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An entropy-stable and fully well-balanced scheme for the Euler equations
with gravity. II: General equations of state

Victor Michel-Dansaca, Andrea Thomanna

aUniversité de Strasbourg, CNRS, Inria, IRMA, F-67000, Strasbourg, France

Abstract
The present work concerns the derivation of a fully well-balanced Godunov-type finite volume scheme
for the Euler equations with a gravitational potential based on an approximate Riemann solver. It is
an extension to general equations of states of the entropy-stable and fully well-balanced scheme for
ideal gases recently forwarded in Berthon et al. [9]. When the system is equipped with a convex
entropy and associated entropy inequality, it is also entropy-stable and positivity-preserving for all
thermodynamic variables. An extension to high order accuracy is presented. Numerical test cases
illustrate the performance of the new scheme, using six different equations of state as examples, four
analytic and two tabulated ones.
Keywords: Euler equations with gravity, General equations of state, fully well-balanced scheme,
Godunov-type scheme, positivity preservation, entropy stability
65M08, 76M12

1. Introduction

The Euler equations with gravity are the core of many models in fluid dynamics, e.g. in astrophysics
or meteorology. Therein, the hydrodynamic evolution of atmospheres is often described by the full or
barotropic Euler equations. Since these atmospheres are usually a stable system, they are often in
an equilibrium configuration, and processes like convection can be viewed as perturbations of the
underlying steady state. Depending on the event that is observed, these perturbations can vary by
several orders of magnitude. For the numerical resolution of those flows, perturbations whose amplitude
is smaller than the background error of the applied numerical scheme are quite challenging to properly
approximate, even with high order schemes. In these cases, the mesh resolution has to be refined to
reduce the background error and make the perturbations visible in the numerical simulation. This
leads to a computational overhead, which could be avoided were the numerical scheme able to resolve
the underlying equilibrium state with high accuracy, or even at machine precision.

These are so-called well-balanced schemes, a name which was coined in the pioneering work [13]
of Cargo & LeRoux. They were the first to construct a scheme for the Euler equations with gravity
source terms capable of preserving exactly a discrete form of a hydrostatic equilibrium. Further, in
the work of Bale & LeVeque [34] within the quasi-steady wave-propagation framework, the source term
was numerically included in the Riemann problem, a technique extended from shallow-water equations
to the Euler equations with an ideal gas law. Since then, a lot of research has been devoted to the
development of well-balanced schemes, more particularly in the context of the shallow water equations.
For instance, [1, 40, 57, 7, 18, 12] is a non-exhaustive list of contributions to the topic. For the Euler
equations, much work has been dedicated to numerically preserving the special class of stationary
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hydrostatic atmospheres [30, 23, 35, 4, 56]; see also Käppeli’s detailed review [33] for an overview of
techniques and concepts.

More recently, so-called moving steady states got more and more attention, first in the context of
the shallow water equations [36, 15, 39, 37], but also for general systems [25, 16, 3, 6, 21]. For the
Euler equations, strategies that were effective for hydrostatic equilibria are often adapted to achieve
well-balanced solutions for some moving equilibria. For example, in [32], a method was developed to
preserve a constant, non-zero velocity in a single grid-aligned direction.

Besides the well-balanced property, a key property for robustness is entropy stability. For the
Euler equations, on the analytical level, an accompanying inequality, the entropy inequality, can be
derived. So-called admissible entropy weak solutions of the Euler equations satisfy this relation, which
is important for excluding numerical solutions which are not thermodynamically compatible [45, 46].
To ensure that the numerical solution is the physical admissible entropy solution, the numerical method
has to fulfil the discrete analogue of this entropy inequality. Such schemes are then called entropy-
stable. Their construction is quite challenging and a lot of work was dedicated to deriving entropy-
stable schemes for the homogeneous Euler equations [28, 24, 10, 5, 17, 19], and also entropy-stable
well-balanced schemes which preserve hydrostatic equilibria [19, 48]. Recently, an entropy-stable fully
well-balanced scheme for the Euler equations was constructed in [9] which preserves both hydrostatic
and moving equilibria. It belongs to the family of so-called structure-preserving numerical schemes, i.e.,
schemes where physical properties of the model are preserved within the discrete numerical solution.
Besides fulfilling the entropy inequality, it guarantees the positivity of thermodynamic quantities,
namely density, pressure, temperature, etc.

Another feature of the Euler equations is that an additional relation, linking the pressure to the
density and the internal energy, is needed to close the system. This relation is called the equation
of state (EOS). A standard assumption (made in e.g. [9]) to simplify the numerical resolution is to
consider ideal gas law, which is a special case of a general EOS. Such an EOS assumes that the
modelled fluid is a gas, whose particles are point-like and do not interact with each other. However,
this assumption is quite restrictive and limits the applicability of the numerical scheme. Consequently,
for real applications, other EOSs are often considered. In [31], a general EOS was considered when well-
balancing barotropic hydrostatic equilibria. This numerical scheme was then extended in [27] to steady
adiabatic flows with grid-aligned streamlines. Also, in [52], hydrostatic equilibria with classical van-
der-Waals gases and van-der-Waals gases with radiation pressure were considered. However, these are
only special examples and their extension to general EOS is, at times, quite technical and challenging.

Therefore, this work is dedicated to the construction of a fully well-balanced scheme for general
equations of state, which is also entropy-stable in the region of thermodynamical compatibility, i.e., in
regions where the weak solution of the Euler equations fulfills an accompanying entropy inequality. As
in the ideal gas case, the positivity of thermodynamical variables follows from the entropy stability and
the provable positivity of the density. To our knowledge, this is the first time that the entropy stability
was rigorously proven and applied to the case of fully well-balanced schemes for general equations of
states. The scheme can be applied on analytically available equations of states or on tabulated ones,
which increases its applicability.

The resulting scheme is quite simple to implement, as results from a mere modification of interme-
diate states in the Riemann solver and source term discretization. Moreover, despite the EOS being
potentially nonlinear, we highlight that the scheme itself does not feature any nonlinear iteration,
except when computing the EOS itself. As a consequence, we wish to preserve this property when
developing a high-order well-balanced extension. In the literature, such extensions usually require
solving non-linear systems, see e.g. the non-exhaustive list [14, 55, 11, 25]. To avoid solving additional
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non-linear systems, we follow the procedure described in detail in [6] and used e.g. in [38] for the
shallow water equations. Note that by adopting a strategy that circumvents non-linear iterative solvers
in the high-order extension, the associated computational overhead is avoided.

The paper is organized as follows. The next section is dedicated to the Euler equations with
gravity, where the model is detailed, and its equilibrium solutions are derived. This section also con-
tains the definition of the equations of state used in the numerical simulations, namely four with
analytical expressions and two tabulated ones. Finally, the accompanying entropy inequality for ideal
and general EOSs is also addressed. The numerical scheme is derived in Section 3, which contains
the derivation of the approximate Riemann solver. First, we describe the general framework of the
Godunov-type finite volume scheme, and the conditions that have to be fulfilled by the associated
approximate Riemann solver. Namely, we give a proper definition of important concepts such as con-
sistency, well-balancedness, entropy stability and positivity A detailed derivation of all free parameters
in the Riemann solver, together with a summary of the resulting numerical scheme and its proper-
ties, concludes the section. Section 4 follows, containing numerical test cases, where the accuracy,
well-balanced property and performance of the numerical scheme with respect to the resolution of
perturbations is assessed. The results are obtained with the ideal gas law, three cubic EOSs, and two
tabulated ones. Finally, Section 5 concludes this work.

2. The Euler equations with gravity

We consider, in a one-dimensional setting, the compressible Euler equations with a gravitational
source term. They are governed by

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2 + p) = −ρ∂xϕ,

∂tE + ∂x((E + p)u) = −ρu∂xϕ.
(2.1)

Therein ρ > 0 denotes the density, u ∈ R the velocity and E > 0 the total energy density. Moreover,
ϕ : R → R is a given time-independent continuous gravitational potential. To close the system, we
consider a pressure law p(τ, e) : R+ × R+ → R+, given in terms of specific volume τ = 1/ρ and
specific internal energy e, which will be defined by different equations of state (EOSs) detailed later
on. Moreover, in accordance with the second law of thermodynamics, we assume the existence of a
specific (mathematical) entropy s(τ, e) : R+ × R+ → R, obeying, for some temperature T (τ, e) > 0,
the Gibbs relations

∂s

∂τ
(τ, e) = − p(τ, e)

T (τ, e)
< 0,

∂s

∂e
(τ, e) = − 1

T (τ, e)
< 0. (2.2)

The total energy E is then given by summing the internal and kinetic energies, and we get

E = ρe(τ, s) +
1

2
ρu2. (2.3)

Note that, for arbitrary τ > 0, the function e 7→ s(τ, e) is strictly decreasing, according to (2.2).
Therefore, it is injective (and even bijective), and we can define the inverse function e(τ, s), used in
(2.3). Other quantities of interest include the specific enthalpy h and the specific total enthalpy H,
respectively defined by

H = h+ ϕ, with h =
E + p

ρ
. (2.4)
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To shorten notation, we write system (2.1) in the following compact form

∂tW + ∂xF (W ) = S(W ),

where the state vector W , flux function F and source term S are respectively defined by

W =

 ρ
ρu
E

 , F (W ) =

 ρu
ρu2 + p
u(E + p)

 , and S(W ) =

 0
−ρ∂xϕ
−ρu∂xϕ

 .

