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The characterization of satellite behavior is of paramount
importance in Space Surveillance Awareness. It in-
volves modeling complex patterns from large operational
databases, making AI tools well-suited to handle this use
case. Despite existing contributions, no database is ded-
icated to Pattern-of-Life study in the Low Earth Orbit
regime. In this context, we provide a dataset of satellite
trajectories, focusing on station-keeping issues. The pro-
posed database contains generated trajectories based on
real data. Our experiments on the provided dataset and
real trajectories tend to verify the representativity of the
data and highlight the complexity of the Pattern-of-Life
related tasks.

1 Introduction

Over the last decades, the increasing number of satel-
lites has led to a higher complexity for Space Surveil-
lance Awareness (SSA) systems. The Low Earth Orbit
(LEO) regime is the playground of many private inter-
ests, especially telecom companies like Starlink dom-
inating such orbits. Better reactivity is necessary to
address this growth, such as when dealing with orbit
determination and maneuver detection tasks. Exploit-
ing SSA data relies on human intervention, which is
time-consuming and error-prone. Further, SSA gen-
erates a lot of data due to the nature of the system:
objects rotating around the Earth and repeatedly pass-
ing in front of SSA sensors, as radar systems.

At the same time, AI algorithms prove their abil-
ity to treat different use cases dealing with time series,
such as anomaly detection [1], classification [2], or pre-
diction [3]. Some AI tools have already been used for
maneuver-related tasks [4]. However, these contribu-
tions rely on eclectic datasets based on different space-
craft, pre-processing, and data nature, such as mean
elements or ephemeris. We propose a new dataset to
unify the results of state-of-the-art methods.
∗Corresponding author. E-Mail: ste-

fan.baudier@minesparis.psl.eu

A dataset for Geosynchronous Orbit (GEO) satel-
lites already exists [5]. Despite the GEO regime being
a key challenge for SSA, it does not share the character-
istics of the LEO regime, which is also worthy of inter-
est. Whether GEO satellites have the same orbital pe-
riod matching with the Earth’s rotation rate (24 hours),
leading to returning to the same position in the sky
after each sidereal day, the satellites in LEO have dif-
ferent orbital periods (from 1h30 to 2h00) leading to
less remarkable natural trajectory pattern. Further-
more, LEO satellites are submitted to the same per-
turbations as GEO satellites but at different scales of
intensities, leading, for example, to a high altitude de-
crease due to atmospheric drag. It drastically changes
the maneuvering strategy, called station-keeping, cor-
recting these drifts. Then, the Pattern-of-Life (PoL),
the repeatable patterns composed by the natural satel-
lite cinematic and the station-keeping strategy, is very
different from the satellites in the GEO regime, raising
the need for a new dataset.

We introduce a new dataset composed of synthetic
data. The data generation is based on Orekit [6], a
well-known core layer for space flight dynamics ap-
plications. While this generation aims to generalize
the proposed PoL to all LEO satellites, it also focuses
on the case of telecom satellites through the Starlink
example.

Based on this dataset strongly focused on PoL de-
scription, we conduct two related studies with AI
tools. The first aims to detect maneuvers in a portion
of the satellite trajectories. We test the model on real
data to assess the synthetic maneuvers’ representativ-
ity. The second aims to classify the maneuvers as part
of station-keeping or not.

This paper covers i) the problem description focus-
ing on the PoL, ii) the dataset presentation and the un-
derlying assumptions, and iii) the results of the two
studies related to maneuver characterization with AI.



2 Problem

The PoL of satellites raises great issues in SSA. While
the natural trajectory can be well modeled numeri-
cally, modeling station-keeping is more challenging
because it can be very different from one satellite to
another.

