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Abstract

Gilles de la Tourette syndrome (GTS) is a disorder characterised by motor and vocal

tics, which may represent habitual actions as a result of enhanced learning of associa-

tions between stimuli and responses (S-R). In this study, we investigated how adults

with GTS and healthy controls (HC) learn two types of regularities in a sequence: sta-

tistics (non-adjacent probabilities) and rules (predefined order). Participants com-

pleted a visuomotor sequence learning task while EEG was recorded. To understand

the neurophysiological underpinnings of these regularities in GTS, multivariate pat-

tern analyses on the temporally decomposed EEG signal as well as sLORETA source

localisation method were conducted. We found that people with GTS showed supe-

rior statistical learning but comparable rule-based learning compared to HC partici-

pants. Adults with GTS had different neural representations for both statistics and

rules than HC adults; specifically, adults with GTS maintained the regularity represen-

tations longer and had more overlap between them than HCs. Moreover, over differ-

ent time scales, distinct fronto-parietal structures contribute to statistical learning in

the GTS and HC groups. We propose that hyper-learning in GTS is a consequence of

the altered sensitivity to encode complex statistics, which might lead to habitual

actions.
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1 | INTRODUCTION

Gilles de la Tourette syndrome (GTS) is a disorder characterised by

motor and vocal tics (M. M. Robertson et al., 2017). The nature of tics

and GTS has been subject to debates about how to conceptualise

them (Bartha et al., 2023; Beste & Münchau, 2018; Paulus

et al., 2021) It has been proposed that tics represent habitual actions

as a result of a higher tendency to form associations between stimuli

and responses (S-R) (Beste & Münchau, 2018; C. Delorme et al., 2016;

Kleimaker et al., 2020) and integrate them into sequential regularities

through learning (Shephard et al., 2019; Takacs et al., 2021; Takács

et al., 2018; Tóth-Fáber, Tárnok, Janacsek, et al., 2021). However, it is

still unclear how this enhanced capability of learning affects memory

representations in GTS and how this is mediated neurophysiologically.

This, however, is a prerequisite to understand the emergence of habit-

ual actions and how they might be modified in GTS. GTS participants

typically show an enhanced sequence learning performance

(Shephard et al., 2019; Takács et al., 2018; Tóth-Fáber, Tárnok,

Janacsek, et al., 2021). It was suggested that this hyperlearning

reflects an enhanced sensitivity to statistics (Takacs et al., 2021; Tóth-

Fáber, Tárnok, Janacsek, et al., 2021), while the acquisition of rules

might be impaired in GTS (Tóth-Fáber, Tárnok, Janacsek, et al., 2021).

In the current study, we tested this assumption by directly comparing

statistical and rule-based learning in GTS not only at a behavioural

level but also as regards the stability of respective neural

representations.

Cognitive functions, such as planning or grammar processing, rely

on encoding and representing sequential information (Dehaene

et al., 2015). Regularities within a sequence can be learnt by using dif-

ferent, partially overlapping learning processes (Conway, 2020;

Maheu et al., 2019, 2022; Quentin et al., 2021; Takács et al., 2021)—

such as statistical learning and rule-based learning. Statistical learning

enables us to acquire probabilistic interrelations that can be used to

make predictions above the chance level. Rules, on the other hand,

allow deterministic forecasting in case of extreme statistical biases,

that is, when uncertainty is low. It was shown that detecting the pres-

ence of regularity and assigning it to a learning process relies on two

distinct yet simultaneously available sets of mental operations for sta-

tistics and rules (Maheu et al., 2022). This simultaneous nature of sta-

tistical and rule-based learning allows less costly computations than

updating regularities in a single predictive system. For instance, repre-

senting multiple predictions concurrently enables the detection of

sequential regularities on different timescales (Henin et al., 2021;

Kóbor et al., 2018; Maheu et al., 2019). This idea was recently forma-

lised from a neuronal network perspective in the dynamic predictive

coding (DPC) model (Jiang & Rao, 2024) that presents a hierarchical

framework for understanding how our neural networks predict spatio-

temporal events. At the lower levels of this hierarchy, the model

suggests that neural circuits form representations that capture

sequences occurring over shorter timescales. These are the founda-

tional elements of the model, where learning takes place through a

bottom-up process, primarily relying on the encoding of perceptual

features in a modular fashion. Conversely, at the higher levels, the

model posits that neural circuits construct representations that com-

prehend sequences spanning longer or more intricate timescales, such

as rules. This upper tier of the hierarchy influences the lower levels by

employing prediction errors to modulate their temporal dynamics.

Such interactions enable the model to generate temporal representa-

tions that are attuned to the inherent timescale of the sequential reg-

ularities being processed.

The DPC model aligns with the notion that while statistical learn-

ing is a predominantly bottom-up process, rule-based learning oper-

ates in a top-down manner, incorporating the statistical information

that has been encoded automatically (Conway, 2020). When both sta-

tistical regularities and rule-based regularities are present in a

sequence, it is plausible to expect the formation of two distinct neural

representations, each dedicated to processing one type of regularity

(Henin et al., 2021; Maheu et al., 2022), Building on the hierarchical

interplay between these two forms of learning (Conway, 2020; Takács

et al., 2021) it is suggested that the neural representations for statisti-

cal patterns are established prior to those for rules. This temporal pre-

cedence reflects the foundational role of statistical learning in the

DPC model's architecture.

Additionally, statistical learning and rule-based learning could be

differentiated based on the coding levels of the neurophysiological

signal (Takács et al., 2021). Thus, sequential predictions based on

either statistics or rules are likely supported by diverging neural corre-

lates (Kóbor et al., 2018; Maheu et al., 2019; Simor et al., 2019;

Takács et al., 2021). A previous study (Vékony et al., 2023) used tem-

poral EEG signal decomposition and multivariate pattern analysis

(MVPA) to investigate the contributions of perceptual, motor and

abstract (i.e., not modality-specific) coding levels in the development

of sequential memory representations. Neural representations of

sequential regularities occurred at all three concomitant coding levels;

however, statistics and rules were not analysed separately. Here, we

followed the same protocol of MVPA on temporally decomposed EEG

signal (Takács et al., 2022) to investigate how statistics and rule-based

regularities are represented in GTS. Temporal decomposition analyses

previously revealed that atypical S-R associations in GTS are related

to the abstract (Kleimaker et al., 2020) rather than the modality-

specific perceptual or motor coding levels (Beste & Münchau, 2018;

Mielke et al., 2021).

