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SHARP PROPAGATION OF CHAOS FOR MCKEAN-VLASOV EQUATION WITH NON
CONSTANT DIFFUSION COEFFICIENT

JULES GRASS, ARNAUD GUILLIN, AND CHRISTOPHE POQUET

ABSTRACT. We present a method to obtain sharp local propagation of chaos results for a system of N particles
with a diffusion coefficient that it not constant and may depend of the empirical measure. This extends the recent
works of Lacker [14] and Wang [24] to the case of non constant diffusions. The proof relies on the BBGKY
hierarchy to obtain a system of differential inequalities on the relative entropy of k particles, involving the fisher
information.

1. INTRODUCTION AND MAIN RESULT

In this work, we are interested in the following system of N particles on the d-dimensional torus T¢
1 N 1 N 1
i N i N N N N N\ 2 i, N
W = g T vy V2(a () + >l -V ))faBiN, )

where (BN ..., BN'N) are independent Brownian motions. We suppose that the matrix valued functions
a1 and a9 are symmetric and satisfy

V(’Ul,’UQ) S (Td)2, al(’ul) + ag(vl — 1)2) > M\Id. 2)

We also assume that b, V - a1, az and V - ag are bounded. Throughout this paper, we suppose moreover
that the N particles in the dynamics [I] are exchangeable, that is, for all permutation o of [1, N], we have
Law(‘/f(l)’N, ey ‘/;U(N)’N): Law(‘/;l’N, e VtN’N).

An example of particular interest of such a system is when one takes b := V - a9 and a; = 0, obtaining a
Landau-like equation that has notably been recently studied by Carillo, Guo and Jabin [4].

We are interested in the behavior of (I)) when N — oo and especially the property known as propagation
of chaos, i.e, the convergence of ,uf N Law(th’N, e VtkN) to ¥, where p1; denotes the law of the
solution to the McKean-Vlasov equation

{ AV, = b pe(Vi)dt +v2(ar (Vi) + az * pa(13))

=

4B 3)
pe = Law (V)

This property has garnered a lot of attention from the mathematical community ever since the second half of
the 20th century, although its root can be traced back to the birth of statistical mechanics with the assumption
of molecular chaos (also know as the Stosszahlansatz). Several methods have been used troughout the
years to prove propagation of chaos, starting with compactness arguments [23| 21} [19], and then coupling
arguments, see [22} (17, [10] for historical references or to [[18] 5, 9l for uniform in time results in the case of
convex or non non convex interactions and [11]] for the 1D Coulomb case. Recently, entropy methods have
gained a lot of attraction, notably because they were successfully applied to systems with singular interaction
[13]. For a review of those methods see [0, [7]. With the coupling or entropy approaches, one typically

obtains a convergence rate of ,uf N to ,u?k of order (9(1 / %) in total variation or Wasserstein distance. For
the relative entropy method this is done by proving that H (,uiv ’N|,u£® N) = O(1), and then concluding by
using the subadditivity of relative entropy. Let us also mention the recent modulated energy approach for the
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2 JULES GRASS, ARNAUD GUILLIN, AND CHRISTOPHE POQUET

singular case in [20]], and further successfully developped for attractive interactions [3]], however with non
comparable rates.

Recently, under some assumptions on the interaction term, that are for example valid if the interaction is
bounded or Lipschitz continuous, Lacker [14] was able to obtain optimal bounds for Hf := H (,ui€ ’N|,ut®k ),

of order O(%) (using Pinsker’s inequality this means a convergence rate of (’)(%) for the total variation
distance). He proved moreover that such a bound is optimal for a simple Gaussian system. The novelty of
this approach is its local character, by estimating H} directly instead of HtN N More precisely, using the
BBGKY hierarchy, the idea is to obtain a system of differential inequality of the form

d k<k(k—1)2

pracl _WM+7k(Hf+l—Hf), 4)

and then to conclude relying on estimates on nested integrals.

