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Enhancing Accuracy of Finite-Dimensional Models
for Lithium-Ion Batteries, Observer Design and

Experimental Validation
Mira Khalil1,2, Romain Postoyan1 and Stéphane Raël2

Abstract—Accurate estimation of the internal states of lithium-
ion batteries is key towards improving their management for
safety, efficiency and longevity purposes. Various approaches
exist in the literature in this context, among which designing
an observer based on an electrochemical model of the battery
dynamics. With this approach, the performance of the observer
depends on the accuracy of the considered model. It appears
that electrochemical models, and thus their associated observers,
typically require to be of high dimension to generate accurate
internal variables. In this work, we present a method to mitigate
this limitation by correcting the lithium concentrations generated
by a general class of finite-dimensional electrochemical models
such that they asymptotically match those generated by the
original partial differential equations (PDE) they are based on,
for constant input currents. These corrections apply to finite-
dimensional models of any order of the considered class. The
proposed corrections lead to a new state space model for which
we design observers, whose global, robust convergences are sup-
ported by a Lyapunov analysis. Both numerical and experimental
validations are presented, which show the improvement of the
accuracy of the state estimates as a result of the proposed
corrections.

Index Terms—Lithium-ion batteries, electrochemical models,
observers, Lyapunov stability.

I. INTRODUCTION

W ITH the increasing integration of applications that
adopt lithium-ion batteries for their energy storage

needs, ensuring their safe and efficient operation becomes
of paramount importance. Proper monitoring of the battery
state is thus needed, which can be achieved by the battery
management system (BMS) provided it is fed with precise
battery variables. Unfortunately, some key variables cannot be
measured directly with sensors and they therefore need to be
estimated. The state of charge (SOC), which is directly related
to the lithium concentrations in the battery electrodes, is one
example of an unmeasurable key battery variable that needs
to be estimated.

The battery state estimation problem has been thoroughly
investigated in the literature e.g., [1]–[4]. A common method
is to design an observer based on a mathematical model of the
battery internal dynamics e.g., [5]–[12]. Several types of bat-
tery models are available for this purpose, see e.g., [13]–[15].
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In particular, electrochemical models are suitable to describe
the battery internal dynamics. These models are expressed by
a set of partial differential equations (PDE), which describe the
following phenomena: lithium diffusion within electrode active
materials, electron migration in electrodes, ion migration and
diffusion within the electrolyte and electrochemical kinetics of
lithium insertion/de-insertion at electrode/electrolyte interface.
More details about electrochemical models can be found in
e.g., [16], [17]. Although these models can accurately generate
internal state variables, their mathematical structure is often
too complex for observer design. For this reason, reduced
electrochemical models are considered instead. One popular
approach is assuming the particles within an electrode behave
like an average particle, we talk of single particle models
(SPM) as in e.g., [7], [8], [10], [18]–[21]. Giving that solving
PDEs analytically or numerically can be computationally
demanding and complex, the PDEs are usually turned into
ordinary differential equations (ODE) via spatial discretiza-
tion. A finite-dimensional model is thus obtained, which is
convenient to design and implement an observer. Nevertheless,
for the model to be faithful to the original PDEs, it typically
needs to be of high dimension. This implies that the associated
observer may also need to be of high dimension, which may
make its design numerically challenging and may be an issue
for its implementation.

In this work, we present a method to alleviate the need
for finite-dimensional electrochemical models to be of high
dimension to generate accurate variables. We consider for
this purpose finite-dimensional SPMs, which include those
in e.g., [7], [8], [10], [19], [20] as special cases. We then
present a technique to systematically correct the concentrations
generated by these models so that these asymptotically match
the concentrations given by the original PDEs for constant
currents. Hence, for any given model order, we obtain that the
corrected concentrations from the finite-dimensional models
asymptotically tend to the actual concentrations of the original
infinite-dimensional model for constant inputs thereby asymp-
totically eliminating the errors induced by spatial discretiza-
tion. Although the purpose of these corrections is to eliminate
asymptotic errors for constant inputs, the provided simula-
tion results show that significant improvements may also be
obtained for short time horizons with a rapidly changing
current profile. We then exploit these corrected concentrations
to derive a new output voltage equation, which leads to a new
state space model.

Afterwards, we present two methods to design an observer
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for the new, corrected model. The first method consists in
assuming that an observer has already been designed for
the original model without correction, using for instance the
results of e.g., [6], [7], [10], and we derive conditions under
which the same observer structure still converges for the new
model; we talk of observer emulation. If these conditions are
not satisfied, an alternative is to directly design an observer for
the new model. We present a method for this purpose, which is
based on polytopic and Lyapunov-based tools similarly to e.g.,
[6], [11], [22]. This method guarantees the robust convergence
of the state estimates generated by the observer to the actual
battery states provided a linear matrix inequality holds. We
then explain how to correct the estimated concentrations to
asymptotically track those of the original PDEs in absence
of disturbances and for constant inputs. Simulation results
are presented to illustrate the improvements brought by the
corrected model and the associated estimation schemes. An
experimental validation of the obtained results is also provided,
which shows that the cell voltage generated by the new,
corrected model is improved by about 25% compared to the
same model without correction, which results in an improved
SOC estimate by about 25%.

Compared to the preliminary version of this work [23],
completely novel elements include: (i) the generalization of
the considered class of SPMs, which captures more general
spatial discretizations; (ii) the detailed analysis of the concen-
trations correction; (iii) the emulation-based observer; (iv) the
experimental validation of the results.

The rest of this paper is organised as follows. The consid-
ered class of SPMs is given in Section II. The correction of
lithium concentrations is presented in Section III. The new
state space model is derived in Section IV. The observers
designs are presented in Section V. Numerical simulations
are provided in Section VI. The obtained results are validated
experimentally in Section VII. Section VIII concludes the
paper. All the parameters used in the paper are summarized
in Table I.
Notation. Let R be the set of real numbers, R>0 := (0,∞),
R≥0 := [0,∞), R<0 :=(−∞,0), Z be the set of integers, Z>0 :=
{1,2,3, ...} and C be the set of complex numbers. We use In
to denote the identity matrix of dimension n, 0n×m the zero
matrix of Rn×m and 1n×m the matrix of Rn×m whose elements
are all equal to 1, with n,m ∈ Z>0. Given square matrices
A1, ...,An, diag(A1, ...,An) is the block diagonal matrix, whose
block diagonal components are A1, ...,An and diag(A1, ...,An)

(diag(A1, ...,An)) is the lower (upper) block diagonal matrix,
whose lower (upper) block diagonal components are A1, ...,An.
Given a real, symmetric matrix P, its maximum and minimum
eigenvalues are denoted by λmax(P) and λmin(P) respectively.
The symbol ∗ in a matrix stands for the symmetric term,
i.e.,

(
A B
∗ C

)
=

(
A B

B⊤ C

)
. Given a vector x ∈ Rn, x⊤ denotes the

transpose of x. Given x ∈Rn and y ∈Rm with n,m ∈ Z>0, we
use the notation (x,y) to denote (x⊤,y⊤)⊤. Given two functions
f ,g : C→C, we write f (x) ∼

x→0
g(x) when limx→0

f (x)
g(x) = 1, in

which case the functions f and g are said to be equivalent at
0. Given f :R→Rn with n∈Z>0, ( f )∞ stands for limt→∞ f (t)
when it exists. For a vector x ∈ RN , |x| denotes its Euclidean

norm. For a matrix A ∈ Rn×m, ∥A∥ stands for its 2-induced
norm, ker(A):={x ∈Rm : Ax = 0n} and for any i ∈Rn, j ∈Rm,
(A)i j represents the j-th element of the i-th row of matrix A.
Let f : R≥0 → RN ,∥ f∥L2,[0,t) denotes the L2 norm of f on
the interval [0, t), where t ∈ [0,∞). We write f ∈ L2, when
∥ f∥L2,[0,∞) < ∞.

Table I
PARAMETER DEFINITION AND NUMERICAL VALUES

Acell Cell area [m2] 0.8
F Faraday constant [C.mol−1] 96485
R Gaz constant [J.K−1.mol−1] 8.3145
T Temperature [K] 298.15
Npos Number of samples of the positive
=Nneg and negative electrode 4
uT Thermal voltage (uT = RT

F ) [V]
dpos Thickness of the positive electrode [µm] 36.4
dneg Thickness of the negative electrode [µm] 50
dsep Thickness of the separator [µm] 25.4
Dpos Solid diffusion coefficient [m2.s−1] 3.7×10−16

Dneg Solid diffusion coefficient [m2.s−1] 2×10−16

Rpos Particle radius of positive electrode [µm] 1
Rneg Particle radius of negative electrode [µm] 1
jpos
0 Exchange current density of positive electrode

[A.m−2] 0.54
jneg
0 Exchange current density of negative electrode

[A.m−2] 0.75
εpos Active material volume fraction [-] 0.5
εneg Active material volume fraction [-] 0.58
εe,pos Electrolyte phase volume fraction [-] 0.33
εe,neg Electrolyte phase volume fraction [-] 0.332
εe,sep Electrolyte phase volume fraction [-] 0.5
σpos Electronic conductivity [S/m] 10
σneg Electronic conductivity [S/m] 100
κe Ionic conductivity at 298.15 K [S/m] 0.63
Qcell Cell capacity [Ah] 6
Q Lithium quantity in solid phase [Ah] 11.396
cpos

0 Lithium concentration at SOC = 0% [mol.m−3] 25699
cneg

0 Lithium concentration at SOC = 0% [mol.m−3] 2199
cpos

100 Lithium concentration at SOC = 100% [mol.m−3] 10324
cneg

100 Lithium concentration at SOC = 100% [mol.m−3] 11849
cpos

max Maximum concentration [mol.m−3] 29461
cneg

max Maximum concentration [mol.m−3] 17525

II. PRELIMINARIES ON THE CLASS OF SPMS

We present in this section the class of SPMs, whose lithium
concentrations will then be corrected in Section III. We first
briefly recall the main elements of a lithium-ion cell, namely:
the positive electrode, the separator and the negative electrode,
which are all immersed in the electrolyte, and two current
collectors, see Figure 1 for an illustration. The electrolyte
is an ionic solution that ensures ion transport within the
battery. The porous separator is an electrical insulator that
does not allow electrons to flow between the two electrodes.
However, being porous, it allows the passage of ions via the
electrolyte. The positive and negative electrodes consist of
almost spherical particles of porous materials. The electrodes
structure creates a surface of contact between the electrodes
and the electrolyte producing electrochemical couples between
them and thus introducing a potential difference between the
positive and negative electrode. Further information about
lithium-ion batteries can be found in e.g., [24].
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Figure 1. Battery model schematic.

