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SHARP PROPAGATION OF CHAOS FOR MCKEAN-VLASOV EQUATION WITH NON

CONSTANT DIFFUSION COEFFICIENT

JULES GRASS, ARNAUD GUILLIN, AND CHRISTOPHE POQUET

ABSTRACT. We present a method to obtain sharp local propagation of chaos results for a system of N particles
with a diffusion coefficient that it not constant and may depend of the empirical measure. This extends the recent
works of Lacker [14] and Wang [24] to the case of non constant diffusions. The proof relies on the BBGKY
hierarchy to obtain a system of differential inequalities on the relative entropy of k particles, involving the fisher
information.

1. INTRODUCTION AND MAIN RESULT

In this work, we are interested in the following system of N particles on the d-dimensional torus Td

dV
i,N
t =

1

N

N
∑

j=1

b(V i,N
t − V

j,N
t )dt+

√
2
(

a1(V
i,N
t ) +

1

N

N
∑

j=1

a2(V
i,N
t − V

j,N
t )

)
1

2

dB
i,N
t , (1)

where (B1,N , ..., BN,N ) are independent Brownian motions. We suppose that the matrix valued functions
a1 and a2 are symmetric and satisfy

∀(v1, v2) ∈ (T d)2, a1(v1) + a2(v1 − v2) ≥ λ1Id. (2)

We also assume that b, ∇ · a1, a2 and ∇ · a2 are bounded. Throughout this paper, we suppose moreover
that the N particles in the dynamics 1 are exchangeable, that is, for all permutation σ of J1, NK, we have

Law
(

V
σ(1),N
t , ..., V

σ(N),N
t

)

= Law
(

V
1,N
t , ..., V

N,N
t

)

.
An example of particular interest of such a system is when one takes b := ∇ · a2 and a1 = 0, obtaining a

Landau-like equation that has notably been recently studied by Carillo, Guo and Jabin [4].
We are interested in the behavior of (1) when N → ∞ and especially the property known as propagation

of chaos, i.e, the convergence of µk,N
t := Law

(

V
1,N
t , ..., V

k,N
t

)

to µ⊗k
t , where µt denotes the law of the

solution to the McKean-Vlasov equation
{

dVt = b ∗ µt(Vt)dt+
√
2
(

a1(Vt) + a2 ∗ µt(Vt)
)

1

2dBt

µt = Law(Vt)
. (3)

This property has garnered a lot of attention from the mathematical community ever since the second half of
the 20th century, although its root can be traced back to the birth of statistical mechanics with the assumption
of molecular chaos (also know as the Stosszahlansatz). Several methods have been used troughout the
years to prove propagation of chaos, starting with compactness arguments [23, 21, 19], and then coupling
arguments, see [22, 17, 10] for historical references or to [18, 5, 9] for uniform in time results in the case of
convex or non non convex interactions and [11] for the 1D Coulomb case. Recently, entropy methods have
gained a lot of attraction, notably because they were successfully applied to systems with singular interaction
[13]. For a review of those methods see [6, 7]. With the coupling or entropy approaches, one typically

obtains a convergence rate of µk,N
t to µ⊗k

t of order O
(

√

k
N

)

in total variation or Wasserstein distance. For

the relative entropy method this is done by proving that H(µN,N
t |µ⊗N

t ) = O(1), and then concluding by
using the subadditivity of relative entropy. Let us also mention the recent modulated energy approach for the
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singular case in [20], and further successfully developped for attractive interactions [3], however with non
comparable rates.

Recently, under some assumptions on the interaction term, that are for example valid if the interaction is
bounded or Lipschitz continuous, Lacker [14] was able to obtain optimal bounds for Hk

t := H(µk,N
t |µ⊗k

t ),
of order O

(

k2

N2

)

(using Pinsker’s inequality this means a convergence rate of O
(

k
N

)

for the total variation
distance). He proved moreover that such a bound is optimal for a simple Gaussian system. The novelty of
this approach is its local character, by estimating Hk

t directly instead of HN,N
t . More precisely, using the

BBGKY hierarchy, the idea is to obtain a system of differential inequality of the form

d

dt
Hk

t ≤ k(k − 1)2

(N − 1)2
M + γk

(

Hk+1
t −Hk

t

)

, (4)

and then to conclude relying on estimates on nested integrals.
Several results have since been obtained in this direction. Together with Le Flem, Lacker [15] was able

to obtain, under some more hypotheses, uniform in time results of order O
(

k2

N2

)

. Their proof relies on the
use of log-Sobolev inequalities to obtain an additional term of of the type −cHk

t in the right-hand side of
(4). Also, Lacker, Yeung and Zhou [16] were able to obtain sharp propagation of chaos results for systems
of particles with weighted interactions (for instance, when the interaction is given by an interaction matrix).
They compared the law of the system of particles to the law of n independent particles having the so called
independent projection law, considering the BBGKY hierarchy in the case of non exchangeable diffusions.
Moreover Hess-Childs and Rowan [12] obtained optimal rates for the χ2 divergence instead of the relative
entropy, and they obtained also sharp convergence rates results for higher order corrections of the mean-field
limit.