The main specificity of the LEO, regarding other or-
bital regimes, is the preponderance of the drag among
the other perturbations. The atmosphere friction de-
pends on characteristics that can differ from one satel-
lite to another, as described in the drag force equation:

Fd =
1
2
ρu2cdA, (1)

where ρ the mass density of the atmosphere, u the
flow velocity relative to the object, cd the drag coeffi-
cient and A the cross-sectional area. These parameters
depend on the satellite’s altitude, shape, size, and at-
titude. These parameters evolve with time, leading
to high volatility in the drag force value. The same
phenomenon occurs in the other perturbations at a
smaller intensity. It leads to a personalized calibration
of station-keeping maneuvers for each satellite.

The intensity of the satellites’ maneuvers depends
on the propulsion system used. Electric propulsors
generate low-thrust maneuvers but enable finer orbit
control and a longer delta-V budget; meanwhile, using
chemical propulsors leads to a smaller delta-V bud-
get but greater maneuver intensity capacity. Further,
the station-keeping strategy can be different from one
satellite to another. The satellite’s tolerance for drift-
ing from its initial orbit relies on the specificity of
its mission, for example, being included in a satellite
constellation.

We illustrate the difference in station-keeping char-
acteristics with TLE data provided by the USSPACE-
COM via the Spacetrack website [7]. The trajectories
of Jason 3 and Cryosat 2 in Fig. 1 show that the in-
tensity and periodicity of repeatable maneuvers differ
from one satellite to another. Moreover, there is a ma-
neuver that does not follow the same pattern as oth-
ers in the Cryosat 2 trajectory. Indeed, while station-
keeping maneuvers represent most satellite maneu-
vers, spacecraft can perform other maneuvers, for ex-
ample, changing their mission or avoiding a collision.

3 Data description

3.1 Data generation

This simulation is based on the Orekit software, which
is well-known for its application in space mechanics
projects. The algorithm generates scenarios of satellite

(a) Jason 3

(b) Cryosat 2

Figure 1: Evolution of the mean semi-major axis for two dif-
ferent satellites. The vertical lines represent the maneuvers.

trajectories, including the main perturbations [8] of
LEO satellites: the perturbated gravity field, the drag,
the third bodies attraction (Sun and Moon), the solar
radiation, and the relativity. These natural perturba-
tions depend on satellite characteristics. We also add
non-natural perturbations through maneuvers. We ex-
plain the core principles underlying satellite charac-
teristics generation and the station-keeping process.

3.1.1 Satellite characteristics

One notes that only three satellite characteristics
mainly impact the trajectory: the cross-section, drag,
and radiation coefficient. Their values mostly rely on
the satellite’s shape and attitude. The first can be eas-
ily considered constant, but the second evolves. We de-
cide to represent the attitude evolution by only a cross-
section evolution. The drag coefficient and radiation
coefficient are basically around 2.2. We draw once for
all their values for each satellite around this nominal
value. The cross-section parameter is generated based
on the DISCOSweb database [9]. Minimum and max-
imum values are drawn based on the available data
on LEO satellites. Then, the actual cross-section is ini-
tialized and updated randomly based on the previous
limits.

We also generate Starlink-like scenarios using Star-
link characteristics and orbit values from the DIS-
COSweb database.

3.1.2 Station-keeping

Following previous studies [10, 11], where station-
keeping relied on mean element computation, we opt



Figure 2: Example of the mean semi-major axis correction.
The horizontal lines represent the nominal (black) and lim-
its (red) values. The vertical lines represent the station-
keeping (green) and random (blue) maneuvers.

for a similar approach, activating maneuvers through
a servo system driven by mean element values. Each
scenario is defined by a nominal value and a threshold
defining the limits the satellite mean parameters can
not cross. They are computed based on the orbit drift
intensities caused by the perturbations over a variable
period of a few days. It aims to generate faithful ma-
neuvers correlated with the orbit. Further, these lim-
its set nominal intensities of maneuvers and aim to
simulate the variability in propulsion technology and
operational mission described in 2. We implemented
a station-keeping strategy correcting the mean semi-
major axis and inclination values. In Fig. 2, one ob-
serves that when the mean semi-major axis crosses
the down limit, a maneuver corrects the mean value
to set it to the nominal one. The mean elements are
computed using the same theory as TLE, especially
based on the SGP4 model fitted on a 3-day ephemeris
window.