We focus on models ensuring the next assumption.
Standing Assumption 1 (SA1): The following holds: (i)

lithium insertion or de-insertion reactions are homogeneous
along the thickness of each electrode; (ii) the electrolyte
dynamics is neglected; (iii) the temperature of the cell is
constant and homogeneous. □

Item (i) implies that each electrode can be reduced to a
single particle, whose size is equal to the average size of all
the particles that compose the actual electrode, we talk of SPM
assumption, see e.g., [7], [8], [10], [19], [20]. As customarily
done in electrochemical modeling of lithium-ion batteries,
electrodes material particles are supposed spherical. In item
(ii), we ignore the electrolyte dynamics, which is reasonable
for moderate currents and moderate temperatures. For high
current rates and/or low temperatures, item (ii) can be relaxed
and electrolyte dynamics can be added to the presented model
and observers by applying the results of [25] mutatis mutandis.
In item (iii), we suppose that the temperature is constant
however, when the temperature varies, and is measured we can
adapt the model and the developed observers of Section V to
take into account the temperature variation like in [6], [19]. As
for the temperature homogeneity assumption, it is reasonable
at moderate and high temperatures. For low temperatures,
it may become invalid and be interpreted as a parametric
uncertainty, which can be handled by the observers of Section
V if the uncertainty is small enough, like in [19].

Given SA1, the main dynamical phenomenon is the lithium
diffusion in the electrodes active particles. This phenomenon
is described using the next PDEs (see e.g., [16]), for any t ≥
0 and r ∈ [0,Rs], where Rs > 0 is the radius of the particle
in electrode s ∈ {neg,pos}, with neg and pos denoting the
negative and positive electrode, respectively,

ϕs(r, t) = −Ds
∂cs(r,t)

∂ r
∂cs(r,t)

∂ t = 1
r2

∂

∂ r

(
Dsr2 ∂cs(r,t)

∂ r

)
,

(1)

where cs is the local concentration of lithium, ϕs is the lithium
flux density and Ds > 0 is the diffusion coefficient of lithium,
along the next couple of boundary conditions of Neumann
type

ϕs(0, t) = 0

ϕs(Rs, t) = jLi
s (t)
asF ,

(2)

where jLi
s ∈ R is the electrochemical reaction rate, as := 3εs

Rs
is the active surface per volume unit, εs > 0 is the volume
fraction of the active material particle and F > 0 is Faraday’s
constant. The boundary condition at r = 0 means that there are
no lithium flux in the center of the sphere. On the other hand,
the boundary condition at r = Rs means that the flux through
the surface of the sphere is proportional to the electrochemical
reaction rate. The mean lithium concentration of electrode s
given by (1)-(2), denoted cs,mean, is defined as, for all t ≥ 0,

cs,mean(t) :=
1
Vs

∫ Rs

0
4πr2cs(r, t)dr, (3)

where Vs := 4
3 πRs

3 is the volume of the particle of electrode
s.

To derive a set of ODEs from (1)-(2), a spatial discretization
method is performed. Hence, each particle is discretized into
Ns ∈Z>0 samples, where s ∈ {neg,pos}. A zero-order approx-
imation is made, i.e., we assume that the lithium concentration
in each sample, cs,n for n ∈ {1, ...,Ns} and s ∈ {neg,pos}, is
homogeneous. From the obtained set of ODEs, we derive the
next state space equation, with the index s ∈ {neg,pos}

ẋs = Asxs +Bsms, (4)

where xs := (cs,1, . . . ,cs,Ns) ∈ RNs is the concatenation of the
concentrations in electrode s and ms :=− jLi

s
εsF ∈R is the input.

The matrices As ∈ RNs×Ns and Bs ∈ RNs×1 are defined as
As := diag(−µs

1,−υs
2, . . . ,−υs

Ns−1,−µ̃s
Ns
)+diag(µ̃s

2, . . . , µ̃
s
Ns
)+

diag(µs
1, . . . ,µ

s
Ns−1), Bs :=

(
01×(Ns−1)

Vs
V s

Ns

)⊤
, where µs

i :=
Ss

i
rs
i+1−rs

i

Ds
V s

i
for any i ∈ {1, . . . ,Ns −1}, µ̃s

i :=
Ss

i−1
rs
i −rs

i−1

Ds
V s

i
for any

i ∈ {2, . . . ,Ns}, υs
i := µ̃s

i +µs
i for any i ∈ {2, . . . ,Ns −1}, Vs is

the particle volume, V s
i := 4

3 π((rs
i )

3 − (rs
i−1)

3) is the volume
of sample i and Ss

i := 4π(rs
i )

2 its external surface with rs
i > 0

representing its external radius.
One of the lithium concentrations, namely cneg,1, is removed

by exploiting the assumed lithium conservation, which is
essential to design a converging observer. As a result, the
dimension of the model is Nneg +Npos −1. We will return to
this point in Section IV-B.

III. CONCENTRATIONS CORRECTION

The spatial discretization of (1)-(2) to obtain (4) gener-
ates errors on the concentrations given by (4). These errors
can be reduced by increasing the number of samples Ns,
s ∈ {neg,pos}, but this leads to a high-dimensional system in
(4), which may lead to computational issues, especially when
using the model in (4) for observer design. We present in
this section an alternative method to reduce these errors by
correcting the lithium concentrations generated by (4) so that
they asymptotically match those given by (1)-(2) for constant
inputs for any number of spatial samples, as formalized
in Section III-A. We can already emphasize that, although
these corrections are established by considering the asymptotic
behavior of the PDEs in (1) with the boundary conditions in
(2) and the model in (4) for constant inputs, these may allow
improving the accuracy of the concentrations given by (4) even
for rapidly changing inputs as explained in Remark 2 and
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illustrated in Sections VI and VII. In this section, we denote
by cs,(1) the lithium concentrations generated from the PDEs
in (1) with the boundary conditions in (2) and cs,(4) := xs the
lithium concentrations generated by model (4) for electrode s,
with s ∈ {neg,pos} for the sake of convenience.

A. Main result

We propose to correct the concentrations generated by
model (4) as follows, for j ∈ {1, . . . ,Ns} and s ∈ {neg,pos},

cs,cor, j := cs,(4),mean −Ks
j(cs,(4),mean − cs,(4), j), (5)

where cs,cor represents the corrected lithium concentrations
of model (4), cs,(4),mean := 1

Vs
∑

Ns
n=1 V s

n cs,(4),n is the lithium-ion
mean concentration in electrode s given by model (4) and
Ks

j ∈ R is a static correction coefficient given by

Ks
j :=


k(rs

j)

(Ãs
−11(Ns−1)×1) j1

j ∈ {1, . . . ,Ns −1}
−k(rs

j)V
s
Ns

Γred
s Ãs

−11(Ns−1)×1
j = Ns,

(6)

where k(rs
j) :=

(
rs

j
Rs

)2
− 3

5

6 τs, τs := R2
s

Ds
, Γred

s :=(
V s

1 V s
2 . . . V s

Ns−1
)
∈ R1×Ns−1, rs

j is defined at the
end of Section II and Ãs ∈ R(Ns−1)×(Ns−1) is defined by
(Ãs)i j := (As)i j − (As)iNs

V s
j

V s
Ns

for any i, j ∈ RNs−1.
We next present the main result of this section.
Theorem 1: For any constant input ms, any corresponding

solution cs,(1) to (1)-(2) and cs,(4) to (4) with cs,(4),mean(0) =
cs,(1),mean(0) satisfy for any j ∈ {1, . . . ,Ns} and s ∈ {neg,pos}

(cs,cor, j − cs,(1)(r
s
j, ·))∞ = 0, (7)

where cs,cor is given in (5) and rs
j is the external radius of each

sample as defined after (4). □
Theorem 1 implies that, as time tends to infinity, the corrected
concentrations defined in (5) match those generated by the
PDEs in (1) with the boundary conditions in (2) when the
input is constant. It is important to note that Theorem 1
imposes no conditions on the number of samples with which
the PDEs in (1)-(2) are discretized, and thus no conditions on
the dimension of (4) for (7) to hold.

To prove Theorem 1, we first analyze properties of the
lithium concentrations of (1)-(2) in Section III-B and of
the mean concentrations of (4) in Section III-C. We then
investigate the error between the concentrations generated by
the PDE model in (1)-(2) and model (4) in “steady state” in
Section III-D. Lastly, we combine these properties to prove
Theorem 1 in Section III-E.

Remark 1: The surface concentrations correction is illus-
trated in Figure 2, where the normalized step response of
cs,mean−cs,surf, with cs,surf denoting the surface concentrations,
is depicted for the PDE model in (1)-(2), taken as the reference
model, and for model (4) with and without concentrations
correction for different values of Ns. The error between the
reference model and model (4) without correction is significant
for Ns = 5. This error is reduced when increasing Ns to
50. On the other hand, this error is drastically reduced and

Figure 2. Normalized step response of cs,mean−cs,surf, with s∈ {neg,pos} and
cs,surf represents the surface concentration of electrode s, for the PDE model
in (1)-(2) and for model (4) with and without concentrations corrections.

eliminated in steady state for model (4) with correction by
only taking Ns = 5 samples. Further numerical illustrations
of the advantages of the proposed corrections are provided
in Sections VI and VII. We note that this concentrations
correction depends on the number of samples Ns, as the
coefficient Ks

Ns
in (6) depends on Ns. In particular, the surface

correction coefficient Ks
Ns

decreases as the number of samples
Ns increases. This is consistent with what we see in Figure
2, where the error between the PDE model in (1)-(2) and the
model in (4) without correction is reduced when increasing
Ns. □

Remark 2: The surface concentrations correction can
only improve the accuracy of the model in (4) even
for rapidly changing inputs. Indeed, it can be veri-
fied that |ZPDE model in (1)-(2)(t)− Zmodel in (4) with correction(t)| ≤
|ZPDE model in (1)-(2)(t)− Zmodel in (4) without correction(t)|, where Z
is the normalised step response of cs,mean − cs,surf with s ∈
{neg,pos} for all t ≥ 0 and for Ns ∈ {2, . . . ,50}. We did not
consider values of Ns bigger than 50 as in this case the model
in (4) generates very accurate results with respect to the model
in (1)-(2); recall that a motivation of our work is to make low-
dimensional SPMs accurate. □

B. Properties of the concentrations for model (1)-(2)

The dynamics of the mean concentration of the PDEs in (1)-
(2), i.e., cs,(1),mean given in (3), is obtained by integrating (1)
over the particle volume and using the corresponding boundary
conditions in (2), see Appendix A for more details. Thus, we
derive that for any t ≥ 0

ċs,(1),mean(t) = ms(t), (8)

with ms(t) :=− jLi
s (t)
εsF as after (4).

We first have the next property, which states that any
solution to (1)-(2) with an initial lithium concentrations profile
c0(·) converges to the solution to (1)-(2) initialized with a
uniform lithium concentrations profile whose value is the mean
of c0(·) over [0,Rs] with the same input ms.

