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Abstract: Polysaccharides are gaining increasing attention for their relevance in the production of
sustainable materials. In the domain of biomaterials, polysaccharides play an important role as
hydrophilic components in the design of amphiphilic block copolymers for the development of drug
delivery systems, in particular nanocarriers due to their outstanding biocompatibility, biodegradabil-
ity, and structural versatility. The presence of a reducing end in polysaccharide chains allows for the
synthesis of polysaccharide-based block copolymers. Compared with polysaccharide-based graft
copolymers, the structure of block copolymers can be more precisely controlled. In this review, the
synthesis methods of polysaccharide-based amphiphilic block copolymers are discussed in detail,
taking into consideration the structural characteristics of polysaccharides. Various synthetic ap-
proaches, including reductive amination, oxime ligation, and other chain-end modification reactions,
are explored. This review also focuses on the advantages of polysaccharides as hydrophilic blocks
in polymeric nanocarriers. The structure and unique properties of different polysaccharides such
as cellulose, hyaluronic acid, chitosan, alginate, and dextran are described along with examples of
their applications as hydrophilic segments in the synthesis of amphiphilic copolymers to construct
nanocarriers for sustained drug delivery.
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1. Introduction

Nanotechnology has emerged in the past decades as a ubiquitous technology with
diversified applications in different fields ranging from industry to healthcare. In the latter
field, nanomedicine has recently attracted growing interest for applications in medical
imaging, disease diagnosis, drug delivery, etc. [1]. In particular, nano-sized drug delivery
systems have been extensively investigated because of their outstanding properties such as
good stability and high drug load and their feasibility of incorporating both hydrophobic
and hydrophilic molecules, as well as various drug administration routes (inhalation, oral,
topical, and parenteral injection) [1–6]. Moreover, nanocarriers enable to improve the drug
bioavailability, to diminish the dosing frequency, to reduce the side effects, and to achieve
targeted drug delivery [7,8].

The toxicity of drugs remains a major challenge for developing new and safe drugs as
it may affect the biological processes involving a single target organ or multiple organs [1,9].
Among the different target organs, the liver, kidney, heart, and central nervous system
are the most commonly observed ones for clinical drug development. Compared to small-
molecule drugs, nanocarriers exhibit slower kinetic transport into diseased tissues due
to vascular barriers. Therefore, a relatively extended circulation time of nanomaterials is
essential to improve the likelihood of crossing the vascular wall. The stealth effect, which
is the guarantee of long circulation, significantly enhances the pharmacokinetics, including
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blood circulation, biodistribution, and tissue targeting, thereby allowing for drug delivery
applications of nanomaterials [9]. Various nanocarriers have been developed to encapsulate
drugs, including nanoparticles [10,11], nanogels [12], liposomes [13], and micelles [14]
prepared from lipids, polymers, and inorganic materials. In this way, drug delivery systems
could reduce the side effects of drugs and improve treatment efficiency. Hybrid nanocarriers
have also been designed to take advantage of both polymers and inorganic materials [15].
Similarly, inorganic nanoparticles have been prepared to deliver drugs to the tumor site
to improve drug effectiveness [5]. Nevertheless, polymeric drug delivery systems have
attracted more attention because their sizes, geometries, surface properties, and structures
can be tailored by varying the chemical composition and topology of the polymers which
compose the systems [16]. Several types of polymers have demonstrated great potential for
clinical applications, including natural polymers and synthetic polymers [17]. PEG is the
most widely used synthetic polymer in clinical applications, and the marketed products
include Adagen®, Oncospar®, PegIntron®, Neulasta®, and Somavert®. Several other
types of polymers are also used in clinics, such as poly(hydroxypropyl methacrylamide)
(ProLindacTM) and cyclodextrin-based polymers (CALAA-01®, IT-101®) [17].

