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ABSTRACT

Distant-microphone meeting transcription is a challenging
task. State-of-the-art end-to-end speaker-attributed automatic
speech recognition (SA-ASR) architectures lack a multichan-
nel noise and reverberation reduction front-end, which limits
their performance. In this paper, we introduce a joint beam-
forming and SA-ASR approach for real meeting transcription.
We first describe a data alignment and augmentation method
to pretrain a neural beamformer on real meeting data. We
then compare fixed, hybrid, and fully neural beamformers as
front-ends to the SA-ASR model. Finally, we jointly opti-
mize the fully neural beamformer and the SA-ASR model.
Experiments on the real AMI corpus show that, while state-
of-the-art multi-frame cross-channel attention based channel
fusion fails to improve ASR performance, fine-tuning SA-
ASR on the fixed beamformer’s output and jointly fine-tuning
SA-ASR with the neural beamformer reduce the word error
rate by 8% and 9% relative, respectively.

Index Terms— Beamforming, delay-and-sum, FaSNet,
speaker-attributed ASR, joint optimization

1. INTRODUCTION

Transcription of real distant-microphone conversational meet-
ings or domestic data is an active research area [1–3]. It re-
mains challenging today due to noise, reverberation, and over-
lapping speech. To improve performance, many studies have
employed a front-end multichannel speech separation mod-
ule or a series of (fixed, statistical, or neural) beamformers
steered toward the speakers to extract individual speech sig-
nals from the overlapping speech mixture and subsequently
feed each of them to a single-speaker ASR module [4–6]. The
separation error then propagates to the ASR module. Later
studies [7–9] have proposed to back-propagate the ASR train-
ing losses for all speakers to the front-end separation module
using a permutation invariant training (PIT) criterion to opti-
mize the two modules jointly. However, the system can often
handle only a fixed number of speakers.

End-to-end multi-speaker ASR based on serialized out-
put training (SOT) [10] addresses these shortcomings. The
work in [11] introduced an end-to-end Transformer-based

speaker-attributed ASR (SA-ASR) system for joint recogni-
tion of speech and speaker identities from single-channel log
Mel features. It was then extended to Multichannel SA-ASR
(MC-SA-ASR) by fusing log Mel [12] and phase [13] fea-
tures across channels with time-varying multi-frame cross-
channel attention (MFCCA) weights. Such multichannel
attention schemes are often believed to outperform classi-
cal beamforming and to be state-of-the-art. Yet, in contrast
to a frequency-dependent complex-valued beamformer, they
rely on frequency-independent real-valued weights, which
achieve limited noise and reverberation reduction.

In this paper, we propose to combine SA-ASR with a
beamforming-based noise and reverberation reduction front-
end to improve speech and speaker recognition in far-field
conditions. The beamformer fuses the mixture channels into a
single-channel enhanced mixture fed to SA-ASR. While such
a front-end is common in single-speaker scenarios, extending
it to real multi-speaker scenarios is nontrivial. First, the beam-
former must vary its spatial response over time according to
the speakers’ positions and activity patterns. This is why few
examples of multi-speaker beamforming front-ends are found
in the literature. BeamformIt [14] was used as a front-end to
PIT-based multi-speaker ASR [7] as well as to single-speaker
ASR baselines for multi-speaker ASR tasks [1, 15, 16], while
minimum variance distortion-less response (MVDR) beam-
forming was used as a front-end to SA-ASR in [17] without
comparison to MFCCA. To the best of our knowledge, no
full-neural beamforming front-end has been used for SA-ASR
so far. Second, the pretraining of a neural beamformer on real
meeting data is challenging due to the absence of ground truth
noiseless dry mixture signals as pretraining targets.

The contributions of this paper are as follows. First, we
introduce data alignment and augmentation techniques to
pretrain a multi-speaker neural beamformer on a real meet-
ing corpus containing both distant microphone and headset
recordings. Note that the beamformer is employed to re-
duce noise and reverberation, but not to extract the individual
speakers. Second, we propose a pipeline integrating beam-
forming with SA-ASR, aiming to improve both speech and
speaker recognition. Third, we evaluate the differences in
performance between statistical, hybrid, and neural beam-
formers. Finally, we jointly optimize the neural beamformer



and the SA-ASR model. Our experiments on the AMI cor-
pus [18] reveal that, while MFCCA-based channel fusion
does not improve ASR performance, fine-tuning SA-ASR on
the fixed beamformer’s output and jointly fine-tuning SA-
ASR with the neural beamformer reduces the WER by 8%
and 9% relative, respectively.