Distinguishing between learning statistics and rules helped to elu-

cidate the nature of cognitive alterations in a range of disorders

(Farkas et al., 2021; Ullman & Pullman, 2015), including GTS (Tóth-

Fáber, Tárnok, Janacsek, et al., 2021). It was suggested that
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hyperlearning in GTS (Shephard et al., 2019;Takács et al., 2018; Tóth-

Fáber, Tárnok, Janacsek, et al., 2021) reflects a dissociation between

enhanced statistical learning (Takacs et al., 2021; Tóth-Fáber, Tárnok,

Janacsek, et al., 2021) and impaired rule-based learning (Tóth-Fáber,

Tárnok, Janacsek, et al., 2021). That is, lower-level temporal predic-

tions (statistics) have an advantage over higher-level ones (rules) in

GTS. We tested this assumption by directly comparing statistical and

rule-based learning in GTS not only as behavioural performances but

also as the stability of their respective neural representations. We

expected that better learning would be reflected by either longer or a

more accurately decodable representation in the neurophysiological

signal. For a detailed explanation of how enhanced S-R associations,

hyper-learning of statistics and the development of tics are mechanis-

tically interrelated, we refer the reader to the review of Takacs

et al. (2021).

We hypothesised that participants with GTS have a higher statis-

tical learning score than healthy controls (HC) (Takács et al., 2018;

Tóth-Fáber, Tárnok, Janacsek, et al., 2021). In contrast, we expected a

lower rule-based learning score in the GTS than in the HC group

(Tóth-Fáber, Tárnok, Janacsek, et al., 2021). We hypothesized that

both statistical and rule-based information can be decoded from the

neurophysiological signal (EEG) at all three (perceptual, motor and

abstract) coding levels as in the study of Vékony et al., 2023. Addi-

tionally, we expected that statistical information at the abstract cod-

ing level can be observed either as a stronger (i.e., better decoding

performance) or a longer maintained representation in GTS than in

HC. To validate group differences in decoding performance, we com-

pared their neural sources in a data-driven fashion (Takács

et al., 2021; Vékony et al., 2023). We expected activation modulations

of statistical learning in the precuneus, the angular gyrus, the inferior

frontal and the superior frontal gyri (Park et al., 2022; Vékony

et al., 2023); and of rule-based learning in the middle frontal and supe-

rior frontal gyri (Takács et al., 2021; Vékony et al., 2023).

2 | METHODS AND MATERIALS

2.1 | Participants

N = 26 adults with GTS and N = 36 neurotypical participants

(HC) were recruited. One patient was excluded due to his consistently

low accuracy (<70%) in the task. To match the 25 participants with

GTS who were included (19 men, 6 women, Mage = 34.12 years, SDa-

ge = 10.31 years, range between 20 and 55 years), we selected 25 HC

participants on a one-to-one basis (14 men, 11 women,

Mage = 32.88 years, SDage = 11.81 years, range between 18 and

58 years). If a GTS participant had more than one valid match, we

selected the one closest to him/her in age. All participants underwent

a thorough clinical assessment that included a semistructured inter-

view of tic severity (Yale Global Tic Severity Scale) (Leckman

et al., 1989) and obsessive-compulsive symptoms (Yale Brown Obses-

sive Compulsive Scale, Goodman et al., 1989) and evaluation of life-

time tics (diagnostic confidence index, DCI, Robertson et al., 1999).

Furthermore, a standardised video was taken of each participant

(including HCs) and scored by two independent examiners using the

modified rush videotape rating scale (Goetz et al., 1999). Total tic

score could fall between 0 and 20, with a higher score indicating more

frequent and more severe tics. When scores varied, all relevant parts

of the standardised video were discussed until an agreement was

reached. Participants also completed self-report questionnaires evalu-

ating attentional deficit hyperactivity disorder (ADHD) symptoms

(Conners' Adult ADHD Rating Scale, Christiansen et al., 2013) and

OCD symptoms (obsessive-compulsive inventory-revised, Foa

et al., 2002). Ten participants with GTS had comorbid diagnoses and

13 participants were taking medication. Patient characteristics can be

found in Table 1. None of the participants in the matched HC group

had any neurological, psychiatric or neurodevelopmental disorders or

took centrally acting medication. All participants had normal

or corrected-to-normal vision and hearing. IQ was measured with the

Wechsler adult intelligence scale (Hartman, 2009). In both groups,

the mean IQ was in the normal range and did not differ significantly

between the two groups (GTS: 107.9 ± 10.11; HC: 110.0 ± 9.2; t(48)

= �0.754, p = 0.455). In the HC group, 23 participants were right-

handed and there were no left-handed participants, whereas in the

GTS group, this ratio is 21 to 4. Data of two HC participants are miss-

ing. We compared these ratios with a Fisher's exact test and no signif-

icant effect emerged (p = 0.111).

HC participants were recruited from the Technical University of

Dresden, the University of Lübeck and the Eötvös Loránd University;

GTS participants were recruited from the University of Lübeck in

Germany and the Hungarian Tourette Syndrome Society in Hungary.

The assessment procedure, the EEG protocol and EEG equipment

including the EEG caps and amplifiers were identical at the three mea-

suring sites. Visits between the three sites were organised to monitor

recruitment, experimental testing and data analyses. The assessment

procedure and EEG protocol were identical at the three measuring

sites. Written informed consent was obtained from all participants

before they entered the study. The experiment was performed follow-

ing the declaration of Helsinki and was approved by the ethics com-

mittees of the participating universities.

2.2 | Learning task, stimuli and analysis

Statistical and rule-based learning were tested with the cued version

of the Alternating Serial Reaction Time (ASRT) task (Nemeth

et al., 2013), which was adapted to EEG measurements (Kóbor

et al., 2018). An arrow occurred at the centre of the screen as a target

stimulus. Participants were instructed to press the corresponding but-

ton to the direction of the arrow as fast and as accurately as possible

on a response pad (Figure 1a).

The presentation of the stimuli followed an 8-element sequence,

where pattern and random elements alternated with each other

(e.g., 1-r-2-r-3-r-4-r, where numbers indicate the four spatial direc-

tions [1 = left, 2 = up, 3 = down, 4 = right] and ‘r’ denotes a ran-

domly selected direction out of the four possibilities). Pattern

TAKACS ET AL. 3 of 14
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TABLE 1 Clinical characteristics of the patients with GTS involved in the study.

