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This paper deals with the development of a new cellular automata-
based model to describe the dynamics of direct selling, multi-
level marketing companies. While many cellular automata mod-
els have been developed in the field of theoretical marketing, di-
rect selling with multilevel marketing has not been addressed up
to now. This specific marketing technique requires to account for
both spatial spreading and the internal dynamics of each cell, in
which six types of individuals are defined. The associated popu-
lations in each cell evolve using a new proposed aggregated-level
model made of discrete time equations based on a mix of classi-
cal social contagion models and Boltzmann-inspired relaxation-
reaction models. The proposed model is able to account for spa-
tial spreading via weak social ties on a Moore neighbourhood,
along with internal dynamics (growth, decay and equilibrium) of
the six interacting populations in each cell. The model incorpo-
rates user-defined parameters that allow to model the dynamics
of a given company via parameter fitting.

Key words: Cellular automata, direct selling, multilevel marketing, so-
cial contagion model, innovation diffusion model, customer resistance.

1 INTRODUCTION

Cellular automata have been used for a long time in the field of theoreti-
cal marketing and innovation diffusion theory. Individual-level numerical
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models have been developed that are able to recover the trends predicted by
aggregated-level models such has the Bass model [2, 3] and its very large
number of variants, in which a social contagion phenomenon is modelled via
a set of ODEs (see [16] for a comprehensive survey). The original Bass model
has been mathematically investigated by several authors, e.g. [30], and is very
versatile, leading to a huge number of variants developed to account for many
effects yielding, e.g [32, 53].

The individual level models (which correspond to the so-called micro-
scopic level models in statistical physics) are mainly agent based models,
implemented on graphs or via cellular automata or graph cellular automata,
mostly with the purpose of studying the micro-macro transition, i.e. recov-
ering the aggregated-level models from the more fundamental microscopic
models via some statistical averaging technique , e.g. [17, 7, 34, 20, 52].
The same approach is commonly used in classical physics, e.g. by deriving
the classical macroscopic continuum mechanics equations from the Boltz-
mann equation at the mesoscopic level or the Hamilton’s equation for molec-
ular dynamics at the microscopic level. Presently, deterministic or proba-
bilistic cellular automata have been observed to recover Bass-type results
for many topics, among which innovation diffusion [12], classical marketing
[9, 13, 37, 39], word-of-mouth marketing [11], resistance to innovation [29],
competition [40, 54], spread dynamics in social networks [23] and multi-
information dissemination [41].

While the Bass-type models have been customised to mimic a huge num-
ber of effects (competition between products, consumer resistance ...), they
are limited to the simulation of the dynamics of a global population without
for accounting the spatial spreading character of social contagion, therefore
restricting their capability to capture fine details of the diffusion among an
heterogeneously spatially distributed population.

The present paper deals with the development a cellular automata model
able to capture both the spatial spreading character of the social diffusion
and the internal dynamics of each cell, with the specific purpose of mod-
elling the dynamics of a Direct Selling Multi-Level Marketing (DS-MLM)
company. This type of pyramidal marketing organisation yields the defi-
nition of a hierarchy of populations with complex transition rules between
them (seven in the present case), then escaping the classical agent-based ap-
proaches in which a few population types are accounted only, in a way simi-
lar to dynamical system models like the 2-populations KerMack-McKendrick
Suceptible-Infective model and its extensions for larger population sets (e.g.
[28, 19, 50, 49, 51]). Implementation on graphs has also been addressed with
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the same purpose, e.g. [6, 31]. Therefore, it appears that a model that hy-
bridising cellular automata for spatial spreading and aggregated-level mod-
elling for defining transition rules between population types is a promising
approach. Only very few models like that have been proposed, e.g. to study
the influence of transit media on information spreading in urban area [26].

The paper is organised as follows. The proposed model is discussed in
Sect. 2. The single cell dynamics, i.e. the dynamics generated by the transi-
tion rules inside an isolated cell by neglecting the influence of its neighbour-
hood is discussed in Sect. 2, including the analytical analysis of its non-linear
steady state equilibrium solution. The influence of the neighbourhood along
with the spatial spreading features are investigated in Sect. 4. Concluding
remarks are given in Sect. 5.

