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Abstract—Intrusion detection systems have benefited from
Machine Learning (ML) to alleviate the problem of building
and maintaining accurate signatures. Nevertheless, ML solutions
face issues like overfitting or insufficient training data, which
may necessitate retraining or adjustments to maintain long-term
efficiency. From data collection to model training, all efforts
are crucial for deploying a robust ML-based intrusion detector.
Among these efforts, optimizing model hyperparameters, a time-
consuming task, can be automated by existing methods.

Yet, such methods require a validation set, making them
unsuitable for training a detector on an attack-free dataset, as
in anomaly-based intrusion detection. Additionally, setting the
anomaly detectors’ threshold, usually beyond hyperparameters
configuration, requires knowledge of attacks. To overcome these
challenges, this paper presents an automated solution to infer
the hyperparameters and the threshold jointly from an attack-
free training dataset. Pre-learned optimal configurations are
transferred and fine-tuned across datasets.

Our method minimally impacts model accuracy detection
performance (4% degradation), while dramatically reducing
configuration time by a factor of 160 across the IDS2017 and
IDS2018 datasets.

I. INTRODUCTION

Machine Learning (ML) has become crucial for operational

security, as noted by MIT Technology Review [1], and

demonstrated by the increasing number of ML-based Intrusion

Detection Systems (IDS) explored in recent studies [2]. This

paper focuses on network-based IDS, designed to detect attacks

by monitoring network traffic.

Although they are effective in tests with predefined datasets,

deploying these systems in real-world environments remains

challenging [3]. Issues like overfitting or insufficient data

complicate the training of efficient detectors capable of adapting

to various environments with different data profiles. As a result,

re-adapting or retraining the ML models is essential [4], [5].

Configuring hyperparameters (HPs), along with choosing

algorithms, selecting features, and preprocessing data are

crucial preliminary tasks in the re-adaptation of ML models.

Related works [6], [7], [8] emphasize the importance of

regularly reconfiguring HPs and updating the ML model to

enhance its robustness. The HPs setting can be automated using

Hyper-Parameter Optimization (HPO) methods such as grid

search and Bayesian Optimization (BO) but their iterative and

time-consuming nature prevents frequent reconfigurations [9].

Furthermore, determining the optimal configuration through

HPO requires a validation set with both benign and attack

samples [10]. This makes it impractical in the context of

Anomaly Detection (AD) [11], in which AD-based Intrusion

Detection Systems (AD IDS) are trained on attack-free datasets.

To highlight the main challenges of applying common

HPO to AD IDS, a naive supervised configuration approach

is illustrated in Figure 1. This approach divides the dataset

into three sets (K-folding can also be used). A configuration

loop utilizes HPO to derive a configuration 1 , which is then

employed in the AD IDS model training (with the training set)

2 and in validation (with the validation set) 3 . At the end of

the loop, the AD IDS’s final performance is assessed with a

test set and is indicative of its real-world effectiveness.
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Fig. 1. Supervised HPO for AD IDS

Thus, Figure 1’s workflow pose two major challenges:

C1—Necessity of validation set in the configuration loop.

The AD IDS training uses only benign samples, but, as

previously mentioned, the configuration process (including

HPO) assumes a pre-existing validation set with attack samples.

This is impractical for regular reconfigurations, as it requires

knowledge of future attacks that are inherently supposed to be

unknown in the context of AD.

C2—AD IDS threshold determination. Commonly, AD

IDS performance is assessed using the comprehensive metric

AUC ROC (Area Under the Receiver Operating Characteristic

Curve), calculated by varying threshold values and comparing

them to the ML model’s anomaly scores. A higher AUC ROC

signifies enhanced robustness of the AD IDS against threshold

variations. Yet, in deployment, a specific value must be set.

Many techniques rely on static or predefined thresholds [12],
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[13], [14], which often struggle to adapt to dynamic data,

thereby leading to scalability and robustness issues [15].

To address C1, this paper introduces a meta-learning-based,

semi-supervised configuration approach that relies solely on

the training set to infer an efficient configuration. Unlike

other limited straightforward methods, such as consistently

employing a single overall configuration or the direct transfer

of an optimal configuration from one dataset to another,

our strategy leverages a meta-learning (MtL) approach to

enhance the transfer of configurations between datasets in

a more contextualized manner. It is capable of deriving a new

configuration instead of merely reusing preexisting ones. This

approach is inspired by [6], which reduces HPO computational

time in supervised scenarios but remains incompatible with

C1.