Patient Age Sex

Disease
duration
(years) DCI

YGTSS

total
(0–
100)

YGTSS
tics
(0–50)

Rush

score
(0–
20)

Y-

BOCS
score
(0–40)

OCI-R
score
(0–72)

ADHD

index
(0–
108) Comorbidities Medication

1 45 1 38 86 69 39 12 19 33 52 Depressive

episode

Pimozide;

Biperiden

2 21 1 3 83 16 16 8 10 16 4

3 25 2 21 86 33 13 14 11 24 16

4 47 1 32 66 15 15 13 0 0 4

5 33 1 26 64 35 25 10 0 11 27

6 25 2 21 54 6 6 5 0 6 6

7 48 2 43 51 31 11 8 7 19 29 Depression,

burnout

Escitalopram,

Candesartan

8 28 2 23 55 31 21 16 18 14 24

9 47 1 37 100 46 26 16 6 10 25 Depression N/A

10 29 2 26 66 55 25 18 23 53 81 Borderline

personality

disorder,

anxiety

disorder,

depressive

episode

Alprazolam (if

needed, every 2–
3 weeks)

11 22 1 17 62 34 24 15 11 20 36 Aripiprazole

12 20 1 11 90 39 29 19 12 11 20 N/A

13 25 1 19 51 40 20 6 0 15 38 Depression Pimozide

14 23 1 17 71 40 30 9 12 7 29 Depression,

OCD, social

phobia

Aripiprazole

15 54 1 48 65 51 21 15 17 15 50 Depression Pantoprazol,

Paroxetine,

Simvastatin,

Korodin (if

needed),

Mirtazapine (if

needed),

Mometasonfuroat,

Sumatriptan

16 50 1 ca. 40 38 0 0 3 0 0 3 Aripiprazole

17 40 1 34 85 26 16 14 12 26 35 OCD Citalopram

18 21 2 14 93 37 17 15 14 33 40

19 37 1 32 100 57 37 14 3 5 40 ADHD,

depressive

episode

N/A

20 35 1 29 53 41 21 16 0 2 25 ADHD Methylphenidate

21 30 1 24 48 18 18 N/A 0 15 N/A

22 35 1 26 49 27 47 N/A 14 44 N/A

23 35 1 25 45 20 20 N/A 2 10 N/A

24 33 1 23 88 18 38 N/A 0 20 N/A

25 42 1 17 76 25 45 N/A 2 7 N/A

Mean 34 25.25 69 32.40 23.20 12.30 7.72 16.64 29.20

Note: The Rush score is missing for five patients due to a technical error. The ADHD index is missing for five patients due to the unavailability of the

Conners' adult rating scale in the hospital site in Hungary.

Abbreviations: ADHD index, Conners' ADHD adult rating scale; DCI, diagnostic confidence index; GTS, Gilles de la Tourette syndrome; OCI-R, obsessive-

compulsive inventory-revised; Rush, rush video-based tic rating-scale; Y-BOCS, Yale brown obsessive compulsive scale; YGTSS, Yale global tic severity

scale.
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elements were shown in black, while random elements were red. Par-

ticipants were instructed to find the pattern of the black arrows' direc-

tions. They did not receive information about the exact sequence

structure.

In the task, three successive trials are referred to as triplets and

the alternating sequence makes some triplets more probable than

others. Given the example sequence, 1-r-2-r-3-r-4-r, 1-X-2, 2-X-3,

3-X-4 and 4-X-1 (where X refers to the middle element of the triplet)

appeared with a higher probability as their third trials could be either

pattern or random. To the contrary, 1-X-3 and 2-X-4 appeared with a

lower probability as their third elements could only be random. Fur-

thermore, high-probability triplets could be further distinguished

based on their structure: they could be either pattern-ending or

random-ending triplets. It is important to note that performance is not

quantified on the triplet-level; instead, performance (i.e., accuracy or

reaction time) is always calculated only on the last trial of a triplet.

Each trial was categorised as the third trial of either a high-probability

or a low-probability triplet and also either as pattern or random ele-

ments (note that they are also visually distinguishable).

In the task, there are 64 unique triplets (including all pattern–ran-

dom–pattern [50%] and random–pattern–random [50%] triplets), of

which 16 are high-probability and 48 are low-probability triplets. Con-

cerning high-probability triplets, four possible combinations are pre-

sent in regard to the first and third trials of the triplet (1-X-2, 2-X-3,

3-X-4, 4-X-1 for the example sequence) with four possible arrow

directions for the middle trial. High-probability triplets account for

62.5% of all trials as they can occur as pattern–random–pattern (50%)

and by 1/4 chance as random–pattern–random triplets (12.5%)

(Figure 1c). In the case of low-probability triplets, the first and the

second trials of the triplet may point in either of the four directions,

whereas the last trial has three possible directions as the fourth direc-

tion corresponds to a high-probability triplet. Thus, low-probability

triplets constitute 37.5% of all trials. As noted above, all low-

probability triplets have a random–pattern–random structure. On the

level of unique triplets, high-probability triplets are five times more

probable than the low-probability ones (4% [62.5%/16] vs. 0.8%

[37.5%/48]).

Given the probability and the structure, we can distinguish

between three trial types: (1) trials that are the last elements of a

high-probability triplet and are part of the predetermined sequence

called high-probability pattern trials, (2) random trials that are the final

elements of a high-probability triplet termed high-probability random

trials and (3) random trials that are the final elements of a low-

probability triplet called low-probability random trials (Figure 1c).

F IGURE 1 The alternating serial reaction time task. (a) In the task,
arrows occurred in the middle of the screen and participants were

asked to press the corresponding key on the response pad using the
thumb and index finger of both hands. The stimulus was displayed at
the centre of the screen for 200 ms. Next, a blank screen was
presented until a response was given but no longer than 500 ms.
Then, a 700-ms-long fixed delay with a blank screen was followed by
the next trial. In case of an incorrect response, a blank screen was
displayed followed by an ‘X’, presented for 500 ms in the middle of
the screen. In case of no response within the 500-ms-long response
window, a ‘!’ was presented for 500 ms. (b) The presentation of
stimuli followed an 8-element sequence where pattern and random
trials alternated with each other. (c) Due to the alternating sequence,
some triplets are presented with a higher probability than others.
Given the example sequence, 1-r-2-r-3-r-4-r (where numbers denote
the four spatial directions [1 = left, 2 = up, 3 = down, 4 = right] and
‘r’ indicates a randomly selected direction out of the four
possibilities), 1-X-2, 2-X-3, 3-X-4 and 4-X-1 (where X refers to the
middle element of the triplet) appeared with a higher probability as
their third trials could be either pattern or random. To the contrary,
1-X-3 and 2-X-4 appeared with a lower probability as their third
elements could only be random. (d) Moreover, high-probability triplets
could be further distinguished based on their structure: they could be
either pattern-ending or random-ending triplets. Based on probability
and structure, three trial types can be differentiated: (1) trials that are
the last elements of a high-probability triplet and are part of the
predetermined sequence called high-probability pattern trials (marked
with red shading and font), (2) random trials that are the final
elements of a high-probability triplet termed high-probability random
trials (marked with yellow shading and font) and (3) random trials that
are the final elements of a low-probability triplet (marked with blue
shading and font). Please note that the percentages refer to the
frequency of occurrence of the unique triplet (for details, see the main
text). To calculate statistical learning, accuracy performance on low-
probability random trials is extracted from performance on high-
probability random trials. To quantify rule-based learning, accuracy

