

The Energy Transition as a Business Opportunity

Alain Clappier

1

2022: heat wave, record temperature, drought and fires

Recurrent heat waves and record droughts have put forests and the wildfires engulfing them at the heart of this summer's political news cycle. This urgency has been illustrated by the data provided by the European Forest Fire Information System, on Tuesday, August 2. 47,286 hectares have already burned in France since January in 243 fires, more than for the entire year of 2019, the most intense of the decade, where 43,602 hectares was lost in 12 months.

Published on August 4, 2022 in "Le Monde"

2021: Extreme rainfall and flooding

More than 200 people killed and billions of euros worth of damage: the heavy toll of the floods that ravaged Germany and Belgium in mid-July must be blamed on climate change. According to a study published on Tuesday, August 24, this extreme episode was made up to 9 times more likely by warming due to human activity. Climate change also "increased the amount of rainfall on a day by between 3% and 19%," according to scientists at the World Weather Attribution (WWA), which includes experts from various research institutes around the world.

fib

Published on August 24, 2021 in "Le Monde"

Why are the IPCC conclusions optimistic?

Climate scientists had predicted global warming, more intense droughts and more frequent extreme precipitation, but the change appears to be faster than expected.

Several processes are not included (or partially included) in the climate models

Why are the IPCC conclusions optimistic?

Climate scientists had predicted global warming, more intense droughts and more frequent extreme precipitation, but the change appears to be faster than expected.

Given Several processes are not included (or partially included) in the climate models

Why are the IPCC conclusions optimistic?

Climate scientists had predicted global warming, more intense droughts and more frequent extreme precipitation, but the change appears to be faster than expected.

Several processes are not included (or partially included) in the climate models

□ At large scales (i.e. global scale), computational fluid dynamics models linearize reality.

Why are the IPCC conclusions optimistic?

Climate scientists had predicted global warming, more intense droughts and more frequent extreme precipitation, but the change appears to be faster than expected.

Several processes are not included (or partially included) in the climate models

At large scales (i.e. global scale), computational fluid dynamics models linearize reality.

□ The IPCC scientists already have a hard time convincing politicians and the population with the current messages, it would be even harder with more pessimistic messages.

Changes that we will undergo

□ World agricultural production will be increasingly affected

□ Biodiversity will be reduced more and more

Entire regions will become uninhabitable resulting in the migration of hundreds of millions of people

eria internacional ndustrial de Bogotá

Our economy is changing to mitigate the causes of global warming (especially in the energy sector)

Renewable energy consumption is the consumption that is growing the most during the last 10 years (especially wind and solar)

		2011-2016	2016-2021
	Oil	0.7%	-0.1%
	Gas	1.0%	1.4%
	Coal	-0.1%	0.2%
	Nuclear	-0.4%	0.5%
	Hydroelectric	1.1%	0.4%
	Solar	38.5%	20.8%
Renewable -	Wind	11.2%	8.9%
	Geothermal, biomass	3.9%	3.7%

from BP Statistical Review of World Energy2021

eria internacional ndustrial de Bogotá

Our economy is changing to mitigate the causes of global warming (especially in the energy sector)

Renewable energy consumption is the consumption that is growing the most during the last 10 years (especially wind and solar)

		2011-2016	2016-2021		
	Oil	0.7%	-0.1%		
	Gas	1.0%	1.4%		
	Coal	-0.1%	0.2%		
	Nuclear	-0.4%	0.5%		
	Hydroelectric	1.1%	0.4%		
[Solar	38.5%	20.8%		
wable –	Wind	11.2%	8.9%		
	Geothermal, biomass	3.9%	3.7%		

from BP Statistical Review of World Energy2021

How will these changes affect Colombia

and how can the country adapt?

Energy demand is increasing in Colombia

Electric technologies are disrupting the transportation sector.

90% of new cars sold in Norway are now electric or plug-in hybrids

The goal is to get to 100% EV sales by 2025.

Tesla Model 3 Was The Top Selling Model In Europe In September

It's the first time ever when an all-electric car is also the best selling car in a month.

Electric vehicles become the cheapest

Despite a cost which is already low, the fraction of electric car in Bogota is still very low. That can be due to a number of barrier which prevents a faster renewal:

- ✓ The capital cost of an electric car is currently significantly higher than for a conventional car.
- ✓ The refueling time of an electric car is much higher than for a conventional car
- ✓ The **autonomy** of electric cars is still significantly lower than for a conventional car
- The charging stations are still scares and difficult to find in Bogota and more generally in Colombia

All these barriers should be removed in the future. The performance of the charging stations and the autonomy of the electric cars are constantly improved. A large number of charging stations can easily be implanted all over the country. The capital cost of electric cars is decreasing and should become lower than for the conventional car in the next 6 to 9 years.

Well to wheel emissions

eria internacional ndustrial de Bogotá

The introduction of electric cars will lead to a decrease in CO_2 emissions, but not in $PM_{2.5}$.

Emissions resulting from the use of electric vehicles depend on the electricity generation mix.

Electricity required by the electric vehicles in Bogota.

Energy used [GWh]	Passenger cars	Taxis	Rigid buses	Articu. buses	Motorcycles
by the current vehicle fleet	17 440	3 335	3 611	600	2 000
by electric vehicles	4 011	767	975	126	220
Energy reductions	77%	77%	73%	79%	89%

Current energy consumption in Bogota: 10 398 GWh/yr

Increase of electric consumption			
due to electric verticles (70)			
Passenger car	39%		
Passenger cars + Taxis + Moto	48%		
All passenger vehicles	59%		

Trends of the repartition between the different transport modes.