Equipped with this notation, most thermodynamical quantities can be expressed in terms of W (and
ϕ if needed). For instance, the specific total enthalpy H can be seen as a function H(W,ϕ), and the
entropy s as a function s(W ). In (2.1), we require the density ρ and pressure p to be positive. Thus,
the state vector W belongs to the set of admissible states Ω, defined by

Ω =
{
W ∈ R3 such that ρ > 0 and p > 0

}
. (2.5)

To reflect the influence of the gravitational source term on the wave structure of the Euler equations,
we augment system (2.1) by adding the (trivial) equation ∂tϕ = 0. The resulting system is hyperbolic,
with eigenvalues

λ± = u± c, λu = u, λ0 = 0,

where c denotes the speed of sound, given by

c =

√(
∂p(ρ, s)

∂ρ

)
s

,

where the subscript s denotes the derivative taken at constant entropy. This wave structure is repre-
sented in the left panel of Figure 1. Note that, compared to the homogeneous system, which is obtained
by setting the gravitational source terms in (2.1) to zero, there is a zero eigenvalue associated to the
gravitational potential. This leads to a non-ordered wave structure, since λ± and λu can be positive
or negative, depending on the flow. This has a direct consequence on the construction of the Riemann
solver, see e.g. [19] where a relaxation model is developed to circumvent the appearance of a zero wave,
or [53] where six different cases of wave order configurations had to be taken into account.

2.1. Equilibrium solutions
Time-invariant solutions of (2.1) with a non-zero velocity u 6= 0, so-called moving equilibria, are

governed by the following system 
∂x(ρu) = 0, (2.6a)
∂x(ρu

2 + p) = −ρ ∂xϕ, (2.6b)
∂x((E + p)u) = −ρu ∂xϕ. (2.6c)

Assuming smooth enough steady solutions fulfilling (2.6), we obtain from (2.6a) a constant momentum
q0 := ρu 6= 0. Substituting and dividing by q0 in (2.6c), we find that

E + p

ρ
+ ϕ =: H0, (2.7)

where H0 denotes a constant specific total enthalpy.
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Substituting ϕ from (2.7) into (2.6b), we obtain

∂x

(
q20
ρ

+ p

)
= ρ ∂x

(
E + p

ρ

)
. (2.8)

Arguing the definition (2.3) of E, we find

E + p

ρ
= e+

1

2

q20
ρ2

+
p

ρ
,

and so (2.8) reduces to

−q
2
0

ρ2
∂xρ+ ∂xp = ρ ∂xe− ρ

q20
ρ3
∂xρ+ ∂xp−

p

ρ
∂xρ.

Eliminating and rearranging terms simplifies the above expression to

−p
ρ
∂xρ+ ρ∂xe = 0.

Rewriting this relation in terms of specific volume τ , we obtain

p∂xτ + ∂xe = 0. (2.9)

However, according to the expressions (2.2) of the entropy derivatives, note that

∂xs =
∂s

∂τ
∂xτ +

∂s

∂e
∂xe = − p

T
∂xτ −

1

T
∂xe.

Plugging (2.9) into the above expression, we obtain

∂xs = 0. (2.10)

Hence, smooth moving steady solutions for a general equation of state, with u 6= 0, are necessarily
isentropic and are characterized by the constant triplet (q0, H0, s0) given by

ρu =: q0,
E + p

ρ
+ ϕ =: H0, s =: s0, (2.11)

where s0 is a constant specific entropy. In practice, starting from a given triplet (q0, H0, s0) and
gravitational potential ϕ, the steady solution in state variables W is obtained by solving the nonlinear
system (2.11) with Newton’s method.

A special case is given by time-invariant solutions of (2.1) with zero velocity u = 0, the so-called
hydrostatic equilibria. They fulfil the ordinary differential equation

∂xp = −ρ∂xϕ. (2.12)

Since this problem is ill-posed, additional assumptions about the dependence between pressure and
density are required. Intensively studied examples are so-called isothermal or isentropic hydrostatic
equilibria with constant temperature or constant entropy, respectively. The reader is referred to the
review [33] for a non-exhaustive list of numerical methods achieving well-balancing of hydrostatic
equilibria using different numerical techniques. In our case, taking the limit as u → 0 in (2.11) yields
the isentropic hydrostatic equilibrium.
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2.2. Equation of state
In this work, we will examine various equations of state (EOS), including both analytical expressions

and tabulated forms.
First, we will consider a general cubic EOS, with the analytical form

p(τ, T ) =
RT

τ − b
− a(T )

(τ − br1)(τ − br2)
, (2.13a)

e(τ, T ) = cv(τ, T )T +
a(T )− Ta′(T )

b
u(τ), (2.13b)

where R denotes the gas constant, b the covolume, r1, r2 ∈ R are parameters, and u(τ) is a function
specific to each EOS. The function a(T ) defines an attraction term, and cv is the heat capacity at
constant volume. It depends on the temperature and the specific volume, as follows

cv(τ, T ) = c0v −
Ta′′(T )

b
u(τ), (2.14)

where c0v is a constant. The gas constant R is connected to the ratio of specific heats γ by R = (γ−1)cv.
Depending on the definition of the free parameters and functions, one obtains different known equations
of state, such as the ideal gas law, van-der-Waals (vdW) EOS [50, 49], Redlich-Kwong (R-K) EOS [42]
or the Peng-Robinson (P-R) EOS [41]. The details of the free parameters and functions are given in
Table 1. Moreover, the corresponding (mathematical) entropy definition reads

s(τ, T ) = −
(
s0 −

a′(T )

b
u(τ) +R log (τ − b) + c0v log (T )

)
. (2.15)

Note that, in the numerical scheme, the entropy is required to be given in terms of τ and e. It can
be recovered analytically using (2.15) and the temperature formulas given in Table 2. However, e(τ, s)
is also required by the numerical scheme. Unfortunately, recovering the internal energy in terms of τ
and s involves solving a nonlinear equation, which is done numerically by employing Newton’s method
(except in the ideal and vdW cases, where a closed form is available).

EOS r1 r2 a(T ) u(τ)

ideal 0 0 0 0

vdW 0 0 a0 − b

τ

R-K 0 −1
a0√
T

log
( τ

τ + b

)
P-R −1−

√
2 −1 +

√
2 a0

(
1 + κ

(
1−

√
T/T0

))2 1

r1 − r2
log
(τ − br1
τ − br2

)
Table 1: Parameters and defining functions for some cubic EOS, in particular the ideal gas (ideal), van-der-Waals (vdW),
Redlich-Kwong (R-K) and Peng-Robinson (P-R) EOS. Therein, a0, κ, c0v and b denote constants which will be specified
when setting up the numerical test cases.

Further, we will consider two tabulated EOS from the CoolProp library [2], which contains the
thermodynamic description of pure and pseudo-pure fluids and mixtures. As examples in the numerical
experiments, we choose the IAPWS-95 formulation for water [54], as well as the EOS for methane [44],
both included in the CoolProp library.
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ideal T (τ, e) = e

c0v

vdW T (τ, e) = e− a0U(τ)

c0v

R-K T (τ, e) =
(
Ξ (τ, e) + 3

√
4e
)2

3 3
√
4 c0v Ξ (τ, e)

,

with Ξ (τ, e) =

(√
27ξ (τ)2c0v − 4e3 − ξ (τ)

√
27c0v

) 2
3

where ξ(τ) =
3

2
a0U(τ)

P-R T (τ, e) = 1

4T0(c0v)
2

(√
ξ (τ)2κ2 + 4T0c0v

(
(κ+ 1)ξ(τ) + e

)
− ξ (τ)κ

)2

,

with ξ(τ) = a0(κ+ 1)U(τ)

Table 2: Temperatures in terms of τ and e for some cubic EOS: cases of the ideal gas (ideal), van-der-Waals (vdW),
Redlich-Kwong (R-K) and Peng-Robinson (P-R) EOS.

2.3. Entropy inequality
Let us assume that system (2.1) is equipped with a convex entropy function U(W ) and an entropy

flux G(W ), which are related by

∇WU(W )ᵀ∇WF (W ) = ∇WG(W )ᵀ. (2.16)

After [46, 19], for an ideal gas, the mapping W 7→ −ρη(s(W )) =: U(W ) is convex as soon as η is
any smooth function satisfying

η′(s) ≥ 0 and γη′′(s) + η′(s) ≥ 0.

Note that this corresponds to the so-called mathematical entropy. Defining G(W ) := ρη(s)u, the pair
(U(W ), G(W )) forms an entropy-entropy flux pair. Therefore, admissible entropy weak solutions to
system (2.1) under the ideal gas law satisfy the entropy inequality (in the sense of distributions)

∂t(ρη(s)) + ∂x(ρη(s)u) ≤ 0. (2.17)

After [46, 20], the entropy stability of (2.1) for an ideal gas is ensured by merely adopting entropies
defined by smooth convex functions η of the state variables such that

η′(s) ≥ 0 and η′′(s) ≥ 0. (2.18)

For a general equation of state, the above definition of the entropy-entropy flux pair might not hold
any longer.

Therefore, within this work, we restrict ourselves to thermodynamically compatible materials, i.e.,
materials in a state for which a convex entropy exists and an accompanying entropy inequality (2.17)
can be stated. This assumption of course puts a constraint on the admissibility of the state vector W ,
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see Appendix A, such that the condition (2.18) holds. We thus define the set of thermodynamically
compatible states as

Ωtc = {W ∈ Ω such that (ρη(s), ρη(s)u) is an entropy-entropy flux pair for (2.1)} .

To extend the region of thermodynamic compatibility, procedures such as the one explained in [29] can
be used to modify the EOS and recover the convexity.