performance on high-probability random trials is extracted from
performance on high-probability pattern trials. For RT performance,
the extractions are reversed. This way, regarding both accuracy and
RT, a higher learning score indicates better learning. The first five
random practice trials and the first two elements of the first triplet
were also excluded from the analyses. Figure was adapted from
Nemeth et al. (2013).
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We calculated how accurate and how fast people were in the

three trial categories. The remaining trials were categorised into con-

ditions in a moving window way along the stimulus stream. A given

trial was included as the third trial of a triplet (as a predicted item); the

same trial was then also included as the middle (interim item), and

lastly as the first trial (as a predictor item) of the next two triplets. The

stimuli were shown in 40 blocks, each with 85 trials. For the beha-

vioural analysis, we analysed time windows in 5-block units (Howard

et al., 2004; Nemeth et al., 2013). For each person and each 5-block

unit, we calculated the average accuracy and the median RT

separately for high-probability random, low-probability random and

high-probability pattern trials. Statistical learning was defined as the

difference between responses to high-probability random and

low-probability random trials. Rule-based learning was defined as the

difference between responses to high-probability pattern and high-

probability random trials. For both learning scores, a bigger difference

between trial types indicates better learning (Figure 1c).

It is important to note that the distinction of statistical and rule-

based learning is not unique to the cued ASRT task. Previous studies

showed that after excessive (4-day-long or 9-day-long) training, rule-

based learning appears even in the uncued ASRT task (�Eltet}o

et al., 2022; Howard et al., 2004; Howard Jr. & Howard, 1997), which

shares an identical underlying structure with the cued ASRT task but

does not visually distinguish pattern and random trials. The visual dis-

tinction of pattern and random trials enables that statistical and rule-

based learning can be measured within the same time frame, that is, in

one learning session.

During the task and EEG recording, GTS participants were not

instructed to suppress tics. The task was presented in 2-minute-long

blocks with short self-paced breaks between them, which could have

helped managing tics during the task. To examine whether possible tic

events influenced performance on the behavioural task, we checked

baseline performance (i.e., baseline accuracy and reaction times on

the task, which are independent of the regularities in the task) and

the number of missed responses. No difference was found between

the GTS and HC groups.

Please note, that statistical learning scores have been reported

elsewhere (Takacs et al., 2024), as part of a separate analysis on how

the resting-state network architecture is related to learning non-

adjacent probabilities.

2.3 | EEG recording and segmentation

EEG was recorded with 60 Ag/AgCl electrodes (EasyCap, Germany)

and a BrainAmp amplifier (Brain Products GmbH, Gilching, Germany),

controlled by Brain Vision Recorder 1.2. The electrode layout was

based on the standard 10%-system with equidistant scalp positions.

The coordinates of θ = 58, φ = 78 and θ = 90, φ = 90 were used for

ground and reference, respectively. Impedances were kept below

10 kΩ. EEG was recorded at a sampling rate of 500 Hz. The data were

preprocessed by using Automagic (Pedroni et al., 2019) and EEGLAB

(A. Delorme & Makeig, 2004) on Matlab 2019a (The MathWorks

Corp., Massachusetts, USA). First, flat channels were removed, and

the recordings were re-referenced to an average reference. Second,

the PREP preprocessing pipeline (Bigdely-Shamlo et al., 2015) was

applied. PREP removes line noise at 50 Hz using a multitaper algo-

rithm and applies a robust average reference after removing contami-

nations by bad channels. Flat-line, noisy and outlier channels were

detected and removed. A high-pass filter of 0.5 Hz and a low-pass fil-

ter of 40 Hz were used (sinc FIR filter, order: 86) (Widmann

et al., 2015). EOG artefacts were removed by following a subtraction

method (Parra et al., 2005). Muscular and remaining eye artefacts

were automatically classified and removed by using an independent

component analysis based multiple artifact rejection algorithm

(Winkler et al., 2014, 2011). Components containing cardiac artefacts

were identified and removed by using ICLabel (Pion-Tonachini

et al., 2019). Finally, all removed channels were interpolated in a

spherical fashion.

The pre-processed data were segmented in Brain Vision Analyzer

(Brain Products GmbH), separately for high-probability pattern, high-

probability random and low-probability random conditions. Segments

started �200 ms and ended 750 ms relative to stimulus onset. Only

segments with correct responses were included. We applied current-

source density (CSD) transformation with four orders of splines

(Kayser & Tenke, 2015; Perrin et al., 1989) as a reference-free spatial

filter. Next, the segmented data were baseline-corrected based on the

200 ms interval before the stimulus onset. Finally, the data were

exported to Matlab for temporal signal decomposition (residue itera-

tion decomposition; RIDE). Separate datasets were also created with-

out CSD transformation specifically for the source localisation

analyses.

2.4 | Neurophysiological analyses

2.4.1 | Residue iteration decomposition

We used RIDE (Ouyang et al., 2011; Ouyang & Zhou, 2020) in Matlab

2019a (The MathWorks Corp.) as part of the RIDE-MVPA protocol

(Takács et al., 2022) to perform temporal signal decomposition. RIDE

uses estimated clusters with different latency information (variable

vs. static), which are then self-optimised by applying a nested iteration

scheme. The procedure is based on segmented single-trial EEG data

and performed on each channel separately. RIDE was applied to esti-

mate three clusters: S-cluster (‘stimulus cluster’) captures information

on stimulus-related processes, such as perception and attention;

C-cluster (‘central cluster’) covers intermediate or translational pro-

cesses between stimulus and response, such as decision-making or

response selection; R-cluster (‘response cluster’) refers to motor prep-

aration and execution (Ouyang & Zhou, 2020). We have selected time

windows of initial cluster estimation based on previous studies that

used RIDE in EEG data with the ASRT paradigm (Takács et al., 2021;

Vékony et al., 2023): 150–600 ms after stimulus presentation for the

C-cluster, 0–500 ms after stimulus onset for the S-cluster and

the time window between 300 ms before and 300 ms after the

6 of 14 TAKACS ET AL.
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response markers for the R-cluster. To estimate a given cluster, RIDE

subtracts the other two clusters from the single-trial EEG and aligns

the residuals from every trial to the latency of the estimated cluster.

As a result, the estimated cluster represents the median waveform.

Previous studies have shown that the final cluster solution represents

a conceptually meaningful separation of simultaneous coding levels in

the EEG signal (Opitz et al., 2020; Ouyang & Zhou, 2020; Wolff

et al., 2017). Finally, single-trial data at the subject level was exported

for multivariate analyses.