Proposition 1: Given any Lebesgue measurable, locally
essentially bounded input ms, consider cs,(1),1 a solution to
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(1)-(2) with cs,(1),1(r,0) = c0(r) and cs,(1),2 a solution to (1)-
(2) with cs,(1),2(r,0) = c0 for any r ∈ [0,Rs], c0 ∈R≥0 being the
initial mean concentration cs,(1),1,mean(0). For any r ∈ [0,Rs],

(cs,(1),1(r, ·)− cs,(1),2(r, ·))∞ = 0. (9)

□
The proof of Proposition 1 is postponed to Appendix B.

In view of Proposition 1, we focus on solutions to (1)-(2)
with a uniform initial profile of lithium concentration in solid
phase without loss of generality, i.e., there exists c̄0 ∈R≥0 such
that for any r ∈ [0,Rs] cs,(1)(r,0) = c̄0, with c̄0 being the initial
mean concentration cs,(1),mean(0). Let cs,(1) be a corresponding
solution to (1)-(2), we derive in the Laplace domain (see [26])
that, for any r ∈ [0,Rs] and p ∈ C the Laplace variable,

Cs(r, p) = Fs(r, p)ms(p)

Fs(r, p) := τs
3

sinh
(

r
√

p
Ds

)
Rs
r√

τs pcosh(
√

τs p)−sinh(
√

τs p) ,
(10)

where Cs(r, p) is the Laplace transform of cs,(1)(r, t) −
cs,(1)(r,0), ms(p) the Laplace transform of ms(t) and τs =

R2
s

Ds
is the diffusion time constant. It follows from [26] that for any
r ∈ [0,Rs]

Fs(r, p) ∼
p→0

1
p
+ k(r), (11)

where k(r) :=
( r

Rs )
2− 3

5
6 τs is a constant as seen after (6).

In view of (10) and (11), we obtain, for a constant input
ms, Cs(r, p) ∼

p→0

ms(p)
p + k(r)ms(p). On the other hand, the

Laplace transform of (8) gives Cs,mean(p) = ms(p)
p , with Cs,mean

the Laplace transform of cs,(1),mean(t)− cs,(1),mean(0). Hence,
Cs(r, p) ∼

p→0
Cs,mean(p)+ k(r)ms(p). In the time domain, for

a constant input ms and cs,(1)(r,0) = cs,(1),mean(0), we derive
that for any r ∈ [0,Rs]

(cs,(1)(r, ·))∞ = (cs,(1),mean)∞ + k(r)ms. (12)

In view of (12), we deduce that, for any r ∈ [0,Rs], the
step response of the lithium concentrations of (1)-(2) tends to
the mean concentration of model (1)-(2) up to an additional
constant k(r)ms. This property is exploited in Section III-D to
evaluate the errors between the concentrations generated by
model (1)-(2) and model (4). Before that, a property of the
mean concentration for model (4) is established in the next
section.

C. Properties of the mean concentration for model (4)

The mean lithium concentration in electrode s of model (4)
is defined as

cs,(4),mean :=
1
Vs

Ns

∑
n=1

V s
n cs,(4),n =

1
Vs

Γsxs, (13)

with Γs :=
(
V s

1 V s
2 . . . V s

Ns

)
∈ R1×Ns . We have the next

result on cs,(4),mean.
Lemma 1: For any Lebesgue measurable, locally essentially

bounded input ms, any corresponding solution xs to (4) satisfies
ċs,(4),mean(t) = ms(t) for all t ≥ 0. □

Proof. Let ms be a Lebesgue measurable, locally essentially
bounded input and xs be a corresponding solution to (4).
In view of (4) and (13), we have ċs,(4),mean = 1

Vs
Γsẋs =

1
Vs

Γs(Asxs+Bsms). On the other hand, matrix As in (4) satisfies
ΓsAs = 01×Ns . In addition, we have ΓsBs =Vs. Therefore, we
obtain ċs,(4),mean(t) = ms(t) for all t ≥ 0. ■

Lemma 1 implies that the mean lithium concentration given
by model (4) is equal to the mean concentration of the PDEs
in (1)-(2) when these two are initialized at the same value i.e.,
when cs,(1),mean(0) = cs,(4),mean(0), cs,(1),mean(t) = cs,(4),mean(t)
for any t ≥ 0. The SPM in (4) is thus conservative with respect
to mean concentrations, see [26]. We therefore use the short
notation cs,mean in the following.

A consequence of this conservation property is that, by eval-
uating the normalized step response of cs,mean − cs generated
by model (1)-(2) and model (4), respectively, we obtain in
steady state, provided it exists as we show next, a constant
error. We present in the next section a method to determine
this error, which we use to correct the concentrations as in (5).

D. Steady state errors

We define x̃s := xs,mean − xs the mismatch between xs and
the vector of mean concentration xs,mean := cs,mean1Ns×1. Using
(4), Lemma 1 and the fact that As1Ns×1 = 0Ns×1, the dynamics
of x̃s is given by

˙̃xs = Asx̃s +(1Ns×1 −Bs)ms. (14)

The next lemma allows to write any element x̃s,i of any
solution x̃s = (x̃s,1, . . . , x̃s,Ns) to (14) as a linear combination of
all the others elements.

Lemma 2: For any Lebesgue measurable, locally essentially
bounded input ms, any corresponding solution x̃s to (14)
satisfies ∑

Ns
i=1 V s

i x̃s,i(t) = 0 for all t ≥ 0. □
Proof. Let ms be a Lebesgue measurable, locally essentially

bounded input and x̃s be a corresponding solution to (14).
As x̃s = xs,mean−xs, ∑

Ns
i=1 V s

i x̃s,i = Γsx̃s = Γscs,mean1Ns×1−Γsxs.
Given that Γs1Ns×1 = Vs, ∑

Ns
i=1 V s

i x̃s,i(t) = Vscs,mean −Γsxs. In
view of (13), ∑

Ns
i=1 V s

i x̃s,i = Vs
1
Vs

Γsxs −Γsxs. Thus, we obtain
∑

Ns
i=1 V s

i x̃s,i(t) = 0 for all t ≥ 0. ■
Using Lemma 2, we derive from (14),

˙̃xs,red = Ãsx̃s,red +1(Ns−1)×1ms, (15)

where x̃s,red represents the first Ns−1 components of x̃s. Matrix
Ãs ∈ RNs−1×Ns−1 is defined as in Section III-A after (6) and
satisfies the next result.

Lemma 3: Ãs is Hurwitz. □
The proof of Lemma 3 is provided in Appendix C to avoid
breaking the flow of exposition.

Lemma 3 implies that, for a constant input ms, any solution
x̃s,red to (15) converges to a constant value, thereby proving
the existence of steady states. For any given constant input
ms, the steady state of x̃s,red satisfies ( ˙̃xs,red)∞ = (Ãsx̃s,red +
1(Ns−1)×1ms)∞ = 0(Ns−1)×1. Therefore, we obtain

(x̃s,red)∞ =−Ã−1
s 1(Ns−1)×1ms, (16)

noting that Ãs is invertible being Hurwitz by Lemma 3. In
view of (16), (cs,mean − cs,(4), j)∞ = −(Ãs

−11(Ns−1)×1) j1ms for
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any j ∈ {1, . . . ,Ns−1}. On the other hand, we have from (12)
that (cs,mean−cs,(1)(r, ·))∞ =−k(r)ms for all r ∈ [0,Rs]. Hence,
we obtain that for any j ∈ {1, . . . ,Ns −1}

(cs,(4), j − cs,(1)(r
s
j, ·))∞ =−k(rs

j)ms +(Ãs
−11(Ns−1)×1) j1ms.

(17)
It remains to calculate the step response in steady state
of cs,(4),Ns − cs,(1)(rs

Ns
, ·). In view of Lemma 2, x̃s,Ns =

− 1
V s

Ns
Γred

s x̃s,red, Γred
s represent the Ns − 1 first elements of Γs

and defined after (6). Given (16), we derive

(x̃s,Ns)∞ =
1

V s
Ns

Γ
red
s Ã−1

s 1(Ns−1)×1ms. (18)

On the one hand, we have from (18) that (cs,mean−cs,(4),Ns)∞ =
1

V s
Ns

Γred
s Ã−1

s 1(Ns−1)×1ms. On the other hand, we have from
(12) that (cs,mean − cs,(1)(r, ·))∞ = −k(r)ms for all r ∈ [0,Rs].
Therefore, we obtain

(cs,(4),Ns − cs,(1)(r
s
Ns , ·))∞ =−k(rs

Ns)ms

− 1
V s

Ns

Γ
red
s Ã−1

s 1(Ns−1)×1ms. (19)

To match the concentrations of model (4) to those of the
PDEs in (1)-(2) in steady state, the corrected concentrations
of model (4) need to satisfy (cs,cor, j −cs,(1)(rs

j, ·))∞ = 0 for all
j ∈ {1, . . . ,Ns}. For this purpose, we introduce the correction
coefficient Ks

j defined in (6) such as (cs,mean − cs,cor, j)∞ =
Ks

j(cs,mean − cs,(4), j)∞. In the next section, we prove that the
corrected concentrations match those of model (1)-(2) as stated
in Theorem 1.

E. Proof of Theorem 1

We are now ready to prove Theorem 1. Let ms be a
constant input, c̄0 ∈R≥0 and cs,(1) the solution to (1)-(2) with
cs,(1),mean(0) = c̄0. Let cs,(4) be the corresponding solution for
model (4) with input ms and initial condition cs,(4),mean(0)= c̄0.
In view of (5) and the property of the lithium concentrations
of (1)-(2) presented in (12), we have, for any j ∈ {1, . . . ,Ns},

(cs,cor, j − cs,(1)(r
s
j, ·))∞

=
(
cs,(4),mean −Ks

j(cs,(4),mean − cs,(4), j)− cs,(1),mean

−k(rs
j)ms

)
∞
. (20)

Given the conservation property of the mean concentrations of
model (4) with respect to model (1)-(2) established in Section
III-C, (20) is equivalent to, for any j ∈ {1, . . . ,Ns},

(cs,cor, j − cs,(1)(r
s
j, ·))∞

= (−Ks
j(cs,mean − cs,(4), j)− k(rs

j)ms)∞. (21)

Using the steady state error calculated in (16), we obtain for
j ∈ {1, . . . ,Ns −1}

(cs,cor, j − cs,(1)(r
s
j, ·))∞

= Ks
j(Ã

−1
s 1(Ns−1)×1) j1ms − k(rs

j)ms. (22)

As for j = Ns, in view of (18), we derive

(cs,cor, j − cs,(1)(r
s
j, ·))∞

=−Ks
j

1
V s

Ns

Γ
red
s Ã−1

s 1(Ns−1)×1ms − k(rs
j)ms. (23)

Given the expression of Ks
j in (6), we obtain from (22) and

(23), for any j ∈ {1, . . . ,Ns}, (cs,cor, j − cs,(1)(rs
j, ·))∞ = 0 as in

(7). This completes the proof.

