
HAL Id: hal-04755907
https://hal.science/hal-04755907v1

Submitted on 28 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Resting network architecture of theta oscillations
reflects hyper-learning of sensorimotor information in

Gilles de la Tourette syndrome
Adam Takacs, Eszter Toth-Faber, Lina Schubert, Zsanett Tárnok, Foroogh

Ghorbani, Madita Trelenberg, Dezso Nemeth, Alexander Münchau, Christian
Beste

To cite this version:
Adam Takacs, Eszter Toth-Faber, Lina Schubert, Zsanett Tárnok, Foroogh Ghorbani, et al.. Rest-
ing network architecture of theta oscillations reflects hyper-learning of sensorimotor information in
Gilles de la Tourette syndrome. Brain Communications, 2024, 6 (2), pp.fcae092. �10.1093/brain-
comms/fcae092�. �hal-04755907�

https://hal.science/hal-04755907v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Resting network architecture of theta 
oscillations reflects hyper-learning 
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Gilles de la Tourette syndrome is a neurodevelopmental disorder characterized by motor and vocal tics. It is associated with enhanced 
processing of stimulus–response associations, including a higher propensity to learn probabilistic stimulus–response contingencies 
(i.e. statistical learning), the nature of which is still elusive. In this study, we investigated the hypothesis that resting-state theta network 
organization is a key for the understanding of superior statistical learning in these patients. We investigated the graph–theoretical network 
architecture of theta oscillations in adult patients with Gilles de la Tourette syndrome and healthy controls during a statistical learning task 
and in resting states both before and after learning. We found that patients with Gilles de la Tourette syndrome showed a higher statistical 
learning score than healthy controls, as well as a more optimal (small-world-like) theta network before the task. Thus, patients with Gilles 
de la Tourette syndrome had a superior facility to integrate and evaluate novel information as a trait-like characteristic. Additionally, the 
theta network architecture in Gilles de la Tourette syndrome adapted more to the statistical information during the task than in HC. We 
suggest that hyper-learning in patients with Gilles de la Tourette syndrome is likely a consequence of increased sensitivity to perceive and 
integrate sensorimotor information leveraged through theta oscillation-based resting-state dynamics. The study delineates the neural basis 
of a higher propensity in patients with Gilles de la Tourette syndrome to pick up statistical contingencies in their environment. Moreover, 
the study emphasizes pathophysiologically endowed abilities in patients with Gilles de la Tourette syndrome, which are often not taken 
into account in the perception of this common disorder but could play an important role in destigmatization.
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Graphical Abstract

Introduction
Motor and vocal tics are the main characteristics of Gilles de 
la Tourette syndrome (GTS),1-3 which also affects various 
cognitive domains, such as learning, cognitive control, social 
cognition and communication.4-8 Therefore, symptoms of 
GTS should be understood in the wider context of an altered 
information processing systems. From this perspective, tics, 

often seen as pure motor symptoms in GTS, probably resem-
ble habitual actions as an expression of a higher propensity 
to form associations between stimuli and responses 
(S–R),5,9-12 which in turn is reflected by enhanced learning 
of probabilistic S–R information in these patients.8,13,14

The ability to extract probabilistic properties from the envir-
onment across time and space is referred to as ‘statistical 
learning’,15-18 a fundamental ability that supports acquiring 
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and using a wide range of skills and habits. Yet, despite its 
clinical relevance and likely being a key to a better under-
standing of GTS, it is still elusive what this higher propensity 
of statistical learning constitutes at the neurophysiological 
level. We aimed to examine the role of this enhanced func-
tion in the pathophysiology of GTS by using a network 
perspective.

We propose that resting-state network connectivity pat-
terns in specific oscillatory frequency bands are keys to the un-
derstanding of altered information processing in GTS: 
resting-state activity forms the basis for all task-related activ-
ity. During a task, resting-state activity is transformed into an-
other brain state that maps specific requirements during a 
task. Several lines of evidence stress the state-dependency of 
neurophysiological processes underlying task performance.19

In particular, statistical learning processes and the rapid en-
coding of information necessary for learning are related to 
resting brain states.20-22 Also, changes between pre- and post- 
learning resting-state connectivity were suggested to reflect an 
early stage of memory consolidation.23 Therefore, it appears 
likely that an in-depth analysis of the organization of 
resting-state activity is central to better understanding 
‘hyper-learning’ of S–R associations as one important 
feature in GTS. Notably, recent conceptual views on GTS 
proposed that the integration of perception and action may 
be key to better framing the various characteristics of GTS 
phenomenology,9,11,24,25 and it has been argued that in-
creased (statistical) learning in GTS is connected to principles 
also governing enhanced perception-action integration in 
GTS.12 Of note, the integration of perception and action 
critically depends on the specific network organization of 
theta band activity.26,27 In addition, modulations of so-called 
small-world network characteristics28-31 well reflect 
perception-action integration processes,26,27 which have also 
been hypothesized to frame statistical learning.12