In addressing C2, our MtL configuration method identifies

a configuration that increase the robustness of an AD IDS.

Subsequently, it automatically fine-tunes the threshold as

part of the overall configuration process, jointly with HPs

configuration.

The paper’s contributions are summarized as follows:

• A MtL solution to automate the configuration of a robust

AD IDS without anticipating the types of attacks to be

detected (Section III).

• An extension of this solution to automatically infer an

efficient threshold for the AD IDS (Section III).

• A comparative assessment of the proposed method versus

the optimal case (supervised HPO). This evaluation

demonstrates that our MtL approach closely matches HPO

in terms of attack detection with an average difference of

less than 4%, but is 160 times faster (Section. V).

II. RELATED WORKS

A. AD IDS Configuration

AD IDS configuration focuses on optimizing the model

HPs and determining a threshold to effectively differentiate

between normal and anomalous behavior. In the literature,

this is predominantly done using either manual techniques

or conventional HPO methods, often involving the use of a

validation set [16], [17].

The authors in [16] present an unsupervised ensemble

learning strategy for Industrial IDS that requires benign data in

its training process. They propose three configuration methods:

a conventional optimal method that needs a validation dataset,

a suboptimal manual method, and a manual method that

integrates temporal information into the ensemble model—both

manual methods do not require validation sets. Although this

approach yields satisfactory results, it remains manual and

potentially prone to errors.

In the paper [18], the authors introduce a method that refines

HPs tuning for the Local Outlier Factor (LOF) model through

a statistical technique. This involves conducting a grid search

to determine the optimal neighborhood size and contamination

parameters. Despite providing a solution based solely on

training data for configuration, it is still an iterative process

using a pre-set grid, which is time-consuming. Furthermore,

this approach requires manual threshold setting.

B. Dynamic Thresholding in AD IDS

Several studies focused on setting the threshold in an AD

system, whether it is specific to the application of an IDS or

more general. They relied on static methods [19], [20], [21],

[22], game theory-based approaches [23], or RL [24].

The papers [25] and [26] both address the AD thresholding

problem, where [25] models the problem as a Markov Decision

Process, introducing an agent-based dynamic thresholding

framework using a deep Q-network, while [26] focuses on AD

IDS and employs a mathematical approach to link threshold

values to alert frequencies, offering a practical threshold-setting

algorithm for dynamic data distributions.

The work in [27] evaluates three advanced deep AD

models [28], [29], [30], all utilizing dynamic thresholding.

[30] evaluates the current prediction error by using a vector of

historical errors, combining an exponential-weighted average

and the argmax function. [29] uses a Variational Autoencoder

(VAE) with extreme value theory principles to determine

the threshold, employing maximum likelihood estimation

on the tail probability without assuming any specific data

distribution. [28] employs a state-based thresholding technique

by combining Long Short-Term Memory and VAE.

This paper [31] proposes an adaptive thresholding method

for AD in univariate time series that leverages segmentation and

local statistical analysis to dynamically adjust thresholds. This

method simplifies time series data into manageable segments,

within which it calculates local means and standard deviations

to set context-sensitive thresholds.

In [32], the authors use Isolation Forest for online AD in

a smart home network. They suggest auto-tuning Isolation

Forest’s sklearn implementation with RL to optimize the

contamination threshold for classifying flows. Unlike our

approach, their search space is limited to 11 contamination

values, which raises questions about the need for RL in such

a small space. Additionally, RL consistently returns nearly

the same threshold value in their results, questioning the

significance of reconfiguring iForest given the datasets used.

Our method sets itself apart from these mentioned solutions

by incorporating the AD IDS’s HPs, not just the threshold,

during configuration.

C. Meta-Learning in AD IDS

MtL has multiple interpretations. This work adheres to the

definition where a ML model learns from numerous datasets

across several episodes [33]. This concept is applied in [34]

where the authors propose its utilization for automatically select

an appropriate anomaly detector algorithm to train. In contrast,

in AD IDS literature, MtL is commonly associated with the

use of multiple unsupervised algorithms to enhance intrusion

detection [35], [36] or to address the challenge of training AD

models with limited anomaly samples [37].