2 MODEL DESCRIPTION

2.1 Statement of the problem
The present model aims to describe a DS-MLM dynamics, in which a seller
manages a group of hosts, each host being expected to organise some par-
ties at home with socially close individuals (friends, family members) and
the seller during which goods with be sold. The host is rewarded for the
sells made during the party, while the seller will receive a percentage of the
total gains made each month during all the parties of his group of hosts, de-
tails being governed the company’s policy. The resulting organisation yields
a dynamics that may differ a lot from classical marketing based on retailer
channel, see [1, 22, 36].

Because sells occur during home parties, the spatial character of the dy-
namics is very strong for direct selling (see [18] for a discussion of the spatial
character of classical marketing before the rise of e-marketing), since hosts
will only invite potential customers that live close to their homes. The typical
diffusion of this kind of activity is of word-of-mouth type, the spreading oc-
curring through personal social networks of hosts and customers. Motivated
customers may organise their own parties and become hosts, and interested
hosts may become sellers by signing a contract with the company.

To model this dynamics, it is chosen to define seven types of individuals
which span the space of states underlying the cellular automata :

1. The total number of potential customers N , which is assumed to be
time independent.
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2. The number of active customers, i.e. potential customers who have
attended at least one party and bought some goods, Nca(t).

3. The number of lost customersNcl(t), i.e. active customers that get lost.
The main reason why this occurs is that their host gets out of business.
Lack of satisfaction due to poor quality or too high prices may also
play a role [10], but these factors are observed to be less important in
the case of DS-MLM (see [35] for a general discussion about consumer
resistance). Accounting for consumers that exhibit some resistance has
been proposed by several authors, e.g. [5, 10].

4. The number of active hosts, Nha(t), i.e. former active customers who
decided to become hosts and who organise parties. Each host has a per-
sonal private social network (friends, family) of Yrel > 0 individuals
and will organise Ya > 0 home parties per year. Each host is assumed
to have Yc > 0 active customers is his private network at equilibrium,
the equilibrium corresponding to an optimal trade off between many in-
fluential parameters such as the motivation of the host, its availability,
socio-economical features of its network ... see e.g. [42, 33, 44, 25].

5. The number of lost hosts Nhl(t), i.e. active hosts that ceased their ac-
tivity. The main reason why this occurs is that their referring seller be-
comes inactive. Negative feedbacks from the customers who did attend
their parties might also play a role, but it is shown to be less important
[42, 33, 44, 25].

6. The number of active sellers, Nsa(t), i.e. former hosts who made the
decision to become a seller and recruit some hosts to organise some
parties to increase their net income. Each active seller is assumed to
have Yco active hosts in his personal network at equilibrium.

7. The number of lost sellers, Nsl(t), i.e. sellers who resigned their con-
tract with the company and don’t manage their hosts any longer. There
are multiple factors hat usually lead a seller to resign: loss of attractive-
ness of the business, conflict with the company management, moving
to another place, life accidents ... [42, 33, 44, 25].

The strong spatial character of both the selling dynamics and the business
spreading via word of mouth marketing through personal social networks ren-
ders the cellular automata modelling very efficient. Therefore, each popula-
tion will be computed in each cell, leading to the definition of a synchronous

4



continuous cellular automata with seven types of individuals with transition
rules that govern the change of type of individuals at each time iteration.

2.2 Discrete time equation-based aggregated transition rules for a sin-
gle cell

Since the number of individuals present in each cell is expected to be large
(from a few hundreds to tens of thousands), it is chosen to describe the dy-
namics at the aggregated level rather than at the individual level. Therefore,
deterministic equations are used to evaluate the total number of individuals
that move to another type at each time iteration, rather than implementing
an agent-based model to follow each individual. The deterministic charac-
ter of the model is due to the fact that the number of individuals is large
enough to assume that individuals fluctuations around an ensemble-averaged
behavioural model for each individual type will have negligible effects on
global statistics of the full system.

The model proposed here is a discrete-time system, which is perfectly co-
herent with the cellular automata implementation and the monthly character
of available data related to the business dynamics modelled here. Conse-
quently, one time iteration will correspond to a one month period in the fol-
lowing. The transition rules implemented in each cell are now described. For
the sake of simplicity, the spatial indices related to the cell location are not
mentioned, being understood that the dynamics described here is purely local
(i.e. limited to the cell interior).

The transition from the state of potential customer to the state of active cus-
tomer is modelled here as a type of social contagion mostly driven by word-
of-mouth mechanisms. Parameters appearing in such a model are meaning-
ful and can be associated to practical psychological, social and economical
mechanisms [47, 46, 43]. Consequently, they can be tuned to fit a particular
company dynamics using data coming from the targeted company or market,
e.g. [8, 4, 40, 27, 24].