From a graph–theoretical perspective, the pattern of con-
nectivity determines how efficient information processing is 
in a given network architecture.28-31 For instance, a network 
architecture consisting predominantly of locally connected 
nodes with only a few long-distance connections is consid-
ered well suited for modularized tasks. On the other hand, 
a deeply interwoven pattern of the connectome, including 
long-distance pathways, promotes information integration 
across the whole brain. Small-world networks keep a bal-
ance between local and global connectivity, i.e. although 
there are local clusters, it is still easy to reach distant nodes 
in the network through a small number of intermediate steps 
facilitating quick dissemination of information and efficient 
processing.29,30 Small-world neural networks perform faster 
and more accurate in learning tasks.32 It was suggested that 
this type of connectivity pattern scaffolds the network’s cap-
abilities of learning and retention33: The former requires in-
tegration across distributed elements of the network, while 
the latter relies on segregation (i.e. specialization) within 
clusters of nodes.33,34 Against this background, the small- 
world network architecture in the resting state may be cen-
tral to better understand processes of increased (statistical) 

learning in GTS. Resting-state EEG before an incidental stat-
istical learning task can provide insight into pre-existing dif-
ferences in network architecture between GTS and HC 
participants, i.e. how optimized their neurophysiological 
connectomes are to process subsequent novel information. 
Moreover, modulations in the small-worldness of a neuro-
physiological network during and after learning can be 
used to delineate dynamic changes in the network state 
(during the task) and medium-term changes that occurred 
after learning (second resting state). This comprehensive as-
sessment will yield information on how capable the GTS 
neurophysiological connectome is to encoding novel infor-
mation and how the integration of the new content shapes 
the network. The study’s rationale is depicted in Fig. 1.

We hypothesize that adult patients with GTS have better 
statistical learning than the healthy control (HC) group that 
is based on a more optimal network architecture in patients 
with GTS compared to HC, i.e. the resting-state connectome 
is more small-world-like in the former.32,33 Moreover, we as-
sumed that statistical learning during the task changes the net-
work architecture both during and after the task more 
consistently in the GTS than in the HC group. Regarding net-
work dynamics, we focused on theta band activity for various 
reasons: First, high-amplitude, low-frequency oscillations, 
such as those in the theta band, are particularly suitable for 
large-scale information integration,19,35 including establishing 
perception–action associations in HC39 and GTS.40 Second, 
connectivity changes in the theta band have been linked to stat-
istical learning.37 Third, theta band activity plays a crucial role 
in the pathophysiology of fronto-striatal networks in GTS,36

also known to underlie statistical learning.21,38

Materials and methods
Participants
A total of n = 26 participants with GTS and n = 36 neuroty-
pical participants were recruited for our study (Table 1). One 
patient with GTS had to be excluded because he consistently 
showed low baseline accuracy (<70%) in the learning task, 
indicating low task engagement. Hence, 25 participants 
with GTS were included in the analyses (19 men, 6 women, 
Mage = 34.12 years, SDage = 10.31 years, range between 20 
and 55 years). We matched HC participants on a one-to-one 
basis to each GTS participant; hence, 25 HC individuals 
were included in our analyses (14 men, 11 women, Mage =  
32.88 years, SDage  = 11.81 years, range between 18 and 
58 years). Each participant underwent a thorough clinical as-
sessment, including a semi-structured interview measuring 
tic severity (Yale Global Tic Severity Scale)41 and obsessive- 
compulsive symptoms (Yale-Brown Obsessive Compulsive 
Scale).42 In the GTS group, 10 participants had comorbid 
diagnoses and 13 participants were taking medication (de-
tailed patient characteristics can be found in Table 1). 
None of the participants in the matched HC group had any 
neurological, psychiatric or neurodevelopmental disorders 
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or took centrally acting medication. All participants had nor-
mal or corrected-to-normal vision and hearing. In both 
groups, the mean IQ was in the normal range and did not dif-
fer significantly between GTS and HC participants (GTS: 
107.9 ± 10.11, HC: 110.0 ± 9.2, t(48) = −0.754, P = 0.455).

HC participants were recruited from the volunteer pool of 
the Technische Universität Dresden, the University Clinic 
Carl Gustav Carus, the University of Lübeck in Germany and 
the Eötvös Loránd University in Hungary; GTS participants 
were recruited from the University of Lübeck in Germany 
and the Hungarian Tourette Syndrome Society in Hungary. 
The assessment procedure and EEG protocol were identical 
at the three measuring sites. Written informed consent was ob-
tained from all participants before study entry. The study was 
performed in accordance with the declaration of Helsinki and 
was approved by the ethics committee of the universities.

Task: Alternating Serial Reaction Time (ASRT) task
Statistical learning was measured by the cued version of the 
Alternating Serial Reaction Time (ASRT) task,43,44 which 
was modified to fit the EEG measurements45 and shown to 
have high reliability to measure learning.46 In this version 
of the task, an arrow stimulus appears at the centre of the 
screen. Participants are asked to press the corresponding 

key to the spatial direction (up, down, left or right) of the ar-
row as accurately and as fast as they could on the Cedrus 
RB-540 response pad (Fig. 2A).

The presentation of the stimuli followed an eight-element al-
ternating sequence, within which pattern and random elements 
alternated with each other [e.g. 1-r-2-r-3-r-4-r, where numbers 
refer to the four possible spatial directions (1 = left, 2 = up, 3 =  
down, 4 = right) of the arrow stimuli and ‘r’ indicates a ran-
domly selected direction out of the four possible ones]. In the 
cued ASRT task, pattern and random elements are denoted 
by different visual stimuli: pattern elements are shown in black, 
whereas random elements appear in red (Fig. 2B). Participants 
were informed that the black arrows follow a pre-defined pat-
tern, while the red arrows point in a random direction. 
Importantly, participants are only informed about the presence 
of the sequence, but they have no information about the exact 
sequence. They were asked to find the pattern of the black ar-
rows’ spatial directions to improve their performance.