The paper is organized as follows. Section 2 presents the
considered beamformers and SA-ASR model. Section 3 in-
troduces our joint system and the AMI data alignment and
augmentation pipeline. Section 4 describes our experimental
setup and results, and we conclude in Section 5.

2. BACKGROUND

2.1. Delay-and-sum beamforming

The delay-and-sum (DAS) beamformer [19] is a fixed beam-
former, which depends only on the delays between the mi-
crophone signals and a reference microphone. It was em-
ployed as a front-end in many single-speaker ASR studies,
e.g., [20]. It involves computing the delays using a time dif-
ference of arrival (TDOA) estimator such as the generalized
cross-correlation with phase transform (GCC-PHAT) [21],
shifting the phase of the microphone signals accordingly
in the complex short-time Fourier transform (STFT) do-
main, and summing them. Given the microphone signals
x1(f, t), ..., xM (f, t) at time t and frequency f , the output
signal y(f, t) is expressed as

y(f, t) =

M∑
m=1

xi(f, t)e
2ȷπdmf (1)

where dm is the delay on the m-th channel.

2.2. Deep neural network-based Minimum Variance Dis-
tortionless Response Beamforming

Deep Neural Network (DNN)-based Minimum Variance Dis-
tortionless Response (MVDR) beamforming [22, 23] com-
bines neural networks with traditional beamforming methods.
The DNN is trained to estimate masks in the time-frequency
domain that enhance desired signals and suppress interfer-
ence. This information is then used to compute the MVDR
beamformer weights, which minimize output power while
preserving signals from the target direction. This method
can be seen as a transition between traditional mathematical
beamforming and fully neural network-based approaches.

2.3. Filter-and-Sum Network with Transform-average-
concatenate

The Filter-and-Sum Network (FaSNet) system [24] aims to
directly estimate time-domain beamforming filters. It em-
ploys a two-stage design: the first stage estimates filters for

a reference microphone, and the second stage estimates fil-
ters for the remaining microphones based on pairwise cross-
channel features between the pre-separated output and each
microphone. The FaSNet architecture utilizes dual-path re-
current neural networks (DPRNNs) [25] to extract informa-
tion from both the channel and frame levels.

The Transform-average-concatenate (TAC) [26] design
paradigm addresses channel permutation and is capable of
handling various numbers of microphones.

2.4. Dereverberation with Weighted Prediction Error

Multichannel dereverberation using Weighted Prediction Er-
ror (WPE) [27] reduces reverberation by modeling and sub-
tracting late reverberant components from the observed audio
signal using linear prediction. This technique optimizes pre-
diction coefficients and error weights to enhance speech clar-
ity and intelligibility in reverberant environments. Multiple
studies [28, 29] have shown that using WPE loss in conjunc-
tion with beamforming can enhance audio quality, thereby
improving the performance of speech recognition or speaker
identification.

2.5. Speaker-attributed ASR

A Transformer-based end-to-end speaker-attributed ASR
(SA-ASR) system was proposed in [11]. Following the
SOT principle [10], the output is the concatenation of all
speakers’ sentences in first-in-first-out order, where each to-
ken is associated with one speaker ID and distinct speakers
are separated by an <sc> token. As shown in Fig. 1, the
inputs to the model consist of an acoustic (log Mel filterbank)
feature sequence and a set of reference speaker embeddings.
A Conformer-based ASR Encoder first encodes acoustic in-
formation, along with a Speaker Encoder to encode speaker
information. Then, the Transformer-based ASR Decoder
and Speaker Decoder modules decode text and speaker in-
formation, respectively. The Speaker Decoder generates a
speaker representation corresponding to each token in the
ASR Decoder’s output token sequence. This representation is
used to assign speakers by computing a dot product with the
reference speaker embeddings.