The number of potential customers transformed into active customers be-
tween iterations n and (n+ 1) is evaluated as

∆cp→ca(n) = α1
YaYrel

12

Nha(n)

N
(N −Nca(n)−Ncl(n)

−Nha(n)−Nhl(n)−Nsa(n)−Nsl(n)) (1)

where α1 ∈ [0, 1] is a company-related parameter, which measures the
probability of transforming a contacted individual into an active customer.
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This parameter depends in practice on a large number of factors, such as
quality and price of the product, but also experience and skills of the host and
the seller, company policy and incentives ... [42, 33, 44, 25].

This is a classical social contagion model, referred to as imitator-type
diffusion in Bass-type models for innovation diffusion. It is important not-
ing that this imitation model is recovered as a limit at the aggregated level
by agent-type models for individual behaviours and graph cellular automata
models for social contagion.

The number of active customers becoming active hosts between iterations
n and (n+ 1) is computed as

∆ca→ha(n) = ω1

(
Nca(n)

Yc
−Nha(n)

)
(2)

where the relaxation parameter ω1 > 0 measures the time needed by the
system to relax toward equilibrium. In the present case, it will be a function of
the company policy, management efficiency and economic and social parame-
ters (need for an additional income, strength of personal network, acceptance
by social environment ...) [33, 25]. From the mathematical point of view, this
term is very similar to the Bhatnagar-Gross-Krook relaxation model for the
collision term found in Boltzmann’s statistical gas kinetic, and was proposed
to model word-of-mouth process in [48]. This modelling approach as also the
advantage of reflecting the bottom-up evolution of individuals in this pyrami-
dal scheme, in which the number of active customers (and then the total sales
revenue of the company) governs the full dynamics, the rest resulting from an
adaptation to the sales volume because of the relative reward policy.

Similarly, the number of active hosts becoming active sellers between it-
erations n and (n+ 1) is modelled as

∆ha→sa(n) = ω2

(
Nha(n)

Yco
−Nsa(n)

)
(3)

where ω2 > 0 is related to the efficiency of the company to recruit the
most active hosts as sellers. Here again, this parameter depends a many soci-
ological and economical, but also on the company policy and management.

As mentioned above, the main source of loss of active hosts and active
customers in DS-MLM is the fact that a seller will stop its activity. Since
active customers and active hosts mostly belong to personal private social
networks of active hosts and active sellers, respectively, it is assumed that the
resignation of an active seller results in the transformation of its active hosts
into lost hosts and the associated active customers into lost customers. This
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loss mechanisms differs from the rejection described in classical innovation
diffusion theory (e.g. [10]), which mainly originates in negative word-of-
mouth, something that exists in the present case but is significantly weaker
than loss of personal networks of sellers.

The number of active sellers becoming lost sellers between iterations n
and (n+ 1) is evaluated as

∆sa→sl(n) = α2Nsa(n) (4)

where α2 ∈ [0, 1] is the fraction of active sellers leaving every month.
This sink term is similar to the one introduced in the extended Bass model
proposed in [45, 21] to account for the existence of several populations, in-
cluding some individuals which are close to the present ”lost” populations.
Assuming that the active hosts and active customers are equally distributed
between active sellers and active hosts (which is coherent with the ensemble-
averaged approach used in the present model), respectively, the number of
active hosts and active customers lost between iterations n and (n+ 1) are

∆ha→hl(n) = α2Nha(n) (5)

and

∆ca→cl(n) = α2Nca(n) (6)

In order to close the model, the fact that every month a fraction α3 ∈ [0, 1]

of lost customers are recovered as potential customers is taken into account

∆cl→cp(n) = α3Ncl(n) (7)

This term encompasses several practical cases, such as lost customers en-
tering the social networks of some active hosts, decrease in consumer re-
sistance among deceived customers, changes in the populations (individuals
moving to another places replaced by new ones) ...

The same rationale is applied to lost hosts and lost sellers, yielding

∆hl→cp(n) = α4Nhl(n) (8)

∆sl→cp(n) = α5Nsl(n) (9)

with α4 ∈ [0, 1] and α5 ∈ [0, 1]. The resulting full discrete time model is
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FIGURE 1
Schematic view of transition rules of the cellular automata.

