111N
√

���
	

−111N

(
πππ√
���

)	)

. (B17)

Here, we can unfold the definition ofγγγ to make a common
factor κ̃̃κ̃κ appear on the left matrix multiplication. Thus:

∂Î
∂ααα

= κ̃̃κ̃κ

[
1

2
αααdiag

(
πππ√
���

)

+ 1

2

τττ

111N
√

���
	

−111N

(
πππ√
���

)	]

. (B18)

We notice the exact same simplification on the left term
betweenααα and the diagonal matrix as we had for the gradient
w.r.t. γγγ . Rewriting this term is exactly equal to the second,
and thus:

∂Î
∂ααα

= κ̃̃κ̃κ

[
τττ

111N
√

���
	 − 111N

(
πππ√
���

)	]

. (B19)

B.2.6 Deriving for�

Same procedure for πππ by summing the contributions of the
gradient from ααα and the dot product with

√
��� in I. For the

derivative fromααα, we multiply the rows of the previous error
by the squared inverse of πππ and βββ and sum them. Hence:

∂Î
∂πππ

= √
��� −

[[
τττ	

√
���111	

N

− πππ√
���
111	
N

]

κ̃̃κ̃κ � βββ

πππ2111	
N

]

111N ,

(B20)

= √
��� −

[[
τττ	

√
���111	

N

− πππ√
���
111	
N

]

κ̃̃κ̃κ � ααα

πππ111	
N

]

111N .

(B21)

Since the inverse factor 1/πππ111	
N is constant row-wise, we

can incorporate it directly to the left term of the matrix mul-
tiplication. This simplifies again the notations:

∂Î
∂πππ

= √
��� +

[(
ααα	κ̃̃κ̃κ√
���111	

N

− 111	
N κ̃̃κ̃κ√
���111	

N

)

� ααα

]

111N . (B22)
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Here, the combination of the element-wise multiplication
by ααα followed by a sum over all samples is in fact equal to
the respective distance termsaaa andbbb. First first simplification
yields:

∂Î
∂πππ

= √
��� − aaa − bbb√

�
. (B23)

To finally go further, we can use the definition of ��� to
replace the left term by another. Indeed, since:

aaa − bbb = ��� + bbb − ccc, (B24)

and the denominator
√

� gets cancelled by���, we obtain:

∂Î
∂πππ

= ccc − bbb√
�

. (B25)

B.2.7 Deriving for �

Finally, the gradient forτττ sums contributions frombothααα and
πππ . In both cases,we just consider element-wise operations, so
the global gradient will just be element-wise multiplication
of the errors, with a specific repetition over all rows for the
gradient from πππ :

∂Î
∂τττ

= 111N
N

∂Î
∂πππ

	
+ ∂Î

∂ααα
� 1

111Nπππ	 , (B26)

= 111N
ccc − bbb

N
√

�

	

+ κ̃̃κ̃κ

[
τττ

111N
√

���
	 − 111N

(
πππ√
���

)	]

� 1

111Nπππ	 , (B27)

= 111N
ccc − bbb

N
√

�

	
+ κ̃̃κ̃κ

[
ααα

111N
√

���
	 − 1

111N
√

���
	

]

. (B28)

To conclude, we can factorise all terms by the common
denominator:

∂Î
∂τττ

= 1

111N
√

���
	 �

[
111N
N

(ccc − bbb)	 + κ̃̃κ̃κ(ααα − 111N×K )

]

. (B29)

For further simplification of the gradients, we can unfold
again the definition of bbb and ccc as follows:

111N
N

(ccc − bbb)	 = 1

N

[
111N×N κ̃̃κ̃κ111N×K − 111N×N κ̃̃κ̃κααα

]
, (B30)

= 1

N

[
111N×N κ̃̃κ̃κ (111N×K − ααα)

]
. (B31)

Thus, we can conclude that the final equation for the gra-
dient of the OvA MMD is:

∂Î
∂τττ

= 1

111N
√

���
	 � [

(IN − 111N×N/N ) κ̃̃κ̃κ (ααα − 111N×K )
]
.