Fig. 1: Diagram of SA-ASR [11].



3. PROPOSED METHODS

3.1. Real meeting data alignment and augmentation for
neural beamformer training

Neural beamforming on real-world far-field data is chal-
lenging due to the lack of ground truth enhanced signals
for training. Real meeting corpora as AMI include headset
recordings for each speaker, but these can’t be used directly
as ground truth because of variable delays caused by the
speakers’ positions. To address this, we generate aligned
array and headset signals in three steps (see Fig. 2): (a) ex-
tract all non-overlapping speech segments for each speaker
based on dataset annotations; (b) align each non-overlapping
headset segment with the corresponding array segment using
matched filters, then cut them into fixed-length clips; (c) ran-
domly sample and mix array clips from different speakers to
create far-field mixtures, and mix the corresponding aligned
headset clips to obtain the ground-truth enhanced mixtures.

Fig. 2: Mixture generation from real meeting data.

The matched filters fij(t) in step (b) are calculated in the
least squares sense by solving

min
fij

∑
t

(fij ⋆ hj(t)− xi(t))
2

(2)

where hj(t) and xi(t) stand for the headset signal of speaker
j and the array signal at microphone i, respectively, and ⋆
denotes time-domain convolution. The solution is classically
obtained as the finite impulse response (FIR) Wiener filter,1

which is commonly employed for filter estimation [30, 31].

3.2. Joint multichannel beamforming and SA-ASR

We propose a joint system integrating beamforming and
SA-ASR for multichannel, distant-microphone meeting tran-
scription. As illustrated in Fig. 3, the multichannel audio is
first processed by a beamformer to generate enhanced single-
channel audio. The output audio is then fed to SA-ASR to
obtain speech and speaker recognition results. We compare
the performance of the fixed DAS beamformer, the hybrid

1https://en.wikipedia.org/wiki/Wiener_filter

Fig. 3: Proposed joint system of Beamformer and SA-ASR

DNN-MVDR (noted as MVDR) beamformer, and the fully
neural FaSNet beamformer, when fine-tuning the SA-ASR
model on training data enhanced with the respective beam-
former. In addition, we backpropagate the loss from SA-ASR
to FaSNet, in order to fine-tune the neural beamformer ac-
cording to the SA-ASR training objective.

4. EXPERIMENTAL EVALUATION

4.1. Datasets

Mixed AMI — To train the MVDR and the FaSNet beam-
former, we apply the method described in Section 3.1 to
the AMI meeting corpus. This method creates mixtures of
real single-speaker AMI segments and their corresponding
ground truths. We name this dataset Mixed AMI. We only
use one-quarter of all meetings and fix the clip length to 4 s.
The mixtures are generated by overlapping randomly selected
clips from 1 to 4 speakers. The training, development, and
test sets contain 150 h, 17 h, and 16 h of speech, respectively.

Multi-speaker LibriSpeech — To optimize performance on
AMI, the SA-ASR model requires pretraining on a larger
simulated distant-microphone multi-speaker dataset [32]. We
created a 960 h training set and a 20 h development set from
the LibriSpeech train-960 and dev-clean sets [33]. Room
impulse responses are generated with gpuRIR [34] for a lin-
ear 2-, 4- or 8-microphone array with 10 cm aperture. We
adopted the room simulation settings described in [13]. Each
mixture contains 1 to 3 speakers. Each speaker’s utterance
is shifted relative to the previous speaker’s by a random de-
lay > 0.5 s. Each mixture signal is linked to 8 reference
speaker embeddings obtained from two random enrollment
utterances, including the actual speakers and additional ran-
dom LibriSpeech speakers.

Real AMI — After it has been pretrained on Multi-speaker
LibriSpeech, the SA-ASR model is fine-tuned and evaluated
on real AMI multiple distant microphones (MDM) data. We
utilize the segmentation method in [13] to partition the MDM
data into 5 s chunks and adjust the chunk start/end times to
non-overlapped word boundaries. This eliminates the need
for a Voice Activity Detection model during inference. The
resulting Real AMI dataset contains respectively 165 h, 19 h,
and 19 h for training, development, and test. For both Mixed
AMI and Real AMI, we consider 2-, 4- and 8-channel set-



tings. For Real AMI, the channels are taken from Array1,2

namely channels 1 and 5 in the 2-channel setting, channels 1,
3, 5, and 7 in the 4-channel setting, and all 8 channels in the
8-channel setting.