Several results have since been obtained in this direction. Together with Le Flem, Lacker [15] was able
to obtain, under some more hypotheses, uniform in time results of order (9(]'\“7—22) Their proof relies on the
use of log-Sobolev inequalities to obtain an additional term of of the type —cH} in the right-hand side of
). Also, Lacker, Yeung and Zhou [16]] were able to obtain sharp propagation of chaos results for systems
of particles with weighted interactions (for instance, when the interaction is given by an interaction matrix).
They compared the law of the system of particles to the law of n independent particles having the so called
independent projection law, considering the BBGKY hierarchy in the case of non exchangeable diffusions.
Moreover Hess-Childs and Rowan [[12] obtained optimal rates for the y? divergence instead of the relative
entropy, and they obtained also sharp convergence rates results for higher order corrections of the mean-field
limit.

Concerning singular interaction kernels Wang [24] was recently able to obtain sharp rates for divergence
free and W 1> kernels (non optimal convergence for this case was obtained in the breakthrough paper
[13]). A main step in the proof of this result is to consider a more general system of differential inequalities
than @), of the form

d k5
aHf < —lef + Cgff+1lk<N + Mle + Mgk‘(Hf—H — Hf)1k<N + MgeMgtm, &)
kN
where ¢; > ¢ > 0and I} := Zle i uf’NHVUi log ’; i+ ||? is the Fisher information. With similar methods
t

Wang was also able to obtain sharp rate for the x? divergence. Note moreover that, relying also on the
BBGKY hierarchy but with a different approach (involving uniform in N estimates on weighted LP norms of
the marginals), Bresch, Jabin and Soler [2]] were able to obtain convergence to the Vlasov-Poisson-Fokker-
Planck equation (in dimension 2 and with a partial result for dimension 3) for short times.

To the best of our knowledge, the result of this article provides for the first time an optimal rate of con-
vergence for particles systems with a non constant diffusion coefficient. A central point of our proof is to
obtain a system of inequalities of the form of (@), controlling the additional terms appearing in the BBGKY
hierarchy (the terms K7, K3 and K, of the proof). Our result is valid when the diffusion coefficient as is
sufficiently close to a constant. More precisely we prove the following Theorem.

Theorem 1.1. Let (V;"V)._,
Suppose also the following:
(i) Chaos att = 0: there exists C > 0 such that H(Mg’Nluggk) < C]]ff—z.
(ii) Exchangeability: (VOI’N, v VON’N) are exchangeable.
(iii) Uniform ellipticity: @) is satisfied, i.e., there exists A1 > 0 such that

n solving (D). Let us assume that b, V - a1, as and V - as are bounded.

\V/(’Ul,’Ug) S (Td)2, al(vl) + CLQ(Ul — ’Ug) > /\1]d.
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(iv) Small dependency on the empirical measure for the diffusion coefficient :

n:= sup |az(z)—a2(z)]2 < A1.
(z,2)€(T4)?

Then, for all t > 0 there exists a constant M, independent of N and k such that
k k?
H; < th

Remarks

e Similarly as in [24] one can prove a similar bound for the y? divergence instead of the entropy by
adapting the proof of Theorem [I.1] (under very similar assumptions to (i), (ii), (iii) and (iv)). One
can then obtain a system of the form

Dy _ k+1 k+1 K
o S Tali el oy + MDDy ey + Moo,

where Df := D(,uf;C ’N|,u§k) is the y? divergence and the energy is defined as

pk
Z/ WV, tkH2

Relying on Proposition 6 of [24]], one obtains a bound of the form

k
Di = e

where M or T do not depend on IV, k or t.
e It is possible to relax the assumption on b and consider a function of the form b1 + bs, where b; =
V- Vew b OO(']Td Rd) satisfies V - by = 0, and by is bounded, very much like in [24]. By using

Wang’s estimates to control the terms involving by, it is possible to show that HF = (9( ) by
2

controlling a system of the form (3)), where ¢; = A\ — Z?:l € — 5 and c; = 2ne + %

for some €;,i € [1,5]. The quantities €1, €s, €3, €5 can be chosen arbltrarlly small (but not zero)

and will only affect the value of M. In order to apply Wang’s Proposition 5, we need to find €4 such
that ¢c; > co. By standard analysis, it is possible if and only if A\ > 27 + ||V||co. This gives a
generalisation of condition (iv).

