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The emergence of a public space hosted on online platforms has 
seen the appearance of algorithms as mediators that filter, 
curate, and select the contents we see as users. 

As the entanglement between this digital public sphere and offline 
politics progresses, several works have addressed concerns  
regarding online segregation and polarization in social media. With 
a consensus settling on the existence of a global process of 
democratic decline connected with polarization and with the lack 
of trust in representation and institutions, fears regarding the role 
of social media in this process have also expanded. This article 
discusses a particular technical opportunity presented by the rise 
of AI systems as mediators. This opportunity leverages a parallelism 
between two theoretical and seldom connected perspectives: 

1) spatial models of politics arising in political sciences, and 

2)  representation learning spaces ubiquitous in recent and  
growingly ubiquitous forms of AI. 

By laying a bridge between the two models, this article proposes 
that the emergence of AI also enables the possibility of delimiting 
and disentangling the part of computation related to politics  
(and potentially involved in political segregation and polarization), 
opening a path towards better tools for social platform and AI 
compliance, regulation, and design tools.
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1. INTRODUCTION

Artificial Intelligence (AI) refers to a set of computational techniques 
and systems capable of performing—both simple and complex—
tasks historically reserved to human cognition. Depending on the 
delimiting criteria used, AI systems have existed for decades or 
centuries. The recent debate surrounding AI, however, is best 
framed in light of advances in statistical learning in the 2010s and 
2020s, but also in view of how they have captured the attention 
of the public, bringing about with them a renewed debate about 
the role and the impact of computation in society and democracy. 

This article proposes an introductory examination and a structure of 
this debate in regards to the role of AI in the—digital—public sphere, 
and its impacts on politics and democracy. From this framework, this 
article will discuss how recent advances in AI present novel 
opportunities for understanding and improving their role as mediators. 
A central claim of this article is that the prevalence of AI systems 
relying on recent forms of spatial representation learning enables the 
quantitative assessment and the formalization of the degree to which 
AI systems rely on and may impact political dynamics such as online 
segregation and polarization.

 THE AI DEBATE. 

The pervasiveness of algorithmic computation in society has raised 
several commentaries ranging from optimism to negative omens. 

The automation of tasks previously performed by 
individuals, for instance, may free resources such as 
time, but fundamentally change the value of labor 
(MCGAUGHEY 2022). 

Computational assistance of tasks performed by humans, may also 
increase outputs or even render tasks achievable for individuals who 
previously lacked the sufficient skills. An illustrative example is 
provided by AI systems designed to assist in software development 
by proposing code to programmers and that auto-complete lines 
during writing (Dakhel et al. 2023). AI systems have also made strides 
in numerous research fields, highlighting the distinction between 
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scientific knowledge as information on the state of the world and 
the understanding of its mechanisms (Krenn et al. 2022). The 
transformative nature of computation reaches arguably into all 
dimensions of society, often in connection with complex systems and 
dynamics (e.g., scientific research, the economy, politics, democracy), 
raising a large number of commentaries regarding the positive and 
negative consequences of AI. Within this multifaceted debate and 
the body of academic works addressing it, this article is specifically 
concerned with the impact of AI systems in the public sphere, and 
with phenomena such as political polarization and segregation.

 DELIMITING AI SYSTEMS. 

In computer sciences, the term AI is often meant to refer to neural 
network architectures (Bishop 1994), while debates regarding policy 
and regulation adopt a broader scope (e.g., the all-encompassing 
definition adopted AI Act of the European Union; AI Act 2021). This 
article will consider first a broad and inclusive definition of AI to detach 
from the debate on what intelligence is and whether it can be 
emulated by machines, and to minimize the dependence of its  
claims on the pace of advancements of the state of the art. Building 
on this very broad scope, we will then focus on a particular family of 
computations—based on representation learning—to identify how 
they provide an opportunity in measuring the impact algorithms in 
political dynamics and designing new tools for compliance and 
moderation for online platforms, and more generally AI-driven services.

This article detaches itself from the debate over the general impact 
of AI in society to focus on the impact of computation on social 
platforms and politics, laying out the theoretical background needed 
to assess a technical opportunity here put forward. In doing so, the 
following sections will develop the necessary theoretical framework 
to articulate research in computer and political sciences with policy 
and practitioner communities. Additionally, this article is concerned 
with a particular domain in which the impact of AI has attracted a 
wealth of works: the raise of social media to prominent arenas in the 
public sphere, the role of algorithms in their mediation role through 
filtering and recommendation, and their broader effects on politics 
and democracy.
 

1. INTRODUCTION
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 AI SYSTEMS MEDIATING THE PUBLIC SPHERE. 

The emergence of digital platforms as arenas of 
public discussion has had a profound transformation 
in the functioning of the public sphere. 
(JANSSEN AND KIES 2005)

These platforms lower social and technical barriers to the production 
and circulation of information: virtually anyone can create contents 
to compete (at least in principle) next to those produced by established 
media or political figures. These contents may circulate obeying a 
logic that disentangles reach with the epistemic power of traditional 
gatekeepers (Shoemaker and Vos 2009; Bennett and Pfetsch 2018). 
But because of this new relative abundance of information, and given 
the limited attentional resources of the public, effective navigation 
and participation in these arenas mandates algorithmic assistance 
(i.e., information retrieval, filtering and recommendation), most 
familiarly embodied in the algorithmic curation of social media feeds 
or walls. While every information creation and dissemination process 
(including those predating the internet) is subjected to a socio-
technical context (Barzilai-Nahon 2009), algorithmic mediation is 
novel in its level of institutional and technical concentration: arguably, 
a few lines of code controlled by a handful of companies are central 
in deciding which information is shown to each social media user1. 
Several research works have shown that social media may serve as a 
news provider (Kwak et al. 2010), thus fulfilling a critical role in the 
public sphere, a trend observed across an increasing number of 
countries (Kalogeropoulos et al. 2019).

 THE RISKS OF AI MEDIATION IN DIGITAL PLATFORMS. 

These changes to the public sphere have met both enthusiastic and 
pessimistic commentaries. While some scholars have highlighted 
the potential positive role of the democratization of information and 
coordination (Shirky 2009), others have sought to moderate such 
expectations, pointing out at how offline social structures permeate 
these online spaces (Morozov 2011). Along with the emergence of 
digital public arenas on the internet, several concerns were raised 
pointing to the risks of political segregation and polarization they 
might foster. A prominent family of concerns relates to the level of 
personalization that these new settings allow through selective 

1 As of 2023, 59% of EU individuals were social media users (EUROSTAT 2024).

1. INTRODUCTION
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exposure. As each individual sets up its own informational environment 
(e.g., though subscription to content producers, or selecting its social 
network of friends), one identified risk was that of the public becoming 
“balkanized” or segregated in groups of like-minded people, driven 
increasingly apart in their political views and thus exacerbating 
polarization (Sunstein 2001). While some degree of polarization is a 
natural feature of democracy, these narratives point to the risk of 
detrimental levels of polarization hindering societal coordination 
(Vasconcelos et al. 2021) or inciting violence (Feinberg et al. 2022). The 
prevalence of AI systems mediating these environments, because 
they can sustain or increase personalization in information consumption, 
spell additional risks for segregation, popularized among the public as 
filter bubbles (Pariser 2011): groups of individuals informationally 
segregated by virtue of how they arrange their local digital environments, 
but also because algorithms fail to recommended diverse contents 
capable of breaking segregation.

These risks and their visibility have driven a large body of scientific 
works spanning for more than two decades, from the analysis of 
segregation in online blogging (Adamic and Glance 2005), to 
mainstream social platforms such as Twitter (Huszár et al. 2022) and 
Facebook (Guess et al. 2023), and to the impact of generative AI services 
(Rozado 2023; Liu et al. 2022). The picture emerging from these works 
is, however, mixed, defying popular narratives. Depending on the 
setting (social platform, country, period, and population, among other 
factors), these AI-mediated social platforms have been found to both 
increase and decrease the diversity of content to which users are 
exposed (see the work of Lorenz-Spreen et al. 2023 for a systematic 
review on causal mechanisms). Moreover, the assumption that political 
segregation (driven either by how individuals configure their local 
digital environments or by algorithmic recommendations) increases 
polarization has been also contested. One counter example to the 
narrative linking polarization to segregation is provided by the work 
of Bail et al. (2018). In this work, an experiment paying Twitter users 
to follow cross-cutting political content in the US (e.g., proposing 
Liberal-leaning content to Conservative-leaning individuals) showed 
that an increase in political diversity of consumed content can 
exacerbate polarization instead of moderating it. 

Today, there is no clear-cut answer to the question for  
the role of AI in segregation (in part because of the 
diversity of online settings), nor a sufficiently general 
understanding of the link between segregation and 
polarization.

1. INTRODUCTION
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 DESIGNING BETTER ALGORITHMS. 

Despite these unknowns, and because of the reach and relevance of 
the digital public sphere, social platforms and providers of AI services 
must constantly monitor and improve algorithms with regards to 
segregation and polarization (among other concerns). A tradition 
within the recommender systems community in computer sciences 
has framed this problem as the need to diversify recommendations 
(Ziegler et al. 2005), specially in a trade-off between diversity and 
accuracy (Zhou et al. 2010), providing content that the user will engage 
with, thus sustaining the economic model of platforms. Concretely, 
this problem has taken two forms in algorithm design: either optimize 
a utility function integrating both accuracy and diversity, or setting 
constraints in minimal content diversity that algorithms should 
propose and then optimizing for accuracy.

This article explores how the current state of the  
art in AI presents new opportunities for addressing 
the risks of algorithmic mediation in online social 
platforms. This exploration makes a theoretical 
connection between two fields seldom articulated  
in AI research: representation learning in computer 
sciences and spatial models of political opinions  
in political sciences.

Representation learning (also called feature learning) refers to a family 
of methods in machine learning in which AI systems first perform a 
feature characterization of input data to then perform targeted tasks 
(such as prediction, regression, ranking, or classification) on the basis 
of these features (Bengio et al. 2013). In this family of methods, input 
data such as online content taken as inputs for the computation of 
recommendations, are represented in feature spaces. Recommendation 
tasks (e.g., friend or content recommendations) are then computed 
on the basis of proximity (e.g., recommending friends to follow 
whenever they are close in feature space). Most algorithms rely on 
representation of inputs on abstract latent spaces without attributed 
spatial semantics: i.e., along dimensions of features with no explicit 
human-intelligible meaning. In such cases, the attribution of semantic 
meaning to these spatial representations using reference data (a task 
understood within the field of AI explainability; Burkart and Huber 
2021), takes importance, as it improves the evaluation, understanding, 
and accountability of these AI systems. This ubiquitous family of 
computations includes, for instance, matrix factorization (Luo et al. 
2014) and transformer architectures (Chen et al. 2019); two examples 

1. INTRODUCTION
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in which representation space is not readily attributable with meaning 
by design. Spatial models in political science, on the other hand, are 
methodological and conceptual tools inherited from political economy 
approaches (Downs 1957) used in explanations of political behavior. 
In spatial models, entities considered in a research design—individuals 
and parties (Jolly et al. 2022), representatives, bills (Poole and Rosenthal 
1985), and even news content (Bakshy et al. 2015)—are attributed a 
position in a space in which dimensions stand as indicators of  
positions towards political issues. By making a theoretical connection 
between these two fields, this article proposes that the current  
state of the art in AI systems allows to recast the problem of algorithm 
design for managing risks associated with selective exposure in a 
novel way. Linked to the field of AI explainability, this theoretical 
connection has the potential of casting this AI security problem by 
changing the focus from a normative (How much diversity should 
be prescribed in recommendations) to an independence problem: 

How to compute recommendations in a way that 
ignores the political dimensions of a given digital 
arena? 