4.2. Metrics

We evaluate the beamforming performance using the scale-
invariant signal-to-distortion ratio (SI-SDR) and its improve-
ment (SI-SDRi), implemented in Asteroid toolkit [35], mea-
sured in dB on the Mixed AMI test set. We calculate the base-
line SI-SDR for SA-ASR by defining the array mixture signal
as the estimated signal, ensuring that the SI-SDRi is 0 dB
without beamforming. For all beamforming methods, we cal-
culate the SI-SDR by defining the beamformed signal as the
estimated signal and compute SI-SDRi by subtracting the cor-
responding baseline SI-SDR. The performance of SA-ASR is
evaluated by the word error rate (WER) and the sentence-level
speaker error rate (SER) [36] in % on the Real AMI test set.

4.3. Model description

We utilize the implementation of DAS from the SpeechBrain
toolkit [37]. For the MVDR model, we utilize the imple-
mentation in TorchAudio [22, 38], which employs the Conv-
TasNet [39] mask generator as the DNN module. The number
of filterbank output channels and the number of bins in the es-
timated masks are both 513. The implementation of FaSNet
with TAC is from the Asteroid toolkit. The frame size and
context size of FaSNet are set to 4 and 16 ms, respectively.
The encoder dimension and feature dimension are 64. The
dual path blocks consist of a 4-layer dual model.

We implemented SA-ASR and the MFCCA-based MC-
SA-ASR system in [13] as a baseline using SpeechBrain. In
SA-ASR and MC-SA-ASR, the Conformer-based encoder,
the Transformer-based decoder and the speaker decoder have
12, 6 and 2 layers, respectively. All multi-head attention
mechanisms have 4 heads, the model dimension is 256, and
the size of the feedforward layer is 2,048. MC-SA-ASR
has fewer parameters than SA-ASR due to replacing the
first (feedforward) layer of the original Conformer with a
smaller-sized MFCCA. The speaker embedding model is
a pretrained3 ECAPA-TDNN (Emphasized Channel Atten-
tion, Propagation, and Aggregation in Time-Delay Neural
Network) [40], yielding 192 dimensional embeddings.

Additionally, we test the performance obtained with
WPE, implemented by [41], during the evaluation of the
MC-SA-ASR model. We also compare the performance of
beamforming with and without WPE during the fine-tuning
of SA-ASR.

2A few meetings have two arrays, each consisting of 8 microphones.
3Available at https://huggingface.co/speechbrain/

spkrec-ecapa-voxceleb

4.4. Training setup

The MVDR and FaSNet beamformer are trained on Mixed
AMI for 200 epochs with early stopping, using the Adam op-
timizer with a learning rate of 10−3.

The ASR modules in SA-ASR and MC-SA-ASR are
pretrained on Multi-speaker LibriSpeech for 80 epochs us-
ing Adam with a learning rate of 5 × 10−4. The ASR and
speaker modules are then further pretrained on Multi-speaker
LibriSpeech for 60 epochs with a learning rate of 2.5× 10−4.

After this, SA-ASR and MC-SA-ASR are fine-tuned on
either unprocessed (baseline) or beamformed Real AMI data
for 15 epochs, using Adam with a learning rate of 3 × 10−4.
We fine-tune the ASR module for the first 8 epochs and jointly
fine-tune the ASR and speaker modules in the last 7 epochs.

When jointly optimizing FaSNet and SA-ASR, the FaS-
Net model is not trained to converge. Instead, to assess the
impact of different pretraining levels, we pretrain it for 0, 5,
10, or 50 epochs. After this, the FaSNet and SA-ASR models
are jointly fine-tuned on Real AMI for 15 epochs.