Concerning singular interaction kernels Wang [24] was recently able to obtain sharp rates for divergence
free and W−1,∞ kernels (non optimal convergence for this case was obtained in the breakthrough paper
[13]). A main step in the proof of this result is to consider a more general system of differential inequalities
than (4), of the form

d

dt
Hk

t ≤ −c1I
k
t + c2I

k+1
t 1k<N +M1H

k
t +M2k

(

Hk+1
t −Hk

t

)

1k<N +M3e
M3t

kβ

N2
, (5)

where c1 ≥ c2 ≥ 0 and Ikt :=
∑k

i=1

∫

µ
k,N
t ‖∇vi log

µ
k,N
t

µ⊗k
t

‖2 is the Fisher information. With similar methods

Wang was also able to obtain sharp rate for the χ2 divergence. Note moreover that, relying also on the
BBGKY hierarchy but with a different approach (involving uniform in N estimates on weighted Lp norms of
the marginals), Bresch, Jabin and Soler [2] were able to obtain convergence to the Vlasov-Poisson-Fokker-
Planck equation (in dimension 2 and with a partial result for dimension 3) for short times.

To the best of our knowledge, the result of this article provides for the first time an optimal rate of con-
vergence for particles systems with a non constant diffusion coefficient. A central point of our proof is to
obtain a system of inequalities of the form of (5), controlling the additional terms appearing in the BBGKY
hierarchy (the terms K1, K3 and K4 of the proof). Our result is valid when the diffusion coefficient a2 is
sufficiently close to a constant. More precisely we prove the following Theorem.

Theorem 1.1. Let
(

V
i,N
t

)

i=1,..,N
solving (1). Let us assume that b, ∇ · a1, a2 and ∇ · a2 are bounded.

Suppose also the following:

(i) Chaos at t = 0: there exists C > 0 such that H
(

µ
k,N
0 |µ⊗k

0

)

≤ C k2

N2 .

(ii) Exchangeability:
(

V
1,N
0 , ..., V

N,N
0

)

are exchangeable.

(iii) Uniform ellipticity: (2) is satisfied, i.e., there exists λ1 > 0 such that

∀(v1, v2) ∈ (T d)2, a1(v1) + a2(v1 − v2) ≥ λ1Id.
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(iv) Small dependency on the empirical measure for the diffusion coefficient :

η := sup
(x,z)∈(Td)2

‖a2(x)− a2(z)‖2 < λ1.

Then, for all t > 0 there exists a constant Mt independent of N and k such that

Hk
t ≤ Mt

k2

N2
.

Remarks

• Similarly as in [24] one can prove a similar bound for the χ2 divergence instead of the entropy by
adapting the proof of Theorem 1.1 (under very similar assumptions to (i), (ii), (iii) and (iv)). One
can then obtain a system of the form

dDk
t

dt
≤ −c1E

k
t + c2E

k+1
t 1k<N +M1D

k+1
t 1k<N +M2

k2

N2
,

where Dk
t := D(µk,N

t |µ⊗k
t ) is the χ2 divergence and the energy is defined as

Ek
t :=

k
∑

i=1

∫

µ
k,N
t ‖∇vi

µ
k,N
t

µ⊗k
t

‖2.

Relying on Proposition 6 of [24], one obtains a bound of the form

Dk
t ≤ MeMk

(T ∗ − t)3N2
,

where M or T ∗ do not depend on N, k or t.
• It is possible to relax the assumption on b and consider a function of the form b1 + b2, where b1 =
∇ · V ∈ W−1,∞(Td,Rd) satisfies ∇ · b1 = 0, and b2 is bounded, very much like in [24]. By using
Wang’s estimates to control the terms involving b1, it is possible to show that Hk

t = O
(

k2

N2

)

by

controlling a system of the form (5), where c1 = λ1 −
∑4

i=1 ǫi − η
2ǫ and c2 = 2ηǫ + (1+ǫ5)‖V ‖2∞

4ǫ4
for some ǫi, i ∈ J1, 5K. The quantities ǫ1, ǫ2, ǫ3, ǫ5 can be chosen arbitrarily small (but not zero)
and will only affect the value of M. In order to apply Wang’s Proposition 5, we need to find ǫ4 such
that c1 > c2. By standard analysis, it is possible if and only if λ1 > 2η + ‖V ‖∞. This gives a
generalisation of condition (iv).