Aliphatic polyesters have attracted much attention in recent decades as drug delivery
systems due to their outstanding biodegradability, biocompatibility, and versatility regard-
ing their physical, chemical, and biological properties [18]. The in vivo degradation of the
polyester backbone and bioresorption of degraded products prevent accumulation of the
drug carrier in the body, thus reducing the risk of long-term toxicity. Common polyesters
used in drug delivery applications include polylactide (PLA) [19], poly(ε-caprolactones)
(PCL) [20], polyglycolide (PGA) [21], polydioxanone (PDO) [22], and poly(lactide-co-
glycolide) (PLGA) [23]. A number of products are currently used in clinics in the form of
microspheres (Lupron Depot®, Eligard, Risperdal Consta, Trelstar LA, and Sandostatin
LAR), implants (Durin®), and hydrogels (Oncogel®). Nevertheless, synthetic polymers
generally present poor biological activities [18].

Natural polymers or biopolymers are macromolecules that are obtained from plants,
animals, and microorganisms. Polysaccharides, including cellulose, chitin or chitosan,
hyaluronate, and alginate, are the most abundant biopolymers composed of a large number
of monosaccharides linked together by O-glycosidic linkages [24]. These biopolymers
present intrinsically beneficial properties such as antioxidant, antiviral, anticoagulant,
anticancer, and immune-modulating activities [25], and have been largely used in the
preparation of drug delivery systems such as hydrogels, nanogels, nanoparticles, micelles,
and drug conjugates due to their outstanding biocompatibility, biodegradability, and
inherent biological properties [24,26]. Nevertheless, the utilization of native polysaccharides
as drug carriers is limited due to their poor solubility and processability. In contrast, their
derivatives of relatively low molecular weights have been attracting much interest as a
hydrophilic building block of amphiphilic block copolymers which can be used for the
development of various nanocarriers. In this review, we will present the state of the art
of polysaccharide-based nanocarriers for uses in drug release, including the synthesis
methods of amphiphilic block copolymers involving a hydrophilic polysaccharide block
and different polysaccharides used in the formulation of nanocarriers.

2. Synthesis Methods to Prepare Polysaccharide-Based Block Copolymers

A polysaccharide is a long polymeric chain containing a large number of functional
groups, including secondary or primary hydroxyl, amine, and carboxyl groups with differ-
ent reactivities. Various amphiphilic copolymers have been designed via grafting hydropho-
bic polymers onto the functional groups of polysaccharide backbone or via polymerization
initiated by the functional groups [27]. However, such reactions are poorly controllable
and may lead to complex structures. In contrast, the presence of a reducing end on polysac-
charide chains makes it possible to synthesize block polymers. As shown in Figure 1,
there exists an equilibrium between ring-closed and ring-opened forms in one of the two
polysaccharide chain ends, also called the reducing end. The opened form has an aldehyde
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group which is available for further reactions with other functional groups to synthesize
block copolymers, such as chain extension, coupling, and other types of reactions.
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Figure 1. Illustration of ring-closed and ring-opened forms of a cellulose reducing end.

2.1. Reductive Amination

Reductive amination is a widely employed technique in organic synthesis due to its
selectivity, generally rapid reaction kinetics, and straightforward execution. This two-step
process entails the condensation of a primary amine with an aldehyde, resulting in the
formation of an imine intermediate. Typically, a reducing agent like sodium borohydride
is incorporated, which promptly and selectively reduces the imine as it forms, yielding a
secondary amine. Maintaining control over the pH level is crucial in this procedure. A pH
range of 6 to 8 is considered optimal for most reductive amination reactions [28,29].

Reductive amination has been extensively employed for the functionalization of
polysaccharides because the reducing end of polysaccharides is available for this reac-
tion [30]. The first applications of this reaction in polysaccharide chemistry consist in
coupling small molecules and proteins to alginate, cellulose, and dextran to yield solid
matrices for use in affinity chromatography [31]. In 2002, this approach was adopted by
Bosker et al. to prepare block copolymers of dextran (Dex) and polystyrene (PS) with a
molecular weight of 12 kg/mol [32]. These block copolymers were prepared via reductive
amination between the terminal primary amines present in PS chains and the C1 aldehyde
groups located at the reducing end of dextran, as depicted in Figure 2.
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Figure 2. Synthesis of dextran-b-PS diblock copolymer via reductive amination [32].