Nca(n+ 1) = Nca(n) + ∆cp→ca(n)−∆ca→cl(n) (10)

Ncl(n+ 1) = Ncl(n) + ∆ca→cl(n)−∆cl→cp(n) (11)

Nha(n+ 1) = Nha(n) + ∆ca→ha(n)−∆ha→hl(n) (12)

Nhl(n+ 1) = Nhl(n) + ∆ha→hl(n)−∆hl→cp(n) (13)

Nsa(n+ 1) = Nsa(n) + ∆ha→sa(n)−∆sa→sl(n) (14)

Nsl(n+ 1) = Nsl(n) + ∆sa→sl(n)−∆sl→cp(n) (15)

which is illustrated in Fig. 1.
The present model is conservative, i.e. the number total number of indi-

viduals is strictly preserved in each cell at every time step and remains equal
to N .

The discrete model Eqs. (10) - (15) can be interpreted as a first-order
explicit Euler integration of the following continuous ordinary differential
equation system (with an integration time step taken equal to 1):
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dNca

dt
= βNha (N −Nca −Ncl −Nha −Nhl −Nsa −Nsl)

−α2Nca (16)
dNcl

dt
= α2Nca − α3Ncl (17)

dNha

dt
= ω1

(
Nca

Yc
−Nha

)
− α2Nha (18)

dNhl

dt
= α2Nha − α4Nhl (19)

dNsa

dt
= ω2

(
Nha

Yco
−Nsa

)
− α2Nsa (20)

dNsl

dt
= α2Nsa − α5Nsl (21)

with

β = α1
YaYrel
12N

(22)

It is observed that the system is nonlinear, since the right-hand side of Eq.
(16) exhibits a quadratic term with respect to Nha. This interpretation neces-
sitates some comments. First, the model is intrinsically a discrete time model
equipped with coefficients deduced from the analysis of a monthly-refreshed
data-basis of the company in practical cases [38]. The continuous time equa-
tions are nothing but a limit, for which parameters and coefficients needs to
be recalibrated. This re-calibration when switching from the discrete time to
the continuous time model has been discussed for the Bass innovation diffu-
sion model by several authors. An additional comment is that in this case, the
difference in the results between discrete- and continuous models don’t origi-
nate in the numerical errors induced by Euler time integration scheme, but to
the fact that discrete model coefficients have been calibrated to optimise the
discrete time model (and then they account for time integration errors) [30].
Therefore, there is no a priori reason why the best corresponding continuous
time model should keep the same values for β, ω1, ω2, α2, α3, α4 and α5.

2.3 Cellular automata modelling of spatial spreading via weak ties
The discrete time model displayed above is related to a single isolated cell
dynamics. In order to model the dynamics and spreading of the activity over
a large area, a cellular automata is defined, whose cells are defined to map a
given territory, the number of potential customers in each cell N(i, j) (where
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indices i and j denote the location of the cell in the computational grid) being
evaluated using geographical and sociological data.

In order to account for the neighbouring cells influence on a cell dynam-
ics, it is chosen to account for more distant interactions of hosts in cell with
potential customers in the neighbouring cells. This kind of interactions may
be interpreted as weak ties [15, 14] (weak because the spatial distance tends
to weaken the interaction strength and the capability of a potential customer
to attend a selling party far from his home) is known to have an important
effect in direct selling, since it allows for the spatial spreading of the activity.

To model this effect, the number of active hosts Nha(n) used to compute
∆ca→ha in the cell (i, j) according to Eq. (2) is replaced by a weighted sum
over the Moore neighbourhoodM(i, j) of this cell, yielding

∆ca→ha(i, j) = ω1

(
N+

ca(i, j, n)

Yc
−Nha(i, j, n)

)
(23)

with

N+
ca(i, j, n) = Nca(i, j, n) + γ

∑
(p,q)∈M(i,j)

Nca(p, q, n) (24)

where γ ∈ [0, 1] is a weighting factor accounting for the decrease of the
influence due to the spatial distance.

Using this modification, the system dynamics can be initiated in a cell
originally without activity by hosts from its Moore neighbourhood, who will
generate some active customers in the cell, which will generate local active
hosts and active sellers after some time.