2. PROOF OF THEOREM 1.1

2.1. Computation of the relative entropy and derivation of the system of differential inequalities. The
proof relies on the Fokker Planck equations satisfied by µ

k,N
t and µ⊗k

t . The equation satisfied by µ
k,N
t is also

known as the BBGKY hierarchy, because it gives ∂tµ
k,N
t as a functional of µk,N

t and µ
k+1,N
t . We defined

b̂ := b−∇ · a2 to simplify the expressions. We have

∂tµ
k,N
t =

1

N

k
∑

i=1

k
∑

j=1

(

−∇vi ·
[

b̂(vi − vj)µ
k,N
t

]

+∇vi ·
[

(

a1(vi) + a2(vi − vj)
)

∇viµ
k,N
t

] )

+

k
∑

i=1

N − k

N

∫

∇vi ·
[

−b̂(vi − vk+1)µ
k+1,N
t

]

dvk+1

+

k
∑

i=1

N − k

N

∫

∇vi ·
[

(

a1(vi) + a2(vi − vk+1)
)

∇viµ
k+1,N
t

]

dvk+1 (6)

+
k
∑

i=1

∇vi ·
[

∇vi ·
(

a1(vi)
)

µ
k,N
t

]

,



4 JULES GRASS, ARNAUD GUILLIN, AND CHRISTOPHE POQUET

and

∂tµ
⊗k
t =

k
∑

i=1

∇vi ·
[

(

a1 + a2 ∗ µt(vi)
)

∇viµ
⊗k
t

]

−∇vi ·
[

(

b̂ ∗ µt(vi)
)

µ⊗k
t

]

+

k
∑

i=1

∇vi ·
[

∇vi ·
(

a1(vi)
)

µ⊗k
t

]

. (7)

We can now compute the relative entropy:

d

dt
H
(

µ
k,N
t |µ⊗k

t

)

=
d

dt

∫

µ
k,N
t log

(µ
k,N
t

µ⊗k
t

)

=

∫

∂tµ
k,N
t

(

log(µk,N
t ) + 1

)

−∂tµ
k,N
t log(µ⊗k

t )− ∂t log(µ
⊗k
t )µk,N

t

= A− B − C. (8)

We have:

A =

∫

∂tµ
k,N
t + ∂tµ

k,N
t log(µk,N

t ) =
d

dt

∫

µ
k,N
t +

∫

∂tµ
k,N
t log(µk,N

t ) =

∫

∂tµ
k,N
t log(µk,N

t ).

Therefore, by using the Fokker-Planck equations on µ⊗k
t and µ

k,N
t , an integration by parts and the fact

∇ · a1(vi) is a function of v1, ..., vk :

A− B = −
k
∑

i=1

∫

∇vi ·
(

a1(vi)
)

µ
k,N
t · ∇vi log

(

µ
k,N
t

µ⊗k
t

)

+

∫ k
∑

i=1

1

N



−
k
∑

j=1

(

a1(vi) + a2(vi − vj)
)

∇viµ
k,N
t +

k
∑

j=1

b̂(vi − vj)µ
k,N
t



 · ∇vi log

(

µ
k,N
t

µ⊗k
t

)

+
k
∑

i=1

N − k

N

∫

−
(

a1(vi) + a2(vi − vk+1)
)

∇viµ
k+1,N
t · ∇vi log

(

µ
k,N
t

µ⊗k
t

)

(9)

+

k
∑

i=1

N − k

N

∫

b̂(vi − vk+1)µ
k+1,N
t · ∇vi log

(

µ
k,N
t

µ⊗k
t

)

.

We have, by integration by parts and the identity ∇vi

(

µ
k,N
t

µ⊗k
t

)

=
µ
k,N
t

µ⊗k
t

∇vi log
µ
k,N
t

µ⊗k
t

:

C =

k
∑

i=1

∫

−
(

a1(vi) + a2 ∗ µt(vi)
)

∇vi log(µ
⊗k
t ) · µk,N

t ∇vi log
µ
k,N
t

µ⊗k
t

+
k
∑

i=1

∫

(

b̂ ∗ µt(vi)−∇vi · a1(vi)
)

·µk,N
t ∇vi log

µ
k,N
t

µ⊗k
t

. (10)