IV. STATE SPACE MODEL

In this section, we exploit the results obtained in Section
III to establish a new output equation for model (4), and thus
a new state space model. Before that, the relation between ms
and the cell current Icell is recalled. Then, a model reduction is
performed as it is essential to ensure the system detectability,
which is (implicitly) exploited later in Section V like in [5],
[7], [10], [19].

A. Relation between ms and Icell

Given SA1, the electrochemical reaction rate is homoge-
neous within each electrode. Therefore, a proportional re-
lationship can be established between Icell and jLi

s in par-
ticular jLi

neg := Icell
Acelldneg

and jLi
pos := − Icell

Acelldpos
, where Icell is

in generator convention (i.e., Icell > 0 in discharge), Acell is
the electrode surface and ds is the thickness of electrode s.
On the other hand, we have ms := − jLi

s
εsF . Hence, we obtain

mneg :=− Icell
εnegAcelldnegF and mpos := Icell

εposAcelldposF .

B. Model reduction

Model (4) is reduced just like in e.g., [5], [7], [10], [19] by
adopting the next assumption, which is essential later for the
observer convergence.

Standing Assumption 2 (SA2): The quantity of lithium
inserted in battery electrodes is constant and known. □
SA2 is reasonable over short periods of time. Factors such as
cell degradation or side reactions can cause capacity loss over
time, resulting in a reduction in the total quantity of lithium
and the violation of SA2. In this case, if there is a small
uncertainty regarding the quantity of lithium, the battery state
and its estimation would exhibit asymptotic small errors, as
shown by the Lyapunov-based proof in Theorems 2 and 3
in Section V. Conversely, if the uncertainty is big and thus
the quantity of lithium needs to be estimated, state of health
estimation algorithms may be employed as in e.g., [9], [27].

SA2 allows to write a lithium mass conservation. Hence,
the quantity of lithium is defined as

Q := αneg

Nneg

∑
i=1

cneg,iV
neg
i +αpos

Npos

∑
i=1

cpos,iV
pos
i , (24)

where αs := F
3600

εsAcellds
Vs

and Vs is the volume of the particle of
electrode s. From (24), we express the lithium concentration
at the center of the negative electrode cneg,1 as a linear
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combination of all the other sampled concentrations in solid
phase

cneg,1 = K − 1
V neg

1

Nneg

∑
i=2

cneg,iV
neg
i −

αpos

αnegV neg
1

Npos

∑
i=1

cpos,iV
pos
i ,

(25)
where K := Q

αnegV neg
1

.
In view of (25), cneg,1 is no longer needed in the state

space representations as it can be recovered from the other
concentrations.

C. Corrected output equation

We are ready to present the new output voltage equation.
The output equation of model (4) is obtained by decompo-
sition of the cell voltage Vcell. The main components of Vcell
are the potential differences between the electrodes and the
electrolyte called open circuit voltages (OCV) denoted OCVs
for s ∈ {neg,pos}, which depend on the surface insertion rates
ζs defined by ζs := cs,Ns

cs
max

for s ∈ {neg,pos}, where cs
max is

the maximum lithium concentration of electrode s and cs,Ns

is the surface concentration generated by model (4). Given
the correction of the lithium concentrations made in Section
III, instead of using cs,Ns to define the surface insertion rates,
we use the corrected surface concentration cs,cor,Ns defined in
(5) to derive the corrected surface insertion rates ζs,cor. As a
result, we obtain the output equation for y :=Vcell

y = OCVpos(ζpos,cor)−OCVneg(ζneg,cor)+g(u), (26)

where ζs,cor := cs,cor,Ns
cs

max
and g(u) := −ηr,pos(u) −

ηpos(u) − ηneg(u) − ηr,neg(u) − ηr,sep(u) for any
u := Icell ∈ R, where ηs(u) := 2 RT

F asinh
(

Rs
6 js0εsAcellds

u
)

,

ηr,s(u) := 1
2Acell

(
ds

σs,eff
+ ds

κs

)
u, ηr,sep(u) := 1

Acell

dsep
κsep

u,

κs := κeε1.5
e,s , σs,eff := σsεs, κsep := κeε1.5

e,sep, with R, T ,
js
0, κe, εe,s, εe,sep, εs and σs defined in Table I.

Remark 3: The output equation in e.g., [7], [8], [10] is given
by y = OCVpos(ζpos)− OCVneg(ζneg) + g(u). The difference
between this output equation and the one in (26) is in the
determination of the OCVs. In (26), the OCVs are determined
from the corrected surface concentrations as in the other
output equation they are determined directly from the surface
concentrations generated by (4). The term g(u), on the other
hand, remains the same for both output equations. □

D. State space form

We present the overall state space representation.
We introduce for this purpose the state vector
x := (cneg,2, ...,cneg,Nneg ,cpos,1, ...,cpos,Npos) ∈ RN with
N := Nneg − 1+Npos (recall that cneg,1 has been removed in
Section IV-B), the input u = Icell ∈R, the output y =Vcell ∈R,
and w ∈ Rnw and v ∈ Rnv represent additive exogenous
perturbations and measurement noise respectively. We derive
the next state space equation{

ẋ = Ax+Bu+K +Ew
y = hcor(x)+g(u)+Dv,

(27)

where A :=
(

A1 Ac
Ar diag(Ared

neg,Apos)

)
∈ RN×N ,

A1 :=
(
−υ

neg
2 − V neg

2
V neg

1
µ

neg
1

)
∈ R1×1, Ac :=(

µ
neg
2 −

V neg
3

V neg
1

µ
neg
1 −

V neg
Nneg

V neg
1

µ
neg
1 ... −

αposV pos
1

αnegV neg
1

µ
neg
1 ... −

αposV pos
Npos

αnegV neg
1

µ
neg
1

)
∈ R1×(N−1), Ar :=

(
µ̃

neg
3 01×(N−2)

)⊤ ∈ R(N−1)×1, Ared
neg :=

diag(−υ
neg
3 , . . . ,−υ

neg
Nneg−1,−µ̃

neg
Nneg

) + diag(µ̃neg
4 , . . . , µ̃

neg
Nneg

) +

diag(µneg
3 , . . . ,µ

neg
Nneg−1) ∈ R(Nneg−2)×(Nneg−2), B :=(

01×(Nneg−2) −Kneg
I 01×(Npos−1) Kpos

I

)⊤
∈ RN×1,

Ks
I := Vs

V s
Ns εsFAcellds

and K :=
(
µ

neg
1 K 01×(N−1)

)⊤ ∈ RN×1.

The matrices E ∈ RN×nw and D ∈ R1×nv allow to
consider any type of noise and perturbations, and are
therefore chosen in accordance with w and v. The
function hcor : RN → R is defined as, for any x ∈ RN ,
hcor(x) := OCVpos(Hpos,corx) − OCVneg(Hneg,corx + K1), such
that ζpos,cor := Hpos,corx and ζneg,cor := Hneg,corx + K1, with
Hs,cor ∈ R1×N defined as

Hpos,cor :=
(

01×(Nneg−1) h
pos
1 . . . h

pos
Npos−1 h

pos
Npos +

Kpos
Npos

cpos
max

)
Hneg,cor :=

(
01×(Nneg−2)

Kneg
Nneg

cneg
max

−h∗1 . . . −h∗Npos

)
,

(28)
where h

s
i := V s

i
Vscs

max
(1−Ks

Ns
), h∗i := V pos

i
Vnegcneg

max
(1−Kneg

Nneg
)

αpos
αneg

and

the constant K1 := h
neg
1 K.

We are now ready to proceed with the observer design for
system (27).

V. STATE ESTIMATION

In this section, we propose two methods to design a state
observer for system (27), which both rely on an assumption
made on the OCVs presented in Section V-A. The first one
consists in assuming that an observer has been designed for
the original model without correction and to derive conditions
under which the same observer structure will be guaranteed
to converge for the corrected model in (27), see Section V-B.
If these conditions appear not to be satisfied, an alternative
method is to directly design an observer for system (27). We
propose a polytopic based approach for this purpose in Section
V-C, similarly to e.g., [6], [11], [22]. We then explain how to
correct the obtained state estimates, given by any of the two
observers, to asymptotically match the concentrations given by
the original PDEs in (1)-(2) for constant inputs by exploiting
the results of Section III.

A. Assumption on the OCVs

We make the next assumption on the OCVs as in e.g., [6],
[11], [19].

Assumption 1: For any s ∈ {neg,pos}, there exist constant
matrices Cs,1,Cs,2 ∈ R such as for any z, z′ ∈ R,

OCVs(z)−OCVs(z′) =Cs(z,z′)(z− z′), (29)

where Cs(z,z′) := λ s
1(z,z

′)Cs,1 + λ s
2(z,z

′)Cs,2 with λ s
i (z,z

′) ∈
[0,1] for i ∈ {1,2} and λ s

1(z,z
′)+λ s

2(z,z
′) = 1. □
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Assumption 1 means that each OCVs lies in a polytope
defined by Cs,1,Cs,2 with s∈{neg,pos}. This condition is often
verified in practice. Indeed, the OCVs are generally defined
on the interval [0,1] and are typically well-approximated
by a piecewise continuously differentiable and thus globally
Lipschitz function. Then, it suffices to extrapolate the OCVs
on [1,∞) (resp. on (−∞,0]) by using zero order or first order
approximations based on the value of the OCVs at 1 (resp. at
0) for Assumption 1 to hold. Then, Cs,1 and Cs,2 represent the
minimum and maximum slopes of OCVs, respectively. This is
the case for the OCVs considered in Sections VI and VII, see
Figure 3.

B. Emulated observer

In this section, we derive conditions under which an ob-
server designed for the original model without correction can
still be applied for the corrected model (27). We first consider
for this purpose the model without correction, given by{

ẋ = Ax+Bu+K +Ew
y = h(x)+g(u)+Dv,

(30)

where the function h : RN → R is defined, for all
x ∈ RN by h(x) := OCVpos(Hposx) − OCVneg(Hnegx) as in
Remark 3, with Hpos :=

(
01×N−1

1
cpos

max

)
and Hneg :=(

01×Nneg−2
1

cneg
max

01×Npos

)
.

The designed observer is of the form{
˙̂x = Ax̂+Bu+K +L(y− ŷ)
ŷ = h(x̂)+g(u),

(31)

where x̂ ∈ RN is the state vector estimate, L ∈ RN is the
observation matrix gain and ŷ is the estimated output. We
assume that observer (31) is designed to satisfy the next
Lyapunov properties.