The authors in [38] leverage MtL to address high false-

positive rates in AD. Rather than relying on manual verification
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of top-ranked anomalies, this research integrates long-term

performance modeling into the detection process. Using deep

reinforcement learning, a meta-policy is developed to optimize

query selection. The authors emphasize the meta-policy’s ability

to adapt to new datasets without re-tuning, attributing this

flexibility to meta-learning.

To our knowledge, no previous studies in AD IDS have

utilized this definition of MtL to configure and determine the

threshold value without the use of a validation set.

III. META-LEARNING FOR AD IDS CONFIGURATION

A. AD IDS Configuration Problem

As depicted in Figure 1, an AD IDS employs a one-class

ML technique that learns from normal samples, namely benign

network traffic. In many cases, such as Isolation Forest used

in this paper, the learned model can infer an anomaly score to

be compared to a threshold, τ .

Configuring an AD IDS involves setting the ML algorithm’s

k HPs and τ in the configuration loop. This process serves

two primary objectives:

1) Enhance the Robustness of the AD IDS: The aim is to

make the AD IDS less sensitive as possible to the value

of τ . This objective is defined as probust : D × C and

commonly measured using the AUC ROC. probust assess

the overall AD IDS performance applied to the dataset D

within the hyperparameter search space C, independent

of τ . The goal is thus to tune c = (c1, c2, . . . , ck) ∈ C

to find c∗, maximizing probust.

2) Distinguish Attacks from Legitimate Traffic: The aim

is to maximize pclassif : D×C×τ ∈ [0, 1] which measures

the capability of the AD IDS to correctly identify attack

and benign samples. Common metrics for pclassif are the

precision, recall or F1-score.

Reaching optimal detection score involves determining the

optimal configuration by finding sequentially or concurrently

both c∗ and τ
∗. Practically, the main challenge is to identify

τ
∗. However, also achieving optimal robustness in AD IDS by

determining c∗ reduces reliance on exact optimal threshold τ
∗,

easing its adjustment in a robust system.

B. A semi-supervized configuration approach

Figure 2 provides an overview of our approach, which

consists of two phases: offline and online. These phases are

designed to efficiently reconfigure the AD IDS in response

to a new network context, such as changes in traffic profiles,

including types of attacks, or alterations in network topology.

The high-level idea illustrated in Figure 2 is to transfer

optimal configurations, determined offline, to the online phase

via a meta-model. The online phase is the active period during

which the AD IDS operates. Details of the meta-model’s

construction will be provided in Section III-C.

The entire workflow operates on three realistic assumptions.

First, we assume that changes in network context are indirectly

embedded in the generated data. For example, an increase in the

number of hosts or modifications in network topology would

not only change the volume but also impact the behavioral

patterns of the observed network flows.

Second, we assume access to a collection of datasets that

have been characterized offline, including attacks identification.

This represents knowledge acquired from in-lab testing or post-

deployment analysis. Consequently, as shown in Figure 2, the

optimal configurations of each previous dataset, specifically

c∗ and τ
∗, are obtained offline through the configuration loop

(Fig. 1). This forms the basis of prior knowledge that feeds the

meta-model, which is utilized online, replacing the conventional

loop and avoiding time-consuming optimization iterations.

Third, when deploying the AD IDS online in a new network

environment, a few attack-free traces can be provided as a

new dataset, Dnew. This is the reason why our configuration

approach can be qualified as semi-supervised. Such hypothesis

can hold in reality as it is easier for an administrator to

white-label expected traffic (for example when deploying new

services). In contrast, unexpected or anomalous traffic, which

could include sophisticated attacks, is harder to accurately

characterize due to its irregular and often covert nature. Thus,

thanks to Dnew and the meta-model, an effective configuration

(c, τ) is directly inferred online. The AD IDS can now be

retrained with (c, τ) and Dnew to better adapt to the new

network context.

C. Offline Phase: Meta-model Construction

In order to effectively transfer the optimal configurations,

already calculated during the offline phase, to the online phase,

a meta-model is used. Fig. 3 illustrates its construction.

Conceptually, the idea is to use the meta-model to integrate

network contexts details during the transfer, as opposed to con-

ducting an un-contextualized one. The aim is to transfer optimal

configurations while taking into account the characteristics of

both the source network contexts, where these configurations

are originally effective, and the target network context, where

efficient functioning of the AD IDS is required. It is thus a more

informed transfer by channeling multiple optimal configurations

alongside their respective network contexts.