Combining (8), (9) and (10), rearranging the terms and using the identities

∇viµ
⊗k
t = µ⊗k

t ∇vi log µ
⊗k
t and ∇vi log µ

k,N
t = ∇vi log µ

⊗k
t +∇vi log

µ
k,N
t

µ⊗k
t

,
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we deduce

d

dt
Hk

t =

k
∑

i=1

∫

µ
k,N
t





1

N

k
∑

j=1

(

a1(vi) + a2(vi − vj)
)



∇vi log(µ
⊗k
t ) · ∇vi log

µ
k,N
t

µ⊗k
t

−
k
∑

i=1

∫

µ
k,N
t

(

a1(vi) + a2 ∗ µt(vi)
)

∇vi log(µ
⊗k
t ) · ∇vi log

µ
k,N
t

µ⊗k
t

− 1

N

k
∑

i=1

∫

µ
k,N
t





k
∑

j=1

(

a1(vi) + a2(vi − vj)
)



∇vi log
µ
k,N
t

µ⊗k
t

· ∇vi log
µ
k,N
t

µ⊗k
t

+

k
∑

i=1

∫

µ
k,N
t





1

N

k
∑

j=1

(

b̂(vi − vj)
)

−b̂ ∗ µt(vi)



 · ∇vi log
µ
k,N
t

µ⊗k
t

− N − k

N

k
∑

i=1

∫

(

a1(vi) + a2(vi − vk+1)
)

∇viµ
k+1,N
t · ∇vi log

(µ
k,N
t

µ⊗k
t

)

− N − k

N

k
∑

i=1

∫

b̂(vi − vk+1)µ
k+1,N
t · ∇vi log

(µ
k,N
t

µ⊗k
t

)

Because of the assumption on a1 and a2 we have:

−
k
∑

i=1

∫

µ
k,N
t





k
∑

j=1

1

N

(

a1(vi) + a2(vi − vj)
)



∇vi log
µ
k,N
t

µ⊗k
t

· ∇vi log
µ
k,N
t

µ⊗k
t

≤ −λ1
k

N

k
∑

i=1

∫

µ
k,N
t

∥

∥

∥
∇vi log

µ
k,N
t

µ⊗k
t

∥

∥

∥

2
.
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By using the fact that a1(vi)+a2∗µt(vi) =
k
N

(

a1(vi)+a2∗µt(vi)
)

+N−k
N

(

a1(vi)+a2∗µt(vi)
)

, rearranging
the terms and by using the previous inequality:

d

dt
Hk

t ≤ −
k
∑

i=1

∫

µ
k,N
t

[ 1

N

k
∑

j=1

(

a2 ∗ µt(vi)− a2(vi − vj)
)

]

∇vi log(µ
⊗k
t ) · ∇vi log

µ
k,N
t

µ⊗k
t

+

k
∑

i=1

∫

µ
k,N
t





k
∑

j=1

1

N
b̂(vi − vj)−

k

N
b̂ ∗ µt(vi)



 · ∇vi log
µ
k,N
t

µ⊗k
t

− λ1
k

N

k
∑

i=1

∫

µ
k,N
t

∥

∥

∥
∇vi log

µ
k,N
t

µ⊗k
t

∥

∥

∥

2
−

k
∑

i=1

N − k

N

∫

µ
k,N
t b̂ ∗ µt(vi) · ∇vi log

µ
k,N
t

µ⊗k
t

−
k
∑

i=1

N − k

N

∫

(

a1(vi) + a2(vi − vk+1)
)

∇viµ
k+1,N
t · ∇vi log

µ
k,N
t

µ⊗k
t

−
k
∑

i=1

N − k

N

∫

b̂(vi − vk+1)µ
k+1,N
t · ∇vi log

µ
k,N
t

µ⊗k
t

+
k
∑

i=1

N − k

N

∫

µ
k,N
t

(

a1(vi) + a2 ∗ µt(vi)
)

∇vi log(µ
⊗k
t ) · ∇vi log

µ
k,N
t

µ⊗k
t

≤ I + J − λ1
k

N

k
∑

i=1

∫

µ
k,N
t

∥

∥

∥
∇vi log

µ
k,N
t

µ⊗k
t

∥

∥

∥

2
+K. (11)

So, using the classical inequality x · y ≤ Nǫ1‖x‖2 + 1
4ǫ1N

‖y‖2 we have, for all ǫ1 > 0,

I =
k
∑

i=1

1

N

∫

µ
k,N
t





k
∑

j=1

(

a2(vi − vj)− a2 ∗ µt(vi)
)