From a disciplinary perspective, a main objective of this article is to 
propose an articulation at the interface between computer science, 
political sciences, and policy and regulation communities, and on 
which to predicate this new AI security problem.

This article is structured as follows. 

 ■ It will first present a discussion on the delimitation of AI with regards 
to its impact in the digital public sphere, framing it in the broader 
debate of the impact of AI in democracy. 

 ■ Then, a brief examination of the notion of political spaces will be 
proposed, followed by a presentation of some notions of results in 
AI explainability, making the theoretical link between both fields.

 ■ Finally, the concepts explored here will be illustrated with a data-
driven example, highlighting the challenges ahead in connecting 
the state of the art in AI with new toolkits and guidelines for 
algorithmic design.

Building on the theoretical connection developed in this article, on 
the discussion of recent works in AI explainability, and on the data-
driven example presented, a list of guidelines and challenges are 
presented as a proposition in exploiting these opportunities given 
the current state of the art.

1. INTRODUCTION
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2.1 WHAT IS AND WHAT ISN’T AI?

While the history of these techniques and systems may date back 
centuries depending on the criteria used to evaluate which human 
cognition is task is being emulated, AI is most recently discussed in 
light of advances in statistical machine learning achieved at the turn 
of the century, but also in view of how they have captured the attention 
of the public. These advances and changes in perceptions have 
brought about with them a renewed debate about the role and the 
impact of computation in society and in particular in democracy.

When examining the question of the impact of AI in the public sphere 
and democracy, it is crucial to set the boundaries of the objects to 
which this term makes reference. In this regard, both the scientific 
literature and the public debate experience varying degrees of 
ambiguity, and for good reasons. Several researchers and practitioners 
reserve the term AI to refer to deep-learning systems or neural network 
architectures (LeCun et al. 2015)2, while important regulatory, policy 
and governmental instances propose an all-encompassing definition3. 
The former form is preferred in discussions aimed at distinguishing 
system designs and how they perform with respect to the state of 
the art (e.g., in metrics of accuracy for tasks such as classification or 
regression), while the latter is preferred when structuring debates 
regarding risks involved in computation at scale in society and adequate 
safeguards. Throughout this article we will adopt the latter definition 
for the sake of completeness, to then focus on the vast but delimited 
family of computations based on representation learning in order to 
identify how they provide an opportunity in measuring the impact 
algorithms in political dynamics. This article also detaches from the 
debate surrounding the comparison between artificial and human 
intelligence, to treat AI as a description of a set of computational 
procedures. The claims put forward in this document do not rely on how 
AI systems compare to human cognition and capacities, and are thus 
removed from the debate surrounding the notion of intelligence itself4.

2  The reader is referred to the work of Norvig and Russel (2002) for an exposition involving a broader scope 
of AI systems.

3  The definition provided by the AI Act of the European Union (Annex I, AI Act 2021) encompasses machine 
learning approaches, logic- and knowledge-based approaches (including symbolic approaches), inductive 
procedures, any use of knowledge bases, inference, mechanic deductive procedures.

4  An example of such a debate is the question of the ill-defined Artificial General Intelligence as measurable 
against human capabilities.

2.  ARTIFICIAL INTELLIGENCE,  
THE PUBLIC SPHERE AND 
DEMOCRACY
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The inclusive definition of AI such as that provided in the AI Act of the 
European Union (Annex I) is structured along three categories:

1.   Machine Learning. This type of definition includes supervised, 
unsupervised, and rein- forcement learning using a wide variety 
of methods including neural networks and deep learning.

2.   Symbolic approaches. This second type of definition includes 
logic- and knowledge-based approaches, including knowledge 
representation, inductive logic or programming, knowledge  
bases, inference, deductive and rule-based engines, symbolic 
reasoning and expert systems.

3.   Statistical approaches. This third type of definition includes 
statistical approaches, Bayesian estimation, search and 
optimization methods, including regression analysis. This third 
type of definition exists as separate from Machine Learning 
approaches in part to accommodate in the latter the possibility of 
approaches that do not rely on any statistical framework of theory.

It is worth noting that the set of computational procedures 
encompassed by very comprehensive defini- tions include most 
systems, from spreadsheets and rudimentary arithmetic processors 
to sophisticated deep-learning systems that rely on massive amounts 
of data and computation. This inclusive scope has notably sparked 
debate on the feasibility of operationalizing recent AI regulation, and 
on the effects that such regulations would have on the economy and 
innovation (Buocz et al. 2023). Similar to the role it plays in structuring 
debate on regulation, adopting this initial set of definitions removes 
the dangers of the substantialism involved in discussing intelligence.

The relevance of the notion of AI in the opportunities for moderation 
outlined in this article lies along three properties, which will further 
narrow the scope of systems in following sections: accuracy, popularity, 
and the capacity to produce spatial representation.

 ACCURACY. 

First, the recent scientific achievements in machine learning and 
statistical approaches have widened their applications. Proposing a 
comprehensive overview of the evolution of the accuracy of AI systems 
in performing different cognitive tasks is not possible without also 
providing an overview of this landscape of tasks targeted by AI 
designers. As such, no clear-cut and quantifiable general assertions 
exist on the progression of the accuracy of AI. The examination of the 
advances with regards to a few of these tasks, however, illustrates 

2. ARTIFICIAL INTELLIGENCE, THE PUBLIC SPHERE AND DEMOCRACY
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how improvements on accuracy explain not only the widespread 
adoption of these systems, but also the renewed interest in them 
and the increasing importance that they are set to play in the future. 
Scholars in the sociology of sciences sometimes point to recent 
advances in computer vision as a triggering use case driving the 
current boom of AI, or AI spring (Bommasani 2023). In this field of 
machine learning, a pivotal and illustrative moment is provided by 
the success of neural network approaches in image classification 
achieved in the early 2010s (Krizhevsky et al. 2012)5. More generally 
across AI tasks, different metrics have seen standards progress from 
60% to 90% accuracy, although with large disparities not without 
caveats regarding the different nature of these tasks and diverse 
types of accuracy metrics (see the work of Martínez-Plumed et al. 
2021 for an overview of these metrics and their evolution).

 POPULARITY. 

This increase in accuracy across different cognitive tasks is one of the 
main factors explaining the popularization of AI systems in science 
and industry: more accurate systems are more reliable, they allow to 
anticipate the quantifiable quality of the outcome6. A second 
important factor in the popularization is the flexibility with which 
newer AI systems can integrate in their computations data of different 
types. In the 2000s and early 2010s, the data provided as input for 
recommender systems needed to be formatted according the 
specifications of the algorithm used: e.g., in collaborative filtering 
(Schafer et al. 2007), as user-user or user-item matrices representing 
who had interacted with whom or who had read or clicked which 
content in the past, in order to compute recommendations (Bobadilla 
et al. 2011). More recent AI systems leverage encoding of heterogeneous 
forms of data and rely on representation of these different data on 
common spaces, making multimodal7: text, images, networks, and 
even sound and video can be embedded or encoded into a common 
space to then performs computations used in recommendation, such 
as ranking by proximity. Combined, these factors have led a trend 
that has seen several industries and fields rely on the same ubiquitous 
process, consisting in a phase of embedding input data, followed by 
a phase of recommendation (and other downstream tasks such as 
regression, generation, classification).

5  At the 2012 European Conference on Computer Vision, Hinton’s group presented a neural network 
approach beating accuracy metrics achieved with traditional, nearly halving the classification error-rate in 
benchmarks used in competition in the field (Cardon et al. 2018).

6  This quantifiable quality is related to the benchmark metrics on which systems are measured during 
training and evaluation. This presentation excludes the consideration of the question of the evaluation in 
generalization of applications outside the data with which the system is trained and evaluated.

7  Traditionally, this is referred to as Multimodal Machine Learning in the AI community (Baltrušaitis et al. 2018).

2. ARTIFICIAL INTELLIGENCE, THE PUBLIC SPHERE AND DEMOCRACY
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 SPATIAL DATA REPRESENTATION. 

The third property of some AI systems that is relevant for opportunities 
for improving moderation tools for the digital public space is that 
displayed by the representation learning family of systems. In this 
family of methods, AI systems first perform a feature characterization 
of input data in a so-called encoding or embedding phase. Using 
these representations, tasks such as prediction, regression, ranking, 
or classification are computed as operations on the spatial positions 
of the input data on these spaces (Bengio et al. 2013). This family of 
computations, has been in use since the early 2000s, with algorithms 
such as Matrix Factorization (Luo et al. 2014), but has found widespread 
adoption through neural network architectures such as transformers8 
(Vaswani et al. 2017), which have an encoding phase in which they 
embed input data into multidimensional spaces. This logic of spatial 
embedding is also widespread in AI mediating social media.  
Twitter’s recommender system, for instance, relies on several core 
algorithms, such as SimClusters (Satuluri et al. 2020) a general 
purpose representation algorithm capturing a user’s affinities for 
topics as interpretable vectors of a space on which recommendations 
are computed. It must be noted that interpreting or explaining the  

8   Transformer architectures in neural networks and deep learning systems are central to the acceleration of 
the interest and adoption of recent generative AI systems, such as ChatGPT, which stands for Generative, 
Pretrained Transformer.

2. ARTIFICIAL INTELLIGENCE, THE PUBLIC SPHERE AND DEMOCRACY
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spatial meaning of these spaces is in general a challenging task. 
Concretely, this property delimits a widely used family of AI systems 
in which heterogeneous input data is first represented in abstract 
multidimensional spaces, on which tasks (including recommendation) 
are performed as geometrical operations: e.g., ranking according to 
distances, angular similarities, clustering and classifying by regions 
of space, or predicting values akin to multivariate regression.

In summary, the scope of AI systems considered in  
this article starts with the most widely definable set  
of computational procedures so as to avoid a reliance 
on the debate of whether AI is comparable to  
human cognition. 

Starting from that scope, this article further delimits the set of AI 
systems in consideration to those that are capable of taking 
heterogeneous inputs producing separate computations in two 
phases: 

1.   encoding/embedding of input data in abstract representation 
multidimensional spaces, and 

2.   tasks computed on the bases of the positions of entities embedded 
in these representation spaces.

 
These types of systems are widely used and are at the core of several 
industries and research programs, as they have proven to be accurate 
enough in numerous tasks, as well as popular due to their flexibility. 
This type of systems includes many of the procedures identified in 
the machine learning literature, including most recent neural network 
architectures, specially those known as transformers, and are widely 
used in social media, but also other parts of the digital public space 
and in user-facing internet services.

2. ARTIFICIAL INTELLIGENCE, THE PUBLIC SPHERE AND DEMOCRACY
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2.2  CONCEPTUALIZING THE IMPACT OF  
AI IN DEMOCRACY

Conceptualizing the impacts of AI on democracy calls for a second 
exercise of conceptual delimitation. Instead of conducting an 
examination of the long list of different definitions of democracy that 
have been put forward in democratic theory, this article will draw 
elements from several propositions (Przeworski 2018; Dahl 2020). As 
such, the conclusions of this article do not hinge on the adoption of 
any particular definition of democracy. Instead, we consider 
democracy to be a multifaceted concept and consider elements from 
several definitions to highlight different areas of impact of AI. This 
choice is preferred to move to the exposition of the points of contact 
between the properties or conditions for democracy with politics, 
and specially in regards to the functioning of digital public spaces 
such as social media platforms, and the algorithms that mediate 
those spaces. For an exposition on how different aspects of AI systems 
have an impact in an exhaustive range of functional elements of 
democracy, the reader is referred to the work of Jungherr (2023).