4.5. Evaluation results

4.5.1. Fine-tuning SA-ASR with DAS vs. with frozen MVDR
and FaSNet

We initially evaluated an SA-ASR model fine-tuned on the
first channel of Real AMI. The resulting WER and SER on
mixtures of 1, 2, 3, or 4 speakers were 44.54% and 34.73%,
respectively. However, when testing the same model on FaS-
Net beamformed 2-channel Real AMI, the WER, and SER
increased to 64.32% and 46.30%. This discrepancy can be
attributed to the distinct acoustic characteristics between far-
field and beamformed scenarios. Models trained on far-field
data may lack robustness to the cleaner, less reverberant con-
ditions of beamformed audio. Therefore, in all following
experiments, we fine-tune the SA-ASR model on real AMI
training data enhanced using the same beamformer as the test
data. This adaptation is essential to align the model with the
specific conditions of the test set.

Table 1 shows the test results of the baseline models (SA-
ASR and MC-SA-ASR) and the combination of SA-ASR
with three beamformers, where the parameters of MVDR
and FaSNet are frozen during fine-tuning. Without WPE,
the WER comparison between SA-ASR (44.54%) and MC-
SA-ASR (44.99%) demonstrates that, while MFCCA had
achieved a 13% relative WER reduction on simulated data
in [13], it is inefficient on real meeting data. In general,
fine-tuning the SA-ASR model on beamformed audio im-
proves the ASR performance. Particularly in the 8-channel
setting, using the DAS beamformer leads to a 6% relative
reduction in WER without WPE (41.71%) and 8% with WPE
(40.96%) compared to SA-ASR. It is also interesting to note
that, despite FaSNet’s superior denoising and dereverberation
performance in terms of SI-SDRi, the SA-ASR model trained
on speech beamformed by FaSNet performs less effectively



Table 1: Results for models fine-tuned and tested on unprocessed (SA-ASR and MC-SA-ASR) or beamformed (DAS-SA-ASR,
MVDR-SA-ASR, FaSNet-SA-ASR) data. For convenience, we denote SI-SDR and SI-SDRi as SDR and SDRi, respectively.

System # Prm # Chn

Mixed AMI test set Real AMI test set

1-spk 2-spk 3-spk 1,2,3,4-spk 1-spk 2-spk 3-spk 1,2,3,4-spk

SDR SDRi SDR SDRi SDR SDRi SDR SDRi WER SER WER SER WER SER WER SER

SA-ASR 69M 1 5.41 0 5.75 0 5.79 0 5.66 0 26.76 11.92 40.23 32.66 52.31 45.11 44.54 34.73
MC-SA-ASR 59M 2 5.41 0 5.75 0 5.79 0 5.66 0 26.41 11.73 40.79 32.64 52.59 43.82 44.99 34.43
+WPE (test) 2 5.72 0.31 5.93 0.18 5.92 0.13 5.87 0.21 26.43 12.13 40.80 32.54 52.32 44.14 44.72 34.65

DAS-SA-ASR

69M

2 5.62 0.21 5.42 -0.33 5.23 -0.56 5.39 -0.27 25.59 12.82 40.36 33.87 52.04 45.55 44.03 35.56
4 5.66 0.25 5.47 -0.28 5.25 -0.54 5.35 -0.31 24.43 12.23 39.51 33.26 50.25 42.98 42.34 34.29
8 5.66 0.25 5.48 -0.27 5.30 -0.49 5.38 -0.28 23.51 12.13 38.41 33.12 50.43 43.44 41.71 34.40

+WPE
2 6.08 0.67 5.70 -0.05 5.40 -0.39 5.66 0.00 24.65 11.59 38.64 32.14 50.29 43.87 42.39 34.05
4 6.33 0.92 5.82 0.07 5.40 -0.39 5.67 0.01 23.50 11.26 37.22 32.00 49.34 42.34 40.96 33.33
8 6.18 0.77 5.54 -0.21 5.04 -0.75 5.35 -0.31 23.49 11.43 37.89 32.67 50.12 43.59 41.37 33.84

MVDR-SA-ASR

74M

2 7.40 1.98 7.42 1.67 7.46 1.80 7.44 1.78 26.54 12.94 41.07 34.47 52.81 45.18 44.39 35.92
4 7.94 2.52 7.98 2.23 7.99 2.19 7.99 2.33 27.15 12.63 41.35 34.92 52.72 44.94 44.76 35.78
8 8.14 2.72 8.10 2.34 8.10 2.30 8.11 2.44 27.31 12.42 41.27 34.52 52.63 45.07 44.23 35.21