∇vi log(µ
⊗k
t ) · ∇vi log

µ
k,N
t

µ⊗k
t

≤
k
∑

i=1

ǫ1

∫

µ
k,N
t

∥

∥

∥
∇vi log

µ
k,N
t

µ⊗k
t

∥

∥

∥

2
+

1

4ǫ1N2
C2
t

∫

µ
k,N
t

∥

∥

k
∑

j=1

(

a2(vi − vj)− a2 ∗ µt(vi)
)
∥

∥

2

≤
k
∑

i=1

ǫ1

∫

µ
k,N
t

∥

∥

∥
∇vi log

µ
k,N
t

µ⊗k
t

∥

∥

∥

2
+ C2

t

Ck3

ǫ1N2
. (12)

Note that we used the fact that sups≤t ‖∇ log µs‖ ≤ Ct to get the second inequality. We refer to [1, Prop.
3.1] where this statement is proved in the case of a constant diffusion case, but the proof can readily be
extended to the uniformly elliptic bounded diffusion case. Ct is fixed but the value of C may change from
line to line and it will be independent of N , k and t. By using the same type of estimates, we can obtain a
very similar bound for J :

J =
k
∑

i=1

∫

µ
k,N
t





k
∑

j=1

1

N
b̂(vi − vj)−

k

N
b̂ ∗ µt(vi)



 · ∇vi log
µ
k,N
t

µ⊗k
t

(13)

≤
k
∑

i=1

ǫ2

∫

µ
k,N
t

∥

∥

∥
∇vi log

µ
k,N
t

µ⊗k
t

∥

∥

∥

2
+ C

k3

ǫ2N2
. (14)
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Let us recall the expression of K:

K =−
k
∑

i=1

N − k

N

∫

(

a1(vi) + a2(vi − vk+1)
)

∇viµ
k+1,N
t · ∇vi log

µ
k,N
t

µ⊗k
t

+
k
∑

i=1

N − k

N

∫

µ
k,N
t

(

a1(vi) + a2 ∗ µt(vi)
)

∇vi log(µ
⊗k
t ) · ∇vi log

µ
k,N
t

µ⊗k
t

−
k
∑

i=1

N − k

N

∫

(

µ
k,N
t b̂ ∗ µt(vi) · ∇vi log

µ
k,N
t

µ⊗k
t

+ b̂(vi − vk+1)µ
k+1,N
t · ∇vi log

µ
k,N
t

µ⊗k
t

)

.

We can simplify the terms involving b̂ because of the following remark:

∫

µ
k,N
t b̂ ∗ µt(vi) · ∇vi log

µ
k,N
t

µ⊗k
t

=

∫

µ
k+1,N
t b̂ ∗ µt(vi) · ∇vi log

µ
k,N
t

µ⊗k
t

.

This is valid because µ
k+1,N
t is integrated against a function of v1, ..., vk only. We can also simplify the

terms involving a1 and a2 as follows:

∫

µ
k,N
t

(

a1(vi) + a2 ∗ µt(vi)
)

∇vi log(µ
⊗k
t ) · ∇vi log

µ
k,N
t

µ⊗k
t

=

∫

µ
k,N
t

(

a1(vi) + a2 ∗ µt(vi)
)

∇vi log(µ
k,N
t ) · ∇vi log

µ
k,N
t

µ⊗k
t

−
∫

µ
k,N
t

(

a1(vi) + a2 ∗ µt(vi)
)

∇vi log(
µ
k,N
t

µ⊗k
t

) · ∇vi log
µ
k,N
t

µ⊗k
t

≤
∫

(

a1(vi) + a2 ∗ µt(vi)
)

∇viµ
k,N
t · ∇vi log

µ
k,N
t

µ⊗k
t

− λ1

∫

µ
k,N
t

∥

∥

∥
∇vi log

µ
k,N
t

µ⊗k
t

∥

∥

∥

2
.

Let

D =

∫

(

a1(vi) + a2 ∗ µt(vi)
)

∇viµ
k,N
t · ∇vi log

µ
k,N
t

µ⊗k
t

.

Using a double integration by parts, we obtain

D =

∫

(

a1(vi) + a2 ∗ µt(vi)
)

∇vi log
µ
k,N
t

µ⊗k
t

· ∇viµ
k,N
t

= −
∫

µ
k,N
t ∇vi ·

[

(

a1(vi) + a2 ∗ µt(vi)
)

∇vi log
µ
k,N
t

µ⊗k
t

]

= −
∫

µ
k+1,N
t ∇vi ·

[

(

a1(vi) + a2 ∗ µt(vi)
)

∇vi log
µ
k,N
t

µ⊗k
t

]

=

∫

∇viµ
k+1,N
t

(

a1(vi) + a2 ∗ µt(vi)
)

∇vi log
µ
k,N
t

µ⊗k
t

.