In the ASRT task, three successive elements constitute a 
triplet. Due to the alternating sequence presented in the 
task, some triplets are more likely to occur than others. In 
the example sequence, 1-r-2-r-3-r-4-r, 1-X-2, 2-X-3, 3-X-4 
and 4-X-1 (where X refers to the middle element of the trip-
let) occur with a higher probability as their third elements 

Figure 1 A schematic illustration of the study rationale. The blue boxes on the left side represent previous research that informed the 
current hypotheses. These include (i) behavioural evidence of enhanced learning of probabilistic stimulus–response information in GTS8,13,14, (ii) a 
biophysical perspective of why theta band activity should be considered in learning19,35, (iii) a clinical perspective of why theta band activity should 
be relevant in GTS36 and (iv) specific results on theta activity’s role in statistical learning21,37,38 and stimulus–response binding.39,40 Importantly, it 
was assumed that superior learning performance is associated with a more optimal network architecture,32,33 which resulted in the use of the 
small-world coefficient. Network architecture was assessed before, during and after the learning task (see the orange rectangles in the middle). 
Thus, we could conclude whether group differences in the small-world coefficient reflect pre-existing differences, only revealed during the learning 
period and if any difference remained observable after that (purple boxes on the right).
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can be either pattern or random. In contrast, 1-X-3 and 
2-X-4 appear with a lower probability as their third elements 
can only be random. The former type of triplet is labelled as a 
high-probability triplet and the latter one is referred to as a 
low-probability triplet. Beyond the distinction of high- and 
low-probability triplets, another aspect of the task is the 
structure of the elements, i.e. whether they are pattern or ran-
dom elements. High-probability triplets can be distinguished 
based on whether their last elements are pattern or random 
elements. The last element of a low-probability triplet can 
only be random since pattern elements can only occur with 
high probability (Fig. 2C).

Based on probability and structure, three trial types can be 
differentiated: (i) trials that are the last element of a high- 
probability triplet and belong to the pre-defined sequence, re-
ferred to as high-probability pattern trials, (ii) random ele-
ments that belong to high-probability triplets labelled as 
high-probability random trials and (iii) random elements that 
are the last elements of a low-probability triplet called low- 
probability random trials. Considering these trial types, we 
can define statistical learning as the difference in accuracy or re-
action time (RT) between high-probability random and low- 
probability random trials (Fig. 2D). The sequence properties 

of these trials are identical as they both appear randomly, 
but their statistical properties are different as the former are 
more probable than the latter. Hence, statistical learning cap-
tures the acquisition of probability-based regularities.

The stimuli were presented in blocks, each block contained 
85 trials. Each block started with five random trials for practice, 
then the eight-element alternating sequence was presented 
10 times. The presentation of the trials was fixed-paced 
(Fig. 2A). The stimulus was presented at the centre of the screen 
for 200 ms. Then, a blank screen was shown until the partici-
pant pressed a button but no longer than 500 ms. Next, a 
700-ms-long fixed delay with a blank screen was followed by 
the next trial. If participants gave an incorrect response, a blank 
screen was presented followed by an ‘X’ on the screen, which 
was presented for 500 ms at the centre of the screen. If no re-
sponse was given in the 500-ms-long response window, a ‘!’ 
was presented at the centre of the screen for 500 ms.

Behavioural data analysis
Accuracy scores and reaction times were calculated for high- 
probability random and low-probability random trials. 
Trials without responses were excluded from all analyses 
and reaction times were calculated only for the correct 

Table 1 Clinical characteristics of the patients with GTS involved in the study

Patient Age Sex
Disease 

duration (years) DCI
YGTSS 

total
YGTSS 

tics
Rush 
score Comorbidities Medication

1 45 1 38 86 69 39 12 Depressive episode Pimozide, biperiden
2 21 1 3 83 16 16 8
3 25 2 21 86 33 13 14
4 47 1 32 66 15 15 13
5 33 1 26 64 35 25 10
6 25 2 21 54 6 6 5
7 48 2 43 51 31 11 8 Depression, burnout Escitalopram, candesartan
8 28 2 23 55 31 21 16
9 47 1 37 100 46 26 16 Depression N/A
10 29 2 26 66 55 25 18 Borderline personality 

disorder, anxiety disorder, 
depressive episode

Alprazolam (if needed, every 2–3 weeks)

11 22 1 17 62 34 24 15 Aripiprazole
12 20 1 11 90 39 29 19 N/A
13 25 1 19 51 40 20 6 Depression Pimozide
14 23 1 17 71 40 30 9 Depression, OCD, social 

phobia
Aripiprazole

15 54 1 48 65 51 21 15 Depression Pantoprazol, paroxetine, simvastatin, 
korodin (if needed), mirtazapine (if 
needed), mometasonfuroat, 
sumatriptan

16 50 1 ca. 40 38 0 0 3 Aripiprazole
17 40 1 34 85 26 16 14 OCD Citalopram
18 21 2 14 93 37 17 15
19 37 1 32 100 57 37 14 ADHD, depressive episode N/A
20 35 1 29 53 41 21 16 ADHD Methylphenidate
21 30 1 24 48 18 18
22 35 1 26 49 27 47
23 35 1 25 45 20 20
24 33 1 23 88 18 38
25 42 1 17 76 25 45
Mean 34 25.25 69 32.40 23.20 12.30

ADHD, attention deficit hyperactivity disorder; DCI, diagnostic confidence index; OCD, obsessive-compulsive disorder; Rush, modified rush videotape rating scale; YGTSS, yale global 
tic severity scale.
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responses. Trills (e.g. 1-2-1) and repetitions (e.g. 2-2-2) were 
also removed as participants often show pre-existing tenden-
cies for them.48 The first seven trials at the beginning of each 
block, i.e. the first five random practice trials and the first two 
elements of the first triplet, were also excluded from the ana-
lysis. The remaining trials were categorized in a moving win-
dow manner throughout the stimulus stream. A given trial 
was first categorized as the third trial of a triplet (as a pre-
dicted item); it was then also categorized as the middle 
(interim item) and lastly as the first trial (as a predictor 
item) of the following two triplets (Fig. 2C). Crucially, per-
formance is operationalized on the level of trials and not tri-
plets, i.e. accuracy scores and RTs are always calculated only 
on the last trial of a triplet.