Practically, as depicted in Figure 3, the meta-model’s

construction is initiated by using each previous dataset in

1 to determine the corresponding optimal configurations

3 , specifically c∗ and τ
∗, through the configuration loop.

In parallel, the same datasets are individually characterized

in 2 using both simple and statistical measures, including

measures like instances ratio, kurtosis, mean values, and

standard deviations for each feature, which are commonly

used in AutoML research [39] (details of these characteristics

are provided in Table I). For each dataset, 2 and 3 establish

a one-to-one relationship, collectively forming new data points.

These new data points are utilized to train a Random Forest

Regressor as the meta-model 4 , capable of inferring efficient

c and τ from the characteristics of any new dataset in the

online phase.

Optimally configuring an AD IDS in this phase involves a

two-stage optimization process:
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TABLE I
LIST OF SIMPLE AND STATISTICAL CHARACTERISTICS

Group Characteristics

Simple
Ratio of features to instances, number of binary
attributes, total instances.

Statistical

Geometric mean, harmonic mean, interquartile range,
kurtosis, MAD, max/min values, mean, median,
range, standard deviation, skewness, sparsity,
trimmed mean, variance of each feature.

1) Derive c∗: c∗ is calculated by maximizing probust, using

BO as the HPO method. BO is an iterative, model-based

black-box approach, known for robustness in AI [9]. BO

selects the next c for validation based on prior results.

It utilizes a surrogate model probabilistically estimates

probust and iteratively refines the search space, unlike grid

search’s exhaustive exploration.

2) Derive τ
∗: Once c∗ set, τ∗ is found through exhaustive

testing to maximize the detection accuracy (pclassif), based

on sample classification score.

During the online stage, where no attack sample is given, all

c and τ are inferred jointly in contrast with most common

solutions where threshold setting is a distinct task, typically

done after optimizing HPs and learning algorithms [16].

D. Online Phase: Efficient Configuration Inference

When a new dataset, Dnew, is provided online, the same

characteristics as those extracted in the offline phase are derived

solely from benign traffic. These characteristics are used as

input for the pre-trained meta-model to immediately infer

the associated efficient c and τ . In fact, these values are

approximations of the optimal c∗ and τ
∗ values which could

have been calculated with the offline configuration loop if

attacks samples were provided, as initially supposed in [6].

Finally, the ML model of the AD IDS is trained using c,

with τ as the classification threshold.

IV. DATASETS AND EVALUATION METHOD

A. Datasets

We leverage the IDS2017 and IDS2018 datasets [40], which

are widely utilized benchmarks for IDS evaluation. These

datasets mimic internet-based victim-attacker interactions using

Windows and Linux systems. IDS2018 is built on IDS2017

by including new attacks and changing the test environment:

IDS2018 relies on a virtual AWS setup with 7 networks and

500 machines, while IDS2017 features two networks and 14

hosts. Besides, we use a corrected version [41] where errors,

and mislabeled traces have been corrected. Benign traffic,

mainly HTTP and HTTPS, was collected through profiling

agents trained on real network activities. The datasets are

flow-based, segmented into days (5 days for IDS2017 and 10

days for IDS2018), and were created independently without

temporal continuity. IDS2017’s first day, solely benign traffic,

is excluded.

Table II details the daily distribution of executed attacks

and benign traffic, along with bidirectional flow counts. The

number of flows per day ranges from 322K to 7.4M, with

IDS2018 recording more flow counts than IDS2017 by up to

tenfold. The two datasets feature 31 attacks, including DoS,

DDoS, Botnet, and Bruteforce attacks, among others. Across

the days, the attacks vary in percentage (0.01% for Web attacks

to 47.30% for DDoS attacks), but the majority of flows remain

benign, often exceeding 80%, which reflects realistic traffic

patterns.

Since each day is different from all others based on the type

of attacks or the topology used, a given day is representative

of a unique network context in our evaluation. Two exceptions

are in IDS2018, where Web attacks occur on both days 9 and

10, and Infiltration attacks are noted on days 11 and 12.

Based on the dataset authors’ analysis [40] and commonly

used features in IDS solutions [42], we have chosen 14 features

from the original set of 83. These are detailed in Table III.