+WPE
2 7.75 2.34 7.48 1.73 7.48 1.69 7.55 1.89 26.40 12.78 41.09 33.66 52.00 44.89 44.29 35.54
4 8.25 2.83 8.01 2.26 7.97 2.18 8.05 2.39 26.70 13.04 41.28 34.57 52.34 44.19 44.35 35.54
8 8.40 2.99 8.09 2.34 8.03 2.24 8.14 2.48 26.35 12.93 41.03 33.72 52.12 44.26 44.12 35.37

FaSNet-SA-ASR

72M

2 10.21 4.79 9.85 4.09 9.56 3.76 9.76 4.10 26.86 11.33 40.91 35.67 52.57 47.12 44.57 36.24
4 10.22 4.80 9.89 4.13 9.63 3.83 9.82 4.15 26.82 12.23 40.29 34.87 51.52 45.73 43.85 35.90
8 10.41 4.99 10.01 4.25 9.72 3.92 9.96 4.29 26.53 10.73 39.93 34.78 51.70 45.28 44.11 35.51

+WPE
2 7.35 1.93 7.18 1.42 7.04 1.24 7.16 1.50 26.75 12.40 41.07 34.75 52.38 46.16 44.48 36.01
4 6.48 1.07 6.26 0.51 6.13 0.34 6.24 0.58 25.86 12.63 39.27 33.15 51.78 44.16 43.29 34.97
8 5.88 0.47 5.88 0.47 5.66 -0.13 5.85 0.19 26.16 10.78 39.35 34.89 51.22 45.25 43.39 35.41

Note: For all the tables, we employed the SCTK toolkit [42] to conduct significance tests, specifically the Matched Pair Sentence Segment test. For the
mixture of 1,2,3 and/or 4 speakers, the best WER/SER and the results statistically equivalent to it at a 0.05 significance level are highlighted.

than the one trained on speech beamformed by DAS. In the
8-channel setting, without WPE, using DAS results in a 5%
relative reduction in WER compared to using FaSNet (from
44.11% to 41.71%), and a reduction of 4% relative in SER is
observed for 4-channel (from 35.90% to 34.29%). The WER
relative reduction is up to 6% (from 44.23% to 41.71%) com-
pared to the MVDR-SA-ASR system. The latter system has
a similar performance to the FaSNet-SA-ASR system.

To find the reason for the difference between DAS-SA-
ASR and FaSNet-SA-ASR, we visualize the spectrogram of
one 8-channel Mixed AMI test chunk before and after beam-
forming (see Fig. 4). It can be seen that, although FaSNet
exhibits effective denoising, it also removes a portion of the
speech signal, as highlighted by the white columns in the fig-
ure. On the contrary, DAS can preserve a significant portion
of all speech signals while providing some denoising, which
results in better speech and speaker recognition results.

4.5.2. Effectiveness of adding WPE in frozen beamformers

Table 1 also shows the performance differences for each sys-
tem with or without WPE for dereverberation. First, even
without beamforming, using WPE only during the inference
phase for MC-SA-ASR results in a 0.21 dB improvement in
SI-SDR and a slight absolute WER reduction of 0.27% (from
44.99% to 44.72%). For systems using beamformed signals,

Fig. 4: Spectrogram of one 8-channel Mixed AMI test chunk.
From top to bottom: 1st array channel; DAS beamformed sig-
nal; FaSNet beamformed signal; ground truth.

integrating WPE during the beamforming phase improves the
SI-SDRi for DAS and MVDR but not for FaSNet. How-
ever, using WPE during beamforming to fine-tune the SA-
ASR model systematically improves ASR and speaker identi-



Table 2: Results for jointly trained 2-channel FaSNet and SA-ASR models.