Note that the physical entropy is easily recovered by taking the opposite sign in the entropy def-
inition (2.15). Consistently taking either the mathematical or physical entropy does not impact the
derivation of the numerical scheme in the next section.

In the following, the objective is to approximate the system (2.1) with an arbitrary EOS. To that
end, we derive a Godunov-type finite volume (FV) scheme based on an approximate Riemann solver
(A-RS), which is able to preserve moving equilibria up to machine precision, generates admissible
solutions in the sense of (2.5), and fulfills all entropy inequalities (2.17) with (2.18) for states in Ωtc.

3. The numerical scheme

We begin with a brief overview of the principle behind Godunov-type finite volume (FV) schemes,
relying on approximate Riemann solvers. As is standard in the finite volume framework, we divide the
computational domain I ⊂ R into non-overlapping sub-cells Ci = (xi− 1

2
, xi+ 1

2
) with center xi. Then at

a given time tn, the volume average of the solution on cell Ci is defined as

W n
i =

1

∆x

∫ x
i+1

2

x
i− 1

2

W (x, tn)dx. (3.1)

The time is discretized with varying time steps ∆t, which, for stability purposes, must follow a CFL
(Courant-Friedrichs-Lewy) condition, see [28], relating ∆t to ∆x and the current flow properties. Then,
the new time step is given by tn+1 = tn +∆t.

In the next section, we develop an approximate Riemann solver (A-RS) for a general EOS, as done
in [9] for the ideal gas case.

3.1. The approximate Riemann solver
In the following, we define an A-RS, denoted by W̃ , whose role it is to approximate the solution

of the Riemann problems occurring at each cell interface xi+1/2 between cells Ci and Ci+1. Since
this solution is self-similar, the A-RS depends on the variable x/t, and on the two states W n

i and
W n

i+1 located on the left and right sides of the interface, respectively. That is to say, the approximate
Riemann solution at interface xi+1/2 is given by W̃ ((x− xi+1/2)/t;W

n
i ,W

n
i+1).

In this work, we choose an approximate Riemann solution consisting of two intermediate states, as
shown in the right panel of Figure 1. Its expression, for given left and right states WL and WR, is as
follows:

W̃
(x
t
;WL,WR

)
=


WL if x < −λt,
W ∗

L if − λt < x < 0,

W ∗
R if 0 < x < λt,

WR if x > λt,

(3.2)

where the components of the vectors W ∗
L and W ∗

R read

W ∗
L =

ρ∗Lq∗L
E∗

L

 and W ∗
R =

ρ∗Rq∗R
E∗

R

 . (3.3)
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x

t

u u+ cu− c

x

t

−λ +λ

WL

W ∗
L W ∗

R

WR

Figure 1: Left panel: One possible wave configuration, with u > 0, of the Euler equations with gravity (2.1). Right
panel: Wave structure of the approximate Riemann solver.

In the A-RS given by (3.2), the approximate wave speed λ is chosen such that the acoustic waves are
included within the A-RS wave fan, i.e., λ ≥ |u|+ c ≥ |λ±|. In this work, we impose symmetry on the
waves defining the A-RS around λ0 = 0, although this is a simplifying assumption. In principle, two
different values of λ could be chosen to capture the asymmetric wave structure of the Euler equations
with respect to λ0, provided that the acoustic waves λ± remain within the A-RS. In practice, we set

λ = Λ max
(
|uL|+ c(WL), |uR|+ c(WR)

)
, (3.4)

which indeed satisfies λ ≥ |λ±|. The parameter Λ ≥ 1 is merely used to scale the wave speeds, and
will be given in the numerical experiments.

Equipped with λ, we can also define a restriction on the time step ∆t. Indeed, to ensure the
stability of the numerical scheme, the time step must satisfy

∆t ≤ 1

2

∆x

maxi λi+ 1
2

, (3.5)

where λi+ 1
2

is the approximate wave speed at the interface xi+ 1
2
, computed by applying (3.4) to the

states W n
i and W n

i+1.
At this level, we have introduced six unknown quantities in (3.3), namely the density, momentum

and energy of the intermediate states W ∗
L and W ∗

R. The remainder of this section is devoted to deriving
these unknowns to achieve several crucial properties: the first one, consistency, is the object of the
next section.

3.2. Consistency conditions
In this section, we revisit conditions on the intermediate states W ∗

L and W ∗
R to ensure the consistency

of the FV scheme with the solution of the Euler system. These conditions are classical, see [28], and
were derived in detail in [9]. Nevertheless, we recall the main steps of their derivation here.

Based on the consistency condition for an A-RS from [28], according to [37], intermediate states
must satisfy the following relations

ρ∗L + ρ∗R = 2ρHLL,

q∗L + q∗R = 2qHLL +
1

λ∆t

∫ ∆x/2

−∆x/2

∫ ∆t

0

(−ρ∂xϕ)R
(x
t
;WL,WR

)
dtdx,

E∗
L + E∗

R = 2EHLL +
1

λ∆t

∫ ∆x/2

−∆x/2

∫ ∆t

0

(−q∂xϕ)R
(x
t
;WL,WR

)
dtdx,

(3.6)
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where (−ρ∂xϕ)R and (−q∂xϕ)R respectively represent the second and third components of S(WR).
This formulation connects the intermediate states of the A-RS with the intermediate state WHLL of
the HLL Riemann solver from Harten, Lax and van Leer [28]. It is defined by

WHLL =

ρHLL
qHLL
EHLL

 =
WL +WR

2
− F (WR)− F (WL)

2λ
. (3.7)

Moreover, since the entropy plays an important role in the definition of moving equilibria and thus in
a fully-well-balanced scheme, we also define the following quantities

(ρs)HLL =
1

2

(
ρLsL + ρRsR

)
− 1

2λ

(
ρRsRuR − ρLsLuL

)
, (3.8)(

ρη(s)
)

HLL =
1

2

(
ρLη(sL) + ρRη(sR)

)
− 1

2λ

(
ρRη(sR)uR − ρLη(sL)uL

)
. (3.9)

Therein, we have set sL = s(WL) and sR = s(WR).
Next, we introduce two new approximate quantities Sq and SE, approximating the cell averages of

the source terms:
Sq ≈ 1

∆t

1

∆x

∫ ∆x/2

−∆x/2

∫ ∆t

0

(−ρ∂xϕ)R
(x
t
;WL,WR

)
dtdx,

SE ≈ 1

∆t

1

∆x

∫ ∆x/2

−∆x/2

∫ ∆t

0

(−q∂xϕ)R
(x
t
;WL,WR

)
dtdx,

(3.10)

where Sq and SE have to be consistent with −ρ∂xϕ and −q∂xϕ, in a sense that will be prescribed later.
Then, applying the relations from (3.10) to the consistency condition (3.6) results in the following
consistency relations, that must be satisfied by the intermediate states:

ρ∗L + ρ∗R = 2ρHLL,

q∗L + q∗R = 2qHLL +
Sq∆x

λ
,

E∗
L + E∗

R = 2EHLL +
SE∆x

λ
.

(3.11)

In [9] a notation in terms of xW and δW given by

xW =
W ∗

L +W ∗
R

2
and δW =

W ∗
R −W ∗

L

2
(3.12)

was introduced, which turned out to be convenient in the derivation of the intermediate states. There-
fore, we adopt the same notation and write W ∗

L = xW − δW and W ∗
R = xW + δW , with

pρ = ρHLL,

pq = qHLL +
Sq∆x

2λ
,

pE = EHLL +
SE∆x

2λ
.

(3.13)

In [9] it was shown that the resulting A-RS in terms of (3.13) is consistent. The goal is thus to
derive the remaining five unknowns (namely, δρ, δq, δE, Sq and SE) while ensuring positivity, entropy
stability and well-balancedness. These notions are precisely defined in Section 3.4, but before that, the
next section explains how to use the A-RS (3.2) to perform a time update of the approximation (3.1).
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3.3. The Godunov-type finite volume scheme
The intermediate states W ∗

L and W ∗
R for a first-order scheme are expressed as functions of the left

and right states WL and WR, as well as the corresponding left and right gravitational potentials ϕL

and ϕR. Given that the structure of the A-RS in (3.2) includes a stationary wave with velocity 0, the
scheme, as described in [37], is formulated as follows:

W n+1
i = W n

i − λ
∆t

∆x

[
W ∗

L

(
W n

i ,W
n
i+1, ϕi, ϕi+1

)
−W ∗

R

(
W n

i−1,W
n
i , ϕi−1, ϕi

) ]
. (3.14)

We highlight that the standard conservation form

W n+1
i = W n

i − ∆t

∆x

(
F(W n

i ,W
n
i+1)−F(W n

i−1,W
n
i )
)
+

∆t

2

(
Sn
i− 1

2
+ Sn

i+ 1
2

)
, (3.15)

is also equivalent to the scheme (3.14). In (3.15), F(W n
i ,W

n
i+1) is the numerical flux and Sn

i+1/2 is
the numerical source term at interface xi+1/2, whose expressions are obtained with straightforward
computations presented in e.g. [28]. Setting

W ∗
i+1/2,L = W ∗

L(W
n
i−1,W

n
i , ϕi−1, ϕi) and W ∗

i+1/2,R = W ∗
R(W

n
i−1,W

n
i , ϕi−1, ϕi), (3.16)

we obtain

F(W n
i ,W

n
i+1) =

F (W n
i ) + F (W n

i+1)

2
−
λi+ 1

2

2

(
W ∗

i+ 1
2
,L
−W n

i

)
+
λi+ 1

2

2

(
W ∗

i+ 1
2
,R
−W n

i+1

)
.