(B32)

To be more precise, we can even express the value for a
component at position i, k:

∂Î
∂τττ i,k

=
⎡

⎣ 1√
�k

N∑

j=1

(

κ̃̃κ̃κ i j − 1

N

N∑

l=1

κ̃̃κ̃κ jl

)

(α jk − 1)

⎤

⎦

(B33)

=
[

1√
�k

(c − bk + γik − κ̄̄κ̄κ i )

]

, (B34)

with κ̄̄κ̄κ i = ∑N
j=1 κ̃i j .

Appendix C Differentiation of the OvOMMD

C.1 Forward pass

We will proceed here to the exact same reasoning as in the
OvAMMD.Wefirst compute the distance��� before summing
them with πππ . Contrary to the OvAMMD,��� is now a matrix
of shape K × K where each entry describes the distance
between two clusters k and k′:

Îovo
MMD(xxx, y|θ) = πππ	√

���πππ. (C35)

Aspreviously done,we can express the squareddistance as
the sum of two self-contributions minus a cross-contribution.
These contributions will be here matrices of shape K × K .
Yet, we can notice that in the OvO MMD, the matrix ��� is
symmetric. Simply put, the cross-contribution is symmet-
ric, and the two self-contributions are the transposed of each
other:

��� = AAA +CCC − 2BBB, (C36)

= AAA + AAA	 − 2BBB. (C37)

We can here realise that the matrix AAA is in fact a column-
wise copy of the vector aaa from the previous computations
with OvAMMD. Similarly, BBB is the entire matrixωωω while AAA
only consists in its diagonal. Therefore:

��� = diag(ωωω)111	
K + 111K diag(ωωω)	 − 2ωωω. (C38)

The remaining of the definition ofωωω strictly unfolds from
the OvA MMD forward pass.
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C.2 Backward pass

In the specific case of theOvO,we have square roots of values
of��� which can be equal to 0, hence undifferentiable. This is
in fact not a burden since in principle, these 0 only happen
when we evaluate the MMD between a cluster and itself.
Thus, we can discard easily the null components of��� during
the final sum (expectation overπ ) and adopt locally the small
convention that the derivative of I w.r.t.��� will be equal to 0
on the diagonal, despite the square root computation.

C.2.1 Deriving for111

We start simple, the derivative is simply a square matrix
where all components are the cartesian product of the vector
πππ :

∂Î
∂���

= ππ	

2
√

�
. (C39)

From now on, we will arbitrarily say that
(

∂Î
∂���

)

k,k
= 0

because it was not summed at the end of the forward pass in
the OvO MMD. Thus, we will write for clarity:

∂Î
∂���

= ππ	

2
√

�
� (111K×K − III K ). (C40)

C.2.2 Deriving for!!!

For the gradient w.r.t. ωωω, we have two contributions to sum,
one which comes from the diagonal ofωωω times 2, and another
from the complete matrix ωωω:

∂Î
∂ωωω

= ∂Î
∂���

(
∂���

∂diag(ωωω)

∂diag(ωωω)

∂ωωω

+ ∂���

∂diag(ωωω)	
∂diag(ωωω)	

∂ωωω

)

− 2 × ∂Î
∂���

∂���

∂ωωω
, (C41)

= 2diag

(
∂Î
∂���

111K

)

− 2
∂Î
∂���

. (C42)

We can simplify the factor 2 to get:

∂Î
∂ωωω

= diag

([
ππππππ	
√

���
� (111K×K − III K )

]

111K

)

(C43)

− ππππππ	
√

���
� (111K×K − III K ). (C44)

This gradient says that on all parts of the matrix except
the diagonal, we backpropagate the cross-contribution from
ωωω, but sum all this contributions as well on the diagonal. To

ease later writings, we introduce���:

��� = ππππππ	
√

���
� (111K×K − III K ). (C45)

Thanks to ��� and the cross-product of the vector πππ , ��� is
positive and symetric.