3.1.3 Other maneuvers

Additionally, we introduce two distinct types of ma-
neuvers that deviate from this typical behavior. These
anomalous maneuvers constitute the class we aim
to detect in 4.3. The first type resembles station-
keeping maneuvers in intensity and modifies exclu-
sively the semi-major axis or the inclination. How-
ever, they do not adhere to the servo system strat-
egy. On the other hand, the second type exhibits
even more significant deviations in intensity com-
pared to the station-keeping distribution. It does not
target any specific aspect of the trajectory for alter-
ation. All these maneuvers are composed of impulsive
burns, whether Hohmann transfer for semi-major axis
change, nodes maneuvers for inclination change, or at
random anomaly and orientation for another kind of
maneuver. Some scenarios do not include maneuvers;
their trajectory only relies on natural forces.

Figure 3: Representation of Keplerian parameters: a is the
semi-major axis, i the inclination, e the eccentricity, ω the
argument of periapsis, Ω the longitude of the ascending
node, and ν the true anomaly.

3.2 Data format

The dataset gathers 400 synthetic satellite scenarios,
with 150 Starlink look-alike trajectories 1. This diver-
sity of scenarios enables to cover uniformly the LEO
domain and to focus on its overcrowded parts. The
cinematic data are in the osculating equinoctial repre-
sentation [12], a variant of Keplerian orbit parameters
(Fig. 3). This data representation is robust to singular-
ities, such as when the eccentricity or the inclination
equals zero. This kind of property is well-suited for a
deep-learning approach. For maneuvering scenarios,
another file containing information about the maneu-
vers is provided.

Considering that the station-keeping process differs
for each satellite, we aim to challenge models on sce-
nario change resilience. To achieve this, we partition
the dataset into train-test sets, ensuring that each sce-
nario is exclusively assigned to one set in a 70-30 per-
cent manner.

4 Results

This section proposes a quick exploration of the data
through maneuver detection, allowing to check the
data generation’s representativity and assess the com-
plexity related to Pattern-of-Life tasks.

4.1 Preprocessing and data visualization

We use the Seasonal-Trend decomposition procedure
based on Loess (STL) [13], a filter that decomposes
time series with periodicity by applying a Loess se-
quence smoother. As described in Fig. 4, this filter
yields three distinct components: a seasonal compo-
nent capturing periodic evolution, a trend component

1https://github.com/StefanBaudier/Synthetic-Dataset-of-
Maneuvering-Low-Earth-Orbit-Satellite-Trajectories-for-AI-
Analysis



(a) Semi-major axis (b) Inclination x

Figure 4: STL decomposition of two equinoctial parameters,
during a semi-major axis (a) and an inclination (b) maneu-
ver. The top charts are the raw data (D). The three following
are the components of the STL decomposition: Trend (T),
Seasonal (S), and Remainders (R).

delineating shifts between successive periods, and a
remainder component encompassing unexplained in-
formation. Subsequently, we derive various features
by computing the differences between consecutive
timestamps. One notes that the impact of the maneu-
vers is clearer on the trend and residual graphs than
on the raw ephemeris. It encourages the usage of such
methods to treat ephemeris data.

4.2 Maneuver detection

The objective is to detect maneuvers within sub-
sequences of 12-hour trajectories using a standard su-
pervised classification paradigm. We train and test the
model on the generated dataset and test it on a real
dataset. The real data come from the IDS (Interna-
tional Doris System) [14] providing DORIS (Doppler
Orbitography and Radiopositionning Integrated by
Satellite) data and derived products. This dataset con-
tains 18 real satellites’ orbit positioning at a centime-
ter precision.