Lu et al. reported the synthesis of a series of amphiphilic block copolymers from hy-
droxypropyl methyl cellulose (HPMC) and amino-terminated polymers, including HPMC-
PLA [33], HPMC-Jeffamine [34], and HPMC-PCL [35]. Figure 3 shows the synthesis route
of HPMC-PLA diblock copolymer using a three-step procedure. First, chain-end-protected
PLA (Boc-NH-PLA) was synthesized by the ring-opening polymerization (ROP) of lac-
tide initiated by tert-butyl-N-(3-hydroxypropyl) carbamate. The N-tert-butoxycarbonyl
(Boc) group was then removed from Boc-NH-PLA using trifluoroacetic acid (TFA). Finally,
HPMC-PLA copolymers with different PLA block lengths were synthesized via reduc-
tive amination between the hemiacetal end group of HPMC and the amino end group of
NH2-PLA. The resulting HPMC-PLA copolymers were able to self-assemble in an aqueous
medium to form spherical micelles with a narrow distribution. Paclitaxel (PTX) was loaded
in HPMC-PLA micelles. Higher drug loading was obtained with a higher PLA block
length. A biphasic release profile was observed, i.e., an initial burst release followed by a
slower release. PTX-loaded HPMC-PLA micelles exhibited significant toxicity to SK-BR-3
tumor cells, suggesting that these micelles could present great potential as nanocarriers of
hydrophobic antitumor drugs.
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Reductive amination could be used not only to couple polymers on the reducing
end of polysaccharide, but also to functionalize the reducing end of polysaccharides.
Polysaccharide-based copolymers can be constructed by coupling another block by click
reaction or chain extension, with a functional polysaccharide acting as an initiator or a chain
transfer agent. Click chemistry refers to reactions known for their exceptional efficiency,
straightforward methodology, and versatility for reactions involving various functional
groups. Coined by Sharpless in 2001, a “click” reaction is expected to have high yields,
broad ranges of suitable substrates, facile product isolation, and tailorable characteris-
tics [36]. On the other hand, click reactions involving polymers have an equimolar ratio
of reactive groups and rapid reaction kinetics [37]. Lu et al. synthesized AB2-type PLA-
(HPMC)2 block copolymers using a three-step procedure, as shown in Figure 4 [38]. In this
process, alkynyl-terminated PLA was first obtained by the ring-opening polymerization of
L-lactide initiated by propynol. In parallel, HPMC chain end was functionalized through
reductive amination with 2-aminoethanethiol. These two end-functionalized polymers
were subsequently coupled together using UV irradiation to trigger a thiol-ene click reac-
tion. The resulting PLA-(HPMC)2 block copolymers exhibited self-assembly properties,
forming micelles with diameters ranging from 50 to 100 nanometers. Importantly, the
micelles displayed a relatively low critical micelle concentration (CMC) in the range of 0.14
to 0.16 g/L. Therefore, bio-based and biodegradable PLA-(HPMC)2 copolymers could be
promising as nanocarriers of hydrophobic drugs.

As mentioned earlier, conventional synthetic block copolymers can be prepared us-
ing techniques such as atom transfer radical polymerization (ATRP), reversible addition-
fragmentation chain transfer (RAFT), and nitroxide-mediated radical polymerization
(NMRP) [39,40]. These methods allow for the achievement of good control over the
molecular weight and dispersity of the resulting copolymers. In the case of polysaccharide-
containing block copolymers, similar approaches have been employed with the addition
of an initiator or a chain transfer agent to the reducing end of polysaccharides [41,42].
This allows for a chain extension, enabling the synthesis of block copolymers with signif-
icantly higher molecular weights compared to the coupling methods. In fact, coupling
high-molecular-weight polymers together, especially those that diffuse relatively slowly,
often proves to be slow and inefficient. To functionalize polysaccharides with an initiator, a
combination of reductive amination and click chemistry is frequently used. This approach
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provides a versatile means of introducing the desired functionalities into the polysaccharide
structure, paving the way for the subsequent synthesis of block copolymers [43].
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Reductive amination is one of the simplest and widely used methods to construct
polysaccharide-based block copolymers. Nevertheless, it also presents some limitations.
First, the reaction kinetics can be rather slow. Reductive amination can be a time-consuming
process due to the low availability of free aldehydes on the polysaccharide-reducing ends
compared to the ring-closed hemiacetal form. This equilibrium can result in long reaction
times up to several days. Second, the conversion rate can be incomplete. Equimolar
reactions between polymer blocks, especially when they have moderate molecular weights,
can lead to incomplete conversion due to the low concentration of the complementary
reactive chain ends. Third, purification of the end products can be challenging. In fact,
incomplete conversion in polymer coupling reaction requires purification steps to separate
unreacted homopolymers from the desired diblock copolymer, which can be difficult as the
solubility of the copolymer can be rather close to that of the starting blocks [29,43].