Among the numerous points of contact between  
AI and democracy, those in which the impact of  
AI is conceptualized through their mediation of the 
digital public space have come to the attention of 
researchers because of the parallelism between the 
adoption of social media and a degradation of the 
quality of the democracy around the world. 

This degradation or democratic backsliding (Hyde 2020) is the object 
of an ongoing debate on the multi-faceted aspects of this 
phenomenon. Beginning in the early 2010s, most world regions have 
seen a decline in the mean value of the Liberal Democracy Index 
(LDI), as well as an increase in the number of countries undergoing 
authocratization, according to the V-Dem Institute (2019) report.  
The LDI index is composed of two factors: the Electoral Democracy 
Index (EDI) and Liberal Component Index (LCI). The first (EDI), is a 
systematic measurement of the presence of the minimal elements 
required by democracy as articulated by Dahl (1971)9. The second (LCI), 
supplements the criteria of EDI by measuring rule of law, respect for 
civil liberties, and constraints on the executive branch of government 
by the judiciary and legislative powers.

9  More methodological details on the measurement of these elements is provided by the work of Teorell et 
al. (2019).

2. ARTIFICIAL INTELLIGENCE, THE PUBLIC SPHERE AND DEMOCRACY
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Upon examination, several of the elements of democracy included 
in Dahl’s definition may be argued to be impacted by both the 
proliferation of a digital public sphere, and AI algorithms mediating 
these spaces, specially: 1) freedom to form and join organization,  
2) freedom of expression, 3) right to compete for votes, 4) access to 
a plurality of information, and 5) the capacity of individuals to organize 
and express preferences to affect government policy.

1.  Freedom to form and join organizations.
  The notion of organization and membership has been profoundly 

changed by social media, lowering costs of organization and 
mobilization, but also transforming the notion of membership. 
The Yellow Vests protests in France in 2018, for instance, were first 
organized as Facebook groups, with media outlets periodically 
reporting on the number of individuals affiliated with these groups 
(Ramaciotti Morales et al. 2022). At the same time, visibility of a 
group while navigating the social platform is a precondition to 
the freedom of choosing to join it or not, with visibility being  
largely determined algorithmically in the computation of 
recommendations. Even for more restrictive definitions of 
organizations, for individuals accessing information mostly online, 
visibility of organizations they can potentially join hinges on 
recommendation algorithms. The impact of AI on this element 
of democracy is conmesurate of course with the degree to 
individuals become aware of organization via the internet.

2.  Freedom of expression. 
  While many social platforms lower barriers for information creation 

and dissemination, freedom of expression on these platforms 
depends nonetheless on the ability of messages to be presented 
to the attention of the public. Twitter, for instance, because of the 
particular affordances on which the platform is built, enables any 
user to produce content on a par with those produced by political 
figures, public personalities, or established media. However, most 
posts on the platform are rarely read or receive scarce engagement 
(Gabielkov et al. 2016), amounting to absence in the collective 
deliberation. Intermediate situations resulting from the disparate 
level of visibility of actors online, and resulting mainly from the 
algorithmic choices (i.e., whose post is shown in feeds or walls), 
highlights the inherent lack of equal status in public debate 
(Habermas 2015). While, of course, public debate unfolding on 
platforms is not the whole of the public sphere, there is an impact 
of AI that is commensurate with the level of adoption of social 
platforms among the public, and specially when online debates 
and exchanges are sources chosen by journalists, and where a 
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sizable number of individuals access them for information on the 
current agenda. A different form of impact relates to the use of AI 
directly in the algorithmic moderation10 of posts in view of exclusion 
from the platform on the basis of the legality of their content and 
compliance with the terms of use of platforms (Gorwa et al. 2020).

3.  Right to compete for votes. 
  It follows that—to the degree that citizens form their political 

opinions, beliefs, and preferences based on online content—
algorithmic amplification or dimming of messages produced by 
contenders in elections (in the form of recommendations) may 
play a role in elections. Social platforms have been shown to be 
extensively used in elections settings by candidates (Jungherr 
2016). Additionally, the use of AI may disrupt this competition by 
assisting the creation and distribution of content during elections 
(see recent examples of Russian AI assisted propaganda efforts 
on Twitter during the 2016 elections in the US, Bail et al. 2020, or 
in Facebook and Instagram during the EU parliamentary elections; 
Bouchaud 2024), or by further personalizing the delivery of political 
messages (e.g., as in Cambridge Analytica scandal).

4.  Access to a plurality of information. 
  Commensurate with the fraction of the content that is obtained 

by individuals through AI-mediated platforms, selective 
algorithmic exposure plays an important role on the diversity of 
content in media diets (Kulshrestha et al. 2015). A crucial element 
of analysis in large social media studies is the measurement of 
the political diversity of contents proposed to and consumed by 
users (Bakshy et al. 2015).

5.  Capacity to affect government policy. 
  Whenever a part of the capacity of the public to affect government 

policy relies on online coordination, AI will be a determinant of  
this capacity too. A notable case of this is provided by the  
MeToo movement. Born from a Twitter hashtag (#MeToo), and 
thus dependent on both the platform affordances and its AI 
recommendation system (trending hashtags presented to the 
attention of users depend on algorithmic recommendation), the 
impact of this collective movement can be shown to have had 
impacts in different policies (for instance, in the eponymous 
“#MeToo Bill”; 115th Congress of the US 2017).

10  One prominent example of this form of algorithmic moderation is the use of algorithms to assist hate 
speech identification in platforms (MacAvaney et al. 2019).
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These previous examples do not depend on the volume of information 
available in a platform: e.g., at a given moment in time, with a fixed 
number of users and posts, these examples apply in showing different 
points of contact between AI and elements considered in several 
definitions of democracy. Additionally, however, it must be considered 
how AI changes the dynamics of the populations of users (e.g., by 
facilitating the presence of bots) and that of the pool of posts or 
messages in platforms (e.g., by facilitating the automation of a part 
of the effort required in content creation).

In summary, the far reaching implications of 
computation in society and AI mediation of the 
online sphere can be structured along some of the 
elements integrated in several conceptualizations  
of democracy, specially through their role in politics 
and, more broadly, in the public sphere. 

However, in conceptualizing theoretical frameworks on which to 
evaluate and improve AI systems, the question remains as to what 
political structure to leverage in evaluating plurality or visibility. An 
ubiquitous form of operationalization, rooted in US politics, lies in 
binary Democrat-Republican ontologies (Adamic and Glance 2005) 
or single-dimensional analyses (Guess et al. 2023) along a Liberal-
Conservative political dimension, on which plurality and visibility are 
measured. These operationalizations are often deployed in studies 
seeking to connect AI mediation, and in particular their impact in 
political segregation, with polarization or other effects in democracy, 
often pertaining to one of the elements here identified. In the next 
sections, this article will develop in detail the adequacy of such 
operationalizations and its relation with the analysis of AI, and specially 
representation learning systems.
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2.3 AI MEDIATING THE DIGITAL PUBLIC SPACE

The unfolding of these profound changes operated to the functioning 
of public sphere11, highlighted by the elements of democracy they 
impact, were initially accompanied by a number of optimist outlooks. 

The democratization of information creation  
was to unleash new forces capable of institutional 
transformation by changing the logic of social 
mobilization. (SHIRKY 2009). 

Several works link decreasing costs of communication and enhanced 
tools for digital assembly and collective deliberation with a variety of 
examples, including for instance the Arab Spring (Lim 2012; Tufekci 
and Wilson 2012) or the Black Lives Matter movements (Gallagher et 
al. 2018). A number of voices have nuanced, however, these 
expectations, highlighting how offline structures reproduce online 
(Morozov 2011)12. At the onset of the emergence of social media, a 
number of critiques were also formulated regarding how these digital 
environments and their algorithmic curation could exacerbate 
personalization and thus segregation (or “cyberbalkanization”) and 
polarization (Sunstein 2001), fostering a range of online “disorders” 
(Benkler et al. 2018). While some level of polarization is an inherent 
feature of democracy, the logic spelled by this line of narratives points 
to the possibility of acute lack of plurality in information, high levels 
of segregation, and the possibility that they may foster pernicious 
polarization (McCoy and Somer 2019).

These concerns have driven a large and growing body of scientific 
literature studying disorders of these digital public spaces, and that 
have popularized new terms such as echo chambers (the relational 
segregation of online communities along political lines) or filter 
bubbles (a state of affairs in which such segregation is fostered or 
sustained by the relational configuration created by algorithmic 
recommendation in social platforms). This latter narrative in which 
segregation is hypothesized to be caused—at least in part—by 
algorithms is also motivated by the economic logic underlying 
algorithmic recommendation in social platforms. Accessible mostly 
without monetary cost for users, platforms rely on advertisements 
viewed by individuals during navigation or scrolling, which is 

11  The reader is referred to the work of Jungherr (2023) for a list of additional points of articulation between 
the public sphere and AI systems.

12  A concrete example can be found in the phenomenon of reproduction of offline class structure in  
digital platforms, determining social gaps and inequalities in the opportunities to create online content 
(Schradie 2011).

2. ARTIFICIAL INTELLIGENCE, THE PUBLIC SPHERE AND DEMOCRACY



20DEPOLARIZING AND MODERATING SOCIAL MEDIA WITH AI

maximized with the time spent on each session. The consequences 
of algorithmic curation that maximizes time spent on platforms have 
raised the question of their consequences in terms of political opinion 
dynamics, polarization, and fragmentation of the public sphere  
into groups. Some empirical results, for instance, have linked the 
maximization of engagement in platforms with algorithmic propelling 
of contents that might exacerbate polarization (Chavalarias et al. 2024). 
The emerging research, however, paints an heterogeneous landscape. 
While some cases have been reported of algorithms reinforcing 
segregation in online content consumption (Roth et al. 2020), several 
studies have also reported a related increase in the diversity of 
contents (Aiello and Barbieri 2017). A recent systematic review of 
causal mechanisms in social media, found that the number of studies 
suggesting that platforms increase the diversity in content 
consumption nearly doubles the number of studies that suggest the 
opposite (Lorenz-Spreen et al. 2023). This family of concerns is reflected 
in the number and tone of press articles about this matter, in the 
volume of scientific works dedicated to analyzing the impact of 
algorithms on politics and democracy , and in the recent regulation 
specifically targeting political ads online. The Digital Services Act of 
the European Union, for instance, includes provisions forbidding  
the computation of recommendations based on political profiling 
(Digital Services Act 2022, Article 26) and ensuring pluralism online 
(Digital Services Act 2022, Article 34).

The design of algorithms that might minimize or 
avoid negative impacts related to personalization  
is an active research domain spanning for at least 
two decades (ZIEGLER ET AL. 2005)13. 

This literature is, however, concerned with a particular formulation of 
this problem traditionally cast as a compromise arising when 
maximizing both accuracy and diversity of recommended contents 
(Zhou et al. 2010). This article claims that the prevalence of AI systems 
that rely on representation learning provides an opportunity to 
formalize this problem in a new light, explicitly identifying, measuring, 
and constraining the knowledge that an AI system might have formed 
about the political configuration of the system that produces the 
data with which it is trained. This new formulation builds on the one 
hand on spatial representations of political systems, and on spatial 
representation of input data made by AI systems on the other.