2.4.2 | Multivariate pattern analysis (MVPA)

MVPA were performed by using the MVPA-light toolbox

(Treder, 2020) in Matlab 2019a (The MathWorks Corp.). See the

RIDE-MVPA protocol (Takács et al., 2022) for further details. Classes

of high-probability random and low-probability random were decoded

separately for the three RIDE-decomposed clusters to identify the

neurophysiological representation of stimulus probability. We refer to

this as the decoding of ‘statistical information’. Classes of

high-probability random and high-probability pattern were decoded

separately for the three RIDE-decomposed clusters to identify the

neurophysiological representation of the alternating sequence order.

We refer to this as the decoding of ‘rule-based information’. For both
types of class differences, temporal generalisation was calculated to

analyse the temporal dynamics and the representational stability of

statistical learning and rule-based learning, respectively. To avoid

overfitting, we used under-sampling to even trial numbers between

classes (Treder, 2020). All 60 EEG channels were used as classification

features. Decoding and temporal generalisation were computed for

each individual and each RIDE-cluster. We used an L1-Support Vector

Machine (SVM) as a classifier to decode statistical information and

rule-based information. SVM outperforms the default linear discrimi-

nant analysis when the data are non-Gaussian, noisy or prone to out-

liers (Treder, 2020). We applied five-fold cross-validation to the

classifications. The procedure splits the data into five equal parts. In

each iteration step, one part was dedicated to testing and the rest for

training. After each fold had been used for testing, the average of the

iterations was saved as a final result. To find the time interval where

the classes differed, we used the area under the curve (AUC) as a

measure of decoding performance and compared it to the chance

level of AUC = 0.5 with Wilcoxon-tests for each time point across

participants. We used cluster-based permutation (1000 permutations)

as a method of statistical correction.

When the brain represents a set of similar stimuli as a unified per-

cept based on their summary statistics (i.e., mean, range, variance,

etc.), those are often referred to as set or ‘ensemble representations’
(Ariely, 2001; Bayne & McClelland, 2019; Corbett et al., 2023).

Ensembles compress real-life experiences by collapsing similar and

redundant information while integrating them into preexisting internal

models of environmental statistics (Hansmann-Roth et al., 2021;

Khayat et al., 2023). Ensemble representations develop in an auto-

matic, implicit fashion not only for perceptual or low-level features

(i.e., distance, location) but also for high-level ones, such as semantic

categories (Chang & Gauthier, 2022; Khayat et al., 2021, 2023). We

used multivariate decoding methods to analyse representation

dynamics of sequential predictability information irrespective of their

physical properties (see also Vékony et al., 2023). The classes we used

for decoding differed only in their (high-level) properties of either sta-

tistical or rule-based predictability, while low-level features, such as

the colour or orientation of the presented stimuli were balanced

between classes. Thus, we interpret the decoded patterns as neural

ensemble representations of statistical information and rule-based

information.

2.4.3 | Source localisation analysis (sLORETA)

Source localisation was performed in the standardised low-

resolution brain electromagnetic tomography (sLORETA) software

package (Pascual-Marqui et al., 2002). The procedure has been

shown to provide reliable source estimations coinciding the TMS

and high-resolution MR scanning (Dippel & Beste, 2015). sLORETA

was used by employing a three-shell spherical head model (MNI152

template), in which the intracerebral volume is partitioned into

6239 voxels with a 5 mm spatial resolution. The standardised cur-

rent density is calculated for every voxel of the model. sLORETA

provides a single linear solution for the inverse problem without

localisation bias (Marco-Pallarés et al., 2005; Pascual-Marqui

et al., 2002; Sekihara et al., 2005). Voxel-wise randomisation with

5000 permutations in the statistical non-parametric mapping proce-

dures (SnPM) was used to correct for multiple comparisons. The

sLORETA was performed in a data-driven fashion to support the

behavioural and MVPA results. Therefore, only C-cluster data were

analysed. We compared high-probability random and low-

probability random conditions to analyse activation differences

related to statistical learning; and high-probability random and

high-probability pattern conditions for estimating sources of rule-

based learning. The comparisons were conducted separately in the

GTS and HC groups. As the behavioural results showed a group dif-

ference in statistical learning, differential activity was calculated for

the high-probability random and low-probability random contrast

between GTS and HC. To identify functional neuroanatomical

regions showing learning effects, interval that were decoded signifi-

cantly above-chance were averaged for the sLORETA (Petruo

et al., 2021; Prochnow et al., 2021; Vékony et al., 2023). Addition-

ally, time windows with high temporal generalisation (see ‘Neuro-

physiological results’) were selected and averaged for source

localisation. sLORETA results are described in Table 2 and depicted

in Figure 3.
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3 | RESULTS

3.1 | Behavioural results

Statistical learning was tested with a mixed-design ANOVA on accu-

racy scores with Group (GTS vs. HC) as a between-subject factor and

Probability (high-probability random vs. low-probability random trials)

and Block (blocks 1–5, blocks 6–10, blocks 11–15 and blocks 16–20)

as within-subject factors. In baseline accuracy scores (i.e., accuracy

scores irrespective of trial types), the ANOVA showed no differences

between the GTS and HC groups (non-significant main effect of

Group, F(1, 48) = 1.47, p = 0.231, η2p = 0.030). Baseline accuracy

scores did not change over the task (non-significant main effect of

Block, F(3, 144) = 0.623, p = 0.601, η2p = 0.013; non-significant

Block � Group interaction: F(3, 144) = 0.31, p = 0.815, η2p = 0.006).

Overall, significant statistical learning occurred on the task (significant

main effect of Probability, F(1, 48) = 17.56, p < 0.001, η2p = 0.268).

Participants showed higher accuracy on high-probability random trials

(M = 93.27%) compared with low-probability random trials

(M = 91.93%). Moreover, statistical learning changed as the task pro-

gressed: participants did not differentiate between high-probability

random and low-probability random trials in blocks 1–5 (Mhigh-probability

random = 92.38%, Mlow-probability random = 92.37%, p = 0.996), learning

became significant in blocks 6–10 (Mhigh-probability random = 94.37%,

Mlow-probability random = 91.65%, p < 0.001), did not reach significance

in blocks 11–15 (Mhigh-probability random = 93.02%, Mlow-probability

random = 91.99%, p = 0.173) and was significant in blocks 16–20

(Mhigh-probability random = 93.30%, Mlow-probability random = 91.69%,

p = 0.004). Crucially, we found differences between the GTS and HC

groups in the magnitude of learning (as indicated by the significant

Probability � Group interaction: F(1, 48) = 4.032, p = 0.05,

η2p = 0.077). The follow-up ANOVA on the learning scores showed

higher statistical learning in the GTS group (M = 1.99%) compared

with the HC group (M = 0.699%) (Figure 2). The trajectory of statisti-

cal learning was comparable between the groups (non-significant

Probability � Block � Group interaction, F(3, 144) = 1.35 p = 0.262,

η2p = 0.027).