The stimuli were presented in blocks, each consisting of 85 
trials. During the behavioural analysis, the task was analysed 
in larger, five-block units.44,47 For each participant and each 
five-block unit, the mean accuracy and median RT were cal-
culated separately for high-probability random and low- 
probability random trials. Statistical learning is defined by 
the difference between responses to high-probability random 
and low-probability random trials. A greater difference be-
tween the respective trials indicates better learning.

EEG recording and pre-processing
To record the EEG during the resting states as well as during 
the task, 60 Ag/AgCl electrodes (EasyCap, Germany) were 
used with a BrainAmp amplifier (Brain Products GmbH, 

Figure 2 The ASRT task. (A) Arrows were presented in the middle of the screen and participants were instructed to press the corresponding 
response key on the response box. (B) The presentation of the stimuli followed an eight-element sequence in which pattern and random trials 
alternated with each other. (C) Due to the alternating sequence, pattern high-probability, random high-probability and random low-probability 
triplets (runs of three consecutive elements) could be differentiated. Numbers indicate the direction of the arrows (1 = left, 2 = up, 3 = down, 
4 = right). Numbers in large circles with red shading represent pattern trials and numbers in partial circles with blue shading represent random 
trials. (D) Some triplets were more probable than others. The last trial of a high-probability triplet could be either pattern or random, while 
low-probability triplets always end with a random element. The figure was adapted from Vékony et al.47
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Gilching, Germany). The Brain Vision Recorder 1.2 software 
was used for data collection. The layout of the electrodes was 
based on the standard 10% system with equidistant scalp po-
sitions. The ground electrode’s coordinates were at θ = 58, 
ϕ = 78 and the reference electrode’s coordinates were at 
θ = 90, ϕ = 90. Impedances were kept below 10 kΩ and 
data was recorded at a sampling rate of 500 Hz. The re-
corded EEG data were pre-processed by using Automagic49

and EEGLAB50 on Matlab 2019a (The MathWorks Corp., 
Natick, MA, USA). First, flat channels were removed, and 
the recordings were re-referenced to an average reference. 
Second, the PREP pre-processing pipeline51 was applied. 
PREP removes line noise at 50 Hz using a multi-taper algo-
rithm and applies a robust average reference after removing 
contaminations by bad channels. Flat-line, noisy and outlier 
channels were detected and removed. A high-pass filter of 
0.5 Hz and a low-pass filter of 40 Hz were used (sinc FIR fil-
ter, order: 86).52 Electrooculography (EOG) artefacts were 
removed by following a subtraction method.53 Muscular 
and remaining eye artefacts were automatically classified 
and removed by using an independent component ana-
lysis–based Multiple Artefact Rejection Algorithm.54,55

Components containing cardiac artefacts were identified 
and removed by using ICLabel.56 Finally, all removed chan-
nels were interpolated in a spherical fashion.

Network analysis
Network analyses were performed using the FieldTrip 
toolbox57 and customized functions and were based on 
the analysis presented in Zink et al.31 The pre-processed 
resting-state EEG data were segmented into 2000-ms-long 
segments, each participant had 60 segments. The pre- 
processed task EEG data were segmented based on the 
stimulus presentation, i.e. segments were created separately 
for high-probability random and low-probability random 
trials throughout the task. Additionally, to measure the dy-
namics of learning, we created segments according to the 
time-on-task: stimulus-locked segments were created in 
the first half of the task, containing the first 10 blocks, and 
in the second half of the task, containing the last 10 blocks. 
This approach was based on the study of Tóth et al.,37 in 
which units of 10 blocks provided reliable connectivity mea-
sures in the ASRT paradigm. Note that these units are larger 
than the units in the behavioural analysis. Segments started 
at −500 ms and ended at 1000 ms relative to stimulus onset. 
Only segments with correct responses were included. 
Considering segments locked to high-probability random 
trials, participants had 42.84 (SD = 7.03) segments in the 
first half of the task and 49.67 (SD = 9.78) in the second 
half of the task. As for segments locked to low-probability 
random trials, participants had 93.76 (SD = 17.94) in the 
first half and 97.48 (SD = 16.72) in the second half of the 
task.

Network analysis was run separately for the resting-state 
and task EEG data. In each segment, the power spectrum 
was analysed in a frequency range of interest (i.e. theta at 
4–7 Hz, low alpha at 8–10 Hz, high alpha at 10–13 Hz 

and beta at 13–30 Hz). In each frequency band, the imagin-
ary part of the coherence spectrum was calculated for all 
pairs of electrodes.58 Then, the binary adjacency network 
matrices were calculated. For each pair of electrodes, coher-
ence was defined as ‘strong’ or ‘weak’. In the former case, an 
unweighted and undirected connection was defined, and it 
was represented by 1. ‘Weak’ coherence was represented 
by 0. Coherence was characterized as ‘strong’ if the coher-
ence values were above the 85th percentile, and other values 
were defined as representing no connections. As inter- 
individual differences influence the distribution of the coher-
ence values across segments and participants, this step was 
carried out individually for each subject’s segment.