2. PROOF OF THEOREM [1.1]

2.1. Computation of the relative entropy and derivation of the system of differential inequalities. The
proof relies on the Fokker Planck equations satisfied by ,uf N and ,u?k. The equation satisfied by ,uf N is also
known as the BBGKY hierarchy, because it gives 0, ,uf "V as a functional of ,uf " and ,ukH N We defined
b:=b—V-asto simplify the expressions. We have

_%gg(_vvi ' [Z’(Ui - Uﬂ')“f’N] + Vo, - [(al(vz‘) +a2(v; — v))) Vo pip” N} )
+ zk: % /sz- : [_B(Ui - ka)MfH,N] dvg11
i=1

k
N —k
+ Z N /sz. . [(al(vi) + as(v; — vk+1))unf+1’N} dvgi1q 6)

+ Z Vo, - { al(vl))uf N} ,
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and

k
8t,u1?k = Zvvz : |:(CL1 + ag * Nt(vi))vviu§k] - Vvi : [(8 * Nt(vi))/%@k}

k

+ Zvvi : |:V1)l- : (al(vi)),u?k] . (7)

i=1

We can now compute the relative entropy:

d B d ke, N N
(ﬁH( Mﬁa)Zaz/ut bg(£%>

z/@ﬁW&MJWH4%@ﬁWbM k) — O log(uE*)
—A-B-C. (8)

We have:
d
A= / Oupty ™ + o™ log (™) = = / m + / Ay log (™ / Ay og (™).

Therefore, by using the Fokker-Planck equations on u?k and uf ’N, an integration by parts and the fact
V - a1 (v;) is a function of vy, ..., vg:

k
N Z/vvi (a(vi))p vvz log <IL:; k>
i—1 ¢
k k
1 kN ™
+ ZN Z al v;) + ag(v; —v] vzut —i—Zb v — vy | - Vy, log oF
i=1 j=1

Ky

k
N -k
+ E T/—(al(vi)+a2(vi—vk+1))vv“uf+1N V., log <'ut ) ©)
i=1

t
k kN
Z N—-Fk [, k+1,N py
* N /b(v,- - Uk+1)ut+1 - Vy, log <Mt?k) :
i=1

k: N k N
We have, by integration by parts and the identity V,, ( P > ®k VUZ log £t P :

b k N
€= [~ +az x p0) Vo, og(uf™) - 9, Lo - "
i=1

k
+> /(5 s (Vi) — Vi, - a1 (v9)) 11" V., log Mt (10)
- i

t

Combining (8), @) and (10)), rearranging the terms and using the identities

kN
oy

®k "’
t

Vo, 2% = 5V, log u®*  and  V,, log ,uf’N = V,, log uP* 4+ V. log
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we deduce
d : kN |1 : Mk N
Gt =37 [N |23 (o) + an(es = 7)) | Vo log() - ¥, To 2
dt — N et uy
oy [ (@1(08) + a2 () V., o) - 9. log ’:j
= t
k k
1 Z k,N ) ) . v 1 /’[/t v 1 /’[/t
N M Z(al (vi) + az(v; — UJ)) v; 108 v; 108
i=1 i=1 I 1
k A ) uk
+ Z / ,uf’N N Z(b(vi — vj))—b s« i (vi) | - Vo, log t
i=1 j=1 pe"
kg k+1,N ™
— Z/(al(vi) + ag(vi — Vgs1)) Vi iy - Vo, 10g< L )
i=1 wi
k k,N
Nk . :
EE et ()
i=1 t