C.2.3 Deriving for���

Now, we can backpropagate as we did for the OvA MMD,
except that γ only contributed once to the computation ofωωω.
Thus:

∂Î
∂γγγ

= ααα
∂Î
∂ωωω

, (C46)

= ααα
[
diag (���111K ) − ���

]
. (C47)

C.2.4 Deriving for ˛̨̨

The derivative w.r.t. ααα is a backpropagation through two
matrix multiplications: one in γγγ and one in ωωω. Hence:

∂Î
∂ααα

= κ̃̃κ̃κ
∂Î
∂γγγ

+ γγγ
∂Î
∂ωωω

, (C48)

= κ̃̃κ̃κααα
∂Î
∂ωωω

+ γγγ
∂Î
∂ωωω

, (C49)

= 2γγγ
∂Î
∂ωωω

. (C50)

Thus:

∂Î
∂ααα

= 2γγγ
[
diag (���111K ) − ���

]
. (C51)

Note thatwe canwrite the first termdifferently becausewe
multiply thematrixγγγ by a diagonal matrix. This is equivalent
to doing an element-wise multiplication of γγγ by the vector
inside the diag function repeated row-wise:

∂Î
∂ααα

= 2111N×K��� � γγγ − 2γγγ���. (C52)

C.2.5 Deriving for���

The proportions contributed in the final expectation with ���

and in the computations of ααα. This looks like what we had in
the OvA MMD backpropagation. Therefore:

∂Î
∂πππ

= ∂πππ	√
�πππ

∂πππ
− 111	

N

[
ααα

111Nπππ	 � ∂Î
∂ααα

]

,

= 2πππ	√
� (C53)
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− 2 × 111	
N

[
ααα

111Nπππ	 � (111N×K��� � γγγ − γγγ���)

]

. (C54)

By noticing that the matrix 111N×K��� is constant row-wise,
we can easily permute the element-wise operationwithγγγ and
perform the matrix multiplication with 111	

N before thanks to
factorisation. The element-wise product ofααα withγγγ summed
over all samples is equal to the diagonal ofωωω.We can rewrite:

∂Î
∂πππ

= 2πππ	√
� − 2

diag(ωωω)

πππ	 � 111K��� (C55)

+ 2

πππ	 �
(
111	
N

[
ααα � γγγ���

])
. (C56)

C.2.6 Deriving for���

We can finally draw a conclusion to this backpropagation by
summing the gradient of the two contributions of τττ : one from
ααα and another one from πππ :

∂Î
∂τττ

= 1

111Nπππ	 � ∂Î
∂ααα

+ 1

N
111N

∂Î
∂πππ

, (C57)

= 2

111Nπππ	 � [
γγγ � 111N×K��� − γγγ���

] + 2

N
111Nπππ	√

���

− 2

N
111N

[
diag(ωωω)

πππ	 � 111K���

]

+ 2

N
111N

[
1

πππ	 �
(
111	
N

[
ααα � γγγ���

])
]

, (C58)

= 2

N
111Nπππ	√

��� + 2

111Nπππ	 � [
γγγ � 111N×K��� − γγγ���

−111N
N

(diag(ωωω) � 111K���) + 111N×N

N
(ααα � γγγ���)

]

.

(C59)

Appendix D Gradients for theWasserstein
GEMINI

We seek the expression of the gradient of the Wasserstein
GEMINI for some output τττ ∈ R

N×K of some probabilistic
model. The matrix τττ is therefore row-stochastic. The expres-
sion of the GEMINI in the one-vs-all context is then:

Iova
Wδ

(xxx; y|θ) = Ey∼pθ (y) [Wδ(pθ (xxx |y)‖pdata(x)] , (D60)

and the one-vs-one variant simply replaces the data distribu-
tion with another cluster distribution on which to perform
the expectation as well. The distance between the sam-
ples is noted δ. During training, the model does not see
continuous distribution and only gets batches of samples.
Hence, the problem is discretised and the Wasserstein dis-
tance can be then evaluated using histogram vectors. We

Table 8 Performances of Sparse GEMINI using the one-vs-all objec-
tives on the synthetic datasets

MMD-GEMINI Wasserstein-GEMINI
Logistic MLP Logistic MLP

(a) ARI scores (greater is better)

S1 0.080.08 0.110.12 0.030.05 0.080.09
S2 0.460.11 0.470.11 0.460.13 0.410.15
S3* 0.230.07 0.220.05 0.130.07 0.080.06
S4 0.430.05 0.450.05 0.560.17 0.740.22
S5 0.440.05 0.580.11 0.520.16 0.470.18
D2 0.530.06 0.550.03 0.570.02 0.540.03
(b) VSER scores (lower is better)