All electrodes represent a node in the network and the im-
aginary part of the coherence defines the connections, i.e. 
edges between the nodes. To analyse network properties, a 
small-world metric was employed.59-61 For each subject, 
the average number of edges from one node to all other nodes 
(degree, 2k), the average shortest path length (Lreal) and the 
average clustering coefficient (Creal) were calculated. The 
average shortest path length is quantified as the mean min-
imum number of edges to connect one node to any other. 
Concerning the clustering coefficient, a local and global 
one can be differentiated. The local clustering coefficient re-
presents how close a node and its neighbours are to being a 
clique and is quantified as the proportion of links between 
the nodes within the neighbourhood divided by the number 
of edges that could exist between them. The global clustering 
coefficient was calculated as the average of the local cluster-
ing coefficients of all nodes.

Small-world coefficients were calculated as proposed by 
Telesford et al.60 First, completely random and completely 
regular one-dimensional networks were created 2000 times 
with a ring lattice with n (number of electrodes) nodes of 
mean degree 2k (similar to the real network). Then, the 
mean path length of a random network (Lrand) and the clus-
tering coefficient of a regular network (also called lattice net-
work, Clatt) were calculated. Watts and Strogatz61 proposed 
that a network has small-world network properties if it 
shows a balance between regular and random networks, 
i.e. if the clustering coefficient is high and the average path 
length is short. A high clustering coefficient is characteristic 
of regular networks. In this case, the network is locally seg-
regated: there is a clustered interconnectivity within groups 
of nodes sharing many nearest neighbours. A short mean 
path length is typical for random networks and it indicates 
high global integration: geodetic distance is short between 
any two nodes of the network, resulting in a shorter distance 
between the clusters and leading to faster information inte-
gration globally.

Therefore, small-worldness can be defined as the balance 
of local segregation (high clustering coefficients) and global 
integration (short path lengths) in neural networks.29 The 
small-world coefficient (ω) formula is as follows:

ω =
Lrand

L
−

C
Clatt 
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Small-world coefficients can be between −1 and 1, with 
negative values representing regular network properties, 
positive values representing random network properties, 
and values close to zero representing small-world networks. 
A larger distance from zero in any direction indicates a less 
optimal network organization.29 Importantly, the small- 
world coefficient depends on the density of the network: a 
larger number of connections typically increases clustering 
and reduces path length.34 Density is directly influenced by 
the number of available nodes (i.e. the 60 electrodes) and 
the applied threshold of strong coherence (above the 85th 
percentile). Thus, small-world coefficients can only be inter-
preted as a relative difference between groups and/or condi-
tions. Small-world coefficients were calculated separately for 
each participant and each frequency band.

Results
Behavioural data: statistical learning
Statistical learning was tested with a mixed-design ANOVA 
on accuracy scores with Group (GTS versus HC) as a 
between-subjects factor and Probability (high-probability 
random versus low-probability random) and Block (Blocks 
1–5, Blocks 6–10, Blocks 11–15 and Blocks 16–20) as 
within-subjects factors. Here, we report the main effect of 
Group and interactions involving the Group factor as they 
indicate differences between the GTS and HC groups. 
Other main effects and interactions can be found in 
Supplementary Table 1. The ANOVA revealed no differ-
ences in baseline accuracy scores (i.e. accuracy scores irre-
spective of trial types) between the GTS and HC groups 
[non-significant main effect of Group, F(1,48) = 1.474, 
P = 0.231, η2

p = 0.030]. Importantly, the GTS and HC 
groups differed in the magnitude of learning (as indicated 
by the significant Probability × Group interaction, see details 
in Fig. 3). The follow-up ANOVA on the learning scores re-
vealed that the GTS group showed higher statistical learning 
(M = 1.985%) than the HC group (M = 0.699%). The tra-
jectory of statistical learning did not differ between the 
groups [non-significant Probability × Block × Group inter-
action, F(3,144) = 1.346 P = 0.262, η2

p = 0.027]. Within the 
GTS group, the learning score did not correlate with tic se-
verity [rs (23) = −0.332, P = 0.105].

An identical mixed-design ANOVA was run on RTs as 
well. The ANOVA showed no differences in baseline RTs 
(i.e. RTs irrespective of trial types) between the GTS and 
HC groups [non-significant main effect of Group, F(1,48) =  
2.518, P = 0.119, η2

p = 0.050]. We did not find any differences 
either in overall learning [non-significant Probability × Group 
interaction, F(1,48) = 0.718, P = 0.401, η2

p = 0.015] or in the 
trajectory of learning [non-significant Probability × Block ×  
Group interaction: F(3,144) = 1.400, P = 0.245, η2

p = 0.028] 
between the groups. Other main effects and interactions 
can be found in Supplementary Table 1. Within the GTS 
group, the learning score did not correlate with tic severity 
[r(23) = 0.173, P = 0.408]. To test the possible confounding 

effect of medication, we ran these analyses after the exclu-
sion of participants who took medication. Twelve GTS par-
ticipants and their healthy counterparts were excluded from 
the analyses. The results were identical to the ones on the 
whole sample.

Neurophysiological data
Network analyses on resting-state EEG data
The dynamics of the small-world properties were investi-
gated on theta, low alpha, high alpha and beta oscillation- 
based networks separately. Here, we report the results on 
theta oscillation, the results on low alpha, high alpha and 
beta can be found in Supplementary Table 2.