Because of the assumption on a1 and as we have:

k k

1
E /,u N g ¥ (a1(vi) + az(v; — vj)) | Vi, log = Mt -V, log Mt
=1 7j=1 /’Lt /’Lt

ko kN N2
_)\1NZ‘Z_;/IU%7 ‘Vvilog /L?k H :
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By using the fact that a1 (v;) +ag* . (v;) = % (al (i) +ag* (v,)) + % (al (v3)+ag* (v,)) , rearranging
the terms and by using the previous inequality:

k,N

d . / eNT 1 b /‘t
—H < — TR ag * 1t (v;) — ag(v; — v5)) | Ve, log(u*) - V,, log
e Z t [N 2 (a2 2 J )} &

k
1. k » u
+ Z /uf’N Z Nb(vi —vj) — Nb s« i (vi) | - Vo, log ,ut

N —k
H Z / b*,ut v;) - Vy, log 'ut
,u

N —k k+1,N /‘f N
- Z (a1(vi) + az(vi — ve41)) Vi, g - Vo, log
,u

N —k
_ Z /b — Vpt1) VUZ log 'ut
e

t

N —k
+ Z / al Uz + ao * /Lt(vz))vvi lOg( ) VUI log Iut

t
k kN N
§I+J—)\1—Z/ut’ 72108 21
N i=1 Hi

H2+K. an

So, using the classical inequality x - y < Ney||z||* + ly||? we have, for all €; > 0,

1
4e1 N

K K
1
IZZN/Mf’N 2(02(1%—%') — ag * ut(v7)) | Vo, log(pi™) - Vo, log Mt

t

<Zel/ kNHVvZ log ®k H2+4511N2 2/ kNHZ az —a2*M¢(%))H2

2 Ck?
gZel/ vazlog‘:j H O (12)
i=1

Note that we used the fact that sup,, |V log us|| < C; to get the second inequality. We refer to [1, Prop.
3.1] where this statement is proved in the case of a constant diffusion case, but the proof can readily be
extended to the uniformly elliptic bounded diffusion case. Cy is fixed but the value of C' may change from
line to line and it will be independent of IV, k and t. By using the same type of estimates, we can obtain a
very similar bound for J:

k k
J— kN E ig( C_ )—ﬁl}* (vi)| - Vy,1 M?N (13)
= g by N Vi — Vj N Mt Vg v; 108 /%@k
i=1 Jj=1

: kN Tk K
< Zeg/ut’ HV“ log ,ut®k H +C€2N2. (14)
i=1 t
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Let us recall the expression of K:

"Nk .
N Z N /(al(vi) + az(v; — ’Uk+1))vvz,uf+l N -V, log ,ut

N_k Mk N
Z / (a1(vs) + ag * pe(v;)) Vo, log(pf kY. V., log t
e

N —k
n Z / :Ut N+ pi(v3) - Vi, log Mt Pt b( Uk—i—l)ﬂk—l— "V, log IL: )
P t

We can simplify the terms involving b because of the following remark:

/N)I?Ni) * Nt(vz) Vvl log l;t /qu-i-l,Ni) * Nt(vz) Vvl log IL:;

This is valid because ukH T integrated against a function of vy, ..., v only. We can also simplify the

terms involving a; and ao as follows:

/“f’N (ar(vi) + az * pue(v3)) Vo, log (1) - Vo, log IL:;

kN
= /Mf’N (al(vi) + as * ut(vi))vvi log( ) V., log 'L:f

k,N
— /,uf’N(al(vi) + ag * () Vo, log(ut@)k ) -V, log 'l:
¢ t
N LN LN
< /(al(vz‘)+a2*ut(w))vvi#t’ - Vy, log Mt®k _/\1/ HVUZ log ut H .
¢

Let

kN
D= /(al(vi) + ag * ut(vi))vvl sz log 'ut
ue

Using a double integration by parts, we obtain

,Ut

t

D= /CL1 Uz +a2*ﬂt(vz))v log ——- 'VviN?N

e
_/”t’NVvi :
s
_ _/Mt+1,vai _

/Vvlufﬂ N (a1 (vi) + a2 * 1 (v:)) Vo, log Mt®k :
t

(al(vi) + ag * ,ut(fu,-))sz log 't:; ]

t

(a1(vi) + ag * pe(v;)) Vo, log 'ut ]