An identical mixed-design ANOVA was run on RTs as well. In

baseline RTs (i.e., RTs irrespective of trial types), the ANOVA revealed

no differences between the GTS and HC groups (non-significant main

effect of Group, F(1, 48) = 2.518, p = 0.119, η2p = 0.050). Baseline

RTs decreased as the task progressed (significant main effect of Block,

F(3, 144) = 30.809, p < 0.001, η2p = 0.391), participants became fas-

ter with practice concerning all trials, but this decrease in RTs did not

differ between the groups (non-significant Block � Group interaction:

F(3, 144) = 0.972, p = 0.408, η2p = 0.020). Overall, participants

showed significant statistical learning on the task (significant main

effect of Probability, F(1, 48) = 149.934, p < 0.001, η2p = 0.757) and

the magnitude of learning changed over the task (significant

Probability � Block interaction, F(3, 144) = 13.665, p < 0.001,

η2p = 0.222). The overall learning (non-significant

Probability � Group interaction, F(1, 48) = 0.718, p = 0.401,

TABLE 2 Source localisation results.

HC GTS

Statistical learning Rule-based learning Statistical learning Rule-based learning
Statistical learning
difference

Decoding

interval

I. Sub-gyral BA39,

MNI: �30,

�60, 30

II. Angular gyrus

BA39, MNI:

�40, �80, 30

III. Precuneus

BA19, MNI:

�40, �80, 35

I. Precentral gyrus

BA9, MNI: �35,

5, 40

II. Sub-lobar BA6,

MNI: 40,

�15, 15

III. Precuneus BA31,

MNI: �15,

�60, 25

I. Entorhinal cortex

BA28 MNI: 20,

5, �35

II. Perirhinal cortex

BA36 MNI: 20,

0, �35

I. Lingual gyrus BA18

MNI: 10,

�100, �10

II. Cuneus BA17 MNI:

10, �100, �5

I. Precentral gyrus

BA4, MNI: 65,

�10, 30

II. BA6, MNI: 65,

5, 25

Generalisation

interval

I. Sub-gyral BA39,

MNI: �30,

�60, 30

II. Angular gyrus

BA39, MNI:

�40, �80, 30

III. Precuneus

BA19, MNI:

�40, �80, 35

I. Sub-lobar BA13,

MNI: 40, �15, 15

II. Inferior frontal

gyrus BA9, MNI:

�35, 5, 30

I. Medial frontal

gyrus BA9, MNI:

�20, 35, 20

II. Superior frontal

gyrus BA10, MNI:

�25, 45, 25

I. Inferior parietal

lobule BA40, MNI:

�55, �60, 40

II. Angular gyrus BA39,

MNI: �55, �60, 35

I. Inferior frontal

gyrus BA44, MNI:

�60, 5, 15

II. Precentral gyrus

BA44, MNI: �60,

10, 15

Note: Decoding interval refers to time windows that were decoded significantly above chance level. Generalisation interval refers to tie windows with high

temporal generalisation (see Neurophysiological results for specific time windows). The first four columns present activity changes related to specific

learning processes (i.e., differences between experimental conditions) separately in the GTS and HC groups. The last column presents differential activity

between the two groups in statistical learning. Results are specified as Broadmann areas (BA); and Montreal Neurologic Institute (MNI) coordinates as [x,y,

z]. See also Figure 3.

Abbreviations: GTS, Gilles de la Tourette syndrome; HC, healthy controls.
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η2p = 0.015) and the trajectory of learning (non-significant

Probability � Block � Group interaction: F(3, 144) = 1.400,

p = 0.245, η2p = 0.028) were comparable between the groups.

Rule-based learning was tested with a mixed-design ANOVA on

accuracy scores with Group (GTS vs. HC) as a between-subject factor

and Order (high-probability pattern vs. high-probability random trials)

and Block (blocks 1–5, blocks 6–10, blocks 11–15 and blocks 16–20)

as within-subject factors. The GTS and HC groups showed similar

baseline accuracy scores (non-significant main effect of Group, F

(1, 48) = 1.222, p = 0.275, η2p = 0.025) and baseline accuracy scores

did not change throughout the task (non-significant main effect of

Block, F(3, 144) = 1.336, p = 0.265, η2p = 0.027; non-significant

Block � Group interaction: F(3, 144) = 1.461, p = 0.228,

η2p = 0.030). The ANOVA confirmed significant rule-based learning

(main effect of Order, F(1, 48) = 13.44, p < 0.001, η2p = 0.219), par-

ticipants showed higher accuracy scores on high-probability pattern

(M = 94.86%) compared to high-probability random trials

(M = 93.27%). The accuracy difference between high-probability pat-

tern and high-probability random trials changed as the task pro-

gressed (Order � Block interaction, F(3, 144) = 2.693, p = 0.048,

η2p = 0.053), with significant learning in blocks 1–5 (Mhigh-probability

pattern = 94.82%, Mhigh-probability random = 92.38%, p < 0.001), blocks

11–15 (Mhigh-probability pattern = 95.06%, Mhigh-probability

random = 93.02%, p = 0.005) and blocks 16–20 (Mhigh-probability

pattern = 95.08%, Mhigh-probability random = 93.30%, p = 0.026), but not

in blocks 6–10 (Mhigh-probability pattern = 94.48%, Mhigh-probability

random = 94.37%, p = 0.887). We did not find any differences in over-

all rule-based learning (non-significant Order � Group interaction, F

(1, 48) = 0.438, p = 0.511, η2p = 0.009) or in the trajectory of learn-

ing (non-significant Order � Block � Group interaction, F(3, 144)

= 0.196, p = 0.899, η2p = 0.004) between the groups.

An identical mixed-design ANOVA was also conducted on RTs.

Baseline RTs were comparable between the groups (non-significant

main effect of Group, F(1, 48) = 0.655, p = 0.422, η2p = 0.013). RTs

gradually decreased as the task progressed, irrespective of trial types

(significant main effect of Block, F(3, 144) = 37.379, p < 0.001,

η2p = 0.438) and this decrease was similar in the groups (non-

significant Block � Group interaction: F(3, 144) = 0.936, p = 0.396,

η2p = 0.019). The ANOVA revealed significant rule-based learning

(significant main effect of Order: F(1, 48) = 35.648, p < 0.001,

η2p = 0.426), participants showed faster RTs on high-probability pat-

tern (M = 314.56 ms) compared with high-probability random trials

(M = 370.42 ms). Participants were increasingly faster on high-

probability pattern trials than on high-probability random trials as the

task progressed (significant Order � Block interaction, F(3, 144)

= 15.089, p < 0.001, η2p = 0.239). Rule-based learning was compara-

ble between the GTS and HC groups (non-significant Order � Group

interaction: F(1, 48) = 0.465, p = 0.499, η2p = 0.010; non-significant

Order � Block � Group interaction: F(3, 144) = 2.280, p = 0.116,

η2p = 0.045).