S1 0.380.14 0.370.11 0.580.13 0.550.10
S2* 0.040.04 0.100.06 0.160.08 0.250.11
S3* 0.060.08 0.190.11 0.200.13 0.680.16
S4 0.000.00 0.000.00 0.030.03 0.000.00
S5 0.000.00 0.000.00 0.020.02 0.080.07
D2 0.290.00 0.300.04 0.290.00 0.290.03
(c) CVR scores (greater is better)

S1 0.560.20 0.630.31 0.650.21 0.710.17
S2 0.930.10 0.840.12 0.910.10 0.810.12
S3 0.940.16 0.980.06 0.660.23 0.960.08
S4 1.000.00 1.000.00 0.950.09 0.990.04
S5 1.000.00 1.000.00 0.940.09 0.950.09
D2 0.000.00 0.000.00 0.000.00 0.000.00

Bold value indicates the best results

demonstrated (Ohl et al. 2023) that these histogram vec-
tors consist in a cluster-wise normalisation of the predictions
which arises from importance sampling. Thus, the discrete
approximation of the Wasserstein GEMINI is:

Îova
Wδ

(xxx; y|θ) =
K∑

k=1

πk min
PPP∈U (ωωωk ,111N /N )

N ,N∑

i=1
j=1

PPPi, jδ(xxxi , xxx j ),

(D61)

where PPP is constrained in a set that forces it to have rows sum-
ming to the values of ωωω·k and columns summing to 111N/N .
The vector ωωω·k = τττ ·k/

∑N
i=1 τττ ik is the normalised cluster

predictions.

D.1 Gradient for theWasserstein distance

The new formulation of the discrete Wasserstein distance
corresponds to a linear program and is often referred to as
the Kantorovich problem. This problem admits the following
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Fig. 7 Box plots of one-vs-one
methods against baseline on the
dataset S1
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Fig. 8 Box plots of one-vs-one
methods against baseline on the
dataset S2

dual (Peyré and Cuturi 2019):

Wδ(ωωω·1‖ωωω·2) = max
(uuu,vvv)∈RN×R

N

uuui+vvv j≤δi j ,∀i, j≤N

〈uuu,ωωω·1〉 + 〈vvv,ωωω·2〉, (D62)

thanks to the strong duality for linear programs (Bertsimas
and Tsitsiklis 1997, p 148, Theorem 4.4). It immediately
appears that once we found the optimal "Kantorovich poten-
tials" uuu� and vvv� for each respective histogram vectorωωω·1 and
ωωω·2 we can compute the gradient of the distance using these
optimal values because we remove the max term. However,
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Fig. 9 Box plots of one-vs-one
methods against baseline on the
dataset S3
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Fig. 10 Box plots of one-vs-one
methods against baseline on the
dataset S4
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Fig. 11 Box plots of one-vs-one
methods against baseline on the
dataset S5
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as we want to remain in the simplex, we need to recenter the
mass of a gradient and thus subtract the mean of the dual
variables:

∂Wδ(ωωω·1‖ωωω·2)
∂ωωω·1

= uuu� −
N∑

i=1

uuu�
i

N
= ūuu, (D63)

∂Wδ(ωωω·1‖ωωω·2)
∂ωωω·2

= vvv� −
N∑

i=1

vvv�
i

N
= v̄vv. (D64)

D.2 Complete gradient for the OvAWasserstein

We can now simply unfold the rules of derivation w.r.t. τττ ik
between the product of the cluster proportions πk and the
Wasserstein distance. However, we must take into account
that due to the self-normalisation of τττ to produce the his-
togram vectors ωωω, we have to sum its derivative over all
normalised samples. Thus:

∂Î
∂τττ ik

=
K∑

k′=1

Wδ(ωωω·k′ ‖111N/N )
∂πk′

∂τττ ik

+
N∑

j=1

πk′
∂Wδ(ωωω·k′ ‖111N/N )

∂ωωω jk′

∂ωωω jk′

∂τττ ik
, (D65)

= Wδ(ωωω·k‖111N )

N

+ πk

N∑

j=1

ūuu jk

(
1[i == j]

Nπk
− τ jkτ jkτ jk

N 2π2
k

)