Assumption 2: There exist P, Q∈RN×N symmetric, positive
definite matrices and µw, µv ∈R>0 such that for any x, x̂ ∈RN ,
w ∈Rnw and v ∈Rnv , denoting V (e1) := e⊤1 Pe1 and e1 := x− x̂,

⟨∇V (e1),Ae1 +Ew−L(h(x)−h(x̂))−LDv⟩
≤ −e⊤1 Qe1 +µw|w|2 +µv|v|2. (32)

□
Assumption 2 implies that system (30), (31) is L2-stable from
(w,v) to e1 = x− x̂, in particular that there exist c ≥ 0 and
ε ∈R>0 such that for any w,v ∈L2 and any u Lebesgue mea-
surable and locally essentially bounded, any solution (x, x̂) to
(30), (31) satisfies ∥e1∥L2,[0,t) ≤ c|e1(0)|+

√
µw
ε
∥w∥L2,[0,t)+√

µv
ε
∥v∥L2,[0,t) for any t ≥ 0. Moreover, when w= 0 and v= 0,

{(x, x̂) : x = x̂} is uniformly globally exponentially stable, i.e.,
there exist γ1 ≥ 1, γ2 ∈ R>0 such that for any u Lebesgue
measurable and locally essentially bounded, any solution (x, x̂)
to (30), (31) satisfies |e1(t)| ≤ γ1|e1(0)|e−γ2t for any t ≥ 0.
Examples of observer designs ensuring the satisfaction of
Assumption 2 for the non-corrected model (30) include, e.g.,
[6], [7], [10].

When feeding observer (31) with the new output equation
(26), its convergence is no longer guaranteed in general. Our
goal in this section is to identify sufficient conditions under
which the same observer converges for model (27). We thus
consider the next observer, which is observer (31) fed with the
output equation (26){

˙̂x = Ax̂+Bu+K +L(y− ŷ)
ŷ = hcor(x̂)+g(u),

(33)

Note that the difference with (31) is that ŷ is defined using
hcor defined after (27) instead of h. We define the estimation
error e := x− x̂, whose dynamics follows from the difference
of the dynamics of (27) and (33) as follows

ė = Ae+Ew−L(hcor(x)−hcor(x̂))−LDv. (34)

By adding and subtracting the term L(h(x)−h(x̂)) to (34), we
obtain

ė = Ae+Ew−L(h(x)−h(x̂))−LDv+L(h̃(x)− h̃(x̂)), (35)

where h̃ := h−hcor.
A consequence of Assumption 1 is that the term h̃(x)− h̃(x̂)

appearing in (35) can be written as, for any x,x′ ∈ RN

h̃(x)− h̃(x′) = C̃(x,x′)(x− x′), (36)

where C̃(x,x′) := ∑
4
i=1 λi(x,x′)C̃i, with λi(x,x′) ∈ [0,1] for i ∈

{1,2,3,4} and ∑
4
i=1 λi(x,x′) = 1. This means that h̃ lies in a

polytope defined by the vertices C̃i with i ∈ {1,2,3,4}, which
are given in (43).

The next theorem presents the conditions under which
observer (33) converges for system (27).

Theorem 2: Suppose the following holds.
(i) Assumptions 1 and 2 are satisfied.

(ii) Matrices P and Q in Assumption 2 satisfy

−Q+C̃⊤
i L⊤P+PLC̃i < 0, (37)

where C̃i, with i ∈ {1,2,3,4}, defined in (43).
Then,

• system (27), (33) is L2-stable from (w,v) to e with
gain less or equal to

√
µw
ε

and
√

µv
ε

, respectively, where
µw,µv ∈ R>0 come from Assumption 2 and ε > 0 is
any constant satisfying −Q+C̃⊤

i L⊤P+PLC̃i ≤−εIN , in
particular, there exists c ≥ 0 such that for any w,v ∈
L2 and u Lebesgue measurable and locally essentially
bounded input, any solution (x,e) to (27), (34) satisfies
∥e∥L2,[0,t) ≤ c|e(0)| +

√
µw
ε
∥w∥L2,[0,t) +

√
µv
ε
∥v∥L2,[0,t)

for any t ≥ 0.
• {(x,e) : e = 0} is uniformly globally exponentially stable

when w=0 and v=0, i.e. there exist γ1 ≥ 1, γ2 ∈R>0 such
that for any u Lebesgue measurable and locally essentially
bounded input, any solution (x,e) to (27), (34) satisfies
|e(t)| ≤ γ1|e(0)|e−γ2t for any t ≥ 0. □

Proof. Let x, x̂ ∈ RN , w ∈ Rnw and v ∈ Rnv . We consider
V (e) = e⊤Pe, where e := x− x̂ ∈ RN as in Assumption 2. We
have λmin(P)|e|2 ≤ V (e) ≤ λmax(P)|e|2 with 0 < λmin(P) ≤
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λmax(P) as P is symmetric, positive definite by Assumption 2.
In view of (35),〈

∇V (e),Ae+Ew−L(h(x)−h(x̂))−LDv+L(h̃(x)− h̃(x̂))
〉

= 2(Ae+Ew−L(h(x)−h(x̂))−LDv)⊤Pe

+2(L(h̃(x)− h̃(x̂)))⊤Pe, (38)

where we recall that h̃ = h−hcor. In view of Assumption 2,

2(Ae+Ew−L(h(x)−h(x̂))−LDv)⊤Pe

≤−e⊤Qe+µw|w|2 +µv|v|2. (39)

By substituting the term h̃(x)− h̃(x̂) in (38) by its expression
in (36) and by using (39), we derive, omitting the argument
of λi,

⟨∇V (e),Ae+Ew−L(h(x)−h(x̂))−LDv+L(h̃(x)− h̃(x̂))⟩

≤
4

∑
i=1

λi

(
−e⊤Qe+µw|w|2 +µv|v|2 +(LC̃ie)⊤Pe

+e⊤PLC̃ie
)
, (40)

recall that ∑
4
i=1 λi = 1. Given that matrices P and Q in

Assumption 2 satisfy (37), there exist ε ∈ R>0 such that
−Q+C̃⊤

i L⊤P+PLC̃i ≤−εIN . We thus obtain

⟨∇V (e),Ae+Ew−L(h(x)−h(x̂))−LDv+L(h̃(x)− h̃(x̂))⟩
≤ e⊤(−Q+C̃⊤

i L⊤P+PLC̃i)e+µw|w|2 +µv|v|2

≤−ε|e|2 +µw|w|2 +µv|v|2. (41)

For any Lebesgue measurable and locally essentially bounded
input current, the solutions to (27) are defined for all positive
time as the right hand side of (27) is affine. We also have that
for any Lebesgue measurable and locally essentially bounded
input current u and output y, and any w,v ∈ L2, system (33)
is forward complete as the only nonlinearity appearing in
the right hand-side of (33) is due to hcor, which is globally
Lipschitz as a consequence of Assumption 1; see [28, Theorem
3.2]. In view of (41), for any w,v ∈ L2 and any solution x to
(27) and x̂ to (33), e = x− x̂ verifies for all t ≥ 0

V̇ (e(t))≤−ε|e(t)|2 +µw|w(t)|2 +µv|v(t)|2,

which gives by [28, Lemma 3.4]

V (e(t))≤V (e(0))− ε

∫ t

0
|e(τ)|2dτ +µw

∫ t

0
|w(τ)|2dτ

+µv

∫ t

0
|v(τ)|2dτ.

Consequently, as V (e(t)) ≥ 0,
√∫ t

0 |e(τ)|2dτ ≤√
V (e(0))

ε
+ µw

ε

∫ t
0 |w(τ)|2dτ + µv

ε

∫ t
0 |v(τ)|2dτ and thus

∥e∥L2,[0,t) ≤
√

V (e(0))
ε

+
√

µw
ε
∥w∥L2,[0,t) +

√
µv
ε
∥v∥L2,[0,t).

Since λmin(P)|e′|2 ≤ V (e′) ≤ λmax(P)|e′|2, for any e′ ∈ RN ,

we have
√

V (e(0))
ε

≤
√

λmax(P)
ε

|e(0)|. With this, we

obtain ∥e∥L2,[0,t) ≤
√

λmax(P)
ε

|e(0)| +
√

µw
ε
∥w∥L2,[0,t) +

√
µv
ε
∥v∥L2,[0,t), which implies the L2-stability of system

(27), (33) as stated in Theorem 2.
For the case when w = 0 and v = 0, we have ⟨∇V (e),Ae+

Ew − L(h(x)− h(x̂))− LDv + L(h̃(x)− h̃(x̂))⟩ ≤ −ε|e|2 and
λmin(P)|e|2 ≤ V (e) ≤ λmax(P)|e|2. Therefore, we conclude
the desired uniform global exponential stability property by
following similar steps as in the proof of [28, Theorem 4.10].

■
In addition to Assumptions 1 and 2, Theorem 2 also requires

(37) to hold, which is a robustness property of observer (31)
with respect to hcor−h. This condition is needed to ensure that
the observer still provides satisfactory convergence properties
when using hcor instead of h to generate the estimated output,
as in (33). A solution is not always guaranteed to exist for (37):
it depends on the model parameters and on the OCV curves.
However, condition (37) can be easily tested numerically for
given parameters and OCVs maximum and minimum slopes.

C. Polytopic approach

In this section, we directly synthesize an observer for system
(27) by following a similar approach as in [6], [11], [22]. The
proposed observer takes the same form as in (33). However, in
this section, L is to be designed and not given by Assumption
2. We consider the estimation error e := x− x̂, whose dynamics
is the same as in (34).

Another consequence of Assumption 1 is that the term
hcor(x)−hcor(x′) appearing in (34) can be written as, for any
x,x′ ∈ RN

hcor(x)−hcor(x′) =C(x,x′)(x− x′), (42)

where C(x,x′) :=∑
4
i=1 Λi(x,x′)Ci, with Ci ∈RN defined in (44),

Λi(x,x′) ∈ [0,1] for i ∈ {1,2,3,4} and ∑
4
i=1 Λi(x,x′) = 1. This

means that hcor lies in a polytope defined by the vertices
Ci with i ∈ {1,2,3,4} in (44). Note the calculation of those
vertices differ from those in (43) because of the change in
the arguments of the OCVs in the output equation of the new
model, see Section IV-C.

In view of (42), the estimation error dynamics can be written
as

ė = (A−LC(x, x̂))e+Ew−LDv. (45)

The next theorem provides a sufficient condition to design gain
L ∈ RN under which e = 0 is globally exponentially stable in
absence of noise v and disturbance w, and satisfies L2-stability
properties when the latter are non-zero.