The numerical source term is given by

Sn
i+ 1

2
=

 0
(Sq)ni+ 1

2(
SE
)n
i+ 1

2

 ,

where (Sq)ni+1/2 and (SE)ni+1/2 are the source term approximations (3.10) evaluated at the interface
xi+ 1

2
. Note that if the A-RS fulfills the consistency conditions stated in the previous section, the

Godunov-type finite volume scheme (3.15), or (3.14), is consistent. The next section presents other
properties that the scheme should satisfy.

3.4. Definitions and conditions to be satisfied by the A-RS
The goal of this section is to present key definitions and provide theoretical results concerning the

well-balanced property, positivity, and entropy stability. These concepts are essential for deriving the
unknowns in the A-RS, which will be addressed in Sections 3.5 and 3.6. For more details on their
motivation, see [9].

3.4.1. Well-balancedness
Recall that we are interested in developing a so-called fully well-balanced scheme, which exactly

preserves the (moving) steady solutions described in Section 2.1. These solutions are characterized
by a constant momentum q, entropy s(W ), and specific total enthalpy H(W,ϕ), given by (2.4). This
characterization is summarized in the following definition.

Definition 3.1 (Interface Steady Solution (ISS)). A pair (WL,WR) of admissible states is said to be
an Interface Steady Solution (ISS) if, and only if,

qL = qR, H(WL, ϕL) = H(WR, ϕR), and s(WL) = s(WR).

11



This definition of ISS, allows us to properly define the well-balancedness property.

Definition 3.2 (Well-balancedness). Scheme (3.14) is said to be well-balanced if

∀i ∈ Z, (W n
i ,W

n
i+1) is an ISS =⇒ ∀i ∈ Z, W n+1

i = W n
i .

The following results regarding the connection between ISS and intermediate states were proven
in [9].

Lemma 3.3. Let (WL,WR) be an ISS. A sufficient condition for well-balancedness is that W ∗
L = WL

and W ∗
R = WR.

Lemma 3.4. Let (WL,WR) be an ISS. Sufficient conditions for well-balancedness are

xW =
WL +WR

2
and δW =

WR −WL

2
, (3.17)

i.e.,
q∗ := q∗L = q∗R, H(W ∗

L, ϕL) = H(W ∗
R, ϕR), s∗ := s(W ∗

L) = s(W ∗
R). (3.18)

Conditions (3.17) and (3.18) will be crucial in determining the expressions for δW and Sq, SE in
Sections 3.5 and 3.6, respectively.

3.4.2. Entropy stability
The second key property that we wish to satisfy is entropy stability in regions where a convex

entropy and associated entropy-entropy flux pair satisfying (2.17) and (2.18) exist. Thus, the following
results are presented under this prerequisite.

Definition 3.5 (Entropy stability). The scheme (3.14) is said to be entropy-stable if;, for a convex
entropy s, for all smooth functions η satisfying (2.17) and (2.18), and for all i ∈ Z, the states W n

i and
W n+1

i fulfil the discrete entropy inequality

ρn+1
i η(sn+1

i ) ≤ ρni η(s
n
i )−

∆t

∆x

(
(ρη(s)u)ni+1/2 − (ρη(s)u)ni−1/2

)
. (3.19)

The following results proven in [9] will be fundamental to reach this important stability property.
They rely on the well-known integral entropy consistency, stated in [28].

Lemma 3.6. If the A-RS given by W̃ in the form (3.2) satisfies the discrete entropy inequality

ρHLLη(s
∗) ≤

(
ρη(s)

)
HLL, (3.20)

with ρHLL defined by (3.7) and
(
ρη(s)

)
HLL defined by (3.9), then the scheme (3.14) is entropy-preserving.

Theorem 3.7 (Theorem 3.5 from [9]). Let WL ∈ Ω and WR ∈ Ω be two given states, let (ρs)HLL and(
ρη(s)

)
HLL be defined by (3.8) and (3.9). We adopt a definition of λ such that ρHLL > 0. Then, for all

convex smooth functions η, we have

η

(
(ρs)HLL

ρHLL

)
≤
(
ρη(s)

)
HLL

ρHLL
. (3.21)

Corollary 3.8. Let
s∗ =

(ρs)HLL

ρHLL
. (3.22)

Then the integral entropy consistency condition (3.20) is satisfied.
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3.4.3. Positivity preservation
The final property we want to preserve is the positivity of the thermodynamic variables, here in

terms of density and pressure. The positive of e.g. temperature and internal energy follows immediately
from the positivity of the former.
Definition 3.9 (Positivity preservation). Let W n

i ∈ Ω for all i ∈ Z and n ≥ 0. The scheme (3.14)
is said to be positivity-preserving if, for all i ∈ Z, W n+1

i ∈ Ω, where Ω is the set of admissible states
defined in (2.5).

The following result, proven in [9], concerns the positivity of the density. It also holds in the case
of a general EOS.
Lemma 3.10 (Density positivity). Let WL ∈ Ω and WR ∈ Ω two given states. We adopt a definition
of λ such that ρHLL > 0. Then,

|δρ| < ρHLL (3.23)
is a sufficient condition for ρ∗L > 0 and ρ∗R > 0.

The positivity of the pressure is closely related to the entropy stability. Thus, the following is a
conditional result based on the existence of a convex entropy since it makes use of Theorem 3.7.
Lemma 3.11 (Pressure positivity). Let WL ∈ Ω and WR ∈ Ω two given states. Let ρ∗L > 0 and
ρ∗R > 0, and consider s∗ given by (3.22). We adopt a definition of λ such that ρHLL > 0. Then, for all
i ∈ Z, pn+1

i > 0.

3.5. Determination of δW
The objective of this section is to utilize the definitions and conditions introduced in Section 3.4

to derive an expression for the three unknown components of δW , such that δW = [W ]/2 whenever
(WL,WR) represents an ISS. Here, we denote the jump of a quantity X as [X] := XR−XL. Additionally,
for stability reasons, we aim to recover the HLL solver in the absence of a gravitational source term.
Thus, we also impose the condition that if ϕL = ϕR, then δW must vanish.

We start with the momentum component δq, Its expression directly derives from (3.18), which
states that q∗L should be equal to q∗R. Therefore, δq = 0 is a suitable choice.

Now, we turn to the density component δρ. To that end, we will use the ISS property on the specific
total enthalpy. Indeed, recall that H(WL, ϕL) = H(WR, ϕR) as soon as (WL,WR) is an ISS. Expanding
the specific total enthalpy according to its definition (2.4), we obtain a relation on the specific enthalpy
h:

EL + pL
ρL

+ ϕL =
ER + pR
ρR

+ ϕR ⇐⇒ [ϕ] = −[h].

Starting from this, the derivation of the expression of δρ is independent of the considered EOS. Namely,
it relies on two conditions:

[ϕ] = −[h] =⇒ δρ =
[ρ]

2
and [ϕ] = 0 =⇒ δρ = 0.

The first one is nothing but the well-balancedness requirement, and the second one corresponds to
recovering the HLL solver in the absence of a gravitational source term. However, these conditions are
fundamentally incompatible when [ϕ] = [h] = 0. Therefore, we relax the second one, to make sure that
the scheme remains well-balanced in all situations.

In [9], a formula for δρ was derived for an ideal gas EOS. However, the above-mentioned relaxation
relied on taking a limit to be well-defined when [h] vanishes. Here, we derive a new, better-defined
expression. It is based on the following lemma, introducing a function ψ and its properties.
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Lemma 3.12. Let ψ be the function defined by

ψ(x, y, α) = ψ1

(
ψ2(x, y)

)α
,

where ψ1 is defined by
ψ1(z) = cos

(π
2
z
)
exp

(
−2z2

)
,

and where ψ2 is defined by
ψ2(x, y) =

x+ y

M(ε0,
√
x2 + y2)

. (3.24)

In (3.24), ε0 is set to 10−12, and M is a regularized maximum function defined by

M(ε, z) =


ε if z < ε

2
,

z if z > 3ε

2
,

P (ε, z) otherwise,

where P is a polynomial defined such that M(ε0, ·) ∈ C2(R∗
+,R∗

+):

P (ε, z) =
−z4

2ε3
+

2z3

ε2
− 9z2

4ε
+ z +

27ε

32
.

Then, for all α ∈ N and x, y ∈ R2, ψ satisfies the following properties:

ψ(x, y, α) = 1 ⇐⇒ x = −y, (ψ-i)
y ≥ 3 ε0/2 =⇒ ψ(0, y, α) = 0, (ψ-ii)
x ≥ 3 ε0/2 =⇒ ψ(x, 0, α) = 0, (ψ-iii)
|ψ(x, y, α)| ≤ 1, (ψ-iv)
ψ(·, ·, α) ∈ C2(R× R,R), (ψ-v)

y ≥ 3 ε0/2 =⇒ ψ(x, y, α) =
x→0

O(xα). (ψ-vi)

Proof. The properties (ψ-i)–(ψ-iv) are straightforward, and come from the properties of ψ1 (proven in
[9]). A sketch of ψ is provided in Figure 2 to help the reader understand the function.

To prove (ψ-v), we rely on the values of P and its derivatives:

P
(
ε,
ε

2

)
=
ε

2
, P

(
ε,
3ε

2

)
=

3ε

2
,

∂P

∂z

(
ε,
ε

2

)
= 0,

∂P

∂z

(
ε,
3ε

2

)
= 1,

∂2P

∂z2

(
ε,
ε

2

)
= 0,

∂2P

∂z2

(
ε,
3ε

2

)
= 0.