A mixed-design ANOVA on the small-world coefficient 
with Group (GTS versus HC) as a between-subjects factor 
and Time (pre-task resting state versus post-task resting 
state) as a within-subjects factor was conducted to test the 
dynamics in the small-world properties of theta oscillation- 
based network on resting-state EEG data. Overall, the small- 
world coefficient was comparable before and after the 
task [non-significant main effect of Time, F(1,48) = 0.378, 
P = 0.542, η2

p = 0.008], and it did not differ significantly 
between the groups either [F(1,48) = 2.718, P = 0.106, 
η2

p = 0.054]. However, there was a difference between the 
groups as a function of time (significant Group × Time inter-
action, see details in Fig. 4). The small-world coefficient 
on pre-task resting-state data was higher in the HC group 
(M = 0.917) than in the GTS group (M = 0.823, P = 0.016), 
while it did not differ on post-task resting-state data. 
Moreover, within the GTS group, there was an increase in 
the small-world coefficient after the task (M = 0.884) com-
pared to that before the task (M = 0.823) at the trend level 
(P = 0.054). Please note that small-world coefficients in the 
upper range are consistent with previous analyses that used 
comparable electrode configurations and threshold of 
coherence.26,27

To investigate the network integration in a detailed 
manner, we contrasted the average shortest path length 
and the clustering coefficient on the resting-state data. 
A mixed-design ANOVA with Group (GTS versus HC) as 
a between-subjects factor and Time (pre-task resting-state 
versus post-task resting-state) as a within-subjects factor 
were run on the average shortest path length and the average 
clustering coefficient, respectively. The ANOVA on the 
shortest path length confirmed the difference between the 
GTS and HC groups [significant main effect of Group, F(1, 
48) = 4.200, P = 0.046, η2

p = 0.060] with a shorter path 
length in the GTS group (M = 2.011) than in the HC group 
(M = 2.049). The main effect of Time and the interaction 
did not reach significance (all Ps > 0.086). The ANOVA on 
clustering coefficient showed a difference between the GTS 
and HC groups at a trend level [F(1,48) = 3.828, P = 0.056, 
η2

p = 0.074], with a higher clustering coefficient in the GTS 
group (M = 0.122) compared to the HC group (M = 0.079). 
Moreover, this difference changed as a function of time [sig-
nificant Group × Time interaction, F(1,48) = 5.057, P =  
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0.029, η2
p = 0.095]. Post hoc analysis revealed that the differ-

ence was more prominent in the pre-task resting-state data 
(MGTS = 0.146, MHC = 0.061, P = 0.006), while there was no 
difference between the groups in the post-task resting-state 
(MGTS = 0.099, MHC = 0.098, P = 0.958).

Similar to the behavioural data analyses, we ran these ana-
lyses after the exclusion of GTS participants who took med-
ications and their HC pairs (n = 12 in each group). Here, 
contrary to the results on the whole sample, there was no 

observed difference between the groups in the dynamics of 
the small-world properties on theta oscillation-based net-
works; hence, medication might have influenced the results 
on the whole sample.

Network analyses on task EEG data
Analyses on small-world properties were conducted on task 
EEG data as well, for stimulus-locked EEG data related to 
statistical learning. Small-world coefficients were examined 
on theta, low alpha, high alpha and beta oscillation-based 
networks separately. Here, we report the results on theta os-
cillation, the results on low alpha, high alpha and beta can be 
found in Supplementary Tables 2 and 3. From these analyses, 
three HC participants had to be excluded because they did 
not have enough segments in the second half of the task 
(i.e. Blocks 11–20) after the pre-processing of the task EEG 
data.

A mixed-design ANOVA on the small-world coefficient 
with Group (GTS versus HC) as a between-subjects factor 
and Probability (high-probability random versus low- 
probability random) and Block (Block 1–10 versus 11–20) 
as within-subjects factors was conducted to test the dynam-
ics in the small-world properties of theta oscillation-based 
network on stimulus-locked EEG data related to statistical 
learning. We report the main effect of Group and interac-
tions involving the Group factor in the main text as group 
differences are the main focus of our paper. Other main ef-
fects and interactions can be found in Supplementary 
Table 3. Mean network efficiency showed a difference be-
tween the two groups [significant main effect of Group, 
F(1,45) = 5.224, P = 0.027, η2

p = 0.104]. Post hoc analysis 
revealed that the small-world coefficient was lower in the 
GTS group (M = 0.923) than in the HC group (M = 0.950), 
indicating a more efficient (i.e. more small-world) network 
in the GTS group during the task. Moreover, we found dif-
ferences between the groups as a function of trial types and 
task blocks as well (significant Probability × Block × Group 
interaction, see details in Figs 5 and 6). Post hoc analyses re-
vealed that in the HC group, stimulus-locked small-world 
coefficients did not change significantly either for high- 
probability random or for low-probability random trials 
from Blocks 1–10 to Blocks 11–20 (P > 0.601). In contrast, 
the GTS group showed lower small-world coefficients for 
high-probability random trials in Blocks 1–10 (M = 0.895) 
than in blocks 11–20 (M = 0.949, P = 0.005), while small- 
world coefficients for low-probability random trials were 
comparable in the two task halves (P = 0.423).

To investigate the network integration in a detailed man-
ner, we also compared the average shortest path length and 
the clustering coefficient on the stimulus-locked data. Two 
ANOVAs with Group (GTS versus HC) as a between- 
subjects factor and Probability (high-probability random 
versus low-probability random) and Block (blocks 1–10 ver-
sus blocks 11–20) as within-subjects factors were conducted 
on the average shortest path length and the average cluster-
ing coefficient, respectively. The ANOVA on the shortest 
path length did not reveal any differences between the 