Theorem 3: Suppose Assumption 1 holds and there exist
ε,µw,µv ∈R>0, L∈RN and P∈RN×N symmetric and positive
definite such that for any i ∈ {1, ...,4}Hi + εIN PE −PLD

∗ −µwInw 0
∗ ∗ −µvInv

≤ 0, (46)

with Hi := (A−LCi)
T P+P(A−LCi) then system (27), (33) is

L2-stable from (w,v) to e with gain less or equal to
√

µw
ε

and√
µv
ε

, respectively, and e = 0 uniformly globally exponentially
stable when w=0 and v=0. □
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C̃1 :=
(

01×(Nneg−2)

(
− 1

cneg
max

+
Kneg

Nneg
cneg

max

)
Cneg,1 −h

pos
1 Cpos,1 −h∗1Cneg,1 . . . −h

pos
Npos−1Cpos,1 −h∗Npos−1Cneg,1

(
1

cpos
max

−h
pos
Npos −

Kpos
Npos

cpos
max

)
Cpos,1 −h∗Npos

Cneg,1

)
C̃2 :=

(
01×(Nneg−2)

(
− 1

cneg
max

+
Kneg

Nneg
cneg

max

)
Cneg,1 −h

pos
1 Cpos,2 −h∗1Cneg,1 . . . −h

pos
Npos−1Cpos,2 −h∗Npos−1Cneg,1

(
1

cpos
max

−h
pos
Npos −

Kpos
Npos

cpos
max

)
Cpos,2 −h∗Npos

Cneg,1

)
C̃3 :=

(
01×(Nneg−2)

(
− 1

cneg
max

+
Kneg

Nneg
cneg

max

)
Cneg,2 −h

pos
1 Cpos,1 −h∗1Cneg,2 . . . −h

pos
Npos−1Cpos,1 −h∗Npos−1Cneg,2

(
1

cpos
max

−h
pos
Npos −

Kpos
Npos

cpos
max

)
Cpos,1 −h∗Npos

Cneg,2

)
C̃4 :=

(
01×(Nneg−2)

(
− 1

cneg
max

+
Kneg

Nneg
cneg

max

)
Cneg,2 −h

pos
1 Cpos,2 −h∗1Cneg,2 . . . −h

pos
Npos−1Cpos,2 −h∗Npos−1Cneg,2

(
1

cpos
max

−h
pos
Npos −

Kpos
Npos

cpos
max

)
Cpos,2 −h∗Npos

Cneg,2

)
.

(43)

C1 :=
(

01×(Nneg−2) −
Kneg

Nneg
cneg

max
Cneg,1 h

pos
1 Cpos,1 +h∗1Cneg,1 . . . h

pos
Npos−1Cpos,1 +h∗Npos−1Cneg,1

(
h

pos
Npos +

Kpos
Npos

cpos
max

)
Cpos,1 +h∗Npos

Cneg,1

)
C2 :=

(
01×(Nneg−2) −

Kneg
Nneg

cneg
max

Cneg,1 h
pos
1 Cpos,2 +h∗1Cneg,1 . . . h

pos
Npos−1Cpos,2 +h∗Npos−1Cneg,1

(
h

pos
Npos +

Kpos
Npos

cpos
max

)
Cpos,2 +h∗Npos

Cneg,1

)
C3 :=

(
01×(Nneg−2) −

Kneg
Nneg

cneg
max

Cneg,2 h
pos
1 Cpos,1 +h∗1Cneg,2 . . . h

pos
Npos−1Cpos,1 +h∗Npos−1Cneg,2

(
h

pos
Npos +

Kpos
Npos

cpos
max

)
Cpos,1 +h∗Npos

Cneg,2

)
C4 :=

(
01×(Nneg−2) −

Kneg
Nneg

cneg
max

Cneg,2 h
pos
1 Cpos,2 +h∗1Cneg,2 . . . h

pos
Npos−1Cpos,2 +h∗Npos−1Cneg,2

(
h

pos
Npos +

Kpos
Npos

cpos
max

)
Cpos,2 +h∗Npos

Cneg,2

)
.

(44)

The proof of Theorem 3 follows the same steps as in [6,
Theorem 1] and is therefore omitted. Theorem 3 means that
we can design L to ensure the exponential convergence of the
state estimate to the true state whenever (46) is verified. The
matrix inequality in (46) is not linear, however it becomes
linear after a standard change of variables, namely W = PL.
Condition (46) can be easily tested given the model parameters
and OCVs maximum and minimum slopes as done in Section
VI-B. Also, the order reduction performed in Section IV-B
appears to be essential for its feasibility, see also [19] where
a similar condition is imposed for a different battery model.

Remark 4: Although Kalman filters are known for their
ability to handle modeling uncertainties effectively, nonlinear
Kalman filters generally lack global analytical convergence
guarantees, contrary to the observer we propose in Section
V-C. In addition, the implementation of nonlinear Kalman
filters requires at least N +N2 variables because of the co-
variance matrices while the proposed observer only requires N
variables. Furthermore, the gain of nonlinear Kalman filters is
varying and evaluated on-line, which may be computationally
demanding, while the gain of the proposed observer is constant
and determined off-line. □

D. Corrected estimated concentrations

The observers in Sections V-B and V-C generate estimated
lithium concentrations, which can be corrected along with
ĉneg,1 so that they asymptotically match the concentrations
of the PDEs in (1)-(2) for constant input currents as seen
in Section III. We note that from x̂, which represents the
concatenation of the estimated concentrations generated by the
chosen observer x̂ = (ĉneg,2, . . . , ĉneg,Nneg , ĉpos,1, . . . , ĉpos,Npos),
we can retrieve ĉneg,1 by replacing the concentrations in (25)
by their estimates. We denote in the following cs,(1) the
concentrations generated by the PDE model in (1)-(2) as in
Section III and ĉs the estimated concentrations of electrode s,
with s ∈ {pos,neg}, given by (33) where L is obtained either
from Assumption 2 or by verifying the conditions of Theorem
3.

We denote the corrected estimated concentrations as ĉs,cor,
which are given by, for j ∈ {1, . . . ,Ns} and s ∈ {neg,pos},

ĉs,cor,j := ĉs,mean −Ks
j(ĉs,mean − ĉs, j), (47)

where ĉs,mean := 1
Vs

∑
Ns
i=1 V s

i ĉs,i and Ks
j defined in (6).

The next theorem states an asymptotic property of the
error between the corrected estimated concentrations and the
concentrations generated by the original PDEs in (1)-(2) when
time tends to infinity in absence of disturbances and noises for
constant inputs.

Theorem 4: Consider system (27) and its corresponding ob-
server (33) and suppose e = x− x̂ = 0 is globally exponentially
stable when w = 0 and v = 0. Then, for any constant input
current Icell, any corresponding solution x̂ to (33) and cs,(1)
to (1)-(2) with cs,(1),mean(0) equal to the initial mean lithium
concentration of electrode s given by x satisfy

(ĉcor − c(1))∞ = 0, (48)

where ĉcor := (ĉneg,cor,1, ĉneg,cor,2, . . . , ĉneg,cor,Nneg , ĉpos,cor,1, . . . ,
ĉpos,cor,Npos) is the vector of the cor-
rected estimated concentrations and c(1) :=
(cneg,(1)(r

neg
1 , ·),cneg,(1)(r

neg
2 , ·), . . . ,cneg,(1)(r

neg
Nneg

, ·),cpos,(1)(r
pos
1 ,

·), . . . ,cpos,(1)(r
pos
Npos

, ·)). □
Proof. We consider system (27), (33) and suppose e= x− x̂= 0
is globally exponentially stable when w= 0 and v= 0. Let Icell
be a constant input, cs,(1) be the corresponding solution to (1)-
(2) and (x, x̂) be a corresponding solution to (27), (33) with
cs,(1),mean(0) equal to the initial mean lithium concentration
of electrode s given by x. We thus have (x̂ − x)∞ = 0 and
(ĉneg,1 − cneg,1)∞ = 0. Hence, in view of (5) and (47)

(ĉcor − ccor)∞ = 0, (49)

where ccor := (cneg,cor,1,cneg,cor,2, . . . ,cneg,cor,Nneg ,cpos,cor,1, . . .,
cpos,cor,Npos) and ĉcor := (ĉneg,cor,1, ĉneg,cor,2, . . . , ĉneg,cor,Nneg ,
ĉpos,cor,1, . . . , ĉpos,cor,Npos).

In view of Theorem 1, we have that (cs,cor, j−cs,(1)(rs
j, ·))∞ =

0 for any j ∈ {1, . . . ,Ns} and s ∈ {neg,pos}. Therefore, we
obtain

(ccor − c(1))∞ = 0, (50)

where c(1) :=(cneg,(1)(r
neg
1 , ·),cneg,(1)(r

neg
2 , ·), . . . ,cneg,(1)(r

neg
Nneg

, ·)
,cpos,(1)(r

pos
1 , ·), . . ., cpos,(1)(r

pos
Npos

), ·). From (49) and (50), we
derive (ĉcor − c(1))∞ = 0 as in (48), which completes the
proof. ■
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Theorem 4 implies that, under the conditions of Theorems 2
or 3, the estimated corrected lithium concentrations asymptot-
ically match the lithium concentrations of the PDEs in (1)-(2)
in absence of noise and disturbance provided that a constant
input current is applied.

VI. NUMERICAL CASE STUDY

In this section, we illustrate numerically the benefits of
the new, corrected model and the associated state estimation
scheme. For this purpose, we consider the infinite-dimensional
model in [29] as a reference model and we first compare
it with the model in [7] without correction and model (27)
with correction considering a uniform volume discretization
method (i.e, V s

i = Vs
Ns

for i∈{1, . . . ,Ns}) as done in [7] (Section
VI-A). Next, we synthesize observers based on the polytopic
approach for the model in [7] and model (27) using Theorem
3 (the conditions of Theorem 2 were not satisfied) and then
we compare the obtained estimated variables (Section VI-B).

We simulate model (27) and the model in [7] with the
parameters values given in Table I corresponding to a lithium-
ion battery cell with a graphite negative electrode and a nickel
cobalt aluminium (NCA) positive electrode. We assume that
the particles in each electrode are discretized into 4 samples
of uniform volume. Consequently, Nneg = Npos = 4 and N =
4+4−1 = 7; recall that the concentration at the center of the
negative is electrode can be removed as explained in Section
IV-B. No measurements noise or perturbations are considered
when simulating the two models. The OCVs curves of the
battery cell are given in Figure 3. These OCVs are extrapolated
using first order approximations on (−∞,0] and [1,∞), respec-
tively, which implies that the OCVs are globally Lipschitz on
R and thus satisfy Assumption 1 as explained in Section V-A.
In particular, Assumption 1 holds with Cneg,1 = −75.2267 V,
Cneg,2 =−0.0067 V, Cpos,1 =−1266.7 V, Cpos,2 =−0.2667 V.
The used input current u is a Plug-in Hybrid Electrical Vehicle
(PHEV) discharge current on the time interval [0,1800], a
PHEV charge current on the time interval [1800,3600] and 0 A
on [3600,4500], as illustrated in Figure 4. It is derived from a
PHEV power profile given in [30]. The current profile is thus
rapidly varying on [0,3600], during which we will see that
improvements are obtained with the corrections presented in
Section III. We initialize both models at equilibrium, meaning
that all the initial concentrations within the same electrode are
equal, with a SOC equal to 100%. The SOC is defined by for
s ∈ {pos, neg}

SOCs := 100
cs,mean − cs

0
cs

100 − cs
0

, (51)

where cs
0, cs

100 are the lithium concentration of electrode s
at SOC equal 0% and 100%, respectively, see Table I. We
note that cs,mean := 1

Ns
∑

Ns
i=1 cs,i (recall that the discretization

method we chose is a uniform volume discretization). Given
that SOCpos and SOCneg are equal, we use the notation SOC
instead. As for the reference model, it is obtained by solving
the PDEs of (1) with (2) as boundary conditions using a finite
elements method and simulated with the parameters of Table
I, see [29] for details.