To check the potential influence of medication on learning, addi-

tional analyses were conducted. We excluded the GTS participants

who took medication and their control counterparts. Then, on the

medication-free sample (n = 12 in each group), we ran identical

ANOVAs as on the whole sample separately for each learning score.

The ANOVAs revealed identical results as those presented above,

that is, increased statistical learning and comparable rule-based

learning.

Furthermore, statistical learning scores were correlated with clini-

cal measures in the GTS group. We focused on statistical learning as

group differences emerged there between the GTS and HC groups.

Clinical measures included the YGTSS score, the Rush total score, the

DCI and disease duration. We found a positive correlation between

statistical learning RT score and DCI (r(23) = 0.430, p = 0.032), while

other correlations were not significant (all ps >0.105).

3.2 | Neurophysiological results

Figure 3 presents the decoding performance and temporal generalisa-

tion results of statistical learning and rule-based learning separately in

the two groups for the C-cluster data. The statistical learning classifi-

cation was significantly above chance between 129 and 453 ms in the

HC group and between 191 ms and 606 ms in the GTS group.

The rule-based learning classification was significantly above chance

F IGURE 2 Statistical learning performance. Statistical learning
scores averaged over the whole task length are shown separately in
the GTS (left/orange) and HC (right/purple) groups. The plot
represents probability density of the statistical learning score.
Individual data points are depicted as black dots and the groups' mean
are represented by the black line.
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from 273 ms to 551 ms in the HC group and 180 ms to 617 ms in the

GTS group.

The temporal generalisation matrix of statistical learning in the

HC group showed the highest accuracy (i.e., AUC >0.6) along the diag-

onal between �200 and 400 ms after stimulus presentation. The

above-chance classification gradually decreased to off-diagonal direc-

tions. The temporal generalisation matrix of rule-based learning in the

HC group was comparable to statistical learning, albeit with a high

accuracy cluster in �300–500 ms. In the GTS group, the temporal

generalisation matrix of statistical learning reached the highest accu-

racy (i.e., AUC >0.6) along the diagonal in the time window of �200–

400 ms. This above-chance classification then showed a ramping pat-

tern that lasted until the end of the trial. The rule-based learning

matrix of the GTS group showed a similar pattern to the statistical

learning result: a central decoding cluster in �200–400 ms that con-

tinued with a ramping activation until 750 ms after stimulus

presentation.

To test the potential influence of medication on the neurophysio-

logical results, we used the AUC values as a measure of decoding per-

formance and contrasted them between the medicated (n = 13) and

non-medicated (n = 12) GTS groups. We opted for this approach

because excluding medicated participants from the RIDE-MVPA pro-

tocol would lead to an underpowered analysis. We could not detect a

difference between the groups, neither in relation to statistical learn-

ing (t(23) = 1.799, p = 0.090) nor rule-based learning (t(23) = 1.655,

p = 0.117).

Similarly to the behavioural analyses, C-cluster decodings related

to statistical learning were correlated with the clinical measures, that

is, the YGTSS score, the Rush total score, DCI and disease duration.

We did not detect any significant correlations between clinical mea-

sures and C-cluster decodings (all ps >0.150).

MVPA performed on S-cluster and R-cluster data are described in

the Supplementary Results and depicted in Figures S1 and S2.

4 | DISCUSSION

We investigated the simultaneous acquisition of sequential regulari-

ties in perceptual, motor and perceptual-motor coding levels of the

neurophysiological signal in adults with GTS and controls. Two types

F IGURE 3 Neurophysiological results: decoding, temporal generalisation, and source localisation of statistical learning and rule-based learning
for the C-cluster data. (a) Classification results of statistical information and rule-based information are presented separately for patients (Gilles de
la Tourette syndrome, GTS in orange) and healthy control (HC, in purple) participants. Classification performance is quantified as AUC: higher
AUC values represent better decoding. Time zero denotes the presentation of the target stimulus. Thicker lines indicate significant time windows
(p < 0.05; two-sided cluster-based permutation). sLORETA source localisation for the time windows of significantly above-chance classification
are illustrated below the horizontal axes. Sources are highlighted in white. (b) Temporal generalisation matrices of statistical information and rule-
based information are depicted separately for GTS and HC participants. The plots show the degree to which the classifier when trained on a
given time point (y-axis) generalises to time points in the trial (x-axis). The colours indicate the classifier performance. The diagonal (bottom left to
top right) shows classification performance when the classifier is trained and tested on the same time points. Below the matrices, sLORETA
source localisation results are presented based on time windows of high generalisation (see Neurophysiological results in the main text for
details.)
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of regularities were presented in a visuomotor sequence learning task

(Howard Jr. & Howard, 1997; Nemeth et al., 2013). Participants learnt

those regularities and thus showed both successful ‘statistical learn-
ing’ and ‘rule-based learning’. Importantly, statistical learning was

larger in GTS than in HC, corroborating previous reports of hyper-

learning (Shephard et al., 2019; Takács et al., 2018; Tóth-Fáber, Tár-

nok, Janacsek, et al., 2021). Interestingly, neurophysiological decoding

showed that both enhanced statistical learning and unaltered rule-

based learning might rely on atypical neural representations in GTS.

Representations were decoded at the perceptual (stimulus-

related), motor (response-related) and stimulus–response translational

levels. The latter can be interpreted (Vékony et al., 2023) as an

abstract or not modality-specific representation that originates from

encoding commonly coded features between stimuli and responses

(Takacs et al., 2020). This level is thought to work in concert with

modality-specific encodings to link perceptual and motor-based

response coding systems (Conway, 2020; Frost et al., 2015; Vékony

et al., 2023). The existence of an abstract code presents a computa-

tional advantage by allowing generalisation to overlapping events

without modality-specific constraints (Eberhardt et al., 2017; Eggert

et al., 2022; Takacs et al., 2020). Importantly, the temporal dynamics

of the uncovered representations differed between GTS and HC par-

ticipants at the abstract level (Figure 3). At the same time, decoding

the modality-specific perceptual and motor codes revealed compara-

ble neural representations between the two groups (Figures S1 and

S2). This strengthens the notion (Beste & Münchau, 2018; Kleimaker

et al., 2020) that stronger habitual behaviour in GTS is not an encap-

sulated motor problem but involves higher-order processes that do

not rely on a modality-specific coding level.