Combining these estimates and simplifying the expressions, we get
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K ≤ −
k
∑

i=1

N − k

N
λ1

∫

µ
k,N
t

∥

∥

∥
∇vi log

µ
k,N
t

µ⊗k
t

∥

∥

∥

2

+

k
∑

i=1

N − k

N

∫

(

a2 ∗ µt(vi)− a2(vi − vk+1)
)

∇viµ
k+1,N
t · ∇vi log

µ
k,N
t

µ⊗k
t

+

k
∑

i=1

N − k

N

∫

(

b̂(vi − vk+1)− b̂ ∗ µt(vi)
)

µ
k+1,N
t · ∇vi log

µ
k,N
t

µ⊗k
t

≤ −
k
∑

i=1

N − k

N
λ1

∫

µ
k,N
t

∥

∥

∥
∇vi log

µ
k,N
t

µ⊗k
t

∥

∥

∥

2
+K1 +K2. (15)

We are left with estimating the terms K1 and K2.
On one hand, integrating with respect to v1, ..., vk first then by respect to vk+1, and by multiplying and

dividing by µ
k,N
t (v1, ..., vk), we have the following expression for K2:

K2 =

k
∑

i=1

N − k

N

∫

v1,...,vk

µ
k,N
t ∇vi log

µ
k,N
t

µ⊗k
t

·
〈

b̂(vi − .), vk+1 7→ µ
k+1|k,N
t (vk+1|v1, ..., vk)− µt

〉

,

where vk+1 7→ µ
k+1|k,N
t (vk+1|v1, ..., vk) is the conditonal density of V1, ..., Vk+1 with respect to (V1 =

v1, ..., Vk = vk). Pinsker inequality yields, for all v1, ..., vk:

∥

∥

∥
〈b̂(vi − .), vk+1 7→ µ

k+1|k,N
t (vk+1|v1, ..., vk)− µt〉

∥

∥

∥
≤ ‖b̂‖∞

√

H
(

µ
k+1|k,N
t (vk+1|v1, ..., vk)|µt

)

.

Finally, by using x · y ≤ ǫ‖x‖2 + 1
4ǫ‖y‖2, we get:

K2 ≤
k
∑

i=1

N − k

N

∫

ǫµ
k,N
t

∥

∥

∥
∇vi log

µ
k,N
t

µ⊗k
t

∥

∥

∥

2

+

k
∑

i=1

N − k

4ǫN

∫

µ
k,N
t

∥

∥

∥

〈

b̂(vi − .), vk+1 7→ µ
k+1|k,N
t (vk+1|v1, ..., vk)− µt

〉
∥

∥

∥

2

≤
k
∑

i=1

N − k

N

∫

ǫµ
k,N
t

∥

∥

∥
∇vi log

µ
k,N
t

µ⊗k
t

∥

∥

∥

2

+
k
∑

i=1

N − k

4ǫN

∫

µ
k,N
t ‖b̂‖2∞H

(

µ
k+1|k,N
t (vk+1|v1, ..., vk)|µt

)

.

By a towering property of the relative entropy
∫

µ
k,N
t H

(

µ
k+1|k,N
t (vk+1|v1, ..., vk)|µt

)

= Hk+1
t −Hk

t ,

which can easily be checked by using the definition of relative entropy, we get:

K2 ≤
k
∑

i=1

N − k

N

∫

ǫµ
k,N
t

∥

∥

∥
∇vi log

µ
k,N
t

µ⊗k
t

∥

∥

∥

2
+ k

C(N − k)

4ǫN

(

Hk+1
t −Hk

t

)

. (16)
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On the other hand, we can rewrite K1 = K3 +K4, with

K3 =

k
∑

i=1

N − k

N

∫

µ
k+1,N
t

(

a2 ∗ µt(vi)− a2(vi − vk+1)
)

∇vi log(µ
⊗k+1
t ) · ∇vi log

µ
k,N
t

µ⊗k
t

K4 =

k
∑

i=1

N − k

N

∫

µ
k+1,N
t

(

a2 ∗ µt(vi)− a2(vi − vk+1)
)

∇vi log
(µ

k+1,N
t

µ⊗k+1
t

)

·∇vi log
µ
k,N
t

µ⊗k
t

.

The key observation is the following:

∇vi log µ
⊗k+1
t = ∇vi





k+1
∑

j=1

log
(

µt(vj)
)



 = ∇vi

[

log
(

µt(vi)
)]

= ∇vi log µ
⊗k
t .