B. AD IDS design and implementation

Isolation Forest Although our approach is applicable to any

algorithm used in AD IDS, our evaluations are based on the

Isolation Forest algorithm, called iForest, demonstrated to be

efficient in the context of AD [43]. It isolates outliers rather

than profiling normal data by constructing binary decision trees

(iTrees) from the training set. iTrees are formed by randomly

selecting features and split values, creating partitions. A group

of iTrees collectively forms an iForest. The path length to
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TABLE II
DAILY ATTACK AND BENIGN TRAFFIC DISTRIBUTION

Day Attacks % Attacks % Benign #Flow

0 FTP, SSH Patator 2.16 97.84 322K

1 DoS GoldenEye, DoS Hulk,
DoSSlowhttptest, DoS
Slowloris, Heartbleed

35.74 64.26 497K

2 Infiltration, NMAP Portscan,
Web Attacks

19.11 80.89 362K

3 Botnet Ares, DDoS-LOIC,
Infiltration

47.30 52.70 548K

4 FTP, SSH Patator 4.88 95.12 5.9M

5 DoS GoldenEye, Slowloris 0.70 99.30 5.4M

6 DoS Hulk, FTP Patator 25.83 74.17 7.4M

7 DDoS-LOIC-HTTP,
LOIC-UDP

4.79 95.21 6.1M

8 DDoS-HOIC, LOIC-UDP 15.57 84.43 7.0M

9 Web Attack: Brute Force, SQL
Injection, XSS

0.01 99.99 6.1M

10 Web Attack: Brute Force, SQL
Injection, XSS

0.01 99.99 6.0M

11 Infiltration: Communication
Victim Attacker, Dropbox
Download, NMAP

0.76 99.24 6.6M

12 Infiltration: Communication
Victim Attacker, Dropbox
Download, NMAP

0.61 99.39 6.6M

13 Botnet Ares 2.27 97.73 6.3M

isolate a data point in an iTree indicates its anomaly score. An

overall score is then defined based on the iTrees which can

be ultimately compared to the threshold τ to identify attacks.

Extensions to the original algorithm have been proposed to

isolate outliers faster and/or find clustered outliers [44], [45],

which we leverage in our approach.

Configuration Search Space Based on existing work [45],

[43], we focus on configuring seven HPs of iForest: the number

of columns used for a split in the model; the size of the data

subsets used for constructing each binary tree; the quantity of

binary trees to be constructed for the model; the maximum

growth depth for the binary trees; the probability of choosing

a threshold for splitting a single variable or multiple variables;

the minimum required gain threshold to proceed with a node

splitting; and the number of variables or linear combinations

to test for the best gain determination. Thus, C is the product

of all these HPs.

TABLE III
FEATURES CONSIDERED IN EACH DATASET

Feature Name Description

Src Port Source service port numbers (one-hot encoded).
Dst Port Destination service port numbers (one-hot encoded).
Protocol Network protocol of the flow (one-hot encoded).
Flow Duration Duration of the flow.
Total Fwd/Bwd Packets Packets in the forward/backward direction.
Total Length of Fwd/Bwd Packet Size of packets in forward/backward direction.
Flow Bytes/s Bytes transferred per second.
Flow Packets/s Packets transferred per second.
Fwd/Bwd IAT Total Time between packets in fwd/bwd direction.
Fwd/Bwd Packets/s Forward/backward packets per second.

Evaluation method The functions probust and pclassif, which

determine the AUC ROC and F1-score, respectively, both

apply a 5-fold cross-validation. For probust, the positive class

is identified as attacks. Given the minimal number of attack

instances on most dataset days, we opted for cross-validation

to merge both validation and testing. In each validation stage,

four folds are used for training while the fifth fold is combined

with attack data for validation.

V. EVALUATION

We assess our method in terms of anomaly detection

performance by determining pclassif with τ , thereby evaluating

MtL’s ability to directly infer the threshold value (C2). Due to

space limitations, we omit the part where c is derived and the

calculation of probust, focusing only on pclassif.