Specifically, the decoded interval for statistical information was

longer in the GTS group than in HC at the abstract level (Figure 3a).

Similarly, rule-based information was decodable for a longer interval

in GTS than in HC. Thus, representations of different sequential reg-

ularities were maintained longer in GTS than in HC, irrespective of

whether the regularity was learnt in a superior (statistics) or a typical

fashion (rule-based). Interestingly, the prolonged time windows in

GTS indicated that statistical and rule-based representations were

available even after response execution. The possible role of longer-

maintained regularity representations in GTS is also relevant consid-

ering the temporal generalisation results (Figure 3b). In the HC

group, the decoded representations were centred on the diagonal

axes, with limited off-diagonal extensions. In GTS, the diagonally

centred patterns showed ramping activities until the end of the trial.

This adds to the decoding results (Figure 3a): representations of the

statistical and rule-based regularities did not deactivate quickly upon

response execution in GTS as it was seen among HC participants but

showed a gradual decay. Memories are unstable and transient both

after their formation (Robertson, 2018) and after their retrieval

(Baena et al., 2021; Sara, 2000). In this state of instability, memories

can be strengthened, weakened or integrated with overlapping

memories (Baena et al., 2021). Prolonged activations of statistical

and rule-based information in GTS could therefore signal a chance to

modify S-R associations. Behavioural rewiring methods have already

been explored in neurotypical populations (Szegedi-Hallgató

et al., 2017).

The time scale of different brain activity patterns associated with

sequential regularities reflects a combination of categorical and

dimensional changes in the integration of the acquired knowledge

(Maheu et al., 2019); namely, an early (< �150 ms) neurophysiological

signal is a display of a relatively slow global integration

(i.e., habituation). We observed a peak of decoding accuracy in this

interval only when the perceptual coding level was used for classifica-

tion (Figure S2). Later occurring time windows were suggested to

reflect an increasingly local integration of the acquired knowledge

(Maheu et al., 2019). During local integration, previously encoded

associations can be gradually discounted to update the internal model

of the environment. It has been shown that local integration time win-

dows are sensitive to complex interrelations (e.g., transitional proba-

bilities) (Kóbor et al., 2019, 2018; Maheu et al., 2019; Takács

et al., 2021). The previously identified mid-latency (�150–350 ms)

and late (�450–600 ms) windows related to sequential regularities

(Kóbor et al., 2019, 2018; Maheu et al., 2019; Takács et al., 2021)

were also observed in the current study, both among patients and

control participants (Figure 3). However, in the GTS group, an even

later window of 600–800 ms in each condition generalised to the

interval of �200–800 ms in the respective pair of conditions. That is,

adults with GTS did not only show atypically long activation of regu-

larity representations but also a larger propensity to generalise the

acquired information.

The extended generalisation in GTS could reflect either a longer

integration of statistics and rules or additional processes (e.g., error

monitoring or memory interference). Hyper-learning in GTS was

observed as different error rates between high-probability random

and low-probability random conditions. A decrease in accuracy for

low-probability trials is thought to reflect the over-generalisation of

the acquired high-probability transitions (�Eltet}o et al., 2022; Horváth

et al., 2020). However, extended generalisation occurred not only for

statistics but also for rule-based information in GTS. Considering that

rule-based learning was comparable between groups, it is unlikely

that monitoring the increased error rate drove the lengthened avail-

ability and generalisation of regularity representations in GTS. More-

over, source localisation revealed that the decoded interval in GTS

(Figure 3a) was not associated with areas of error monitoring (e.g., the

anterior cingulate) but showed activity changes in the perirhinal

(BA36) and entorhinal (BA28) cortices. For further discussion, please

see the Supplementary Materials.

Taken together, structural differences in the perceived regulari-

ties were mapped differentially into spatiotemporal configurations of

the neurophysiological activity. This approach is in line with spatio-

temporal neuroscience that investigates neuro-mental relationship as

spatiotemporal dynamics (Northoff et al., 2020a, 2020b). As both the-

oretical considerations (Conway, 2020) and the DPC model (Jiang &

Rao, 2024) predicted, (low-level) statistical information was decoded

with an earlier onset than (high-level) rule-based information in the

HC group. In the GTS group, the two regularities were decoded in

largely overlapping time windows. That is, there was no separation
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between the more automatic, bottom-up statistical learning and the

hierarchically superior rule-based learning. It is possible that concomi-

tantly activating representations of statistics and rules lengthens the

time necessary for integration (Tóth-Fáber, Tárnok, Janacsek,

et al., 2021). Alterations of internal timescales and their deviation

from their actual temporal characteristics in the external environment

were observed in a number of psychiatric and neurological disorders,

including depression and Parkinson's disease (Ibanez &

Northoff, 2023; Scalabrini et al., 2023). In this context, signatures of

atypical spatiotemporal dynamics at the whole-brain level were

reported in GTS earlier: scale-free and aperiodic activity (‘neural
noise’) during S-R integration was increased in patients (Adelhöfer

et al., 2021; Münchau et al., 2021); and enhanced statistical learning

was linked to a more optimally organised network architecture

(Takacs et al., 2024). The consequences of blurred temporal bound-

aries between short and long scale predictions in GTS warrants fur-

ther investigation that includes an even longer timescale for

consolidation. Superior statistical learning in GTS was shown to mod-

ify resting-state architecture immediately after learning (i.e., scale of

microconsolidation, Takacs et al., 2024). Additionally, children with

GTS retained statistical information even after 1 year (Tóth-Fáber,

Tárnok, Takács, et al., 2021). Therefore, mid- and long-term follow-up

measures are needed to investigate how atypical learning in GTS

might translate to day-to-day life (Takacs et al., 2021).

Long-term measures of memory consolidation could also highlight

more direct connections between cognitive, clinical and neurophysio-

logical levels. Here, we correlated statistical learning on the beha-

vioural and neurophysiological levels with clinical measures, such as

tic severity, DCI and disease duration. On the behavioural level, the

DCI was positively correlated with statistical learning (in terms of RT),

while tic severity did not show any correlation either with behavioural

or neurophysiological measures. Interestingly, previous studies also

did not find linear relationship between tics and spatiotemporal

dynamics, such as network architecture and neural noise. It was pro-

posed that these alterations at the neurophysiological level represent

novel facets of GTS (Adelhöfer et al., 2021).

Taken together, we found hyperlearning of statistics in GTS

patients and uncovered atypical representational dynamics at the not

modality-specific coding level. The atypically activated representa-

tions were maintained longer, including a period when the stability of

the memories decreased. We suggest that tracking the representa-

tions of hyperlearnt associations in GTS not only deepens our under-

standing of how habitual behaviour emerges but also presents a

potential way to rewire maladaptive habits.
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