20

Electric motorcycles are cheaper and will reduce CO₂ and PM emissions of more than a factor 2

Motorcycles can be a good alternative but mortality is more than 20 times greater then for cars. Investment on infrastructure for security is necessary.

In 2025, electric buses are still not cheaper, they reduce CO₂ emissions but not PM emissions

fib

Share the vehicles is one the issue to reduce the gas emissions.

BlaBlaCar connects individuals through an application. Drivers wishing to make available, in exchange for a fee, places available in their car for a specific journey.

Cab service

Uber connects individuals with drivers through an application. In exchange for a fee, individuals ask a driver for a specific destination.

eria internacional ndustrial de Bogotá ^{XXIII}

Climate change will lead to temperature elevations and an increase of energy consumption in the residential sector (air conditioning).

Moises E. Angeles et al.: Impacts of climate change on building energy demands in the intra-Americas region, Theor Appl Climatol (2018) 133:59–72

In the future, Colombian energy demand will continue to increase especially the electric demand of the transport and residential sectors.

How will it possible to supply it?

Colombia is fully energy independent,

2018	Production	Consumption
Oil [barrels per day x 1000]	866	342
Gas [billion cubic meter]	12.9	13.0
Coal [million tonnes]	84.3	5.9

fib

Colombia is fully energy independent, and its energy efficiency in terms of economic growth has improved but...

Colombia is fully energy independent, and its energy efficiency in terms of economic growth has improved but...

□ the national economy depends strongly from the oil market

28

fib feria internacional industrial de Bogot

Colombia is fully energy independent, and its energy efficiency in terms of economic growth has improved but...

□ the national economy depends strongly from the oil market

2018

Years

5.6

8.3

58

the sustainability of energy resources is weak:
less than 10 years of oil and gas reserves remain.

Oil

Gas

Coal

	-
	n'
,	=
	-

Colombia is fully energy independent, and its energy efficiency in terms of economic growth has improved but...

□ the national economy depends strongly from the oil market

the sustainability of energy resources is weak:
less than 10 years of oil and gas reserves remain.
hydrological resources are affected by climate change

Alternative Energy Mix in Colombia

How to move to a sustainable and environmentally friendly energy mix in Colombia?

- □ Oil and Gas : less than 10 years of reserves and it emit greenhouse gases
- □ Coal : more reserves but it emit more greenhouse gases (low energy efficiency) and other pollutants (Particulate Matter)
- □ Hydroelectricity: can be further developed (17 GW to 57 GW, UPME, 2018) but remain vulnerable to climate change.
- **Biomass** : ?

Alternative Energy Mix in Colombia

fib feria internacional industrial de Bogotá

Ē

Wind and Solar Resources

eria internacional ndustrial de Bogotá

Areas needed to supply 100% of the **Colombian** electricity demand with:

- wind turbines
- PV panels

 \bigcirc

Onshore Wind Turbines 1637-6197 km² (0.30% - 1.13%) of the "interconnected country surface"

Utility Solar Photovoltaic 931-1008 km² (0.17% - 0.18%) of the "interconnected country surface"

Wind and Solar Resources

Cost compared to other technologies.

Technologies	Total Annual Cost (USD/MWh)	Carbon Cost (USD)	Comp. Cost (USD)
Solar Photo Voltaic (PV)	55	0	55
Wind Turbine Onshore	46	0	46
Geothermal	112	0	112
Water - Hydroelectric	38	0	38
Biomass	136	0	136
Gas Turbine (CCGT)	133	21	154
Thermoelectric oil	91	36	126
Thermoelectric coal	43	35	78
Generation Set Diesel	108	42	150
Generation Set Gas	263	30	293
Generation Set Oil	108	42	150
Cycle Nuclear	69	0	69

Wind and Solar Resources

Cost compared to other technologies.

Technologies	Total Annual Cost (USD/MWh)	Carbon Cost (USD)	Comp. Cost (USD)	Capital Cost (%)	Fix Cost (%)	Variable Cost (%)	Fuel Cost (%)
Solar Photo Voltaic (PV)	55	0	55	85.4%	14.6%	0.0%	0.0%
Wind Turbine Onshore	46	0	46	53.1%	46.9%	0.0%	0.0%
Geothermal	112	0	112	82.3%	16.3%	1.3%	0.0%
Water - Hydroelectric	38	0	38	69.5%	22.6%	7.8%	0.0%
Biomass	136	0	136	55.5%	9.8%	0.5%	34.3%
Gas Turbine (CCGT)	133	21	154	5.4%	1.8%	0.8%	92.0%
Thermoelectric oil	91	36	126	23.3%	4.3%	2.2%	70.2%
Thermoelectric coal	43	35	78	47.1%	7.2%	4.2%	41.5%
Generation Set Diesel	108	42	150	22.4%	7.0%	1.8%	68.7%
Generation Set Gas	263	30	293	8.1%	2.5%	0.8%	88.6%
Generation Set Oil	108	42	150	22.4%	7.0%	1.8%	68.7%
Cycle Nuclear	69	0	69	55.7%	14.3%	5.8%	24.2%

Energy Storage

Model to estimate the storage capacity needed by the introduction of Intermittent sources into the energy mix.

Energy Storage

The introduction of intermittent sources into the energy mix requires significant storage capacity.

Energy Storage

Different storage technologies.

Efficiency

Pumped-storage hydroelectricity

eria internacional ndustrial de Bogotá

Power to gas (Hydrogen)

Storage time

Conclusions

Climate change is underway and accelerating. In the very best case, it will take decades to control it.

The world economy is adapting to implement the energy transition. The countries that anticipate the transition will strengthen their economy in the long term, the others will suffer the crisis...

feria internacional industrial de Bogotá

Muchas gracias !