The normal and abnormal classes are balanced for
both real and synthetic datasets, i.e., there are as many
windows without maneuver as windows containing at
least one burst.

The used pipeline is described in Fig. 5. We derive
and standardize the data to ensure uniformity, calcu-
lating each satellite’s features’ mean and standard de-
viation. We use a standard AI model, e.g., a convolu-
tional neural network of n Convolutional-Gelu layers.
The kernel size of each layer is set to obtain a per-
ceptive field equal to the maximum Keplerian period
in LEO, i.e., 120 minutes. The channel number is in-
creased by 1.2 at each layer.

We test several configurations, changing n from 1 to
4. The best model contains 2 stacks of convolutional
layers. We will use this architecture for the following

Figure 5: Pre-treatment and CNN architecture. The blue
boxes are non-learnable functions, the red ones denote
learnable, and the green circles signify regularization so-
lutions.

experiments.

Test - Dataset F1-score RP9 AUPRC

Synthetic 0.98 0.97 0.97
Real 0.92 0.93 0.88

Table 1: Results of the maneuver detection with CNN

The F1-score, precision at the recall of 0.9 (RP9),
and the Area Under the Precision-Recall Curve
(AUPRC) are shown in Tab. 1. Even if the results on
real data are slightly lower than those on synthetic
ones, the classification performance is still satisfac-
tory. These good results seem to confirm the capacity
of an AI model to treat such a task on real data us-
ing the generated database as a training base. It tends
to prove the good maneuver representativity of the
synthetic dataset.

Further, we test our model, returning progressively
to the original data balance, i.e., with natural windows
representing around 99 percent of the data set. Be-
cause this unbalancing only increases the number of
natural windows (class 0), it only impacts the preci-
sion value. One observes in Tab. 2 that the precision
drops significantly for both datasets. We assume the
higher decrease for the real dataset is due to unlabeled
events impacting the trajectory (probably maneuvers)
and minor inaccuracies of synthetic orbit perturba-
tions emphasized by this unbalanced paradigm.

We suppose the architecture needs to model the or-
bit perturbations better.

4.3 Out-of-PoL detection

The objective is to detect maneuvers out of the PoL,
represented by the maneuvers out of the station-
keeping process described in 3.1.3. We follow the



Test - Dataset 1 2 3 4 5

Synthetic 0.98 0.92 0.86 0.81 0.76
Real 0.91 0.46 0.30 0.23 0.18

Table 2: Precision according to the dataset balance uni-
formly represented from 1 to 5. 1 stands for a balanced
dataset, 5 stands for the original data balance.

same paradigm with the same model as in 4.2, a 12-
hour supervised classification with the same param-
eters. The real data do not contain enough labels to
distinguish the PoL maneuvers from the others. We
test this approach on the synthetic data only.

Test - Dataset F1-score RP9 AUPRC

Synthetic 0.51 0.0 0.31

Table 3: Results of the out-PoL maneuver classification us-
ing CNN

The poor results of this experiment, shown in Tab. 3,
highlight that the differences among each satellite
station-keeping process make analyzing the Pattern-
of-Life with AI difficult. We suppose more informa-
tion on the past PoL is needed to perform such a task.

5 Discussion

This article describes a novel dataset dedicated to Low
Earth Orbit satellite trajectories for AI analysis. This
synthetic dataset is focused on Pattern-of-Life mod-
elization and could be used for related analysis. The
dataset’s representativity is based on a real database
foundation and confirmed through experiments on
the presented dataset and real data. Further investi-
gations emphasize the difficulty of dealing with such
complex patterns, both for the perturbations and for
the station-keeping process modelization. The Deep
Matrix Profile introduced in [15] and applied to the
provided data shows promising results by exploiting
the satellite’s past trajectories to model the Pattern-of-
Life. It enables to improve the classification of the nat-
ural orbit parts and better distinguish random from
station-keeping maneuvers. This study illustrates that
AI analysis is well-suited to the complex tasks related
to the proposed dataset.
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