We compare our method to the optimal configuration using

Bayesian Optimization (BO), an ideal scenario that requires

attack traces. In this case, τ∗i is determined by maximizing the

F1 score after BO has been applied to the hyperparameters. As

a reminder, τ is treated as a hyperparameter to be inferred with

our solution. To configure each day of the datasets, our method

uses data from the previous 13 days to build the meta-model,

applying it in a rotating manner to yield 14 independent AD

IDS configurations.

pclassif is evaluated using the F1 score and precision. While

not presented, it is worth noting that recall is always above

0.97.

In terms of the F1 score shown in Figure 4, where the

x-axis represents the days of the dataset as presented in

Table II, we observe that the optimal configuration using BO

(pclassif(Di, c
∗

i , τ
∗

i )) demonstrates high performance, with values

ranging from 0.94 to 1. Although our method does not rely on

a validation set with attack samples to infer τ , the F1 score

is noticeably lower only on days 2 and 5-8. The worst result

occurs on day 6, with an F1 score of 0.84 compared to 0.98

obtained with the optimal configuration.

Figure 5 highlights similar findings for precision, with MtL

values generally lower than the optimal and exhibiting greater

variability.

Fig. 4. F1 score with a daily configuration

Generally, our approach is almost equivalent to BO for both

the F1-score and precision over 8 days (out of 14). It is slightly
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less accurate on 2 days (days 8 and 13) and leads to noticeable

degradation on only 4 days (2, 5, 6, and 7).

Fig. 5. Precision with a daily configuration

Setting τ is challenging because the optimal threshold τ
∗

i

tends to vary each day. For instance, τ∗
0
is 0.31, while τ

∗

4
is

0.10. This variability makes it difficult to develop an efficient

ML model capable of predicting it without knowledge of the

attack traffic characteristics. This suggests that even if the

inferred τi (MtL) differs from τ
∗

i (optimal), MtL compensates

by optimizing all HPs jointly, a task challenging to perform

manually. Hence, configuration is an interplay of all HPs,

whereas most work considers setting the threshold and the HPs

of the ML algorithm in separate phases.

A. Configuration Generation Time

We also assessed, on a daily basis, the time it takes for MtL

to generate configurations compared to BO.

For MtL, the time for learning the meta-model is completed

offline, and thus the generation time for MtL is the time

taken to infer ci, including the extraction of the dataset’s

characteristics. Once done, the AD IDS requires training with

the chosen configuration and application on the test set to

identify malicious flows. This process contrasts with BO, where

training and prediction run concurrently. Hence, for a fair

comparison, we also include the time taken by MtL for training

and testing the model in the online phase.

In Figure 6, our solution always returns a configuration

in less than 1200 seconds, with extremely fast results on

days 9 and 10 (less than 1 second). Conversely, c∗i requires

considerably more time, with durations varying from day to

day and occasionally exceeding 100,000 seconds. Overall, MtL

is faster by about a factor of 160 across all days.

B. Meta-learning Relative Performance

Figure 7 highlights the daily relative performance (gain) of

MtL for probust (ROC AUC) and pclassif (F1 score) compared

to the performance achieved by BO when the number of BO

iterations is reduced to match MtL’s configuration generation

time. Even without considering attacks for configuration, MtL

performs as well as BO. Specifically, the gain does not show

any major negative values and is even better in certain cases. In

terms of probust, we note that on 5 out of 14 days, the gain is

nearly or exceeds 0.25, while on 2 out of 14 days, it surpasses

0.5. For pclassif , , although the gains are typically lower, it’s

worth noting that for 4 out of 14 days, they approach or surpass

0.25. This demonstrates the superiority of our approach over

BO at an equivalent computational cost and without requiring

attack samples.

Fig. 6. Configuration Generation Time

Fig. 7. Performance gain of semi-supervised MtL computed as the difference
between the performance of MtL and BO

VI. CONCLUSION

This paper explores the problem of configuring an ML

solution for an AD IDS. We tackle the problem of relying ex-

clusively on an attack-free dataset to automate the configuration

of the detector. This contrasts with known automated methods

in the area of AutoML, which require a validation set with

attack samples for HPO. To alleviate this need, we propose a

semi-supervised MtL-based framework to learn a model from

previous offline experiences where full knowledge is available.

It is then capable of directly inferring a configuration based

on benign samples only. This approach is more practical than

hypothetically knowing attack details in advance. Compared

to this baseline, the performance degradation is low and the

method is significantly faster. For future work, we aim to

enhance the entire pipeline with MtL, including algorithm

selection.
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