Figure 3. OCVs curves.

Figure 4. Input current profile.

A. Models comparison

We have compared the output voltages Vcell and the sur-
face concentrations cs,surf generated by the model in [7] and
model (27), with those generated by the reference infinite-
dimensional model in Figures 5 and 6, respectively, over the
whole interval of time [0,4500] as well as [0,3600] where
the current is rapidly varying. We see that, in all cases,
the proposed corrections allow improving the accuracy of
the data even over short time horizons and when the input
is rapidly changing. We note that the considered surface
concentrations of the reference infinite-dimensional model are
those taken at the electrodes/separator interfaces. To quantify
this improvement, we have computed the mean absolute error
(MAE) and the root mean square error (RMSE) of the voltage
error eVcell between Vcell generated by model (1)-(2) and Vcell
generated by the model in [7] and model (27), respectively.
We similarly computed the normalized surface concentrations
error ecs,surf between the surface concentrations generated by
model (1)-(2) and those generated by the model in [7] and
model (27), respectively. The results are given in Table II.
Model (27) is more accurate than the one in [7]. In particular,
we see improvements of the order of 50% for the output
voltage, 50% for the surface concentration of the positive
electrode and 30% for the surface concentration of the negative
electrode on the interval [0,4500] and particularly on [0,3600],
when the current is rapidly varying.
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Figure 5. Output voltage.

Figure 6. Surface concentrations.

B. State estimation

We have designed observer (33) for system (27) by
applying1 Theorem 3, as (46) holds for the considered
parameter values taking L = 104(3.2387,3.5432,3.3896,-
5.0388,-5.7421,-5.3310,-5.433750), P =

10−9



0.0137 0.0258 0.0329 0.0066 0.0107 0.0135 0.0149
0.0258 0.0550 0.0797 0.0127 0.0220 0.0304 0.0361
0.0329 0.0797 0.1485 0.0179 0.0312 0.0474 0.0681
0.0066 0.0127 0.0179 0.0136 0.0095 0.0039 −0.0031
0.0107 0.0220 0.0312 0.0095 0.0117 0.0115 0.0077
0.0135 0.0304 0.0474 0.0039 0.0115 0.0190 0.0231
0.0149 0.0361 0.0681 −0.0031 0.0077 0.0231 0.0471


,

ε = 1.17∗10−22, µv = 7.9784 and µw = 1.0486. For the
sake of comparison, we have designed an observer for the
non-corrected model (30) using the technique in [6], which
ensures Assumption 2 holds with the same gain L. The only
difference between the two observers is the output equation
used to synthesize them. We have initialized both observers
such that all estimated concentrations within the same particle
are equal and correspond to a SOC estimate, denoted ŜOC,

1We have not been able to ensure condition (37) using the observer design
technique in [6]. Nevertheless, this is not an issue, as, again, an observer for
the corrected model can be synthesized using Theorem 3.

Table II
MAE AND RMSE OF THE OUTPUT VOLTAGE AND THE SURFACE

CONCENTRATIONS ERRORS GIVEN BY THE MODEL IN [7] AND MODEL
(27)

MAE RMSE MAE RMSE
[0,4500] [0,4500] [0,3600] [0,3600]

eVcell : model in [7] [mV] 12.07 17.76 14.57 19.80
eVcell : model (27) [mV] 5.07 8.28 6.09 9.23
Improvement [%] 58.0 53.4 58.2 53.4
ecpos,surf : model in [7] [%] 2.05 3.01 2.48 3.36
ecpos,surf : model (27) [%] 0.95 1.53 1.15 1.71
Improvement [%] 53.7 49.2 53.6 49.1
ecneg,surf : model in [7] [%] 8.51 11.79 9.93 13.10
ecneg,surf : model (27) [%] 5.48 7.79 6.24 8.62
Improvement [%] 35.6 33.9 37.2 34.2

of 0%. We note that ŜOC is obtained by replacing cs,mean
in (51) by its estimate ĉs,mean. In practical applications, we
only know a biased version of the input current u and the
output voltage y. This bias is due to the precision of the
sensors and their conditioning. Therefore, to account for
this bias on the input current and on the output voltage, we
take w(t) = 3sin(2000πt), E = B, v(t) = 0.05sin(200πt) and
D = 1.

Figure 7 reports the actual SOC given by the infinite-
dimensional model and the estimated ones, as well as the
corresponding norm of the estimation errors on the SOC
eSOC = SOC − ŜOC obtained with the observer in [6], ob-
server (33) and observer (33) with the correction of its
estimated concentrations ĉ := (ĉneg,1, x̂) as done in Theorem
4. We see that observer (33) based on the corrected model
(27) provides a more accurate SOC. This improvement is
quantified by computing the average MAE and the average
RMSE of the SOC estimation errors eSOC for the observer
in [6], observer (33) and observer (33) with ĉcor, respectively,
averaged over 21 simulations for initial SOC estimates ranging
from {0%,5%, . . . ,100%} and for different gains values L,
10L and L/10. The results are given in Table III, where the
percentages in parenthesis represent the improvement of the
associated observer compared to the observer in [6]. We see
that observer (33) generates more accurate results in terms of
SOC estimation and this improvement is of the order of the
percent, which is significant for lithium-ion batteries.

We have also computed in Table III the average MAE and
the average RMSE, over the same 21 scenarios and for the
same 3 gains, of the normalized estimated concentrations error
ecs for s ∈ {pos,neg}, for the observer in [6], for observer
(33) and for observer (33) followed by the correction of
the estimated concentrations (ĉcor). The normalized estimated
concentrations error ecs is defined as follows

ecs :=
|cs − ĉs|
|cs|

, (52)

where cs := (cs(rs
1, ·),cs(rs

2, ·),cs(rs
3, ·),cs(rs

4, ·)) is the vector of
concentrations generated by (1)-(2) at the electrodes/separator
interfaces and ĉs is the vector of estimated concentrations
generated by the chosen observer. Table III reports that more
accurate estimated concentrations are obtained as a result of
the correction of the estimated concentrations.
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Figure 7. SOC and ŜOC generated by the observer in [6], observer (33)
and observer (33) with ĉcor (top) and norm of the estimation errors eSOC :=
SOC− ŜOC (bottom).

In the following, we go beyond the numerical results
presented in this section by feeding the observers implemented
on MATLAB with an experimentally measured input current
and output voltage.

Remark 5: The improvements observed in this section
thanks to the proposed model correction and associated ob-
server become even more significant when considering con-
stant currents, as met in practice in most battery charging
processes and consistently with Theorem 1. For instance, we
have considered the observer in [6] and observer (33) of
Section VI-B with the same gain L. We fed them by a constant
current charging profile that is equal to −36 A (charging C-
rate : 6C) on the interval [0,500] and 0 A on [500,1500] and
by the output voltage generated by an infinite-dimensional
model. Then, we compared the observers by computing the
average MAE and RMSE on the SOC estimation for initial
SOC estimates ranging from {0%,5%, . . . ,100%}. We have
obtained that observer (33) based on the corrected model
generates about 80% more accurate SOC estimates than the
observer in [6] based on the model without correction. □

VII. EXPERIMENTAL VALIDATION

In this section, an experimental validation of the obtained
results is carried out on a 6 Ah lithium-ion battery cell,
fitted with a graphite negative electrode and a NCA positive
electrode. The cell parameters required for model computation
are detailed in Table I. We note that some of these parameters
are taken from [31] (electrode thicknesses, particle radius,
volume fractions, electronic and ionic conductivities), the
others have been estimated by experimental characterizations.
The OCV curves for the battery cell are as in Figure 3. The
cell current and voltage are measured using sensors. We thus
obtain the current input shown in Figure 8, which represents

Table III
AVERAGE MAE AND RMSE OVER 21 SIMULATIONS OF THE SOC
ESTIMATION ERRORS AND OF THE ESTIMATED CONCENTRATIONS

ERRORS FOR DIFFERENT GAIN VALUES. THE VALUES IN PARENTHESIS
REPRESENT THE PERCENTAGE OF IMPROVEMENT WITH RESPECT TO THE

OBSERVER IN [6]

MAE RMSE

L

eSOC: observer in [6] [%] 1.92 2.76
eSOC: observer (33) [%] 0.81 (57.8) 1.35 (51.1)
eSOC: observer (33) + ĉcor [%] 1.58 2.29
ecpos : observer in [6] [%] 1.16 1.87
ecpos : observer (33) [%] 1.79 2.35
ecpos : observer (33) + ĉcor [%] 1.02 (12.1) 1.65 (11.8)
ecneg : observer in [6] [%] 5.82 6.5
ecneg : observer (33) [%] 7.28 8.18
ecneg : observer (33) + ĉcor [%] 4.99 (14.3) 5.57 (14.3)

10L

eSOC: observer in [6] [%] 1.95 2.81
eSOC: observer (33) [%] 0.88 (54.9) 1.43 (49.1)
eSOC: observer (33) + ĉcor [%] 1.61 2.33
ecpos : observer in [6] [%] 1.26 1.90
ecpos : observer (33) [%] 1.89 2.40
ecpos : observer (33) + ĉcor [%] 1.13 (10.3) 1.66 (12.6)
ecneg : observer in [6] [%] 5.81 6.49
ecneg : observer (33) [%] 7.28 8.15
ecneg : observer (33) + ĉcor [%] 4.97 (14.5) 5.57 (14.2)

L/10

eSOC: observer in [6] [%] 1.9 2.89
eSOC: observer (33) [%] 0.73 (61.6) 1.63 (43.6)
eSOC: observer (33) + ĉcor [%] 1.59 2.53
ecpos : observer in [6] [%] 1.12 2.42
ecpos : observer (33) [%] 1.82 2.86
ecpos : observer (33) + ĉcor [%] 1.05 (6.25) 2.34 (3.3)
ecneg : observer in [6] [%] 5.82 6.54
ecneg : observer (33) [%] 7.31 8.22
ecneg : observer (33) + ĉcor [%] 5.02 (13.7) 5.65 (13.6)

a PHEV discharge current on the interval [0,3240] and 0 A
on [3240,3844], and the measured output voltage shown in
Figure 9.

Figure 8. Measured input current.