Figure 4 (A) Small-world coefficients during the resting 
states. The orange box plots represent the GTS group (n = 25), 
and the purple box plots represent the HC group (n = 25). Lighter 
shading indicates pre-task resting-state data (RS1), and darker 
shading indicates post-task resting-state data (RS2). Horizontal 
lines within each box represent the median values, boxes extend 
from the 25th to the 75th percentile of each group’s distribution of 
values, notches show a 95% confidence interval around the median 
and the black circles indicate individual data points. (B) Theta 
oscillation-based network plots during the resting states. The 
colour of the nodes denotes the degree of each node (i.e. how many 
connections this node has to any other nodes). The label of the 
nodes corresponds to the EEG electrode they are based on. The 
plots illustrate the connections (edges) with a coherence value above 
the 85th percentile (‘strong coherence’). Note the increase in nodes 
with high degree connections from RS1 to RS2 in the GTS group. 
Both panels depict a difference in the small-world coefficients 
between the GTS and HC groups as a function of time as indicated by 
the significant Group × Time interaction [F(1,48) = 4.752, P = 0.034, 
η2

p = 0.090, for further details, see main text].
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groups, trial types or blocks (all Ps > 0.097). The ANOVA 
on clustering coefficient confirmed a difference between the 
GTS and HC groups (significant main effect of Group, 
F(1,45) = 4.332, P = 0.043, η2

p = 0.088). The clustering coef-
ficient was higher in the GTS (M = 0.069) than in the HC 
group (M = 0.048), indicating higher local segregation dur-
ing the task in the GTS group. Other main effects or interac-
tions did not reach significance (all Ps > 0.057).

These analyses were also conducted after the exclusion of 
participants who took any medication. In the medication- 
free sample, 12 GTS participants and their HC control coun-
terparts were included. In contrast to the original analysis, 
mean network efficiency differed between the two groups 
only at a trend-level. Post hoc analysis showed lower small- 
world coefficients in the GTS group than in the HC group, 
which is in line with the results of the whole sample. 
However, the three-way Probability × Block × Group inter-
action did not reach significance.

Discussion
We investigated how the (resting) neurophysiological network 
architecture in GTS reflects the extraction and integration 
of novel sensorimotor information. While participants were 
unaware that the presented stimuli followed probabilistic regu-
larities, as time progressed, differences in accuracy and RTs 

increased between less probable and more probable trial types. 
That is, statistical learning occurred incidentally in the entire 
sample. However, the statistical learning score was larger in 
the GTS than in the HC group, confirming our hypothesis of 
hyper-learning in GTS.8,12-14 Moreover, patients with GTS 
showed a more efficient theta band network at rest that 
adapted to the novel information with a gradual specialization 
during learning. In the following, we delineate how these re-
sults could advance our understanding of the pathophysiology 
of GTS.

We employed a graph theory-based approach to analyse 
the efficacy of information processing at the connectome le-
vel before, during and after the learning task. The efficacy of 
the network was operationalized as a distance from an opti-
mal small-world coefficient. Before learning, GTS partici-
pants showed more small-world-like network architecture 
than HC adults in the theta band. This suggests that the 
GTS group was more equipped to integrate and evaluate no-
vel information as a trait-like characteristic. Interestingly, 
the small-world coefficient was higher (i.e. the network 
architecture was more random) in the post-task resting state 
than before learning for GTS patients, while it did not change 
for HC participants. This shows that learning-induced 
changes in the network architecture were more persistent 
than transient in GTS. This was corroborated by the post 
hoc analysis showing that changes between resting states oc-
curred through the modulation of the clustering coefficient. 

Figure 5 Small-world coefficients during the task. The orange box plots represent the GTS group (n = 25), and the purple box plots 
represent the HC group (n = 22). Lighter shading indicates small-world coefficients for EEG data locked to high-probability random trials and 
darker shading indicates small-world coefficients for EEG data locked to low-probability random trials. Horizontal lines within each box represent 
the median values, boxes extend from the 25th to the 75th percentile of each group’s distribution of values, notches show a 95% confidence 
interval around the median and the black circles indicate individual data points.
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As the clustering coefficient represents the degree of func-
tional segregation,28,29 changes in this metric suggest that 
the network organization in GTS was altered by specialized 
processing in densely connected clusters. Thus, it is possible 
that changes in resting networks of GTS are the consequence 
of superior learning during the task. This is even more rele-
vant considering that only a few minutes break was inserted 
between learning and the second resting state. Thus, only ra-
pid micro-consolidation could take place in such a short time 
window.62,63 Understanding how long-term consolidation 
shapes the network architecture in GTS would be of clinical 
importance. At the behavioural level, intact statistical 
knowledge was shown 1 year after the initial learning session 
in GTS.64 Thus, altered learning (and consolidation) in GTS 
has the potential to influence day-to-day behaviour on a 
longer time scale.

During the task phase, learning induced larger changes in 
GTS than in HC. Specifically, the small-world coefficient of 
more probable trials increased during the task in the GTS 
group, while it remained unchanged among controls. 
According to the follow-up analysis, the network architec-
ture in GTS had a higher clustering coefficient than in HC 
throughout the task. That is, GTS participants presented 
higher local segregation during learning. A more segregated 
network favours modularized information processing rather 
than widescale integration.28-31 Taken together, GTS parti-
cipants had an optimal (i.e. more small-world) theta network 
to encode novel information before the task was presented. 
Additionally, the superior efficacy to learn statistical infor-
mation was also reflected by an enhanced specification (i.e. 
higher clustering coefficient) of the connectome during the 
task. Thus, statistical learning during the task changes 
the theta band network architecture both during and after 
the task more pervasively in the GTS than in the HC group. 
As network-level differences were already present before the 
task, we propose that the altered connectome in GTS is not 
restricted to statistical learning but reflects a special way of 
processing sensorimotor information. In addition, enhanced 
performance was shown in GTS in the binding of S–R 
features,11,24 habit formation,5,65 recalling words that have 
a strong motor association (e.g. hammer)66 and using lan-
guage rules that were supported by statistical learning.66,67