Therefore, M is a C2 function, and so is ψ2. Since ψ1 is smooth, ψ turns out to be C2.
Finally, to prove (ψ-vi), assume that y ≥ 3 ε0/2. Therefore, for all x ∈ R,

M(ε0,
√
x2 + y2) =

√
x2 + y2 = |y|+O(x2).
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Hence,
ψ(x, y, α) = ψ1

(
x+ y

|y|+O(x2)

)α

= ψ1 (sgn(y) +O(x))α .

However, recall from [9] that ψ1(±1+x) = O(x) as x→ 0. Therefore, we have proven that ψ(x, y, α) =
O(xα) as x→ 0, which concludes the proof.

−1 0 1

0

1

y

ψ1

ε0/2 3 ε0/2

ε0

3 ε0/2

z

M(ε0, ·)

ε0
ε0

ε0

ε0

x
=
−
y

x

y

0

0.2

0.4

0.6

0.8

1

Figure 2: Drawings of the functions ψ1 (top left panel), M (top right panel), and ψ (bottom panel).

Equipped with ψ, we are now able to state the expression of δρ.

Lemma 3.13. Let WL ∈ Ω and WR ∈ Ω two given states, and let WHLL be given by (3.7) with
sufficiently large λ. Further, let δρ be defined by

δρ =
[ρ]

2
ψ
(
[ϕ], [h], 1

)
.

Then, δρ satisfies the following properties:

[ϕ] = −[h] =⇒ δρ = [ρ]/2, (i)
([ϕ] = 0 and [h] ≥ 3 ε0/2) =⇒ δρ = 0, (ii)
([h] = 0 and [ϕ] ≥ 3 ε0/2) =⇒ δρ = 0, (iii)

|δρ| ≤ ρHLL. (iv)
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Proof. Properties (i)–(iv) are straightforward to prove. Indeed, they are directly related to the prop-
erties (ψ-i)–(ψ-iv) of ψ, proven in Lemma 3.12.

Remark 3.14. Property (i) corresponds to the ISS case, and ensures that δρ satisfies (3.17). Property
(ii) corresponds to the no-gravity case, and proves that δρ vanishes, leading to ρ∗L = ρ∗R = ρHLL.
Property (iii) ensures that δρ is well-defined and vanishes 0 when [h] vanishes. This property involved
a limit in [9], whereas the new expression allows it to be directly satisfied. Note that, appropriately,
both properties (ii) and (iii) have been relaxed when both [ϕ] and [h] vanish, by introducing ε0.
Property (iv) is the required condition (3.23) from Lemma 3.13 for positivity of the density.

The remaining component δE depends on the EOS, and thus it will be different from the one derived
in [9] in the case of the ideal gas law. We use the last remaining ISS condition on s to determine δE.
Namely, we impose that, as soon as (WL,WR) is an ISS, the entropies of the intermediate states satisfy
s(W ∗

L) = s(W ∗
R) = s∗, as prescribed in (3.18). Moreover, due to Corollary 3.8 we know that setting

s∗ according to (3.22) yields the entropy stability under the prerequisite that a convex entropy exists.
Following the discussion from Section 2.2, the expression of the internal energy e with respect to density
ρ and entropy s is available. This allows us to define the intermediate internal energies as

e∗L = e(ρ∗L, s
∗), e∗R = e(ρ∗R, s

∗).

Transforming back to the total energy, we obtain, using (2.3),

E∗
L = ρ∗Le

∗
L +

q∗L
2ρ∗L

= pE − δE, E∗
R = ρ∗Re

∗
R +

q∗R
2ρ∗R

= pE + δE. (3.25)

Since the momentum is constant for an ISS, we replace q∗L and q∗R in the above expression with a
parameter q̃2. Equation (3.25) is nothing but a linear system in (q̃2, δE), whose solution is

q̃2 =
2ρ∗Lρ

∗
R

ρ∗L + ρ∗R

(
2 pE − ρ∗Le

∗
L − ρ∗Re

∗
R

)
, δE =

1

2
(ρ∗Re

∗
R − ρ∗Le

∗
L) +

q̃2

2

δρ

2ρ∗Lρ
∗
R

.

Since the derivation started by considering a constant entropy, the above expressions are well-balanced
by construction, for any EOS. Moreover, note that the expressions of q̃2 and δE derived here are a
generalization of the ideal gas case considered in [9], and the above formulas reduce to the ideal gas
case when setting e = (γ − 1) p/ρ.

3.6. Determination of Sq and SE

With the expression for δW established, we now focus on determining the remaining two unknowns,
Sq and SE. To do so, we make use of the expressions for xW given in (3.13). Additionally, we recall
that if (WL,WR) is an ISS, then xW = W , where X := (XL +XR)/2 represents the arithmetic mean of
the two quantities XL and XR. Substituting the expression of WHLL into (3.13), we find that Sq and
SE must satisfy the following conditions when (WL,WR) is an ISS:

Sq∆x =

(
q2R
ρR

+ pR

)
−
(
q2L
ρL

+ pL

)
, (3.26a)

SE∆x =

(
qR
ρR

(ER + pR)

)
−
(
qL
ρL

(EL + pL)

)
. (3.26b)

The goal of this section is to find consistent approximations Sq and SE of the source term averages
satisfying (3.26).
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Remark 3.15. Since ϕ is assumed to be a smooth function, the following holds at each interface:

ϕR = ϕL +O(∆x), i.e., [ϕ] = O(∆x).

The expression of the energy source term SE does not depend on the EOS, and thus we directly
use the one from [9], summarized in the following lemma.

Lemma 3.16. Let two given states WL ∈ Ω and WR ∈ Ω. Further, let

SE = −qL + qR
2

ϕR − ϕL

∆x
. (3.27)

Then SE is consistent with −q∂xϕ and satisfies the well-balanced condition (3.26b).

Next, we derive an approximation Sq of the momentum source term such that the ISS condition
(3.26a) is satisfied. We make the intuitive Ansatz

Sq∆x = − 2ρLρR
ρL + ρR

[ϕ] + ε, (3.28)

where ε accounts for the fact that the first term does not fulfil (3.26a), and therefore a correction,
denoted by ε, is needed. We assume that (WL,WR) is an ISS. Therefore, in this case,

[ϕ] = −
[
e+

p

ρ
+

1

2

q2

ρ2

]
. (3.29)

Equating the right-hand sides of (3.28) and (3.26a), and plugging (3.29), a lengthy but straightforward
calculation yields

ε = − 2ρLρR
ρL + ρR

(
e(ρR, s)− e(ρL, s) +

p(ρL, sL) + p(ρR, sR)

2

(
1

ρR
− 1

ρL

))
. (3.30)

As defined above, s denotes the arithmetic mean of the left and right entropies. Since ε is not directly
consistent with 0 within a shock wave, we proceed as in [9] and multiply it with the function ψ from
Lemma 3.12. We summarize the final expression of Sq, and some of its properties, in the following
lemma.

Lemma 3.17. Let two given states WL ∈ Ω and WR ∈ Ω. Further, let Sq be given by

Sq = − 2ρLρR
ρL + ρR

[ϕ]

∆x
+

ε

∆x
ψ
(
[ϕ], [h], 3

)
, (3.31)

with ε given by (3.30) Then Sq is consistent with −ρ∂xϕ and satisfies the well-balanced condition
(3.26a).

Proof. The well-balanced property is satisfied by construction, since ψ = 1 as soon as [ϕ] = −[h]. It is
left to show the consistency. In particular, note that the first term in (3.28) is consistent with −ρ∂xϕ
as it is a first order discretization of the source term. Therefore, we need to show that

lim
∆x→0

ε

∆x
ψ
(
[ϕ], [h], 3

)
= 0. (3.32)

We need to distinguish two cases: (a) the solution is smooth, and (b) the solution is not smooth. In
both cases, Remark 3.15 holds, and ϕ is a smooth function.
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(a) We consider a smooth solution, i.e., ρ and s are smooth functions of x. We define the left and
right densities as

ρL = ρ(x), ρR = ρ(x+∆x).

Analogously, we define the left and right entropies. Then, Taylor series expansions yield

e(ρR, s)− e(ρL, s)

∆x
=
∂e

∂ρ
(ρ(x), s) ∂xρ(x) +O(∆x)

and
1

∆x

[
1

ρ

]
= −∂xρ(x)

ρ(x)2
+O(∆x).

Using
2ρLρR
ρL + ρR

= ρ(x) +O(∆x),
p(ρL, sL) + p(ρR, sR)

2
= p(x) +O(∆x),

we obtain
ε

∆x
= −ρ ∂xρ

(
∂e

∂ρ
− p

ρ2

)
+O(∆x). (3.33)

Now, recall from Gibbs’ relation that (
∂e

∂ρ

)
s

=
p

ρ2
,

where the subscript s denotes the derivative at constant entropy. Since e is evaluated at the
constant entropy s, (3.33) leads to ε/∆x = O(∆x). Actually, it turns out that the second-order
term in the Taylor expansion also vanishes, and we get ε/∆x = O(∆x2).

(b) Let us now turn to the case where the solution is not smooth, i.e., WR = WL + O(1). In this
case, we have ε = O(1), and (ψ-vi) ensures that ψ

(
[ϕ], [h], 3

)
= O([ϕ]3). Since ϕ is smooth, we

have [ϕ] = O(∆x), and so ε/∆x = O(∆x2).
Therefore, in both cases, ε/∆x = O(∆x2). This means that the consistency requirement (3.32) is
satisfied in both cases, which concludes the proof.