13  The reader is referred to the work Bobadilla et al. (2013) for a survey on the taxonomy of recommendation 
procedures and the evaluation of the quality of recommendations with regards to the diversity of contents.
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Different actors are concerned with the role of AI in the digital public 
sphere, the most relevant for the exposition of this article being those 
in scientific research, tech industry, and regulation and policy 
communities. A main concern in these communities is the 
measurement of the impacts of AI. Specially for platforms, it is 
important to develop tools for measuring impact in view of public 
scrutiny, for proving compliance with regulations14, but also in the 
development of tools for improving design of algorithms. Addressing 
the question of measurement raises the need for a framework on 
which to give meaning and operationalization to the notions of 
visibility and plurality of content, at the core of the phenomenon of 
selective exposure, and thus central to political segregation. A 
traditional framework leveraged in the study of political content 
diversity in online platforms is provided by political opinion spaces.

3.1 SPATIAL MODELS OF POLITICS

Spatial models in politics seek to explain empirical observations using 
geometrical features, such as distance and order. In political spatial 
models, entities are conceptualized as having positions in a (potentially 
multidimensional) political opinion space. Entities are defined by the 
ontology of the study at hand, and may include political figures, 
political parties, individuals of the public, institutions, and even content 
or pieces of legislation. The dimensions spanning political spaces 
encode positive or negative attitudes towards issues of relevance for 
a study: e.g., dimensions measuring attitudes towards income 
redistribution, or the European integration process, ranging from 
values 0 for most opposed, to 10 for most favorable (Jolly et al. 2022). 
The usefulness of spatial models hinge on their ability to link empirical 
observations with geometrical features: e.g., linking distances  
between candidates and voters with propensity to vote (Lewis and 
King 1999). A crucial methodological and substantive challenge in 
spatial models for politics is the determination of the set of dimensions 
and the estimation of the spatial position of the entities in a study.

14  The Digital Services Act of the EU, for instance, mandates that large social platforms must produce annual 
reports of risk assessment, including questions information plurality in the platform, among others (Digital 
Services Act 2022, Article 15).
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 DIMENSIONS. 

When conceptualizing social systems structured along politics 
dimensions, the first distinction to be made regards the notion of 
cleavages (Lipset and Rokkan 1967): enduring and structuring political 
divisions underpinned by functionalist logic (Parsons et al. 1953), 
separating, e.g., owners and workers or church and state. Cleavages 
entail socio-structural divisions, normative elements as values and 
beliefs, social identities with respect to groups participating in political 
divides, as well as interactions, institutions, and parties (Bartolini and 
Mair 2007). A central and challenging methodological and conceptual 
task in determining such lines of divide and the issues dimensions 
associated with them is the measurement of the social structuration 
of political composition (Marks et al. 2022). The consideration of this 
family of political dimensions stems from political sociology.

A second type of consideration in identifying political dimensions 
stems from strategic and game-theoretical dynamics proposed in 
political economy (Downs 1957). In this theoretical setting, actors such 
as candidates and parties constitute the supply side, as they offer 
political representation with given positions on issues. Other actors 
(typically voters, but more broadly the public) in the demand side 
occupy positions on relevant issue dimensions in accordance to the 
utility extracted from them (e.g., adopting positions on the issue of 
redistribution and taxation depending on income), and choose 
political offers on the basis of their positions. In this theoretical 
framework positions of actors on multidimensional issue spaces obey 
not only a social logic of structuration, but also strategic considerations 
of political gains and utility extracted by adopting and adapting their 
positions (Riker and Ordeshook 1968).

In addition to issue dimensions, one tradition identifies ideological 
dimensions as indicators of positions along several aligned issues 
(Converse 1964; Jost et al. 2022). For instance, in the United States, an 
ideological Liberal-Conservative dimension is often considered in 
social media studies. The position of individuals along such a scale is 
informative of several issues at once (e.g., abortion, gun control), 
provided that they display high alignment: i.e., that the position on 
one is constrained or dependent, and thus informative, on the other 
in a descriptive settings. Several studies focused on U.S. settings 
leverage a unique Liberal-Conservative dimension due to the 
traditional high alignment of relevant issues15. In general, however,  

15  Some scholars have proposed that different moments and spheres in the U.S. might be best represented 
by an additional and independent (i.e., not aligned) political dimension. See the work of Uscinski et al. 
(2021) for a recent example.
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it is not possible to reduce social systems to a single dimension when 
seeking to explain empirical observations with spatial models. 
European countries, for instance, display an heterogeneous 
dimensionality (i.e., the number of dimensions needed to account  
for observations; Benoit and Laver 2012). Figure 1 (from Ramaciotti 
Morales and Vagena 2022) illustrates this in a spatial representation 
of political parties in European countries along different dimensions, 
as measured using expert surveys: surveys administered among 
experts in political sciences and in which they position parties along 
several issue and ideology dimensions.

 MEASURING POSITIONS ALONG DIMENSIONS.
 
Expecting actionable low dimensional representation in many 
settings16, the use of spatial models has been fruitfully leveraged in 
very wide scope of studies. A crucial aspect of these representations 
is their ability to enable and determine observable actions. Among 
these, an important type of cognitive representation is that of 
evaluative opinion, which allows for individual dispositions for or 
against something (Bem 1970), operationalized as attitude: an individual 
disposition towards an attitude object (e.g., person, institution, issue, 
event), which is determinant of behavior (Ajzen 1989). Attitudes offer 
a conceptual link between internal representations and external 
observable behavior through their evaluative function (with examples 
ranging from expression of cultural tastes, Sonnett 2004, to political 
donations, Bonica 2014, or voting, Gerber and Lewis 2004), in a way 
that is operationalizable via spaces. In these spaces dimensions stand 
for attitude indicators, providing numerical quantification of positive 
or negative stances towards different attitude objects. Observed 
behavior (e.g., uttered opinion, vote, elicited response) may not always 
match internal attitudes (e.g., in planned behavior; Ajzen 1985).

Measuring positions of actors on issue or ideology dimensions has 
been traditionally approached from two methodological perspectives. 
The first one is survey research: eliciting self-positioning from individuals 
or asking experts to position entities such as parties or media outlets. 
An example of the former are traditional surveys (e.g., asking 
respondents to position themselves on issues in numerical scales). 

16  The ability of individuals to distinguish and organize their environments depends on their capacity 
to make meaningful mental representations with bounded cognitive resources, selecting only a few 
dimensions or organizing them in bundles reducing the dimensional complexity of the perceived 
environment (Converse 1964; Hix 1999). Similarly, because of institutional and organizational 
constraints, but also because of the bounded cognitive capacities of members and candidates, 
political groups may also produce an offer of limited dimensional complexity to be appraised more 
easily or positively by voters (Olbrich and Banisch 2021).
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An example of the latter are expert party surveys, in which experts in 
politics are asked to position political parties on numerical scales. A 
concrete illustration is provided by the Chapel Hill Expert Survey, in 
which hundreds of experts position European parties on tens of issue 
and ideology numerical scales (e.g., redistribution, European 
integration, liberalization of immigration) ranging from 0 (most 
opposed) to 10 (most favorable). A second methodological approach 
to measuring positions of actors is statistical estimation using data 
traces: behavioral (e.g., clicks, votes, interaction networks) and text 
data produced by these actors. The inference of positions leveraging 
spatial representations of political opinions can be traced back at least 
to the NOMINATE17 method (Poole and Rosenthal 1985, 2000), 
conceived to estimate ideological positions of members of parliament 
in the U.S. using roll call data (i.e., registries of how they vote bills).

17 NOMINATE stands for Nominal Three-Step Estimation.
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FIGURE 1. 

Party positions in the 
UK, Germany, France 
and Italy along three 
dimensions (Left-Right, 
anti-elite sentiments, 
and stances against 
liberal immigration 
policies), computed as 
the mean positions on 
a scale from 0 to 10 
attributed by experts 
in the 2019 Chapel Hill 
Expert Survey (CHES; 
Jolly et al. 2022).

(Source: Ramaciotti 
Morales and Vagena 
2022)
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Social media data, because of their volume,  
diversity, reach, and granularity, have given rise to a 
stream of research on political position estimation.  
(SEE MESSAOUDI ET AL. 2022, OR LIU AND ZHANG 2012, FOR A RECENT  

EXTENSIVE REVIEW). 

Inferring opinions of users in social media platforms is crucial not only 
in the investigation of algorithmic mediation and selective exposure 
(e.g., the effects algorithmic recommendation; Ramaciotti Morales 
and Cointet 2021), but also in investigating broader social and political 
phenomena (e.g., social mobilization, Budak and Watts 2015, Cointet 
et al. 2021, agenda setting dynamics, Barberá et al. 2019). The field of 
research interested in the use of trace data for the inference of 
positions in geometrical spaces where dimensions indicate positions 
or ideologies is traditionally referred to as ideology scaling or ideal 
point estimation (Clinton et al. 2004). Similar methods have been 
used in political science to compute ideological positions of donors, 
judges, and in general any actor capable of producing observable 
choice behavior (see Imai et al. 2016 for a survey, and Peress 2022, for 
a recent example of an ideology scaling method).
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3.2 THE GEOMETRY OF ONLINE POLITICS

The statistical inference of issue and ideology positions using trace 
data produced in online social platforms is a recent but very active 
field of research. The results from this line of research are central to 
the study of algorithmic mediation and selective exposure, as  
they allow to connect the political position of users and contents  
(as conceptualized in multidimensional political spaces), with 
recommendations produced by the platform, as well as with actions 
taken by users (e.g., sharing or commenting content to which they’ve 
been exposed). One of the first studies to pioneer ideology scaling 
from social media data was that of Barberá (2015). In this study, 
Barberá used Markov Chain Monte Carlo methods to infer the 
ideological position of millions of U.S. Twitter users on a Liberal-
Conservative scale using observed follower (i.e., who follows whom) 
networks on the platform, leveraging underlying psychological 
mechanisms such as homophily (in particular value homophily ; 
Lazarsfeld et al. 1954) through Bayesian inference. Similar frameworks 
have been proposed in a multitude of settings, and using diverse 
behavioral data traces. Bond and Messing (2015) used likes given on 
Facebook as behavioral traces to infer stances of a large number of 
users in a similar way. Behavioral data traces are determined by the 
specific affordances of each platform, with observable actions 
including, e.g., follow, share, like, subscribe, or upvote, counting 
heterogeneous possibilities across platforms. These interactional 
traces linking users and items (e.g., a post, a piece of content, a URL), 
or users to other users, form a network in the sense that they link two 
entities. These methods do not necessarily rely on textual data, making 
them text-independent and thus also language-independent, which 
makes them especially valuable for analyzing cross-national settings18 
(Barberá 2015; Ramaciotti Morales and Vagena 2022).

A different and popular family of methods for political position 
estimation uses textual traces. The first methods for ideological 
positioning of texts draw inspiration from interactional methods:  
texts may be ideologically positioned according to whether they 
included or not particular keywords that might be indicative of 
ideology (e.g., the Wordscore method of Laver et al. 2003, later adapted 
to Bayesian frameworks; Slapin and Proksch 2008). More recent 
approaches for text-based inference include Markov Chain Monte 
Carlo Methods, and more recently variational inference (Vafa et al. 
2020). A growing number of works is proposing the use of unsupervised 
spatializations of text and documents (and actors producing texts) 

18  Regarding platform regulation, this is specially relevant for regulatory settings involving multi-lingual 
bodies such as the EU.
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using text embedding methods (Mikolov et al. 2013; for an extensive 
review see work of Jurafsky and Martin 2022), or Large Language Models 
(LLMs) in identifying ideological positions from text (Wu et al. 2023).

Either on the basis of text or other data traces,  
this set of works shows that it is possible to represent 
online populations and online contents in political 
opinion spaces. 