2.2. Oxime Ligation

Oxime ligation, known for its selectivity under mild conditions, has found widespread
applications in the field of organic chemistry, particularly in bioconjugation and drug
synthesis. This reaction proceeds efficiently at neutral or slightly acidic pH, which is
compatible with a variety of biological systems without causing disruption to sensitive
functional groups. Furthermore, oxime ligation has relatively fast reaction kinetics and
versatility in accommodating various functional groups, especially those containing hy-
droxylamine moieties. The formation of stable oxime linkages ensures the stability of
products and minimizes the risk of side reactions. Oxime ligation, with its advantageous
features, plays a major role in the realms of chemical synthesis and biological research.

In 2012, Novoa-Carballal and Müller introduced a direct approach for the synthesis of
block copolymers containing polysaccharides, utilizing oxime ligation by the reaction of an
aldehyde and an aminooxy group, sometimes referred to as oxime click [44]. As shown in
Figure 5, α-methoxy-ω-amino poly(ethylene glycol) (MeO–PEG–ONH2) was attached to
the reducing end of a polysaccharide, yielding a polysaccharide–PEG block copolymer. One
notable advantage of this approach is its utilization of the aldehyde group at the reducing
end of the polysaccharide without the need for prior modifications. Oxime ligation with
amine-functionalized PEG was successfully demonstrated with various polysaccharides,
including dextran, chitosan, and hyaluronic acid. This approach allowed for the one-pot
synthesis of diblock copolymers, eliminating the requirement for a catalyst, harsh reaction
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conditions, or intermediate products. Notably, oxime ligation was successfully applied to
couple polysaccharides with molecular weights (Mn) exceeding 40 kg/mol and PEG with
an Mn of 5 kg/mol. Although purification steps were necessary to isolate the desired block
copolymer products, this approach holds promise for the development of block copolymers
that may contain charged polysaccharide blocks. Such polymers could find utility in the
creation of interpolyelectrolyte complexes for applications as protein and gene carriers.
In another work, terminal primary alkoxyamine was coupled to the reducing end of a
polysaccharide via oxime ligation to construct block copolymers [45].
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Oxime ligation has been used for the synthesis of dextran-based copolymers by attaching
an atom transfer radical polymerization (ATRP) initiator to initiate the growth of poly(2-
(dimethylamino)ethyl methacrylate) (PDMAEMA) from the reducing end of dextran, as
depicted in Figure 6. The ATRP reaction was conducted using various ligands and either
CuBr or CuCl as a copper source, resulting in conversion rates ranging from 25% to 65% [46].
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When compared to reductive amination, oxime ligation proves to be a more effective
method in direct coupling reactions, facilitating the construction of larger block copoly-
mers. This enhanced efficiency can likely be attributed to the higher nucleophilicity of
hydroxylamines in comparison with amines, a phenomenon referred to as the alpha effect.
However, it is noteworthy that the synthesis of oxime compounds is usually necessary
because such derivatives are typically not commercially available. In addition, a limitation
arises from the low concentration of polysaccharide aldehydes present at the reducing ends
due to the equilibrium between hemiacetal and aldehyde forms. This limitation leads to
long reaction times for oxime ligation reaction [43].