, (D66)

where1 is the indicator function resulting from the derivative
of the self-normalisation. After summing over all samples,
we can conclude that the gradient of the one-vs-all Wasser-
stein GEMINI w.r.t. model predictions τττ is:

∂Îova
Wδ

∂τττ ik
= Wδ(ωωω·k‖111N )

N
+ ūuuik

N
− 〈ūuu·k, τττ k〉

N 2πk
. (D67)

D.3 Complete gradient for the OvOWasserstein

The demonstration follows the same rules as before. We add
as well the fact that the Wasserstein distance is symmetric,
and hence its gradient is as well so we can permute the names
ūuu and v̄vv when changingWδ(ωωω1‖ωωω2) forWδ(ωωω2‖ωωω1). There-
fore, we sum twice the gradients of theWasserstein distances,
as well as twice the gradients for the proportions due to the
symmetric nature of this function. We can thus arrive to a
final gradient that is very similar to the OvO scenario with
an additional summing over adversarial proportions:

∂Îovo
Wδ

∂τττ ik
=

K∑

k′=1

2
πkWδ(ωωω·k‖ωωω·k′)

N
+ 2

πk′ūuu j,k/k′

N

Listing 1 An example of gemclus loading and data clustering

1 from gemclus.sparse import
SparseLinearMMD

2 from sklearn.datasets import
load_breast_cancer

3 # load data
4 X, _ = load_breast_cancer(return_X_y=

True)
5 # Create simple logistic regression

model and do clustering
6 y_pred = SparseLinearMMD(n_clusters

=2).fit_predict(X)

−2
〈ūuu·k/k′τττ k〉
N 2πk

. (D68)

Notice that we detailed in subscript for whichWasserstein
evaluation a dual variable emerges using the notation k/k′.
Since the one-vs-one GEMINI makes K 2 distance evalu-
ation, we have K 2 dual variables as well when removing
duplicate dual variables due to symmetry.

Appendix E Examples of code snippets with
the package GemClus

GemClus is implemented to respect as much as possible the
scikit-learn Pedregosa et al. (2011) naming conventions. For
instance, Listing 1 shows how a the logistic regression can be
trained with an MMD GEMINI on the breast cancer dataset.
The Listing 2 shows how the numerical experiments from
Sect. 5.3 can be run.

We also want to extend this package to other discrimina-
tive clustering methods for potentially small-scale datasets.
Therefore, we include an implementation of the regularised
mutual information (RIM) model by Krause et al. (2010) as
shown in Listing 3 because we consider this model to be one
of the very first proposed in the domain yet find few satisfy-
ing implementations. In this sense, we included as well (and
as can be noted in Listing 2 functions for generating relevant
synthetic datasets for clustering.

Appendix F Results on the synthetic datasets
for the one-vs-all GEMINIs

Weprovide here a complement on the numerical experiments
from Sect. 5.3 with the performances of Sparse GEMINI
when using the one-vs-all GEMINIs in Table 8.

123



155 Page 24 of 26 Statistics and Computing (2024) 34 :155

Listing 2 An example of sparse GEMINI model fitting the 5th scenario
of the synthetic datasets

1 from gemclus.sparse import
SparseMLPMMD

2 from gemclus.data import celeux_one
3

4 # Generate the data according to the
5th scenario

5 X,y = celeux_one(n=300, p=95, mu=1.7)
6 # Prepare the model: MLP with the OvA

MMD -GEMINI for 3 clusters
7 model = SparseMLPMMD(n_clusters =3)
8 # Progressively increase the penalty

until all features are removed
9 # res contains the history of feature

selection and best model weights
10 res = model.path(X)

Listing 3 The package gemclus incorporates as well the basic logistic
regression with regularised mutual information by Krause et al. (2010)

1 from gemclus.linear import RIM
2 y_pred = RIM(n_clusters =3).

fit_predict(X)

Appendix G Distribution of numerical
experiments scores

We provide here additional details regarding the distribution
of the ARI and VSER scores from Table 2 for the one-vs-one
models in static training. These scores are displayedwith box
plots respectively in Figs. 7, 8, 9, 10 and 11 for the scenarios
1, 2, 3, 4, 5 of the first synthetic dataset.
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