Therefore, by integrating with respect to v1, ..., vk first:

K3 =
k
∑

i=1

N − k

N

∫

v1,...,vk

µ
k,N
t ∇vi log

µ
k,N
t

µ⊗k
t

·
〈

a2(vi − .),
µ
k+1,N
t

µ
k,N
t

− µt

〉

∇vi log µ
⊗k
t .

We can now use a very similar argument than what we used to control K2, by using the fact that ∇vi log µ
⊗k
t

to get:

K3 ≤
k
∑

i=1

N − k

N
ǫ

∫

µ
k,N
t

∥

∥

∥
∇vi log

µ
k,N
t

µ⊗k
t

∥

∥

∥

2
+ kC2

t

C(N − k)

4ǫN

(

Hk+1
t −Hk

t

)

. (17)

We can now control the term K4, for which we will rely on condition (iv) of Theorem 1.1. By the Cauchy-
Schwarz inequality and by definition of a2 ∗ µt(vi), we have:

K4 ≤
k
∑

i=1

N − k

N

∫

µ
k+1,N
t

∥

∥

∥

(

∫

(

a2(vi − v)− a2(vi − vk+1)
)

µt(v)
)

∇vi log
µ
k+1,N
t

µ⊗k+1
t

∥

∥

∥

×
∥

∥

∥
∇vi log

µ
k,N
t

µ⊗k
t

∥

∥

∥
.

Therefore, by the inequality x · y ≤ ǫ‖x‖2 + 1
4ǫ‖y‖2:

K4 ≤
k
∑

i=1

N − k

N

∫

µ
k+1,N
t η

∥

∥

∥
∇vi log

µ
k+1,N
t

µ⊗k+1
t

∥

∥

∥

∥

∥

∥
∇vi log

µ
k,N
t

µ⊗k
t

∥

∥

∥

≤
k
∑

i=1

ηǫ
N − k

N

∫

µ
k+1,N
t

∥

∥

∥
∇vi log

µ
k+1,N
t

µ⊗k+1
t

∥

∥

∥

2
+

k
∑

i=1

η
N − k

4ǫN

∫

µ
k,N
t

∥

∥

∥
∇vi log

µ
k,N
t

µ⊗k
t

∥

∥

∥

2
.

By combining (11), (12), (14), (15), (16), (17) we get:

d

dt
Hk

t ≤
(

−λ1 + ǫ1 + ǫ2 + ǫ3 +
η

4ǫ

)

k
∑

i=1

∫

µ
k,N
t

∥

∥

∥
∇vi log

µ
k,N
t

µ⊗k
t

∥

∥

∥

2

+
k+1
∑

i=1

ηǫ

∫

µ
k+1,N
t

∥

∥

∥
∇vi log

µ
k+1,N
t

µ⊗k+1
t

∥

∥

∥

2
+ (C2

t + 1)C
k3

N2

+ (C2
t + 1)Ck

(

Hk+1
t −Hk

t

)

. (18)
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2.2. Estimation of the system of inequalities. Let us see how to use (18) to get Theorem 1.1. We will
mainly use the Proposition 5 from Wang [24], rewritten here:

Proposition 2.1. Let T > 0 and let xk. , y
k
. : [0, T ] → R≥0 be C1 functions, for k ∈ J1, NK. Suppose that

xk+1
t ≥ xkt for all k ∈ J1, N − 1K. Suppose that there exists β ≥ 2, real numbers c1 > c2 ≥ 0 and

C0,M1,M2,M3 ≥ 0 such that, for all t ∈ [0, T ] and k ∈ J1, NK, we have

xk0 ≤ C0
k2

N2

dxkt
dt

≤ −c1y
k
t + c2y

k+1
t 1k<N +M1x

k
t +M2k

(

xk+1
t − xkt

)

1k<N +M3e
M3t

kβ

N2
.

Then, there exists M > 0 depending only on β, c1, c2, C0 and Mi, i ∈ {1, 2, 3} such that, for all t ∈ [0, T ],
we have

xkt ≤ MeMtkβ

N2
.

Remark that (18) is exactly of this form with xkt = Hk
t and ykt = Ikt and with M1 = 0, β = 3. The

inequality Hk+1
t ≥ Hk

t holds because of the towering property of the relative entropy. The value of our
constants depends on t but we can use the fact that t 7→ Ct is bounded on [0, T ] for all T > 0. In order to
use the result, we need to ensure that c1 > c2. By letting ǫ′ := ǫ1 + ǫ2 + ǫ3, it is equivalent to finding ǫ > 0
such that:

λ1 − ǫ′ − η

4ǫ
> ηǫ.