A concrete illustration of this process, applied to multidimensional 
European settings, is provided by a method called Language-
Independent Network Attitudinal Embedding (LINATE; Ramaciotti 
Morales and Vagena 2022). As its name suggests, it leverages 
interactional data traces and is thus language independent. The 
method works as in two phases (see Ramaciotti Morales et al. 2022 
for additional details). In the first phase, interactional data traces 
subtended by an online population (i.e., network data) are used to 
produce a first multidimensional embedding. In the second phase, 
the multidimensional positions of the individuals of this population 
are mapped onto a multidimensional referential political space. In 
the study of this example (Ramaciotti Morales et al. 2022), the first 
phase is conducted on a Twitter population selected among users 
involved in the French Twitter sphere, subtending a large follower 
network. The second phase is computed using the above-mentioned 
Chapel Hill Expert Survey (CHES) data as a referential political space. 
The map between the first embedding and the CHES space 
composed of 51 dimensions, is computed using as reference points 
the positions of political parties: these positions are readily by provided 
in the CHES data, and in the first embedding space they are computed 
as the mean position Members of Parliament (MPs) present on Twitter 
and that belong to each party. 

Figure 2 (from the study reported in Ramaciotti Morales et al. 2022) 
shows the spatial distribution of the large population of study (230.911 
Twitter users) along the two irreducible (i.e., non aligned) dimensions 
that are most explicative of the network data observation: a Left-Right 
dimension, and a dimension measuring attitudes towards elites and 
institutions. Figure 2 also shows MPs colored by party and the position 
of parties as provided in the CHES data. Importantly, these dimensions 
are those of the CHES survey instrument, and comme endowed with 
reference points: positions 0 and 10 mark the leftmost and rightmost 
positions for political parties on the Left-Right scale, while positions 
0 and 10 on the anti-elite dimension mark respectively the positions 
having the least the most prominent anti-elite sentiment. In the next 
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section, we will use this population to illustrate how multidimensional 
political positions can be leverage in AI explainability with regards to 
politics, i.e., in measuring the the amount of political information 
learned by an AI system that has access to and is train on the data 
produced by this Twitter population. It must be noted that, while 
following this particular spatialization method as illustration, any 
method providing a political spatialization of online populations can 
be leveraged in AI explainability. It must also be noted that political 
spatialization concerns users, but also others entities, such as parties 
(as seen in Figure 2), but also news contents (Ramaciotti Morales  
et al. 2023), web domains (Cointet et al. 2021), YouTube channels and 
Facebook groups (Ramaciotti Morales et al. 2021), reaching to potentially 
any entity to which interactional or text data can be attached.

FIGURE 2. 

Example of a multidimensional spatialization of online populations (users of the French Twittersphere), positioning 
entities (in this case users) along two irreducible political dimensions relevant in France. The density of positions is 
shown in shades of blue. The positions of MPs are shown in colors by party. Spatial positions are calibrated using the 
Chapel Hill Expert Survey data.

(Source: Ramaciotti Morales et al. 2022)
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We now turn to how AI systems produce spatial representations  
of input data (seen during training, testing or deployment), and  
specially data produced in online spaces such as social platforms. For 
the family of AI systems of interest for this article (i.e., those based on 
spatial representations), providing frameworks of analysis of these 
representations and examining the role they play in producing 
recommendations falls within the realm of AI explainability.

4.1 EXPLAINABILITY AND SECURITY

Explanability of AI, as a research field, is not new19. The term explainability 
is often used in connection with interpretability or intelligibility. It is 
not within the objectives of this article to provide an exhaustive review 
of the vast scientific field of AI explainability, nor to present a detailed 
account of the debate regarding the differences between explainability, 
interpretability or intelligibility. The reader is referred to the work of 
Adadi and Berrada (2018) for the former, and to that of Marcinkevičs 
and Vogt (2020) for the latter. Broadly defined, the goal of AI explainability 
is to improve human intelligibility of computations processes, or to 
make opaque computation processes understandable. This need 
originates in the fact that the models on which modern computation 
processes rely are complex (in size and structure) and that, because 
of the role that computation has gained in society, important properties 
linked to human oversight (such as accountability) depend on the 
ability of humans to understand them (Castelvecchi 2016). 

The complexity of AI systems stems in part from  
the fact that computers can treat increasingly large 
volumes of data with increasingly sophisticated  
and flexible models. 

Very large physical simulations, while potentially processing more 
computations than a human could process (or any team of humans 
for that matter), are structured along intelligible models, resulting in 
values of parameters and variables that, while hard to compute, are 

19  Early examples of systematic explanations of algorithmic decisions can be traced back at least to the 1970s 
(Scott et al. 1977).
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easy to interpret. Recent AI systems, in contrast, provide means to 
flexibly learn during training a large variety of models. This is the case, 
for instance, of neural network AI systems, which can emulate linear 
regressions (Marquez et al. 1991) or classification trees (Bondarenko et 
al. 2017) among many other models.

Among the several AI explainability taxonomies that exist in the 
literature, we illustrate their scope with the example of that proposed 
by Zhang et al. (2021), distinguishing four families of explanations by 
increasing explanatory power20.

1.   Examples. A first ambition in AI explainability is that of providing 
examples; i.e., assembling chosen prototypes of stable inputs and 
outputs that illustrate the functioning of a system. If we consider, 
for instance, an image classifier AI system, this amounts to a 
collection of images with the labels that the system consistently 
outputs for them.

2.   Attribution. A second ambition, called attribution, is that of 
providing a measure of the impact of some of the features of the 
input data. In our example of an image classifier, this amounts to 
linking features (mean color, brightness, or more sophisticated 
properties) to some of the classes that the classifier can propose 
as output. Have images classified as apples comparatively more 
color red pixels than those classified as pineapples?

3.   Hidden semantics. A third level of explanation seeks to map 
attributes of input data to the representations, or hidden layers21 
of an AI system. In our example of an image classification system, 
an instance of this would be to inspect the representation of the 
input images made by the system (in an embedding space in a 
transformer, the columns space in a matrix factorization algorithm, 
or the weight space of a neural network) to map a feature of these 
input images to a dimension of the representation space (or 
different, more complex, geometrical features). When shown an 
image of an fruit, does the AI system embed it on a representation 
space in which a dimension seems to order them by amount of 
red pixels, always putting apples to the right of pineapples?

4.   Explicit rules. A four level explanation consists of predicating 
explicit operational rules emulating the behavior of the AI system. 
In our example of image classification, an instance of this level of 

20  This taxonomy was proposed as a result of a survey on the interpretability of neural network AI systems. Thus it 
targets systems that are by design opaque because of the flexibility of models achievable by Neural Networks.

21  Hidden layers are ubiquitous features in several AI systems, also called black box, for its opacity. 
Mathematically, they may take the form of weight spaces in Neural Networks, but a diversity of forms exist 
depending on the AI model, including column space in matrix factorization systems, or embedding in 
transformers.
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explanations would be to establish an intelligible operational 
model that predicts the output of the image classifier. For instance, 
establishing a logistic or polynomial regression model22 depending 
on features of inputs images, and that emulates the behavior of 
the AI classification system.

Other surveys on AI explainability propose different taxonomies, but 
most include a level of explanatory power centered in the ability to 
attribute semantics to hidden representations (see for instance the 
survey by Adadi and Berrada 2018). In increasing order of explanatory 
power, hidden semantics is the first type of explanations of interest 
for this article. 

Whenever the computation of an AI system can be 
mapped to operations taking place on a spatial 
representation for which intelligible semantics are 
available, it is possible to cast a large family of AI 
security problems in geometrical terms. 

Applied to the case of political segregation in online platforms, this 
type of explanations enables the design of algorithms improving risk 
management linked to lack of diversity in content recommendation 
and polarization. This connection will be made explicitly in the next 
sections, but briefly summarized, the main claim is the following. 
Instead of prescribing a level political diversity of recommendations, 
once a dimension of the machine representation has been associated 
to a political dimension (e.g., a Left-Right dimension), this knowledge 
can be leveraged in modifying the representation space to exclude 
such dimensions from downstream applications such as 
recommendation.

This path connecting explainability with new design tools for 
moderating risks related to political segregation and polarization 
incurs two important challenges. First, the task of attributing hidden 
semantics of political nature to representations learned by AI systems 
is a challenging one. In other words, if it is deemed that a given set 
of political issues and ideology dimensions are of importance for a 
given online population (based on a theoretical and empirical political 
science framework, such as in the example from the previous section), 
it is often challenging to link a spatial dimension of a representation 
learning space with a political issue or ideology dimension. 

22    The key property of this example is intelligibility by humans, as logistic regression is a akin to a generalized 
linear model because the outcome always depends on the sum of the inputs and parameters.
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Let us illustrate this challenge through a concrete example. If Left-
Right or Liberal-Conservative are deemed to be political dimensions 
of importance to which we would want to render an AI system blind 
by design, it is not trivial to go inside the black box to identify which 
model dimensions are related to these political dimensions. Secondly, 
even if a political dimension relevant in structuring an online population 
was identified to be encoded in the spatial representation created by 
an AI system, the way in which the political information is encoded 
in this space might not be readily treatable because of the geometrical 
complexity with which it is encoded. For instance, if we consider a 
set of users or contents for which we know their relative order going 
from Left- to Right-leaning, the way in which they are positioned in 
the machine representation space might be mediated by a non-linear 
map; i.e., in representation space, they might be ordered from Left to 
Right on a geometrical pattern different from a line or spatial direction. 

This problem is framed in the context of machine 
learning as the linear representation hypothesis. 
(MIKOLOV ET AL. 2013)

In the rest of this section we will address the first of these two 
challenges, leaving the second one for the next sections.
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4.2  AI REPRESENTATIONS OF ONLINE 
POLITICS

This subsection presents the results from the work of Faverjon and 
Ramaciotti (2023) to illustrate the possibilities and challenges in 
making a theoretical and operational connection between 

1.  dimensions of political analysis as conceptualized in political 
sciences, and 

2. dimensions of AI representation spaces. 

This study leverages the same population of Twitter users from the 
French sphere of Figure 2 from the study by Ramaciotti Morales et 
al. (2022), spatialized along two irreducible dimensions that are most 
structuring of that particular ecosystem (Left-Right and anti-elite 
dimensions). Using behavioral trace data produced by individuals in 
this population, a recommender system is trained to recommend 
content from media outlets, following a standard training procedure 
in online platform settings. The recommender system chosen is a 
widely used matrix factorization algorithm (Boutsidis and Gallopoulos 
2008), in which the representation space computed by the AI system 
is spanned by the column space of the resulting matrices. 

Having access to political positions of individuals  
on the one hand, and to the machine spatial 
representation produced during training on the 
other, the cited study proposes one alternative  
to tackle the AI explainability problem: using 
multidimensional political positions of individuals  
to attribute meaning (i.e., hidden semantics) to  
the dimensions of the AI representation space. 

The results of this study show that, among the 12 dimensions of the 
representation space of the chosen recommender system, one 
dimension can be associated with Left-leaning individuals, and one 
dimension can be associated with Right-leaning individuals. 
The rest of this section provides more details on this result to then 
present how AI explainability based on political dimensions enables 
the formalization of a new family of problems in AI security tackling 
the risks of political segregation and polarization.
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  TRAINING A MEDIA CONTENT RECOMMENDER USING 
BEHAVIORAL TRACE DATA. 

