

LA CARATTERIZZAZIONE CHIMICA DEL PARTICOLATO ATMOSFERICO

Giornate di studio e approfondimento interagenziale

27-28 novembre 2023 VI edizione

Formation and Reduction of SIA across Europe

Alain Clappier

1

SIA Formation

SIA are formed from 3 precursors NH_3 which, with NO_x , gives Ammonium Nitrate $NO_3^-NH_4^+$ and with SO_2 gives Ammonium Sulfate $(NH_4^+)_2SO_4^{2-}$.

Which of these precursors should be reduced in priority ?

European Reduction Strategies in Winter

Contributions of each precursor (i.e. mass fraction of nitrate NO_3^- , sulfate SO_4^{2-} and ammonium NH_4^+)

In winter the mass fractions of nitrate NO_3^- and sulfate SO_4^{2-}

are the largest contributions of SIA formation.

3

European Reduction Strategies in Winter

Reduction of 50% of each precursor NO_x , NH_3 and

 SO_2 independently

Contributions of each precursor (i.e. mass fraction of nitrate NO_3^- , sulfate SO_4^{2-} and ammonium NH_4^+)

Why, in winter, ammonia NH_3 reductions lead to the most important SIA reductions while the mass fractions of nitrate NO_3^- and sulfate SO_4^{2-} are the largest contributions of SIA formation?

4

NO₂ v.s. NH₃ Reduction Strategies

NO₂ v.s. NH₃ Reduction Strategies

European Reduction Strategies in Summer

Contributions of each precursor (i.e. mass fraction of nitrate NO_3^- , sulfate SO_4^{2-} and ammonium NH_4^+)

Reduction of 50% of each precursor NO_x , NH_3 and SO_2 independently

Over large areas in summer, SO_2 is the precursor that produces the greatest reductions when the sulfate SO_4^{2-} mass fraction is largest.

7

Université

SIA Formation: Amonium Nitrate

Ammonium nitrate NH_4NO_3 is formed from ammonia NH_3 and nitric acid HNO_3 existing in the gas phase. Ammonia and nitric acid can therefore be limiting factors in nitrate NO_3 formation.

8

SIA Formation: Amonium Sulfate

Ammonium nitrate NH_4NO_3 is formed from ammonia NH_3 and nitric acid HNO_3 existing in the gas phase. Ammonia and nitric acid can therefore be limiting factors in nitrate NO_3 formation.

 SO_2 has the ability to produce sulfuric acid directly in the aerosol phase. Ammonia NH_3 is therefore not a limiting factor in sulfate SO_4 formation, which does not necessarily require the presence of ammonium NH_4 .

9

Université

SIA Formation: Atmospheric Oxidation Capacity

The formation of nitric and sulfuric acids from NO_2 and SO_2 depends on the oxidation capacity of the atmosphere (presence of OH radicals and O_3).

European Reduction Strategies O₃ and PM

In heavily polluted areas, a reduction in NO_x leads to the release of OH radicals and an increase in O_3 which increase the atmospheric oxidation capacity.

 ΔO_3 (Scenario – Base Case) for a reduction of 50% of NO_x

European Reduction Strategies O₃ and PM

In heavily polluted areas, a reduction in NO_x leads to the release of OH radicals and an increase in O_3 which increase the atmospheric oxidation capacity.

In such situation, SIA could also increase.

 ΔO_3 (Scenario – Base Case) for a reduction of 50% of NO_x

Grazie per la vostra attenzione