The commonality of all these functions is that they involve 
working with representations based on sensorimotor associ-
ation. In contrast, similar functions based on purely motor 
associations, such as response–response (R–R) binding68

and learning of response sequences,69 seem to be unchanged 
in GTS. The difference between enhanced processing of S–R 
information and intact R–R operations supports the notion 
that GTS is not a pure motor disorder.9,24,68

Crucially, we only found altered network architecture in 
GTS in the theta band. Analyses in other frequency bands 
(low alpha, high alpha, beta) did not reveal group differences 
in network architecture and/or learning-induced changes in 
the connectome (compare Supplementary material). The speci-
ficity of changes in the theta band in the current study is in line 
with our hypotheses and other findings that suggested theta 

connectivity during a task37 and at rest21,38 to be associated 
with encoding S–R contingencies. This is the first study to con-
nect small-worldness in the theta band to statistical learning. 
Therefore, we did not only confirm that theta oscillatory activ-
ity plays a role in this cognitive domain, but also that the effi-
ciency of the theta network architecture determines the success 
of learning. Interestingly, a similar role of the theta network or-
ganization has been shown before in S–R binding,27 another 
domain in which GTS participants outperform controls.11

The current results also fit into a broader picture in which theta 
synchrony across regions is considered a central mechanism of 
information accumulation, encoding and gating pro-
cesses.19,20,70 From this perspective, theta oscillations are es-
sential in connecting cortical and subcortical networks.20

Cortico-subcortical connectivity was implicated in both statis-
tical learning71 and S–R binding processes.19,72 Moreover, al-
tered connectivity between subcortical and cortical structures 
is considered one of the hallmarks of GTS pathophysi-
ology.73,74 Within that network, theta oscillations are prob-
ably crucial in the pathophysiology of GTS.36,75 Thus, it is 
conceivable that atypical theta synchronization between dis-
tributed cortical and subcortical networks in GTS reflects an 
explanation for hyper-functioning in both S–R binding and 
statistical learning.

While the current results fit into the wider picture of en-
hanced functionality in GTS (including statistical and habit 
learning, stimulus–response binding and language), the ques-
tion remains of how they contribute to understanding 
impairments. It is possible that when considering both en-
hanced and impaired cognition in GTS, we see two sides of 
the same coin. Namely, atypical network dynamics have been 
shown in GTS76: network hubs such as the precentral gyrus, 
temporo-occipital fusiform cortex and the caudate switch com-
munication to different subnetworks over time. These shifts cre-
ate an unstable network architecture, in which misinterpreted 
information is transferred more readily to other subnetworks. 
It was suggested76 that low network stability contributes to 
tics by transmitting incorrectly processed social signals to motor 
networks. This is in line with Albin’s social decision-making 
dysfunction hypothesis.4 At the same time, the propensity of dy-
namic network changes, such as decoupling between anterior 
and central nodes, is beneficial for statistical learning.37 Thus, 
hyper-learning in GTS might be the by-product of low network 
stability but not functionally relevant for tics. This explanation 
contrasts with the perspective that tics may reflect abnormal 
habit-learning mechanisms5,77 or enhanced stimulus–response 
binding.9,11 The current study was not meant to distinguish be-
tween the different explanations of tics. Nevertheless, we sug-
gest that an atypical network architecture in GTS enables 
enhanced statistical learning. Considering statistical learning’s 
importance in skills and habits,17,44 a better understanding 
of how this function works differently in GTS is a relevant ques-
tion irrespective of whether the social decision-making dysfunc-
tion4 or the stimulus-response integration9,11 perspectives are 
better models of tics.

There was no significant correlation between statistical 
learning and symptom severity, which suggests that hyper- 
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learning is not directly relevant to the known clinical profile 
of GTS as currently examined in clinical practice and shows 
that the processes uncovered in the current study reflect a 
new facet of GTS. Notably, the heterogeneity of the GTS 
group might have influenced the results (e.g. medication ef-
fects on the network analyses). Nevertheless, converging evi-
dence of hyper-learning8,12-14 could shed light on the 
often-neglected abilities conferred by the pathophysiology 
of GTS. Interest in and attention to GTS in social media 
has considerably gained momentum during the COVID-19 
pandemic increasing public awareness.78 However, prob-
lematic misinformation including popular social media 
channels depicting GTS as a fringe disorder characterized 
predominantly by coprophenomena has considerably dis-
torted the public image.78 Importantly, the fact that people 
with GTS not only have potentially troublesome symptoms 
(tics) but are also characterized by a propensity for statistical 
learning, which can be advantageous in certain situations 
and professions, is less well known.12 Statistical learning is 
a fundamental ability that enables learning of languages, mu-
sic, sports and other skills.15-18 Understanding how children 
and adults with GTS could better rely on their hyper-learning 
in academic and everyday skills could also contribute to des-
tigmatizing the disorder.

Conclusion
Our study provided a novel and comprehensive analysis of 
the neural mechanisms of statistical learning in GTS. We 
found that adults with GTS exhibit enhanced statistical 
learning compared to HCs. It demonstrates that GTS is char-
acterized not only by potentially troublesome symptoms 
(tics) but also by a propensity for hyper-learning, which 
can be advantageous in certain situations and professions. 
Superior learning performance in GTS is associated with a 
more efficient theta band network architecture, corroborat-
ing studies that suggested theta connectivity to be associated 
with encoding sensorimotor contingencies. Importantly, the 
theta network organization in the GTS group was already 
more optimal for integrating novel information in the resting 
state before learning than in the HC group. We propose that 
hyper-learning in GTS is a consequence of the altered sensi-
tivity to process sensorimotor information.
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