Recommender systems that propose contents in online platforms 
(e.g., in feeds or walls) leverage a large and diverse set of signals 
produced by users. In the cited study, authors show that even a very 
narrow set of signals may allow an AI system to produce a political 
representation of the online environment they are mediating with 
recommendations23. For this, the study selects as a signal for training 
the URLs shared by users in Twitter posts and that link to web content 
(e.g., articles from established media, independent media, blogs). The 
task given to the recommender system, and that defines the 
optimization problem guiding the training, is that of predicting 
whether a web domain will elicit engagement on the part of a user. 

One important motivation in this research  
design is the fact that social media platforms are 
known to act as news and content providers  
for a large number of users, fulfilling a central  
function in the online public sphere.  
(KWAK ET AL. 2010)

Concretely, from the population of 230.911 Twitter users sampled from 
the French Twittersphere, and for which political positions are 
estimated on Left-Right and anti-elite dimensions, a random sample 
of 40.000 users was selected to then proceed to collect all of the 
URLs that they have shared online, belonging to 426.014 unique web 
domains24. These signals were then used as data (i.e., user-media 
pairs) to train the chosen recommender system until it was deemed 
to produce accurate predictions of user-media pairs25.

23  This aspect is specially relevant in light of limitations on the processing of data on political opinions,  
such as under GDPR, and will be discussed in the conclusion.

24  A web domain is the root website that may hosts several contents having distinct URLs. For instance,  
an article from the news media Le Monde in France may have a URL in the form www.lemonde.fr/article, 
which will be hosted by the domain lemonde.fr. In general, media outlets have unique web domains.

25  During training, a fraction of the user-media pairs were reserved for testing the accuracy of the 
predictions. Predictions are used in recommendation in the sense that, if the recommender system 
predicts a user has high probability of taking interest in a media outlet so as to share its contents online, it 
is probably relevant as content to be recommended.
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FIGURE 3. 

Spatial distribution of Twitter users on the Left-Right and anti-elite two-dimensional political space according  
to increasing level of salience in the dimensions 𝑙3 and 𝑙4 (out of 12, 𝑙𝑖 for 𝑖 = 1, … , 12) of the AI representation space computed 
during training in a recommender systems setting. Dimensions 𝑙3 and 𝑙4 are deemed as the most dependent on political 
positions as quantified by mutual information metrics.

(Source: Faverjon and Ramaciotti 2023)
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  COMPUTING HIDDEN (POLITICAL) SEMANTICS. 

The particular recommender system used in this study generates 
during training a spatial representation of 12 dimensions in which 
users and web domains are embedded, with the predicted probability 
of a user sharing content from a web domain computed on the basis 
of angular similarity through an inner product. To operationalize the 
measurement of the amount of information about the political 
positioning of users that was encoded in each of these 12 dimensions 
(𝑙𝑖, for 𝑖 = 1, … , 12), a mutual information metric was used26. The 
examination of the dependence between the positions of users along 
political dimensions on the one hand, and machine representation 
dimensions on the other, revealed that machine dimension 𝑙3 was 
dependent on the position of users on the Right-wing side of the 
political spectrum, while dimension 𝑙4 was dependent on the positions 
of users on the Left-wing side of the political spectrum. This is 
illustrated in Figure 3, showing how users selected by the salience of 
positions they have along these two dimensions of the machine 
representation space, project onto regions the political space of  
Figure 2 subtended by a Left-Right and an anti-elite dimensions. 
Figure 3 shows the spatial distribution of users on the Left-Right and 
anti-elite two-dimensional political space, by increasing level of 
positions27 in the machine dimensions 𝑙3 and 𝑙4. As the positions along 
𝑙3 and 𝑙4 increase, the users found in those positions are also shown 
to concentrate increasingly in the far-Right and far-Left positions 
respectively.

26  In information theory, the mutual information between two variables is a measure of the dependence 
between them. In the case of the presented study, mutual information is computed between the  
political position of users along the two known political dimensions, and the 12 known positions in the  
AI representation. In other words, mutual information is a quantification of the degree of information  
that is known about the position of a user in one of the 12 machine dimensions whenever its position  
is known in one of the political dimensions.

27  In the reported study, the delimitation or regions shown is computed as the level curve of probability  
equal to0.5 in the Kernel Density Estimation probability function in the political space for a given level of 
salience 𝑙3 and 𝑙4.
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  NEW APPROACHES IN AI SECURITY FOR POLITICAL 
SEGREGATION AND POLARIZATION. 

Let us restate the risk of AI mediation in the digital public sphere 
considered by this article. Because algorithms allows to recommend 
different content to each user, the possibility exists that the  
resulting selective exposure to content online is structured along 
political lines, e.g., recommending only Conservative-leaning  
content to Conservative-leaning individuals. A central concern 
associated with this scenario is that political segregation in information 
consumption may exacerbate political polarization (Sunstein 2001). 
As a result, there is considerable investment in research measuring 
political diversity of algorithmic exposures (Bakshy et al. 2015) and in 
diversification, which incurs a normative problem: How much diversity 
must be achieved, or, to what degree additional diversity must be 
proposed during recommendations? This normative approach results 
in two forms of guidelines: 

1.   Optimize a utility function during training that integrates  
both accuracy and diversity (by prescribing their relative 
importance), or

2.   Setting constraints in minimal content diversity that algorithms 
should propose and then optimize for accuracy. 

These approaches incur traditional challenges of normative approaches: 

 ■ Who decides the level of diversity to be enforced? 

 ■ Who decides on the ontologies on which diversity is to be measured 
and enforced? 

 ■ Should we enforce diversity with regards to Liberal-Conservative 
divides, but also with regards to a separate issue and which one? 

A recent and illustrative debate involving normative diversity in AI 
(although not completely related to politics) is that followed by the 
design decision to diversify ethnic representations in images provided 
by Google Gemini text-to-image generator (Gautam et al. 2024). The 
case of political opinions or beliefs presents an additional risk. Contrary 
to several narratives in social media research, recent experimental 
results in curating diverse political content consumption show that 
increased diversity may sometimes lead to exacerbated political 
polarization (Bail et al. 2018). A claim of this article is that AI explainability 
that hinges on politics, as tackled in the study by Faverjon and 
Ramaciotti (2023), opens a path to new approaches to AI security. 
First, by making a theoretical connection with comparative politics, 
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algorithm design communities may assess the ideologies and issues 
that are structuring to a particular national setting or even to a given 
digital arena, and on which the question of algorithmic design  
and consequences should be focused. 

Second, whenever the possibility exists of attributing 
political semantics to hidden spatial representations 
leveraged by AI, it is also possible to design AI 
systems and recommendation procedures that 
address the impact on politics without incurring 
normative approaches by removing political 
information encoded by the machine. 

Following the example of the case study by Faverjon and Ramaciotti 
(2023), once a model is trained to compute recommendations, the 
machine dimensions identified with political ones that are relevant 
for the particular arena of deployment (i.e., the French Twitter sphere) 
may be removed from the computation of recommendations, in a 
procedure akin to rendering algorithms blind to politics28.

28  It must be noted that stances on political issues might not be independent from other features in a given 
population (e.g., age, gender, income), and that removing political information from a spatial encoding 
might also remove other information . The consequences of this possibility for algorithm design will be 
addressed in the conclusions.
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In order to formalize these challenges and the operational aspects of 
this new family of AI security approaches relating to politics, this 
section illustrates a concrete application case by leveraging a synthetic 
population approach. Synthetic populations have two important 
advantages on which this data-driven example case study builds. 
First, they alleviate the need for data that is difficult or impossible to 
obtain. This is essential in our case, because of the impossibility of 
accessing the models trained by social media platforms. Second, 
even if we had access to the trained models included in recommender 
systems in large online platforms, the inherent unobservability of 
political opinions would render the exercise of analyzing new 
algorithmic strategies dependent on the quality of the estimation of 
these opinions. Using synthetic population in which we can precisely 
prescribe political opinions and other features, separates the problem 
of illustrating the new family of algorithmic design problems proposed 
by this article from the problem of estimating political opinions.

5.1 SYNTHETIC POPULATION SETTING

Let us consider a synthetic population made of 𝑁 = 1.000 individuals 
where only three features are important for diversity and accuracy in 
a recommendation setting. Let us further assume that these features 
are quantifiable in continuous scales or dimensions, and that the first 
one quantifies negative or positive attitudes towards a particular 
political issue or ideology29. 

We name these variables Φ1, Φ2 and Φ3 respectively, with Φ1 representing 
our political variable, and 𝚽 the space subtended by all three 
dimensions. Additionally, we name the three-dimensional position 
of an individual 𝑖 (𝑖 = 1, … , 1.000) in space 𝚽 as 𝝓𝑖. Let us prescribe the 
distribution of values of these 3 features in our synthetic population 
with a multivariate Gaussian distribution, 𝝓𝑖 ∼ N ( 𝝁, 𝚺), with 𝝁 = (0, 0, 
0), 𝚺 = diag(1, 1, 1), and draw from this distribution values 𝝓𝑖 for  
𝑖 = 1, … , 1.000 (see Figure 4a).

29  If it is an issue, negative and positive values encode degrees of negative and positive attitudes. If it is 
an ideology in the descriptive sense, values encode proximity towards opposed ideological positions, 
such as negative values encoding degrees of Liberal attitudes and positive values encoding degrees of 
Conservative attitudes, as in most social media studies in US settings (Bakshy et al. 2015).

5.  DISENTANGLING POLITICS  
AND RECOMMENDATIONS:  
A DATA-DRIVEN EXAMPLE
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AI systems cannot directly observe all features of 
individuals (e.g., political opinions), and they are 
trained instead on the data traces they produce. 
Let us further specify a data generation process for 
this population in the form of an interaction network. 
Concrete examples of interaction networks are 
follower of friendship networks, but also interactional 
data indicating who has, e.g., shared, commented 
or liked content produced by other users, and take 
the form of relational data that may be represented 
as edges or links in a network. We prescribe a data 
generation process based on homophily (Lazarsfeld 
et al. 1954), one of the most documented, understood, 
and ubiquitous social processes in social networks30. 
In an homophilic data generation process, the 
probability of observing an interaction between 
two individuals (𝑖 and 𝑗) depends on their similarity, 
operationalized in our settings as their distance in 
the feature space 𝚽. Formally, this process is 
prescribed as the probability law for observing an 
interaction between 𝑖 and 𝑗 based on their distance 
in feature space, which we set as a logistic function 
of the distance between users 𝑖 and 𝑗 in feature 
space 𝚽. This particular form is rooted in Item-
Response Theory and is used for political position 
inference in Bayesian settings in online studies31, 
using the observable interactional data and the 
probability law to estimate values of 𝝓𝑖 (Ramaciotti 
Morales et al. 2021; Barberá et al. 2015). 

Figure 4b shows the density of pairwise distances 
for our synthetic population in space 𝚽 and the 
prescribed probability of interactions32. Using this 
probability of interactions, we draw edges to 
constitute our synthetic interaction network of data 
traces that will be observable by our recommender 

30  The reader is referred to the work of McPherson et al. (2001) for an extensive 
survey on the role of homophily on different features in shaping human 
interactions and relations.

31  For two users 𝑖 and 𝑗 this framework proposes a generative probabilistic 
model for the observed data depending on the distance ∥ 𝝓𝑖 − 𝝓𝑗 ∥2, setting 
the probability of observing 𝑖 interacting with 𝑗, denoted as 𝑃(𝑖 → 𝑗 ), as  
𝑃 (𝑖 → 𝑗) = logistic 𝛼 − 𝛽∥𝝓𝑖 − 𝝓𝑗 ∥2 where 𝛼 and 𝛽 are shape parameters chosen  
to be 0.6 and 0.8 for the purposes of this illustration. These values are chosen 
to represent a sparse setting in which most individuals do not interact with 
one another.