Combining these estimates and simplifying the expressions, we get
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e =3 Xk [ st

i=1

k
N —k
+ Z N /(az s 112(v7) — az(v; — V1)) Vgt T -V, log Mt

Mt
N —k
‘1'2 / Vi — Ukt1) _b*ﬂt(UZ))Nf+1N Vo, log IL:;
N —k kN o
S—Z:N.M/ ron B [+ 4 (1s)
i=1

We are left with estimating the terms K; and K.
On one hand, integrating with respect to vy, ..., vy first then by respect to vgy1, and by multiplying and
e kN . ) .
dividing by p;"" (v1, ..., vy ), we have the following expression for Ko:

N -k o
K2 Z / VUz IOg Mt@k
V1yeey¥ My
7 1|k,N
(b(s = s vesr = 1y TN O o, vn) = ),
k+1|k,N

where v 1 — oy (vg+1|v1, ..., vg) is the conditonal density of Vi, ..., Vi1 with respect to (V] =
v1, ..., V& = vg). Pinsker inequality yields, for all vy, ..., vj:

A 1k,N - K1k N
(b(vi — ), vnrr = g TN (g for, o) — Mt>H < |!bHoo\/H(Mt+ BN (g |01, ooy o) 122

Finally, by using z - y < €|z||> + 7 ||y[|%, we get:

k
N -k 7
mgz——/%\mmgtu
= N ui

k
N —k ~ k+1|k 2
+ Z 4eN Nf7NH<b(Ui - ')7vk+1 — Nt+1| 7N(Uk+1’v17 "'7vk) - Nt>H
i=1
k kN
N -k 2
SZfFJ@tWM%MH

k 1|k,N
4N/kMW N g for, ey o) )

=1

By a towering property of the relative entropy

k,N k+1|k,N k
/ut H (1N (o for, o 0p) ) = HPFY — HE,

which can easily be checked by using the definition of relative entropy, we get:

k
Nk 2 O(N—k
KQSZT/% vallogu H +k (4€N J(mE+ ), (16)
=1
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On the other hand, we can rewrite K7 = K3 + K4, with

k
N —k
Ks = N ,ufH N(ag * 1 (v;) — ag(v; — vk+1))VU1 log (1 ®k+1) Vo, log/;t
i=1
k k+1,N
N —k
K, = N ,ufﬂ N(ag * (i) — a2 (v — Vt1)) Vi, log('ut@)TH) -V, log 'ut
i=1 Hy pi*

The key observation is the following:

k+1
Vo log ¥t =V, |y "log(pu(v5)) | = Vi, [log (pe(vi))] = Vi, log p*

Therefore, by integrating with respect to vy, ..., vy first:

Nk k N ,ukH’N .
K; = Z / VUZ log <a2(vi —.), tkiN ,ut>Vvi log pu$".
V1,5V ,LL /’Lt

We can now use a very similar argument than what we used to control K>, by using the fact that V,, log ,ui@k
to get:

HfY — HP). (17)

k kN
N -k kN My C(N —k)
Ky <30 e [ b9 os e |+ ker =
=1

We can now control the term K4, for which we will rely on condition (iv) of Theorem [I.1l By the Cauchy-
Schwarz inequality and by definition of ag * p(v;), we have:

v . sl

K, < Z T /Nt ’ H (/(%(Uz‘ —v) —as(vi — UHl))“t(v))v”i log /;@Hl H
i=1
,Ut H

‘ ‘ Vo, log
uy

Therefore, by the inequality = - y < el|z||* + & y[|*:

K4<Z / k+1N77HVvllog pz HHVvlloth H

i k+1,N k
Nk N9 N —k
< ne ~ /MfH’NHVm log /;t@)k-i-l H 2 4eN HV“ log/”:Z H '
P t i=1

By combining (L1), (12), (14), (I5), (1€, (I7) we get:

d 2
_Hk ( )\1—|—€1+62+63—|— Z/ vallogﬂt H
uy

dt

k+1,N py TN k3
—I—Zne/ HV“ log Mt®k+1 H (C’f%—l)C’m
i=1

+ (CE+1)Ck(H™ - HY). (18)
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2.2. Estimation of the system of inequalities. Let us see how to use (I8) to get Theorem [LII We will
mainly use the Proposition 5 from Wang [24], rewritten here:

Proposition 2.1. Let T > 0 and let x*,y* : [0,T] — Rsq be C* functions, for k € [1, N]. Suppose that

f“ > :L"f forall k € [1,N — 1]. Suppose that there exists B > 2, real numbers ¢c; > co > 0 and

Co, My, My, M3 > 0 such that, for all t € [0,T] and k € [1, N], we have

k K’
Z0 < Coqps
dzk ks
—dtt < —c1yf + oy T pen + Miaf + Mok (2f ™ — 2f) Lpan + M3€M3t—N2-

Then, there exists M > 0 depending only on [3,c1,ca,Cy and M;,i € {1,2,3} such that, for all t € [0,T],
we have
ok < MeMtP
t = N2 .

Remark that (I8) is exactly of this form with zf = Hf and yF = I and with M; = 0,3 = 3. The
inequality Hf“ > HYJ holds because of the towering property of the relative entropy. The value of our
constants depends on t but we can use the fact that ¢ — C} is bounded on [0, 7] for all 7" > 0. In order to
use the result, we need to ensure that ¢; > co. By letting € := €1 + €3 + €3, it is equivalent to finding € > 0
such that:

A—€— LS e

de
It is possible if and only if 7 satisfies (iii). We can now apply Wang’s result to get the suboptimal estimate:
M(T)eM D13
VT > 0,3M(T) € (0,+00),Vt € [0,T], HF < —

We can improve this result by using it to prove better bounds for I and .J, as done in [14] or [24]].
Let us recall one of the previous bound we obtained for I:

k k,N
€ ’ 2 2
e [t et [ St -mse
=1

We used the fact that ay is bounded to get the first bound, but we can develop the norm to get a better
estimate. Indeed, we have:

I |

B /Nf’NZ HQZ(UZ' = vj) = ag * y(v7) 2
j=1
- / MY (az(vi = vjy) = ag % pue(vs))- (a2 (v; — v35) — az * (7).

J1#j2

Therefore:
k
/Mf’NH Z(@(%’ —vj) — ag * ,Ut(’Uz')) H2
j=1

<Y /Mf’N(az(W —vjy) = ag % puy(v3))-(a(v; = vj) — ag * g (07)) +4k|az| 5
1772

< kz/,ui”N(ag(vl — V) — ag * ,ut(’ul)))'(ag(vl —v3) — ag * ut(vl))+4k|]a2Hgo. (20)



SHARP PROPAGATION OF CHAOS WITH NON CONSTANT DIFFUSION COEFFICIENT

The last step is due to the exchangeability of the particles. Notice that we have:

/N?g(az(vl —2) —az * fuy(v1)) - (az(v1 — v3) — az * pu(v1))

= / (1522 (an(v1 — va) — ag * pu(v1))- [/ (a2(vi — v3) — ag * puy(v;)) e (v3)

=0,

2D

as the term of integral with respect to v3 is equal to zero. Therefore, combining (20), (2I) and using the

Pinsker inequality, we have:

[ |t s evemien

<K? [/ 1 (ag (v — v2) — ag * g (v1))- (az(vr — vs) — ag * m(vl))%—C\/fW}

+4kllaz||3

< KC\H (N 1) + 4k|az|%.

By combining this with (I9)), we get:
2
_I_

k
k,N
Ié;el/,ut vai lo I N?

k kN 2
Hy 2 Ck
<>e [ur|vaton i [+ 2
i=1 wi N
Using a similar argument for J yields the following bound for H}:
k+1,N

p_qz/ "] +z@/+wwM%%m
t

+ (C? + 1)Cﬁ + (C? + 1)C/<;(Hf+1 — H}).

—_C? <k‘ + K2 H(m3|m®3)>

Vi

I

Using Proposition one more time leads us to the result and finishes the proof of our main result.
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