3.7. Summary of the numerical scheme and main properties
We summarize the approximate Riemann solver and state the main properties of the associated

Godunov-type finite volume scheme. The A-RS (3.2) is given by

W̃
(x
t
;WL,WR

)
=


WL if x < −λt,
W ∗

L = xW − δW if − λt < x < 0,

W ∗
R = xW + δW if 0 < x < λt,

WR if x > λt,

(3.34)

where the components of xW are given by
pρ = ρHLL,

pq = qHLL +
Sq∆x

2λ
,

pE = EHLL +
SE∆x

2λ
,

(3.35)
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with WHLL given by (3.7) and the approximate wave speed λ satisfying (3.4). In (3.35), the source
term approximations Sq and SE are respectively given by (3.31) and (3.27), i.e.,

Sq = − 2ρLρR
ρL + ρR

ϕR − ϕL

∆x
+

ε

∆x
ψ
(
ϕR − ϕL, hR − hL, 3

)
,

SE = −qL + qR
2

ϕR − ϕL

∆x
,

(3.36)

where ψ is defined in Lemma 3.12, and where ε satisfies, according to (3.30),

ε = − 2ρLρR
ρL + ρR

(
e(ρR, s)− e(ρL, s) +

p(ρL, sL) + p(ρR, sR)

2

(
1

ρR
− 1

ρL

))
,

with s = (sL + sR)/2. To define δW , we need the intermediate quantities

s∗ =
(ρs)HLL

ρHLL
, e∗L = e(ρ∗L, s

∗) and e∗R = e(ρ∗R, s
∗).

The components of δW are then constructed in Section 3.5, and they satisfy
δρ =

ρR − ρL
2

ψ
(
ϕR − ϕL, hR − hL, 1

)
,

δq = 0,

δE =
1

2
(ρ∗Re

∗
R − ρ∗Le

∗
L) +

1

4

ρ∗R − ρ∗L
ρ∗L + ρ∗R

(
2 pE − ρ∗Le

∗
L − ρ∗Re

∗
R

)
.

(3.37)

The properties of the numerical scheme are summarized in the main result.

Theorem 3.18. Let the time step ∆t be given by (3.5) and assume that the initial data satisfies W 0
i ∈ Ω

for all i ∈ Z. Then, the numerical scheme (3.14) with the approximate Riemann solver (3.34), where
xW is given by (3.35) and δW is given by (3.37), satisfies the following properties:

1. consistency with the Euler system (2.1);

2. positivity of the density: for all n ≥ 0,

∀i ∈ Z, ρni > 0 =⇒ ∀i ∈ Z, ρn+1
i > 0;

further, if system (2.1) is equipped with a convex entropy satisfying the entropy inequality (2.17)
for all smooth functions η satisfying (2.18), then the stronger result holds: for all n ≥ 0,

∀i ∈ Z, W n
i ∈ Ω =⇒ ∀i ∈ Z, W n+1

i ∈ Ω;

3. entropy stability: if system (2.1) is equipped with a convex entropy satisfying the entropy inequality
(2.17) for all smooth functions η satisfying (2.18), then for all i ∈ Z, for all n ≥ 0 holds

ρn+1
i η(sn+1

i ) ≤ ρni η(s
n
i )−

∆t

∆x

(
(ρη(s)u)ni+1/2 − (ρη(s)u)ni−1/2

)
;

4. well-balancedness:

∀i ∈ Z, (W n
i ,W

n
i+1) is an ISS =⇒ ∀i ∈ Z, W n+1

i = W n
i .
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Proof. We prove the four properties in order, using the results derived in the previous sections.

1. According to [28], the scheme is consistent as soon as the A-RS satisfies the integral consistency
relation, see Section 3.2. The A-RS has been constructed such that this relation holds, and thus
it is consistent. Therefore, the numerical scheme (3.14) is also consistent.

2. The positivity of the density is guaranteed by that of the intermediate densities. Indeed, according
to Lemma 3.13, the intermediate densities satisfy the positivity condition (3.23). Therefore,
ρ∗L > 0 and ρ∗R > 0 in the A-RS, and thus ρn+1

i > 0 in the numerical scheme. Further, if system
(2.1) is equipped with an entropy inequality, then Lemma 3.11 can also be applied, yielding the
positivity of the pressure pn+1

i > 0.

3. Assuming that the system is endowed with an entropy inequality, the entropy stability of the
scheme is ensured as soon as the intermediate entropy satisfies the entropy inequality (3.20).
Corollary 3.8 gives an expression for this intermediate entropy, which is used to build the A-RS
(3.34). This proves that the scheme is entropy-stable.

4. Lemma 3.3 gives a sufficient condition for well-balancedness, which leads to the conditions (3.17)
on xW and δW used in (3.34) to define the A-RS. Sections 3.5 and 3.6 constructs xW and δW such
that the conditions (3.17) are satisfied, and consequently the numerical scheme is well-balanced.

All four properties have been proven, and the proof is thus concluded.

4. Numerical results

In this section, we perform numerical test cases to validate the theoretical properties of the first-
order well-balanced scheme described in Theorem 3.18. In addition, we provide a well-balanced high-
order extension of this scheme, based on the systematic technique outlined in [6] and used in e.g. [38, 8]
for the shallow water equations and [9] for the Euler system. This technique relies on the fact that,
for steady solutions, the well-balanced scheme is exact while the high-order scheme is not. Hence,
we compute the distance between the current solution and a steady solution by checking the error in
the ISS condition Definition 3.1 at each interface. This allows us to define an indicator, relying on a
parameter Cθ to be determined for each test case, that detects whether the current solution is steady,
and uses the first-order scheme accordingly. In general, decreasing the value of Cθ leads to a higher
sensitivity with respect to the equilibrium state. This results in a high-order well-balanced scheme that
does not require solving any non-linear system of equations. The first, second and third order fully
well-balanced schemes are respectively denoted by FWB1, FWB2 and FWB3. The FWB2 scheme is
constructed with the minmod limiter in the reconstruction, see for instance [51], and uses the SSP-RK2
time integrator, while the FWB3 scheme makes uses the third order TVD reconstruction from [43] and
the SSP-RK3 time integrator. Both Runge-Kutta schemes are standard schemes that can be found for
instance in [26].

In all test cases, we apply six different EOSs to assess the performance of the numerical schemes.
Four applied EOS are obtained from the cubic EOS (2.13), namely the ideal gas law (denoted by
ideal), the van-der-Waals gas (denoted by vdW), the Redlich-Kwong EOS (denoted by R-K), and the
Peng-Robinson EOS (denoted by P-R). The free parameters of these four cubic EOSs are given in
Table 3. The remaining two EOSs are tabulated and are obtained by using the CoolProp library [2].
The first tabulated EOS, denoted by H2O, models the properties of water, while the second one, denoted
by CH4, includes the physical properties of methane.
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ideal vdW R-K P-R

R [JK−1] 0.4 0.4 0.4 0.4
c0v [JK

−1] 1 1 1 1
s0 [JK

−1] log(0.4) log(0.4) 0 0
a0 [

(a)] — 15.67(b) 15 15
b [m3 kg−1] — 0.1273(b) 0.05 0.05
T0 [K] — — — 0.3
κ — — — 0.5

Table 3: Parameters for the ideal gas, van-der-Waals, Redlich-Kwong and Peng-Robinson EOS. A dash indicates that
the parameter is not used. Notes: (a) the unit of a0 is m6K1/2/kg2 for R-K and m6/kg2 for the other three EOSs; (b)
the values of a0 and b for the van-der-Waals EOS are modified in Section 4.3.1.

Further, if not otherwise specified, we apply in all test cases the quadratic gravitational potential

ϕ(x) =
ϕ0

2
(x− x0)

2. (4.1)

The scaling factor ϕ0 ensures that the flow is within the same Mach and Froude number regime.
Therefore, ϕ0 depends on the typical magnitude of the equilibrium pressure and density. We set
ϕ0 = 2 · 104 s−2 for both tabulated EOSs due to the physical properties of water and methane at
normal pressure, i.e. Mach numbers around 10−2, and ϕ0 = 1 s−2 for the four analytical EOSs which
corresponds to Mach regimes around 1. For more details on well-balanced methods for low Mach
and Froude number regimes and formal Mach and Froude number limits for the Euler equations with
gravity, see e.g. [47].

Unless otherwise mentioned, the parameter Λ in the eigenvalue estimate (3.4) is set to 1. The same
applies to the parameter Cθ which in the high-order scheme is in general set to 1 for the ideal, H2O
and CH4 EOSs, and set to 5 for the vdW, R-K and P-R EOSs.

4.1. Accuracy of the numerical schemes
To verify the experimental order of convergence (EOC) of the numerical schemes, we study an

exact solution for the Euler equations with gravity (2.1) taken from [32], which is a variation of the
test introduced in [56]. The analytical solution, with constant velocity u0, is given by

ρ(x, t) = ρ0
(
1 + A sin

(
kπ(x− u0t)

))
,

u(x, t) = u0,

p(x, t) = p0 − ρ0

(
(x− u0t)−

A

kπ
cos
(
kπ(x− u0t)

))
.

(4.2)

We take k = 4, which yields a highly oscillatory solution. The other parameters are given in Table 4
with respect to each used EOS. Indeed, since all EOSs have different domains of validity, the parameters
differ for each EOS. This test case is designed for a linear potential ϕ(x) = x. The simulation is carried
out on the computational domain Ω = [0, 1], on seven grids with N = 16 · 2j cells, where j ∈ {0, . . . , 6}
with exact boundary conditions. The final time if tf = 10−5 s for both tabulated EOSs, and tf = 0.5 s
for the other four EOSs.