32  The resulting interaction network drawn from the prescribed probability 
distribution does not exhibit the traditional properties of empirical social 
networks, which generally display the property of being sparse, clustered, 
with hubs, and scale free.
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FIGURE 4. 

Synthetic population for the recommender system setting.
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systems, shown in Figure 4c. These interactional traces constitute 
the ground truth of our recommendation problem.

In a recommender systems setting, the goal is to use observable data 
traces (i.e., past choices made by users) to compute recommendations 
for new interactions. This setting represents social recommendations 
(i.e., recommending users with which to interact), but the same 
formalization and operationalization applies for content recommendation. 
A recommender system is typically implemented to predict first the 
probability of observing an interaction, to then recommend those 
with high probability and that the user has not yet chosen. This is 
achieved by computing the probabilities of interactions on every 
potential pairwise interaction33 to then rank them by probability to 
finally recommend only those ranked highest.

A traditional approach in recent AI recommender systems is to embed 
users and to rank recommen- dations on the bases of distances. The 
state of the art knows a wide multitude of embedding procedures 
for different types of data traces. We choose for this example an 
eigenvector approach (Greenacre 2017) for two reasons. 

First, this is a procedure successfully used in social 
media settings. Second, being a linear embedding 
procedure, it will allow us to highlight an important 
challenge of AI explainability: the complexity of the 
geometrical operations on the representation space 
on which recommendations depend, and that will be 
discussed in the next section.

Concretely, we employ the embedding procedure described by 
Halford (2016) to embed the individuals of our population in a machine 
representation space 𝚿 of 64 dimensions. 

33  Most modern recommender systems integrate procedures for limiting the scope of pairwise interactions 
(user-user or user-content) to consider, as 𝑁2 potential (directed) interactions would result in O(𝑁2) 
complexity, limiting industrial applications.
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Figure 5a shows the positions of users in the 
synthetic along the first three of the 64 dimensions 
of the representation computed during training: 
𝚿1, 𝚿2 and 𝚿3.

Using this machine spatial representation, 
recommendations are then computed by ranking 
pairwise distances as proxies for similarity in this 
new space. In this example, we intentionally avoid 
distinguishing between training and test set 
because we are not interested in arguing that this 
procedure produces accurate recommendations, 
let alone arguing that accuracy is competitive with 
regards to the state of the art. Instead, we take the 
accuracy of such a procedure as a baseline for 
comparing design strategies derived from AI 
explainability results to be proposed. We evaluate 
the accuracy of these recommendations using the 
balanced accuracy metric (Mower 2005):

Accuracy = 
 
, where TPR stands for true 

positive rate and TNR stands for true negative rate. 
Concretely, for a number of recommendations 
made to a user, we count how many of those 
recommendations are true positives (i.e., are also 
past choices observed in the training data), and 
how many of those recommendations are true 
negatives (i.e., how many of the interactions that 
were not recommended are also choices that the 
user did not make). We then compute TPR as  
TPR = TP/P where TP are true positives and P is the 
number of choices or interactions made by the 
users, and TNR as TNR = TN/N, where TN are true 
negatives and N is the number of choices or 
interactions that the user did not make. 

Figure 5b shows the accuracy curve (for all users, 
showing median and 0.3 and 0.7 quantiles) for such 
a recommender system, in which recommending 
more options increases the accuracy. This accuracy 
profile will be taken as a baseline for comparison 
with accuracies produced by systems in which 
design strategies arising from explainability are 
applied.

FIGURE 5. 

Representation learning space computed by an  
AI system along the the first three dimensions, and  
the accuracy of recommendations computed using  
this space for different numbers of propositions 
recommended to users.
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5.2  MAPPING POLITICS  
IN REPRESENTATION 
LEARNING SPACES

In order to improve algorithm design with regards 
to their political impact through AI explainability, 
one needs to propose political hidden semantics 
for the representation learning space 𝚿. This 
involves leveraging knowledge about political 
opinions of individuals to provide meaning to 
machine spatial representations. While challenging 
in practice in real settings, in our synthetic data 
setting it is possible because the relevant features 
in our population were prescribed from the start. 
Let us consider the situation in which positions along 
the first dimension, 𝚽1, stands for political positions. 
This does not change how the recommender 
system works, because it treats all dimensions alike. 
The question is whether we can use knowledge 
about positions along 𝚽1 to map politics in the 
machine representation space 𝚿. Because of the 
embedding procedure chosen for recommendation, 
the expectation is that a multivariate linear regression 
should provide a good model for positions along 𝚽1 
as dependent variable using the 64 dimensions of 
𝚿 as independent variables. If a multivariate linear 
regression model provides indeed a good model 
for 𝚽1, we can also identify a spatial direction �̂� 1 in 
the representation learning space 𝚿 as the gradient 
of the linear model for 𝚽1. 

Figure 6a shows the three first dimensions of 
representation learning space 𝚿 with the direction 
�̂� 1 computed as a the gradient of the multivariate 
linear regression for 𝚽1. 

Figure 6b shows the quality of this multivariate 
regression model by plotting the known prescribed 
positions along 𝚽1, and their values estimated via 
the regression, with mean 𝑙1 error of 0.08 (for 
comparison, the prescribed variance along 𝚽1 for 
the population is 1). This synthetic setting illustrates 
a concrete form of computation of hidden semantics 
for a chosen dimension of relevance in a population, 
illustrating a form of political AI explainability. 

5. DISENTANGLING POLITICS AND RECOMMENDATIONS: A DATA-DRIVEN EXAMPLE

FIGURE 6. 

Estimation of spatial direction �̂� 1 (associated  
to political positions in the population 𝚽1) in 
representation learning space 𝚿.
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6a.    Positions of users in representation learning space 
𝚿, and estimated direction �̂� 1 related to political 
positions encoded in dimensions 𝚽1 in the synthetic 
population.

6b.     Estimation of values along 𝚽1 using a multivariate 
linear regression model with positions on 
representation learning space as independent 
variables.

6b.

6a.
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5.3  CONSTRAINING POLITICS  
IN AI LEARNING

The previous exercise constitutes AI explainability 
in the sense of hidden semantics described in the 
previous section, providing human intelligibility to 
the recommendation procedure involved in the 
results from Figure 5. Because this procedure is 
based on selection of nearest neighbors, the role 
of spatial direction �̂� 1 in representation learning 
space 𝚿, can be directly assessed. It is possible,  
for instance, to transform representation learning 
space to restrict how recommendations use 
information encoded in �̂� 1. Let us suppose again 
that this dimension contains political information 
that we do not want the recommender system  
to use. If we identify �̂� 1 in space 𝚿, it is possible  
to consider its orthogonal subspace �̂�   1

⊥ in 
representation space 𝚿 and the projections of all 
entities susceptible of being recommended (in this 
example users), thus limiting the computation of 
nearest neighbors to subspace �̂�  1

⊥. 

Figure 7a shows the direction �̂� 1 in representation 
learning space 𝚿 and its orthogonal subspace
�̂�  1

⊥, with all entities now projected onto it. 

Figure 7b shows the values of entities along 𝚽1 

(dependent variable) estimated using positions 
along �̂�  1

⊥ (independent variables), the orthogonal 
space voided of information encoded in 𝚽 1.  
As expected, the quality or the regression is  
mostly lost, with mean 𝑙1 error standing at 0.69 
(compared to 0.08 using the full space 𝚿). If we 
compute recommendations as nearest neighbors 
now on the orthogonal space �̂�  1

⊥ (which contains 
less information than 𝚿) the accuracy of 
recommendations is marginally diminished. 

Figure 7c compares the accuracy curve for this  
new situation to the accuracy of recommendations 
using the full representation learning space.

5. DISENTANGLING POLITICS AND RECOMMENDATIONS: A DATA-DRIVEN EXAMPLE

FIGURE 7. 

Representation learning space 𝚿 with identified political 
dimension �̂� 1 allowing to restrict learning to the orthogonal 
space, rending recommendation blind to political information.
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7a.    Representation learning space 𝚿, identified political 
dimension �̂� 1, and orthongal subspace �̂�  1

⊥ with 
population positions restricted to subspace.

7b.     Loss of quality in multivariate regression models for 
political information �̂� 1, showing the loss of political 
information in restricted learning in orthogonal subspace.

7c.     Comparative accuracy between recommendations 
using the full representation learning space 𝚿 and 
the restricted orthogonal subspace �̂�  1

⊥ that 
excludes political information. Selectively limiting 
information in representation learning may 
marginally diminishes accuracy.

7a.

7b.

7c.
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In summary, this example used synthetic data to illustrate how 
features of users and contents online may be accessible to AI systems 
and encoded in representation learning space. 

The previous sections discussed recent literature that showed this is 
possible for political opinions in real-world scenarios (without relying 
on synthetic data). This example also showed it is sometimes possible 
to map features of users and contents (or other entities operated in 
recommendations) in what is known as hidden semantics in AI 
explainability, enabling political explainability of AI systems whenever 
these features are linked to political positions. Most importantly, this 
example illustrates the operational details of the possibility of using 
this type of explainability in new design of algorithms, as presented 
in the work of Faverjon and Ramaciotti (2023). In this new paradigm 
of algorithmic design, when controlling for the effects of a feature 
such as political opinions, an alternative is proposed to the problem 
of AI risks regarding political segregation via selective exposure, and 
the moderation of potential outcomes such as polarization. Instead 
of taking a traditional normative approach specifying a diversity of 
recommendations (akin to taking nearest neighbors recommendations 
and modify them ex post to add diversity that might be lacking), 
hidden semantics explainable AI allows to cast the problem differently. 

Instead of optimizing for accuracy and then 
introducing diversity of recommendations by 
prescribing how much diversity, the design  
principle here proposed aims at rendering the  
AI system agnostic to a particular feature. 

In this new formulation, the recommender is rendered blind to the 
feature of importance, at the cost of a loss in accuracy.

5. DISENTANGLING POLITICS AND RECOMMENDATIONS: A DATA-DRIVEN EXAMPLE
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6.  CONCLUSIONS: TOWARDS 
TOOLKITS AND GUIDELINES FOR 
AI POLICY AND REGULATION

This article discussed emerging opportunities brought about by 
the recent state of the art in AI systems for improving algorithmic 
moderation of digital public sphere. Because the digital public 
sphere plays at least a non-negligible role in the functioning of 
democracy (and arguably a consequent one in several countries), 
providers of AI services must monitor and improve these systems 
with regards to their risks. A prominent risk identified in the 
scientific literature and recent policy efforts (e.g., the Digital 
Services Act) is that of systemic risks linked to selective exposure 
and political plurality. This is conceptualized in the scientific 
literature as political segregation, lack of diversity, and potentially 
connected with the risk of exacerbating political polarization.

The traditional approach to managing AI risks linked to political 
segregation in the digital public sphere (e.g., social media platforms) 
is to prescribe levels of recommended diversity, or to simultaneously 
optimize for accuracy and diversity during training (thus prescribing 
their relative importance). These approaches, however, incur the 
problems of any normative one: 

 How much diversity should be prescribed? 

 Who decides the diversity levels that are desirable or appropriate?

  How to decide the issue or political dimensions or categories along 
which diversity should be enforced? 

This article also discussed additional risks of normative approaches 
to diversity; namely, the possibility that a sufficiently high level of 
political diversity in recommendations may also lead to exacerbated 
polarization. The article discusses recent experimental results that 
provide support to this consideration.