2.3. Other Chain Degradation—Nucleophilic Displacement

The Matson laboratory has introduced a method for the synthesis of ABA-type triblock
copolymers containing polysaccharide segments [47]. This method involves modifying
the end group of polysaccharides and utilizing ring-opening metathesis polymerization
(ROMP). Cellulose triacetate (CTA) was used as the starting material. In this process, the
anomeric linkages in commercial CTA first react with HBr, resulting in cellulose acetates
with 1-bromo groups at the reducing end, as depicted in Figure 7. Subsequently, the
bromide groups were replaced using a terminally unsaturated alcohol, yielding a CTA with
mono-olefin functionalization. These terminal olefins (RHC = CH2, where R represents
the substituted polysaccharide) were then employed as chain transfer agents in the ROMP
of unhindered, strained cyclic olefins, thus incorporating functional groups (represented
by R) at both ends of the polymer chains. This method enables the synthesis of ABA-
type triblock copolymers with polysaccharide components by modifying the end groups
of polysaccharides using ROMP. The approach is adaptable for various polysaccharide
derivatives with suitable organic solubility.
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3. Polysaccharides in the Construction of Nanocarriers

Polysaccharides and their derivatives are generally biodegradable and exhibit good
biocompatibility with various tissues [48]. Polysaccharide-based copolymers, including
grafted or brush-like copolymers and block copolymers, are widely used in the biomedical
sector, especially as drug delivery systems.

The self-assembly of amphiphilic block copolymers into micelles has been extensively
investigated. Micelles consist of a core–shell nanostructure obtained by the self-assembly
of amphiphilic macromolecules in an aqueous medium. The hydrophobic component
forms the core which is able to encapsulate hydrophobic drugs, whereas the hydrophilic
component constitutes the shell providing the desired properties such as stabilization of the
system and prolonged circulation by avoiding clearance. Micelles are typically 10–200 nm
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in diameter, enabling them to extravasate through the leaky vasculature in tumor tissue [49].
Compared with other long-circulating nanocarriers like nanoparticles or vesicles, polymeric
micelles present many advantages, including controlled drug release by introducing stimuli-
responsive structures on the polymeric chains, increased tissue penetrating ability, and
reduced toxicity by introducing a functional group on the surface [50].

The use of polysaccharides as a building block in the construction of micelles presents
many advantages as compared to synthetic polymers such as PEG and poly(N-
isopropylacrylamide) (PNIPAAm), including low immunogenicity, compatibility with
various tissues, and biodegradability [51–53]. Moreover, tailoring the functionalization of
the polysaccharide backbone enables control over polymer solubility and responsiveness
to stimuli such as pH or temperature. Many polysaccharides contain free hydroxyl groups,
facilitating functionalization with carboxylic acid or hydroxyl-containing drugs like choles-
terol [51–53]. Table 1 summarizes the various nanocarriers formed by polysaccharide-based
amphiphilic block copolymers reported in the literature.

Table 1. Nanocarriers formed by polysaccharide-based amphiphilic block copolymers.

Polysaccharide Block Copolymer Nanocarrier Loaded Drug References

HPMC (cellulose derivative) HPMC-PLLA micelles - [54]

HPMC (cellulose derivative) HPMC-PLA micelles Paclitaxel [33]

HPMC (cellulose derivative) HPMC-JEF micelles - [34]

HPMC (cellulose derivative) HPMC-PCL micelles Curcumin [35]

Hyaluronic acid HA-ss-PCL micelles DOX, superparamagnetic
iron oxide (SPIO) [55]

Hyaluronic acid HA-PLGA micelles Protoporphyrin IX (PpIX) [56]

Hyaluronic acid Gal-HA-VES micelles Norcantharidin (NCTD) [57]

Dextran Dextran-deoxycholic acid
polyesters micelles Curcumin [58]

Dextran sPCL-dextran micelles - [59]

Dextran

DEX-b-polystyrene (DEX-b-PS),
DEX-b-poly(N-
isopropylacrylamide)
(DEX-b-PNIPA)

micelles - [60]