In Figure 3, the L2 errors are depicted with respect to the number of discretization cells. We recover
the expected EOC for all schemes independently of the considered EOS.
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ideal vdW R-K P-R H2O CH4

ρ0 [kgm
−3] 2 2 2 10 997.05 422.8

u0 [m s−1] 0.25 0.25 0.25 0.25 1250 1000
p0 [Pa] 5 20 5 15 101 800 101 800
A 0.25 0.1 0.25 0.025 10−4 10−3

Table 4: Parameters of the exact solution (4.2) from Section 4.1, for each of the six EOSs under consideration.
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Figure 3: Experimental order of convergence and L2 errors between the exact solution (4.2) and its approximation by
the schemes FWB1, FWB2 and FWB3, for each of the six EOSs under consideration.

4.2. Assessment of the well-balanced property
The main motivation behind the construction of well-balanced schemes in general lies in the res-

olution of small perturbations around equilibria using coarse meshes. Applying a non-well-balanced
scheme on those computational conditions easily leads to huge background errors stemming from the
low resolution of the equilibrium state which makes the numerical solution unusable. Thus, capturing
in particular delicate perturbations would require a substantial grid refinement to reduce the truncation
error and make the perturbations visible.

The next three sets of test cases therefore concern the performance of the novel fully well-balanced
solvers on such flows on coarse grids. The first one validates the exact preservation of a moving steady
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solution, whereas the subsequent two are dedicated to studying perturbations of such equilibria.
The equilibrium solution is computed from the triplet (q0, s0, H0) given, with respect to each EOS,

in Table 5. In all cases, the computational domain is Ω = [0, 1] and the gravitational potential is given
by (4.1). The final times, for each experiment, are reported in Table 6 which differ for each EOS due
to different flow regimes inflicted by initial condition and EOS.

EOS q0
[

kg
m2 s

]
s0
[
J
K

]
H0

[
m2

s2

]
ideal 1 1 5

vdW 2.5 −3.0 55.0

R-K 1 −2.5 12.5

P-R 5 −2 20

H2O 105 6.7 · 102 2.1 · 105

CH4 105 −80 2.5 · 104

Table 5: Values of the constant discharge q0, entropy s0 and specific total enthalpy H0 for the moving equilibrium test
cases from Section 4.2.

EOS tf [s], Section 4.2.1 tf [s], Section 4.2.2 tf [s], Section 4.2.3

ideal 1.5 0.05 0.72

vdW 1.5 0.02 0.72

R-K 1.5 0.05 0.72

P-R 0.1 0.01 1.34

H2O 10−4 10−4 7.2 · 10−4

CH4 2 · 10−3 10−4 7.2 · 10−4

Table 6: Values of the final time tf for the moving equilibrium test cases from Section 4.2.

4.2.1. Preservation of a moving steady solution
To numerically verify the well-balanced property of the schemes, we first compute the time evolution

of the equilibrium solution with nonzero velocity. We take 50 discretization cells, and apply exact
boundary conditions. We expect the solution to remain exact, up to machine precision, when using
our fully well-balanced scheme. To avoid scaling issues, we take Cθ = 10−4 for the H2O EOS and
Cθ = 2 · 10−3 for the CH4 EOS.

The L2 errors at time t = tf are given in Table 7. All well-balanced schemes are able to preserve the
moving equilibrium up to machine precision for all considered EOS, whereas the classical HLL scheme
[28] yields quite large errors. This verifies and illustrates the ability of the new well-balanced solvers
to capture moving equilibria up to machine precision for general EOS.

4.2.2. Gaussian perturbation of a moving steady solution
Next, we consider a Gaussian perturbation of a moving equilibrium. This is a standard test case

whose purpose is to verify that underlying equilibrium does not inflict spurious errors in the perturba-
tion. The computational domain is discretized using 50 cells, with inhomogeneous Dirichlet boundary
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HLL FWB1 FWB2 FWB3

ideal
ρ 3.94 · 10−3 2.30 · 10−15 2.72 · 10−15 2.53 · 10−15

q 3.38 · 10−5 1.03 · 10−16 1.23 · 10−16 1.50 · 10−16

E 3.38 · 10−5 1.03 · 10−16 1.23 · 10−16 1.50 · 10−16

vdW
ρ 3.97 · 10−5 7.02 · 10−16 4.08 · 10−16 4.56 · 10−16

q 6.29 · 10−7 4.40 · 10−17 4.86 · 10−17 4.40 · 10−17

E 2.18 · 10−6 1.74 · 10−16 2.80 · 10−16 3.69 · 10−16

R-K
ρ 2.15 · 10−4 2.19 · 10−15 1.18 · 10−15 9.37 · 10−16

q 8.76 · 10−6 9.79 · 10−17 8.25 · 10−17 9.39 · 10−17

E 2.87 · 10−5 3.44 · 10−16 3.01 · 10−16 3.82 · 10−16

P-R
ρ 9.83 · 10−5 1.95 · 10−14 1.64 · 10−14 1.64 · 10−14

q 4.40 · 10−5 3.83 · 10−15 2.06 · 10−15 3.34 · 10−15

E 2.68 · 10−5 1.14 · 10−14 1.12 · 10−14 1.02 · 10−14

H2O
ρ 1.13 · 10−5 5.52 · 10−14 4.02 · 10−14 3.94 · 10−14

q 8.07 · 10−7 4.67 · 10−14 1.71 · 10−13 1.64 · 10−13

E 1.16 · 10−5 1.09 · 10−13 2.51 · 10−13 2.26 · 10−13

CH4

ρ 5.40 · 10−6 1.46 · 10−15 9.88 · 10−16 8.41 · 10−16

q 5.11 · 10−5 1.70 · 10−13 1.85 · 10−13 1.86 · 10−13

E 1.13 · 10−4 4.68 · 10−14 4.21 · 10−14 5.19 · 10−14

Table 7: Well-balanced test case from Section 4.2: L2 errors on the density, the momentum and the total energy, reported
for each of the six EOSs.

conditions corresponding to the exact, unperturbed steady solution. From the triplet (q0, s0, H0) re-
ported in Table 5, we compute the equilibrium state (ρeq, ueq, peq). Then, the initial density and velocity
are set to ρ(x, 0) = ρeq(x) and u(x, 0) = ueq, while a small perturbation is added to the pressure, i.e.,

p(x, 0) = peq(x)

(
1 + ν exp

(
−100

(
x− 1

2

)2
))

.

The parameter ν denotes the amplitude of the initial perturbation, and is set to ν = 10−4. Different
choices of ν yield similar numerical results and are thus omitted. Moreover, we take Cθ = 10−10 for the
H2O EOS and Cθ = 10−9 for the CH4 EOS, i.e. we increase the sensitivity in detection of the equilibrium
states when employing the high order reconstruction.

In Figure 4 we plot the relative density perturbation ηρ = (ρeq(x) − ρ)/ρeq, scaled with respect
to the background equilibrium ρeq(x), at the final time t = tf. The considered times guarantee that
the waves triggered by the perturbation are still contained inside the computational domain. The
perturbations for all considered EOS are well-captured and no spurious errors are introduced from the
background equilibrium.

4.2.3. Sinusoidal perturbation of a moving steady solution
Another test case of interest consists in a moving steady solution perturbed by a wave created by a

time-dependent boundary condition and propagating into the computational domain. Similar set-ups
can be found in [22], motivated by the study of wave propagation in stellar atmospheres. Here, we
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Figure 4: Perturbation of equilibrium state, described in Section 4.2.2: Relative density difference ηρ = (ρeq(x)−ρ)/ρeq(x)
with respect to the equilibrium density ρeq(x), where ρ is obtained by the schemes FWB1, FWB2 and FWB3 respectively,
using the six EOSs under consideration.

consider the same moving equilibrium as above, described by (q0, s0, H0) in Table 5. The computational
domain contains 512 cells. The finer mesh is motivated by the high oscillatory perturbation and
visualization purposes. The perturbation is applied onto the momentum as a right (left for P-R)
boundary condition. It is given for t > 0 by

q(x0, t) = q0
(
1 + ν sin(κπt)

)
. (4.3)

Therein ν denotes the amplitude of the perturbation and κ its frequency and x0 ∈ {0, 1} corresponds
to the excited boundary condition. Moreover, q0 > 0 is the steady momentum reported in Table 5
for each EOS respectively, and so the flow travels from left to right. Based on the same motivation
as in the test cases above, these parameters are chosen differently for each EOS and summarized in
Table 8. The parameter x0 is taken equal to 1 to perturb the right boundary, except for the P-R
EOS where we take x0 = 0. Indeed, for the P-R EOS, all waves travel towards the right. Therefore,
perturbing the left boundary for the P-R EOS allows us to observe the waves propagating through
the computational domain. For the other five EOSs, waves travel in both directions, and thus we
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perturb the right boundary to observe the waves going upwind wih respect to the flow direction. The
simulation is stopped as the perturbation reaches the opposite boundary of the computational domain.
Due to the different initial conditions and configurations of the EOSs, the final time tf differs and are
reported in Table 6. In addition, the parameters of the high-order schemes are set to Cθ = 10−12 for
the H2O and CH4 EOSs.

EOS ν κ [Hz] Λ

ideal 10−8 8 1.5

vdW 10−8 16 2.5

R-K 10−8 16 1.5

P-R 10−10 16 1.5

H2O 10−5 16 · 103 1.1

CH4 5 · 10−6 16 · 103 1.1

Table 8: Steady solution perturbed at the boundary: required values of the parameters. The values of the perturbation
constants are reported, alongside the final time and value of the wave speed factor Λ.