WPE usage

Mixed AMI test set Real AMI test set

Pretrained Fine-tuned 1-spk 2-spk mix 3-spk 1,2,3,4-spk

# Epo SDR SDRi SDR SDRi WER SER WER SER WER SER WER SER

None
0 5.66 0 -16.21 -21.87 25.31 11.37 38.04 32.28 48.63 43.07 41.71 33.68
5 9.27 3.61 5.13 -0.53 24.91 13.06 36.84 33.54 47.49 45.00 40.60 34.87
50 9.69 4.02 7.05 1.39 24.54 13.51 36.93 33.36 47.71 43.87 40.52 34.43

Fine-tune
0 5.87 0.21 -14.37 -20.03 25.51 11.75 38.58 32.03 50.23 42.53 43.41 33.68
5 7.63 1.97 4.37 -1.29 25.04 12.59 37.46 31.16 48.05 41.59 41.00 32.84
50 7.29 1.63 5.82 0.16 24.75 12.59 37.87 30.89 48.01 42.23 40.92 33.14

Test 50 7.29 1.63 7.29 1.63 25.11 11.90 38.03 31.73 48.61 42.52 41.46 33.33

fication performance. Specifically, the DAS-SA-ASR system
achieves a 3% relative reduction in WER (from 42.39% to
40.96%) and SER (from 34.29% to 33.33%) with WPE in the
4-channel setting. This demonstrates that WPE aids in rever-
beration reduction for fixed beamformers. However, the im-
provement in recognition performance for neural beamform-
ers (MVDR and FaSNet) is less pronounced, likely because
these beamformers have already learned to reduce reverbera-
tion during their training process.

4.5.3. Joint optimization of FaSNet and SA-ASR

Since fine-tuning SA-ASR with a frozen MVDR and FaS-
Net does not significantly improve SA-ASR performance, we
conduct the joint optimization of SA-ASR and FaSNet, since
FaSNet has relatively better performance and fewer parame-
ters than MVDR. More specifically, we pretrain FaSNet for 0,
5, 10, or 50 epochs and subsequently fine-tune it for 15 epochs
jointly with SA-ASR by backpropagating the SA-ASR loss.

The results in Table 2 show that, without WPE, joint opti-
mization of FaSNet and SA-ASR (40.52%) reduces the WER
by 9% relative to the frozen FaSNet (44.57%) and to SA-
ASR (44.54%). We also observed a 7% relatively lower SER
(33.68%) than using the frozen FaSNet (36.24%). However,
the fine-tuned FaSNet exhibits a smaller SI-SDRi than the
pretrained one. This indicates that joint training optimizes
FaSNet for ASR performance rather than maximum noise and
reverberation reduction at the cost of greater speech distor-
tion. Furthermore, while the number of FaSNet pretraining
epochs significantly impacts the SI-SDRi, it does not signif-
icantly impact the result of joint optimization, provided it’s
nonzero. This demonstrates the insensitivity of the joint opti-
mization to the pretraining level of FaSNet.

Moreover, we tested different uses of WPE during the
joint optimization phase. First, incorporating WPE during
the fine-tuning optimization of beamforming does not result
in better recognition performance. On the contrary, using
WPE led to a 4% relative increase in WER (from 41.71% to
43.41%) when training FaSNet from scratch with the training
objectives of SA-ASR. Second, applying WPE to FaSNet af-
ter the joint optimization is completed also does not bring any

benefits (41.46%). This indicates that the joint optimization
of FaSNet and SA-ASR does not benefit from the dereverber-
ation provided by WPE.

5. CONCLUSION

This paper explored the integration of beamforming with
SA-ASR for joint speech and speaker recognition of far-field
meeting audio. We evaluated the impact of fine-tuning SA-
ASR on the outputs of DAS, MVDR, or FaSNet beamformer
and jointly fine-tuning SA-ASR with the last, and compared
it with state-of-the-art MFCCA-based channel fusion. Exper-
iments reveal that, in contrast to previously published results
on simulated data, MFCCA is inefficient on real AMI data.
This highlights the importance of systematically evaluating
SA-ASR on real meeting data. Utilizing a DAS beamformer
and jointly optimizing SA-ASR with the FaSNet beamformer
lead to relative WER reductions of 8% and 9%, respectively.
The use of WPE in the DAS-SA-ASR system can bring a 3%
relative reduction in both WER and SER.
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