Chitosan CS-b-PDO micelles CPT [61]

Chitosan
N-succinyl-N’-4-(2-
nitrobenzyloxy)-succinyl-
chitosan

micelles Fluorescence dyes,
(fluorescein and cypate) [62]

Chitosan chitosan-co-poly(ethylene
glycol) micelles Fluorescein [63]

Alginate alginate-b-PEG-b-PLA Nanoparticle
Rhodamine B, Azathioprine,
Doxorubicin, Erlotinib,
Irinotecan, Coumarin6

[64]

3.1. Cellulose

Cellulose is the major component of many plants. It is a linear β-1,4-glucan with a
covalent acetal linkage between the C4 and C1 carbon atoms [65]. A cellulose macromolec-
ular chain has one non-reducing end terminated with the original C4-OH group and a
reducing end terminated with an original C1-OH group. Cellulose is insoluble in water
and common organic solvents due to strong intermolecular and intramolecular hydrogen
bonding. Degradation of macromolecular chains or modification of the backbone allows
for the destruction of the network of hydrogen bonds, consequently yielding cellulose
derivatives with improved solubility.
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Cellulose can be quantitatively degraded by acid treatment [66] or by cellulase-
catalyzed hydrolysis [67]. A great deal of hydroxyl groups can be esterified or etherified
on the cellulose backbone, yielding various water-soluble cellulose derivatives such as
cellulose acetate (CA), hydroxypropyl cellulose (HPC), hydroxypropyl methyl cellulose
(HPMC), methyl cellulose (MC), hydroxyethyl cellulose (HEC), ethyl cellulose (EC), carboxy
methyl cellulose (CMC), and hydroxyethyl methyl cellulose (HEMC). These derivatives, in
particular EC, HPC [68], HPMC [68], and HEC [69], have been explored as a hydrophilic
block to construct amphiphilic copolymers, which are able to self-assemble into micelles.
In addition to polymer materials, nanocellulose-based hybrid organic/inorganic materials
have also been reported for use in drug delivery systems [70,71].

HPMC is a cellulose derivative resulting from the substitution of hydroxyl groups
by hydroxypropyl and methyl groups. The chemical structure of HPMC is illustrated in
Figure 8. The physicochemical properties of HPMC are strongly affected by the degree
of substitution, molar degree of substitution, and degree of polymerization [72,73]. The
degree of substitution refers to the average number of substituted hydroxyl groups, and
the molar degree of substitution refers to the number of substituents introduced into the
anhydroglucose unit [73,74].
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HPMC is one of the most important hydrophilic biopolymers used for the preparation
of oral controlled drug delivery devices due to its high swellability, which is the key
characteristic determining drug release kinetics. Upon contact with water or biological
fluid, the latter diffuses into the HPMC-based devices, leading to polymer chain relaxation
with volume expansion [72]. Subsequently, the incorporated drug will be released by
diffusion out of the system. HPMC-based hydrogels have been used as carrier for several
drugs such as naproxen, tramadol, and ibuprofen [75]. The factors influencing drug release
behaviors have been investigated, as documented in a review by Kamel et al. [75]. A
composite of HPMC with indomethacin, an anti-inflammatory drug, was formulated by the
supercritical fluid-assisted impregnation method [76]. Data show that drug release obeys a
power law (n = 0.54). This strategy is very promising because it allows for the preparation
of natural drug carriers in a ‘green’ way. HPMC is also used to form thermo-sensitive
reversible hydrogels based on hydrophobic interactions [73].