The relative difference between numerical results and the moving equilibrium are given in Figure 5.
Note that we have modified the factor Λ in the wave speed estimate, to introduce some additional
numerical viscosity to stabilize the numerical scheme, see Table 8. These changes are marginally and
are necessary since the well-balanced scheme drastically reduces the numerical viscosity by construction.

We observe that the perturbations remain well-resolved for all considered EOS despite being of
orders around 10−9 in some cases. Note that, for the P-R EOS, the pressure perturbation is displayed
instead of the velocity perturbation. This is due to the steady state being supercritical, and thus
the perturbations in u quickly leave the domain, while the acoustic waves remain visible as pressure
perturbations.

4.3. Riemann Problems
As a final series of test cases, we consider three Riemann Problems (RPs), two classical ones for

the Euler equations without a source term, and one in presence of a gravitational field, far from an
equilibrium.

In all these cases, the space domain is Ω = [0, 1], and we prescribe homogeneous Neumann boundary
conditions. Moreover, the initial condition takes the form of a Riemann problem, i.e.,

W (x, 0) =

{
WL if x < x0,

WR if x ≥ x0,

with the jump position x0 = 0.5. The left and right states depend on the problem under consideration.
In each case, we take a grid consisting of 75 cells.

4.3.1. Homogeneous case
We first consider RPs without the influence of the gravitational field, i.e. we set ϕ = 0. Note that,

for the vdW EOS, we set a0 = 2m6/kg2 and b = 0.5m3 kg−1, to have solutions closer to the ideal EOS,
and to check the impact of this more complex EOS on classical RPs.
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Figure 5: Boundary perturbation of equilibrium state, described in Section 4.2.3: Relative velocity perturbation ηu =
(ueq(x)− u)/ueq(x) or relative pressure perturbation ηp = (peq(x)− p)/peq(x), with respect to the equilibrium velocity
ueq(x) or pressure peq(x) respectively, where u or p are obtained by the schemes FWB1, FWB2 and FWB3, using the
six EOSs under consideration.

We first consider a set of Sod-like RPs, whose left and right states are given for each EOS in
Table 9. The numerical results for ρ, u and p are given in Figures 6 to 8, respectively. We observe
that the first order scheme is quite diffusive, in particular on contact and shock waves, throughout
all considered EOS. As its order of accuracy increases, the new well-balanced scheme captures each
wave more accurately. As is typical for high-order schemes, small oscillations can be observed near the
shock waves. However, all schemes are able to correctly determine the shock position and amplitude
independently of the applied EOS. The numerical results are compared against a reference solution
obtained with the classical HLL scheme [28] using 7500 cells. We observe a good agreement with the
reference solution. Note, however, that the contact discontinuity has been quite diffused in the H2O
case (sub-figures (c)). This leads to a perturbation of the plateau in the velocity profile.

We then turn to a double rarefaction, whose initial data for all EOS is given by

ρL = ρR = ρ0, qL = −q0, qR = q0, pL = pR = p0. (4.4)

The initial data is detailed in Table 10. This is a challenging problem, as it can lead to a near-vacuum
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EOS ρ
[
kg
m3

]
u
[
m
s

]
p [Pa] tf [s]

ideal
L 1 0 1 0.1644
R 0.125 0 0.1

vdW
L 1 0 1 0.1644
R 0.125 0 0.1

R-K
L 1.5 0 1.25 0.25
R 0.5 0 0.75

P-R
L 1.5 0 1.5 0.25
R 0.35 0 0.15

H2O
L 996 0 106

2 · 10−4

R 998 0 105

CH4
L 422 0 107

2 · 10−4

R 424 0 105

Table 9: Initial conditions for the Sod-like Riemann problems. Initial states left (L) and right (R) are reported for
density, velocity and pressure as well as the final time tf.

state in the center of the domain. The results are displayed for the density in Figure 9 at the final
times reported in Table 10. A similar behavior is obtained for the pressure. However, due to the
similarity in the results, we have omitted the pressure plots. Despite the fact that ρ and p are very
close to zero in the center of the domain, see e.g. the ideal, vdW or CH4 EOS, no negative values of
ρ and p are observed nor the simulation had to be stopped. The numerical results for the schemes
FWB1, FWB2 and FWB3 are compared against a reference solution obtained with the classical HLL
scheme [28] using 7500 cells.

EOS ρ0
[
kg
m3

]
q0
[

kg
m2 s

]
p0 [Pa] tf [s]

ideal 1 10/3 1 0.075
vdW 1 10/3 1 0.065
R-K 1 1.8 1 0.125
P-R 1 1.5 1 0.125
H2O 997.05 59.9 101 325 1.75 · 10−4

CH4 0.657 1789 101 325 10−4

Table 10: Initial conditions for the double rarefaction Riemann problems. The initial density, momentum and pressure
is reported, as well as the final time tf, for each EOS.

4.3.2. Riemann problem in a gravitational field
The last Riemann problem is a Sod-like problem in the presence of the quadratic gravitational

source term (4.1). The initial data is given in steady variables q, s and H, and is reported in Table 11,
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Figure 6: Sod-like Riemann Problems: Density ρ at final time for the schemes FWB1, FWB2 and FWB3 for the six
EOSs. For each EOS, the final time, as well as the left and right states, are reported in Table 9.

alongside the final time tf, for each EOS. Note that, for the P-R EOS, we set the initial jump position
to x0 = 0.8, since all waves travel towards the left of the domain. The equilibrium variables are
displayed in Figures 10 to 12. We observe that the solution generated by the new well-balanced scheme
accurately captures the arising shock and rarefaction waves. The numerical results are compared
against a reference solution obtained with the classical HLL scheme with a centered discretization of
the source terms on 7500 cells.

5. Conclusions

In this paper, we derived a new numerical scheme to approximate weak solutions of the Euler equa-
tions with a gravitational source term with general equations of state which can be given analytically
or tabulated. The presented Godunov-type finite volume scheme is based on an approximate Riemann
solver composed of two intermediate states. It is constructed such that the scheme is consistent, fully
well-balanced and preserves the positivity of the density. Moreover, if the system is equipped with
a convex entropy and an associated entropy inequality holds, the scheme is entropy-stable and the
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Figure 7: Sod-like Riemann Problems: Velocity u at final time for the schemes FWB1, FWB2 and FWB3 for the six
EOSs. For each EOS, the final time, as well as the left and right states, are reported in Table 9.

positivity of thermodynamical variables is ensured. The proof of these properties are summarized in
Theorem 3.18. The results presented in this work are an extension of the fully well-balanced scheme for
the ideal gas law detailed in Berthon et al. [9]. In this spirit, the scheme coincides with the well-known
HLL Riemann solver in the absence of a gravitational field. This first order scheme is then extended to
higher order using a well-known strategy in the context of Godunov-type schemes for the shallow water
equations [6, 38]. The theoretical findings are validated numerically by computing moving equilibrium
solutions as well as the propagation of perturbations and Riemann Problems using three different an-
alytically given equations of states as well as two tabulated equations of state based on the CoolProp
library [2].
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Figure 8: Sod-like Riemann Problems: Pressure p at final time for the schemes FWB1, FWB2 and FWB3 for the six
EOSs. For each EOS, the final time, as well as the left and right states, are reported in Table 9.

A. Entropy conditions

To determine conditions on the convexity of a sufficiently smooth mathematical entropy U(W ) =
ρη(s) for a specific entropy s fulfilling Gibbs’ relations (2.2), we consider the sub-determinants of the
Hessian matrix H = ∇2

WU(W ). Further, we make use of the relations

∂2s

∂τ 2
= −T∂τp− p∂τT

T 2
,

∂2s

∂e2
=
∂eT

T 2
,

∂2s

∂τ∂e
=
∂τT

T 2
.
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Figure 9: Double rarefaction test case: Density ρ at final time for the schemes FWB1, FWB2 and FWB3 for the six
EOSs. For each EOS, the final time, as well as the initial condition, are reported in Table 10.

From the sub-determinants of H, we obtain the three conditions

(
−(∂τT )

2 + ∂eT (p∂τT − T∂τp)
)
η′(s)

+
(
p2∂eT − p∂τT − T∂τp

)
η′′(s) ≥ 0,(

∂τT (2ρe− ρu2) + ∂eT (ρe−
1

2
ρu2)2 + (p∂τT − T∂τp) + u2ρ2T )

)
η′(s)

+

(
p− 1

2
ρu2 + ρe

)2

η′′(s) ≥ 0,(
u2
(
− (∂τT )

2 + ∂eT (p∂τT − T∂τp)
)
+ T

(
∂τT (2E + p) + ∂eTE

2 − T∂τp
))
η′(s)

+
(
u2
(
p2∂eT − p∂τT − T∂τp

)
+ T (E + p)2

)
η′′(s) ≥ 0.

Note that this is only one way to find conditions on the convexity of U(W ) and the conditions are
sufficient, but not necessarily necessary.
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EOS q
[

kg
m2 s

]
s
[
J
K

]
H [J] tf [s]

ideal
L 1 0.1 6 0.15
R 0 0.3 3

vdW
L 1 -3.25 780 0.05
R 2.5 -3 55

R-K
L 2 -2.75 25 0.09
R 1 -2.5 12.5

P-R
L -5 -2 15 0.1
R -4 -3 30

H2O
L 105 6.7 · 102 2.1 · 105

2 · 10−3

R 104 1.5 · 103 5 · 105

CH4
L 105 -80 2.5 · 104

2 · 10−3

R 104 -20 105

Table 11: Initial conditions for the Sod-like Riemann problems in a gravitational field. Initial states left (L) and right
(R) are reported for momentum q, specific entropy s and specific total enthalpy H; the final time tf is also reported.
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