It is possible if and only if η satisfies (iii). We can now apply Wang’s result to get the suboptimal estimate:

∀T > 0,∃M(T ) ∈ (0,+∞),∀t ∈ [0, T ],Hk
t ≤ M(T )eM(T )tk3

N2
.

We can improve this result by using it to prove better bounds for I and J , as done in [14] or [24].
Let us recall one of the previous bound we obtained for I:

I ≤
k
∑

i=1

ǫ

N

∫

µ
k,N
t

∥

∥

∥
∇vi log

µ
k,N
t

µ⊗k
t

∥

∥

∥

2
+

1

4ǫN
C2
t

∫

µ
k,N
t

∥

∥

∥

k
∑

j=1

(

a2(vi − vj)− a2 ∗ µt(vi)
)

∥

∥

∥

2
. (19)

We used the fact that a2 is bounded to get the first bound, but we can develop the norm to get a better
estimate. Indeed, we have:

∫

µ
k,N
t

∥

∥

∥

k
∑

j=1

(

a2(vi − vj)− a2 ∗ µt(vi)
)

∥

∥

∥

2

=

∫

µ
k,N
t

k
∑

j=1

∥

∥

∥
a2(vi − vj)− a2 ∗ µt(vi)

∥

∥

∥

2

+

∫

µ
k,N
t

∑

j1 6=j2

(

a2(vi − vj1)− a2 ∗ µt(vi)
)

·
(

a2(vi − vj2)− a2 ∗ µt(vi)
)

.

Therefore:
∫

µ
k,N
t

∥

∥

∥

k
∑

j=1

(

a2(vi − vj)− a2 ∗ µt(vi)
)

∥

∥

∥

2

≤
∑

j1 6=j2

∫

µ
k,N
t

(

a2(vi − vj1)− a2 ∗ µt(vi)
)

·
(

a2(vi − vj2)− a2 ∗ µt(vi)
)

+4k‖a2‖2∞

≤ k2
∫

µ
3,N
t

(

a2(v1 − v2)− a2 ∗ µt(v1))
)

·
(

a2(v1 − v3)− a2 ∗ µt(v1)
)

+4k‖a2‖2∞. (20)
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The last step is due to the exchangeability of the particles. Notice that we have:
∫

µ⊗3
t

(

a2(v1 − v2)− a2 ∗ µt(v1)
)

·
(

a2(v1 − v3)− a2 ∗ µt(v1)
)

=

∫

v1,v2

µ⊗2
t

(

a2(v1 − v2)− a2 ∗ µt(v1)
)

·
[
∫

v3

(

a2(v1 − v3)− a2 ∗ µt(vi)
)

µt(v3)

]

= 0, (21)

as the term of integral with respect to v3 is equal to zero. Therefore, combining (20), (21) and using the
Pinsker inequality, we have:

∫

µ
k,N
t

∥

∥

∥

k
∑

j=1

(

a2(vi − vj)− a2 ∗ µt(vi)
)

∥

∥

∥

2

≤ k2
[
∫

µ⊗3
t

(

a2(v1 − v2)− a2 ∗ µt(v1)
)

·
(

a2(v1 − v3)− a2 ∗ µt(v1)
)

+C

√

H
(

µ
3,N
t |µ⊗3

t

)

]

+ 4k‖a2‖2∞

≤ k2C

√

H
(

µ
3,N
t |µ⊗3

t

)

+ 4k‖a2‖2∞.

By combining this with (19), we get:

I ≤
k
∑

i=1

ǫ1

∫

µ
k,N
t

∥

∥

∥
∇vi log

µ
k,N
t

µ⊗k
t

∥

∥

∥

2
+

C

4ǫ1N2
C2
t

(

k + k2
√

H
(

m3|m⊗3
)

)

≤
k
∑

i=1

ǫ1

∫

µ
k,N
t

∥

∥

∥
∇vi log

µ
k,N
t

µ⊗k
t

∥

∥

∥

2
+ C2

t

Ck2

N2
.

Using a similar argument for J yields the following bound for Hk
t :

d

dt
Hk

t ≤ −c1

k
∑

i=1

∫

µ
k,N
t

∥

∥

∥
∇vi log

µ
k,N
t

µ⊗k
t

∥

∥

∥

2
+

k+1
∑

i=1

c2

∫

µ
k+1,N
t

∥

∥

∥
∇vi log

µ
k+1,N
t

µ⊗k+1
t

∥

∥

∥

2

+ (C2
t + 1)C

k2

N2
+ (C2

t + 1)Ck
(

Hk+1
t −Hk

t

)

.

Using Proposition 2.1 one more time leads us to the result and finishes the proof of our main result.
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