The resulting discrete time cellular automata transition rules are then

Nca(i, j, n+ 1) = Nca(i, j, n) + ∆cp→ca −∆ca→cl (25)

Ncl(i, j, n+ 1) = Ncl(i, j, n) + ∆ca→cl −∆cl→cp (26)

Nha(i, j, n+ 1) = Nha(i, j, n) + ∆ca→ha −∆ha→hl (27)

Nhl(i, j, n+ 1) = Nhl(i, j, n) + ∆ha→hl −∆hl→cp (28)

Nsa(i, j, n+ 1) = Nsa(i, j, n) + ∆ha→sa −∆sa→sl (29)

Nsl(i, j, n+ 1) = Nsl(i, j, n) + ∆sa→sl −∆sl→cp (30)
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3 SINGLE CELL MODEL ANALYSIS

3.1 Steady-state nonlinear equilibrium
A classical step in the analysis of systems (10) - (15) and (16) - (21) is to
find their steady-state equilibria. Since coefficients are the same, equilibrium
values of the populations will be the same in both discrete and continuous
cases.

After some algebra, one finds that there is a trivial solution in which all
populations are equal to zero, while the unique non-trivial one is given by
(equilibrium values for populations are denoted by the asterisk)

N∗sa =
ω2

Yco(ω2 + α2)
N∗ha (31)

N∗ca = Yc

(
ω1 + α2

ω1

)
N∗ha (32)

N∗cl =
α2

α3
N∗ca = Yc

(
α2

α3

)(
ω1 + α2

ω1

)
N∗ha (33)

N∗hl =
α2

α4
N∗ha (34)

N∗sl =
α2

α5
N∗sa =

α2

α5

ω2

Yco(ω2 + α2)
N∗ha (35)

N∗ha =

N

(
1− 12

Ycα2(ω1 + α2)

α1YaYrelω1

)
1 +

α2

α4
+
Yc(α3 + α2)(ω1 + α2)

α3ω1
+

ω2(α5 + α2)

Ycoα5(ω2 + α2)

(36)

The non-trivial solution is reliable if and only if N∗ha ≥ 0, which corre-
sponds to the following condition deduced from Eq. (36):

α1YaYrelω1 ≥ 12Ycα2(ω1 + α2) (37)

Since Ya, Yrel, Yc and α2 are mainly sociological parameters that escape
the company control, the main parameters that can be tuned by the company
are α1 and ω1 to a lesser extent. The condition for a non-vanishing N∗ha is

α1 > αcrit
1 = 12

Ycα2(ω1 + α2)

YaYrelω1
(38)

showing that there is a minimum level attractiveness of the products and
marketing efficiency, both measured by α1, which is necessary to sustain a
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non-vanishing dynamics. A second remark is that the existence of the non-
trivial solution can be mainly interpreted as resulting from the balance be-
tween the capability to find new active customers (driven by α1) and the
seller-induced loss of active customers (driven by α2), the later being rep-
resented by a quadratic function of α2.

Null values of ω1 and ω2 yield vanishing solutions, since they correspond
to exponentially decreasing Nha and Nsa. The same applies for vanishing
α3, α4 and α5, since it would lead to monotonically increasing Ncl, Nhl and
Nsl, respectively, which will act as negative reservoirs that will drive the
source term ∆cp→ca to zero.

3.2 Illustrative test cases
The dynamics of the single cell cellular automata governed by transition rules
(10) - (15) is now illustrated.

The first example deals with the dynamics generated using time-independent
parameters, leading to a non-vanishing equilibrium. Time evolution of Nca

and Ncl are displayed in Fig. 2 in order to illustrate the convergence toward
the long-time steady state. It is observed that during a first phase a logistic-
type growth is observed, which is coherent with the mathematical expression
of ∆cp→ca which is similar to the imitator source term in the Bass equation.
But the present model is more versatile, since it predicts a decay phase after
the absolute maximum before the equilibrium is reached. This decay is as-
sociated to the growth of the lost customer population, the final equilibrium
being reach once the later is stabilized.

We now address a management crisis, modelled as a sudden drop of the
attractiveness parameter α1. In the simulation, α1 is divided by 2 after 350
iteration, i.e. once the steady equilibrium associated to the original value is
almost reached. Results displayed in Fig. 3 show the sudden decay of both
Nca andNcl, along with the relaxation toward a new equilibrium with a lower
N∗ha, which is coherent with the analysis conducted above.

The sensitivity to the variation in α1 is illustrated in Fig. 4, which displays
results obtained now dividing α1 by a factor 10 after 350 iterations, corre-
sponding to a very strong management crisis. A very strong monotonous
decay is now observed.