The opportunity for addressing this problem as discussed in this 
article is presented in more detail in the work of Faverjon and 
Ramaciotti (2023). 
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This article provides the substantial theoretical framework to link 
this proposition with 

1.   political science research addressing the question of how to 
conceptualize and operationalize political lines of divide of 
relevance in different social systems, as well as deciding which 
ones should be analyzed and addressed in algorithm design, and 

2.   policy and practitioner communities working on the impacts of 
AI in politics and democracy. 

This proposed path to algorithm design draws from two theoretical 
perspectives: 

1.   recent representation learning AI systems that rely on spatial 
representation of data, and 

2.   spatial models of politics in social systems. Linking both on a 
theoretical and operational level, this article discussed the 
possibility of using the latter to produce AI explainability of the 
former (via a type of AI explainability techniques known as hidden 
semantics).

This article presented recent results showing 

1.   how it is possible to determine spatial political models of online 
social systems (through an empirical study focused on the French 
Twitter sphere), 

2.   how it is possible for algorithms to encode political information in 
representation learning procedures (through a study using the same 
empirical data and ubiquitous recommendation algorithms), and 

3.   how it is possible to use hidden semantics AI explainability hinging 
on political models to propose novel paths for the design of AI.

These novel paths propose ways to address these risks by selectively 
suppressing information that a recommender system may have 
learned, including, specially political positions of users and contents. 
Such a design principle would allow to address selective exposure 
based on politics, but without incurring normative approaches to 
political diversity. The concrete expressions of these design principles 
were illustrated with an example based on synthetic data, showing 
how to render an AI system blind to specific feature dimensions and 
the resulting impact in the achieved accuracy. It is important to 
remark that the result of such as design principle would remove the 
need for a normative prescription of diversity, but would affect 

CONCLUSIONS: TOWARDS TOOLKITS AND GUIDELINES FOR AI POLICY AND REGULATION
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nonetheless the diversity perceived by users. A novel question would 
then be, whether this perceived diversity is greater or lesser than what 
would otherwise be recommended. While this important question 
has no simple answer, it must be remembered that the design 
principle does not to aim to set any given diversity level, but, on the
contrary, to subtract the effect that the recommended diversity (either 
greater or lower) would have on users otherwise. This goal takes 
particular interest in light of recent research pointing to the danger 
of normative diversity in fostering exacerbated polarization. 

To avoid the risks and downsides of normative 
approaches to political diversity in recommendations 
in social media, this article suggest, AI explainability 
hinging on political information that a machine may 
have learned must provide a way of rendering AI 
agnostic to the particular political dimensions that 
might be relevant for different national settings.

Finally, the results discussed in this article point to an additional risk 
and ways to moderate it. Recent regulations limit the capacity of 
some digital services to process political information. Article 9 of the 
General Data Protection Regulation (GDPR) of the EU forbids the 
processing of sensitive data, which includes political opinions.  
Similarly, Article 26 of the Digital Services Act (DSA) of the EU forbids 
large digital service providers from recommending content based 
on profiles that contain sensitive information defined by Article 9 of 
the GDPR (thus including political opinions). 

The results discussed in this article show that the risk exists that AI 
systems, specially representation learning ones, might use data traces 
to create profiles on sensitive data inadvertently and without this 
being an objective prescribed by designers. Concretely, it is possible 
for algorithms to treat data traces and create complex models for 
recommendation and that include information or profiles of users 
that contain quantifiable information on political opinions of data 
subjects, potentially in violation of Article 9 of the GDPR, or Article 25 
of the DSA in some recommendation application. This identifies a 
new, previously unconsidered and credible compliance risk for digital 
services providers. The results and the opportunities here discussed 
also highlight a path for providers to self-assess compliance and avoid 
these risks.

CONCLUSIONS: TOWARDS TOOLKITS AND GUIDELINES FOR AI POLICY AND REGULATION
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CONCLUSIONS: TOWARDS TOOLKITS AND GUIDELINES FOR AI POLICY AND REGULATION

6.1 GUIDELINES

This discussion also highlighted several challenges in materializing 
the opportunities presented by the state of the art in AI, and that 
constitute the substance of the next subsection. Regardless, these 
results point to a number of potential actions that AI service providers 
may take to seize some of these opportunities.

1.  Production of markers enabling hidden semantics, specially 
for political opinions, but also for other features relevant for 
moderation and compliance (e.g., those considered by GDPR, 
such as religious beliefs, ethnic origin, trade union membership 
and sexual orientation). Analyzing such information also comes 
with its own challenge regarding compliance with GDPR, to be 
discussed in the next subsection. However, as shown in the 
discussion of the results by Ramaciotti Morales et al. (2022), it is 
possible to compute hidden semantic hinging on political 
dimensions using markers that are not limited by GDPR. 
Concretely, political positions of political parties (but also that of 
news media outlets; Bakshy et al. 2015) may be available and free 
from limitations imposed by GDPR and other regulations. It is 
possible to use publicly-available datasets of positioning of entities 
along political dimensions to 

  1)  assess the dimensions of relevance for a given national setting, 
and 

  2)  to inspect representation learning spaces, providing quantitative 
measurements of political information. 

  
  Consequently, there is an advantage in specifying a list of markers 

(political, religious, ethnic, or other) by design, and that would 
enable algorithmic assessment via hidden semantic methods. In 
summary, providers of AI services should systematically identify 
markers (e.g., political parties or personalities) with which to 
analyze embeddings spaces looking for inadvertently learned 
information.
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2.  Self-assessment of information learned by AI systems. 
  The need for self-assessment and reporting on AI risks is 

demanded by recent regulation and is set to become unavoidable 
task for sustainable digital service providers. This is stipulated  
for instance in Article 15 of the DSA, demanding providers to 
render publicly available yearly reports on moderation leading 
to compliance with the obligation set by the DSA. The results 
presented in this article suggest a path to improve compliance 
with these obligations by systematically self-assessing and 
measuring different information learned by AI systems that a 
service provider might have integrated. In doing so, there are 
approaches already suggested in the scientific literature,  
such as those from information theory. A main challenge to be  
discussed in this regard pertains to the geometrical complexity 
with which information might be encoded in representation 
learning. 

In summary, AI security testing phases should benefit 
from systematic assessment of information learned 
using markers suited for different applications (e.g., 
testing the presence of learned political information 
leveraging positions of political markers).

3.  Evaluation of alternative representation learning procedures. 
  Similarly, through self- assessment, it is possible to continuously 

evaluate modifications to AI systems in line with the action 
presented in the data-driven example using synthetic data. Such 
continuous exploration has the potential of yielding better services 
both in terms of compliance and in terms of the impact of  
AI systems in society. The emergence of architectures that separate 
embedding from downstream machine tasks (e.g., classification, 
regression), such as transformers, facilitates this exploration.  
An interesting alternative is to consider in the design phase 
safeguards assessing information in embeddings and limiting 
sensitive information when possible. 

In summary, AI providers should systematically explore 
and assess (in terms of accuracy or other business-
relevant metrics) modifications to the learned 
representation space, seeking to delete unwanted 
content (e.g., political information), increasing the 
chances of compliance with regulation.

CONCLUSIONS: TOWARDS TOOLKITS AND GUIDELINES FOR AI POLICY AND REGULATION
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4.  Design representation learning AI for openness. 
  Because of the identified risks of AI systems and their role in 

society, the scrutiny put on these systems and their providers is 
set to increase. This is in part reflected in recent regulation. Article 
40 of the DSA, for instance, demands that large digital service 
providers grant access to data on the functioning of these services 
to regulators and researchers. The results of this article point to 
the interest of parties (platforms, service providers, regulators  
and researchers) in increasing collaboration in scrutiny of 
representation learning models. Such a collaboration demands 
that representation learning spatial models be designed in a way 
that enables the possibility of sharing them, potentially without 
revealing downstream operations that constitute the business 
opportunity of service providers. 

  Additionally, the provisions of Article 40 of the DSA, in view of 
scientific research in AI explainability, may lead to openness 
obligations regarding trained models in the future, pointing to 
ways in which these providers may prepare. While DSA provides 
the best known example of obligations, the implementation of 
newer regulations such as the AI Act provide further examples 
motivating designing for openness. 

In summary, the production of representation 
learning spaces, and that include markers for 
assessment, should be systematically included in 
the production of AI services as a means to 
facilitate sharing with external vetted researchers.

CONCLUSIONS: TOWARDS TOOLKITS AND GUIDELINES FOR AI POLICY AND REGULATION
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6.2 CHALLENGES

Finally, these results point to important challenges that are to be 
addressed in seizing the opportunities here outlined.

 
1.  Geometrical complexity of learned representations. 
  The main scientific challenge in the program here outlined relates 

to the difficulty of proposing geometrical structures explaining 
the representation learning spaces and on which to predicate 
hidden semantics. This is best illustrated by the design choices 
taken in the previous section presenting the example of a synthetic 
population. While the recommendation principles adopted in that 
example are not foreign to industry, a growing part of AI systems 
used in digital services adopt deep learning methods that can 
accommodate a geometrically-complex encoding of information 
in weight spaces or embedding spaces, where the architectures 
allows it (e.g., transformers). The family of systems presented in 
the previous section, in contrast, falls within those that comply 
with the linear representation hypothesis (Mikolov et al. 2013): 
systems in which properties of entities operated in machine 
representation (e.g., users, contents) can be quantified in 
continuous scales which can be identified with spatial directions 
in representation learning spaces. This, of course, is not always the 
case for all AI systems, imposing additional complexity in 
describing non-linear encoding of properties in spaces, driving 
increasing research efforts.

2.  Processing of sensitive (political opinion) data. 
  As mentioned in the previous section, producing analyses on AI 

explainability based on hidden semantics requires data descriptors 
on the populations or contents treated. Whenever these  
constitute sensitive data, the danger exist of incuring a violation 
of data protection regulation. This is a potential risk in advancing 
efforts in leveraging explainability in addressing risks linked to 
lack of diversity and segregation. From a compliance perspective 
(i.e., assessing whether AI systems are treating sensitive information), 
this introduces an apparent paradox: e.g., to assess whether an AI 
system is creating political profiles of individuals, the political 
profiles of individuals may be needed in the first place to evaluate 
machine representations. At least two solution may be given to 
this apparent paradox. One solution is to rely on openness by 
design and collaboration with actors free from limitations in data 
treatment, such as vetted academic researchers (a category 
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included, for example, in the DSA). A second solution is to rely on 
markers that are not subjected to limitations in profiling to 
examine representation learning spaces. This points again to the 
example of the use of political parties (but possibly also political 
figures and media outlets of known political tendencies) to inspect 
machine representations without having to rely on profiles of 
regular users.

3.  Feature alignment and loss of information. 
  In a situation in which a political hidden semantic explanation has 

been developed for an AI system, it is possible to constrain the 
representation learning space to exclude political information in 
downstream tasks such as recommendation. In excluding this 
information, it is possible and even probable that other information 
will be also lost. Consider and idealized example in which political 
positions of users on a Left-Right scale is a linear function of age. 
Whenever political information is suppressed, information about 
age will also be rendered unavailable for recommendations. This 
has the potential of reducing accuracy, which is crucial to the 
business model sustaining digital services. Is it desirable or 
permissible to destroy profiling on non sensitive categories while 
seeking to destroy information on a particular sensitive category? 
The answer depends on the objective sought. If the imposition 
stems from the legal obligation to avoid profiling on a category, 
its suppression should be sought regardless of other information 
that may also be removed from the representation learning space.

CONCLUSIONS: TOWARDS TOOLKITS AND GUIDELINES FOR AI POLICY AND REGULATION
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