We first compare the output voltages of both model [7]
without correction and model (27) with correction considering
a uniform volume discretization as in [7]. For this purpose, we
feed both models with a corrected version of the measured
current of Figure 8. This current correction is done via a
multiplicative gain equal to 1.035, which is chosen such that
the measured output voltage and the output voltage obtained
by the infinite-dimensional model in [29] match in the terminal
steady state. We have calculated the MAE and RMSE of the
voltage error eVcell between the measured output voltage and
the voltage generated by the model in [7] and model (27),
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Figure 9. Measured output voltage.

respectively. We have obtained the results of Table IV. We
see that the output voltage of the corrected model is about
25% more accurate than the model in [7].

Table IV
MAE AND RMSE OF THE OUTPUT VOLTAGE GIVEN BY THE MODEL IN

[7] AND MODEL (27)

MAE RMSE MAE RMSE
[0,3844] [0,3844] [0,3240] [0,3240]

eVcell : model in [7] [mV] 9.35 13.92 11.02 15.16
eVcell : model (27) [mV] 7.00 10.31 8.21 11.23
Improvement [%] 25.1 25.9 25.5 25.92

Next, we consider the observers designed in Section VI-B
of gain L with the same initialization. However, in this section,
we feed them with the measured input current and output
voltage obtained by experimentation. To compare the output
voltage and SOC estimated by both observers, we take as a
reference the measured output voltage and the experimental
SOC calculated by integration of the corrected measured
current as follows

SOCexp(t) :=− 1
3600Qcell

∫ t

0
Icell, cor(τ)dτ, (53)

where Icell, cor is the corrected measured input current.
Figure 10 shows the experimental SOC and the estimated

ones, as well as the corresponding norm of the estimation
error eSOC := SOCexp − ŜOC. Observer (33) generates the
most accurate SOC estimates. We quantified the results by
computing the average MAE and the average RMSE of the
estimation errors for each of the observer in [6], observer
(33) and observer (33) with ĉcor over the same 21 scenarios.
The results are shown in Table V. The values in parenthesis
represent the improvement of the corresponding observer with
respect to the observer in [6]. Observer (33) has the least
SOC estimation error. In particular, observer (33) based on
the corrected model estimates the state of charge about 25%
more accurately than the observer in [6].

In addition, we also computed the MAE and RMSE of the
voltage error between the measured output voltage and the
estimated output voltages generated by the observer in [6] and
observer (33) averaged over the same 21 scenarios. The results
are also shown in Table V. The voltage error associated to
observer (33) is lower than that of the model in [6]. Hence,

Figure 10. SOCexp and ŜOC generated by the observer in [6], observer (33)
and observer (33) with ĉcor (top) and norm of the estimation errors eSOC :=
SOCexp − ŜOC (bottom).

observer (33) also estimates the output voltage more precisely
than the observer in [6].

Table V
AVERAGE MAE AND RMSE OVER 21 SCENARIOS OF THE SOC

ESTIMATION ERRORS AND OF THE ESTIMATED VOLTAGE ERRORS. THE
VALUES IN PARENTHESIS REPRESENT THE PERCENTAGE OF

IMPROVEMENT WITH RESPECT TO THE OBSERVER IN [6]

MAE RMSE
eSOC: observer in [6] [%] 1.57 2.33
eSOC: observer (33) [%] 1.16 (26.1) 1.75 (24.9)
eSOC: observer (33) + ĉcor [%] 1.40 2.11
eVcell : observer in [6] [mV] 0.53 3.27
eVcell : observer (33) [mV] 0.50 (5.7) 3.23 (1.2)

VIII. CONCLUSION

We have presented an approach to correct the lithium
concentrations of a finite-dimensional SPM to asymptotically
eliminate the errors induced by the PDE discretization for
constant currents. As a result, more accurate variables are
generated by the finite-dimensional model as illustrated in
simulations. We have then exploited these corrections to derive
a new output voltage equation and thus a new state space
model. Two observer design strategies have been proposed
for this new model, with robust stability guarantees. The
estimated variables generated by the chosen observer are then
corrected to also asymptotically match those of the PDEs.
The obtained simulation and experimentation results show
significant improvement in terms of state estimation. Among
the possible future works we can envision is the design of
sampled-data observers for real-time implementation.
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APPENDIX A
PROOF OF (8)

The mean concentration cs,(1),mean is given in (3). We have
for all t ≥ 0,

cs,(1),mean(t) =
1
Vs

∫ Rs

0
4πr2cs(r, t)dr =

3
R3

s

∫ Rs

0
r2cs(r, t)dr.

(54)
In view of (1), we have for all t ≥ 0 and r ∈ [0,Rs]

r2 ∂cs(r, t)
∂ t

=
∂

∂ r

(
Dsr2 ∂cs(r, t)

∂ r

)
=

∂

∂ r

(
−r2

ϕs(r, t)
)
. (55)

By integrating (55) on [0,Rs], we obtain∫ Rs

0
r2 ∂cs(r, t)

∂ t
dr =−R2

s ϕs(Rs, t). (56)

From (54) and (56), we get∫ Rs

0
r2 ∂cs(r, t)

∂ t
dr =

d
dt

(
R3

s

3
cs,(1),mean(t)

)
=−R2

s ϕs(Rs, t).

(57)
From (57), in view of the boundary conditions in (2),
ċs,(1),mean =− 3

Rs

jLi
s (t)
asF . By the definition of as, we thus derive

(8).

APPENDIX B
PROOF OF PROPOSITION 1

Solutions to (1)-(2) for any given Lebesgue measurable,
locally essentially bounded input ms, can be obtained using
a solution decomposition technique as follows.

We first drop the notation cs,(1) to refer to the lithium
concentrations generated by the PDEs in (1)-(2). Let ms be
a Lebesgue measurable, locally essentially bounded input, cs,1
be a solution to (1)-(2) with input ms and cs,1(r,0) = c0(r), cs,2
be a solution to (1)-(2) with input ms and cs,2(r,0) = c0 for
any r ∈ [0,Rs], c0 ∈ R≥0 being the initial mean concentration
cs,1,mean(0) and cs,3 a solution to (1) with input ms, cs,3(r,0) =
c0(r)−c0 and the boundary conditions being ϕs(0, t) = 0 and
ϕs(Rs, t) = 0. We have cs,1(r, t) = cs,2(r, t) + cs,3(r, t) for all
t ≥ 0 and r ∈ [0,Rs] by linearity of (1). Let y(r, t) = rcs,3(r, t),
from (1), we derive for all t ≥ 0 and r ∈ [0,Rs]

∂y(r, t)
∂ t

= Ds
∂ 2y(r, t)

∂ r2 . (58)

The solution to (58) is derived using the variable separation
method and cs,3 boundary conditions. We thus obtain for all
t ≥ 0 and all r ∈ [0,Rs]

cs,3(r, t) =
∞

∑
n=1

Bn
sin(λnr)

r
e−λ 2

n Dst , (59)

where λn is the series of strictly positive solutions to λRs =
tan(λRs) and the coefficients Bn satisfy

Bn =
2
Rs

∫ Rs
0 rc0(r)sin(λnRs)dr

sin2 (λnRs)
. (60)

In view of (59), we derive for any r ∈ [0,Rs]

(cs,3(r, ·))∞ = 0. (61)

From (61) and as cs,1(r, t) = cs,2(r, t)+cs,3(r, t), we deduce the
desired result, namely (9), holds.

APPENDIX C
PROOF OF LEMMA 3

We first show that all the eigenvalues of matrix As are
non-positive (note that these are real as As is a tridiagonal
matrix with symmetric coefficients signs). We invoke for this
purpose Gersgorin disk theorem. This theorem states that each
eigenvalue λm, with m∈ {1, . . . ,Ns}, of As satisfies at least one
the inequalities |λm − (As)ii| ≤ ρi with ρi := ∑

Ns
j=1
j ̸=i

|(As)i j| for

i ∈ {1, . . . ,Ns}. In view of the expression of As, this means
that each λm of As satisfies at least one of the inequalities
|λm + µs

1| ≤ µs
1, |λm + υs

i | ≤ υs
i for i ∈ {2, . . . ,Ns − 1} and

|λm + µ̃s
Ns
| ≤ µ̃s

Ns
. Hence, we deduce that λm ≤ 0 for all

m ∈ {1, . . . ,Ns}. On the other hand, by solving Asx = 0Ns×1
for any x ∈ RNs , we derive ker(As) = {α1Ns×1 : α ∈ R} is of
dimension 1. Hence, the rank of As is Ns − 1, which means
that there is a single eigenvalue of As that is equal to 0.
Consequently, As admits Ns −1 strictly negative eigenvalues.

Let λm ∈ R<0 be an eigenvalue of As, let xm be a corre-
sponding non-zero eigenvector, i.e., Asxm = λmxm and xm ̸= 0.
Given that ΓsAs = 01×Ns , we derive ΓsAsxm = Γsλmxm = 01×Ns .
Thus, as λm ̸= 0, we obtain

Ns

∑
i=1

V s
i xm,i = 0. (62)

On the other hand, Asxm = λmxm is equivalent to, for any i ∈
{1, . . . ,Ns}

Ns

∑
j=1

(As)i jxm, j = λmxm,i. (63)

Using (62), we obtain xm,Ns = − 1
V s

Ns
∑

Ns−1
i=1 V s

i xm,i. Hence,

(63) is equivalent to ∑
Ns−1
j=1 (As)i jxm, j + (As)iNsxm,Ns =

∑
Ns−1
j=1 (As)i jxm, j − 1

V s
Ns

∑
Ns−1
j=1 (As)iNsV

s
j xm, j = λmxm,i. Therefore,

in view of the definition of Ãs we derive for any i∈{1, . . . ,Ns−
1}

Ns−1

∑
j=1

((As)i j − (As)iNs

V s
j

V s
Ns

)xm, j =
Ns−1

∑
j=1

(Ãs)i jxm, j = λmxm,i. (64)

From (64), we obtain Ãsx̃m = λmx̃m, where x̃m is the vector
of the Ns − 1 first coefficients of xm. Therefore, λm is an
eigenvalue of Ãs. Consequently, any of the Ns − 1 strictly
negative eigenvalue of As is also an eigenvalue of Ãs. Since
Ãs is of dimension Ns − 1×Ns − 1, this implies that all the
eigenvalues of Ãs are strictly negative: matrix Ãs is Hurwitz.
Lemma 3 is thus proven.
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[23] M. Khalil, R. Postoyan, and S. Raël, “State estimation for enhanced low
dimensional electrochemical models of lithium-ion batteries,” in IEEE
Conference on Decision and Control, Marina Bay Sands, Singapore,
2023, pp. 7514–7519.

[24] G. A. Nazri and O. Pistoia, Lithium Batteries: Science and Technology.
Kluwer Academic Publishers, 2004.

[25] M. Benzine, R. Postoyan, S. Raël, S. Benjamin, and D. Monier Reyes,
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