4 FULL CELLULAR MODEL MODEL ASSESSMENT

We now illustrate the dynamics of the full cellular automata model. The
main difference is the influence of the Moore neighbourhood of each cell
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FIGURE 2
Time evolution of the number of active customers Nca (left) and lost customers Ncl

(right).
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FIGURE 3
Time evolution of the number of active customers Nca and lost customers Ncl (right).
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FIGURE 4
Time evolution of the number of active customers Nca and lost customers Ncl (right).
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on the state transition of potential customer to active customer via interac-
tion with distant active hosts. This influence is parameterised by the weight-
ing parameter γ in Eq. (24), with γ = 0 corresponding to a null influence
(each cell evolves in a fully isolated way). The spatial spreading is obvi-
ously governed by γ, a fact that will be illustrated below considering the
time evolution of a 100 × 100grid with a random distribution of N , with
N(i, j) ∈ [5000, 10000]. All other variables are set to 0.

A first simulation is performed with a weak influence with γ = 0.01. The
dynamics is initiated in cell (i = 50, j = 50) by putting Nca(50, 50) =

N(50, 50)/20 and Nha(50, 50) = N(50, 50)/200. Time evolution of the to-
tal number of active customers and lost customers on the grid are displayed in
Fig. 5, showing a monotonic growth. The spatial distribution of Nca at itera-
tion 1000 is shown in Fig. 6. The spatial distribution reveals that the growth
is due to the spatial spreading which increases the total number active cells,
i.e. the total number of potential customers, resulting in a dynamic market be-
havior. A propagation front is observed, which is classical for simulation of
spatial spreading via cellular automata, e.g. in fire propagation simulations.
The aged active cells are observed to reach an equilibrium, as expected, while
new cells contribute by their internal growth until they reach equilibrium and
by activating their inactive neighbours.

In order to illustrate the role of γ, a new simulation is performed with
γ = 0.1, i.e. with a strong influence of the neighbours. Results are shown in
Figs. 7 and 8. As expected, the activity has spread faster than for the weak
interaction case, resulting in a stronger growth.

We now address the competition that may exist between a management
crisis, i.e. a drop in the attractiveness parameter α1, and the spatial spread-
ing governed by γ. A first (weak) crisis is considered, taking γ = 0.1 and
changing α1 from the initial value of 0.25 to 0.1 after 350 iterations. Cor-
responding evolutions are given in Fig. 9. The drop in α1 is followed by
a sudden decrease of the total Nca which is due to relaxation of aged cells
toward their new equilibrium values (which are lower, as seen above) and a
slower propagation. Once aged cells are at equilibrium, the spatial spreading,
which is still active, becomes dominant leading to a new, less fast, monotonic
growth phase.

The case of a dramatic crisis in which α drops to 0.01 is now studied,
results being plotted in Fig. 10. Here, the spatial spreading is observed to
be too weak to balance the crisis effect, leading to a global shutdown of the
dynamics.
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FIGURE 5
Time evolution of the total number of active customers Nca and lost customers Ncl

(right) on the grid, with α1 = 0.25 and γ = 0.01.
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FIGURE 6
Spatial distribution of Nca at iteration 1000, with α1 = 0.25 and γ = 0.01.
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FIGURE 7
Time evolution of the total number of active customers Nca and lost customers Ncl

(right) on the grid, with α1 = 0.25 and γ = 0.1.
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FIGURE 8
Spatial distribution of Nca at iteration 1000, with α1 = 0.25 and γ = 0.1.
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FIGURE 9
Time evolution of the total number of active customers Nca and lost customers Ncl

(right) on the grid, with α1 = 0.25 → 0.1 and γ = 0.1.
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FIGURE 10
Time evolution of the total number of active customers Nca and lost customers Ncl

(right) on the grid, with α1 = 0.25 → 0.01 and γ = 0.1.
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5 CONCLUDING REMARKS

A new cellular automata model has been proposed to model Direct Selling
Multi-Level Marketing dynamics, defining 6 dynamic populations with tran-
sition rules based on discrete time equations. The model is based on classical
modelling methods for the different mechanisms at play, with parameters that
can be tuned to fit a given company/market case. The model is shown to be
able to capture many effects, including management/attractiveness crisis (or
improvement) and the competition between spatial spreading, which yields a
growing dynamic total market, and drop in the attractiveness.

Future works will deal will inclusion of seasonal effects and the use of
a distance measure that will account for geographical data and the coupling
with a Geographical Information System.
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