Wang et al. prepared amphiphilic HPMC-PLLA diblock copolymers by a UV-initiated
thiol-ene click reaction [54]. Thiol-terminated HPMC (HPMC-SH) was obtained by coupling
the reducing end group of HPMC with the amine group of cysteamine, followed by
reductive scission of the central disulfide bond of the resulting HPMC-S-S-HPMC by using
excessive DL-1,4-dithiothreitol (DTT). Meanwhile, allyl-terminated PLLA was prepared by
the ROP of L-lactide in the presence of allyl alcohol. Subsequently, a UV-initiated thiol-ene
click reaction was performed to couple HPMC-SH with allyl-terminated PLLA, yielding a
HPMC-PLLA diblock copolymer. The resulted amphiphilic copolymers are water-soluble
and able to self-assemble in micelles in an aqueous medium. The micelle size increases
with the increasing molecular weight of the HPMC hydrophilic block. The HPMC block
length also affects the critical micelle concentration (CMC) and the lower critical solution
temperature (LCST) of the copolymers. Both the CMC and LCST increase with increasing
HPMC block length. These results highlight the importance of the hydrophilic block or
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hydrophilic/hydrophobic balance on the self-assembly behavior of HPMC-PLA block
copolymers, which could be very promising as nanocarriers of hydrophobic drugs.

Other cellulose derivatives have also been considered for the construction of drug
carriers, especially cellulose acetate (CA) and carboxymethyl cellulose (CMC). CA is a class
of derivatives with the substitution of hydroxyl groups by acetate ones. Studies mainly
focus on CA beads and electrospun fibers for the encapsulation of dyes and drugs. Elec-
trospinning has attracted great interest for biomedical usages in recent years. Electrospun
nanofibers provide many advantages for drug delivery applications such as high flexibility,
enhanced control over drug release kinetics, simultaneous delivery of different drugs, and
enhanced local therapeutic effects [77]. Moreover, various drug-loading methods can be
employed by using different electrospinning methods with a high encapsulation efficiency
and loading capacity [78]. For example, multiaxial electrospinning is used for entrap-
ment of the therapeutic agents into core–shell nanofibers or multilayered fibers. These
structures allow a premature release to prevent barrier and prolonged drug release [79,80].
Electrospun CA nanofibers are widely applied for the encapsulation of therapeutic agents
such as antimicrobial, antibacterial, antioxidant, and anti-inflammatory agents. Recently,
research has focused on uses of electrospun CA nanofibers in topical/transdermal drug
delivery systems. CA-based stimuli-responsive drug delivery systems have also been
developed [81].

Carboxymethyl cellulose (CMC) is a class of derivatives with negative charges on the
polymer chains. Therefore, CMC is able to self-assemble together with positively charged
polymers or proteins to yield coacervates as drug nanocarriers [81]. In fact, CMC has been
used in a number of drug delivery and tissue-engineering purposes. Apomorphine, a
drug clinically used to regulate motor response in Parkinson’s disease, was successfully
loaded in a CMC powder formulation. A sustained nasal release was observed [82]. CMC-
encapsulated layered double hydroxides/drug nanohybrids have been studied for the
oral delivery of cephalexin [15]. Sodium CMC has been applied in gastrointestinal drug
delivery [83]. CMC is considered as a promising drug carrier for release in buccal tissue [84].

A number of CMC-based copolymers have been reported. CMC-g-PLA graft copoly-
mers were synthesized by the ROP of lactide and used as nanocarriers of doxorubicin
(DOX) [85]. Additionally, an anti-EpCAM antibody, specific to EpCAM protein over-
expressed on hepatocytes, is attached to CMC for targeted drug delivery. In aqueous
environment, CMC-g-PLA was able to self-assemble into micelles and encapsulate DOX
in the hydrophobic core of PLA. DOX-loaded micelles exhibited pH-induced drug release
due to the faster degradation of PLA at an acid pH as compared to a neutral environment.
The micelles entered cancer cells through endocytosis under acidic conditions, enhanc-
ing the therapeutic efficacy. Recently, sodium CMC (NaCMC)-based micelles and ZIF-8
metal–organic frameworks (MOFs) are combined to construct acid-responsive nanocarriers
of camptothecin (CPT), a hydrophobic antitumor agent [86]. CPT is coated on the core
of micelles by hydrophobic interaction with spiropyran (SP), a pH-responsive compound
used as an additive in drug release devices, and ZIF-8 grows on the surface of the micelle to
reduce drug leakage. In acidic conditions, ZIF-8 collapse provides zinc ions as crosslinking
agents for NaCMC, improving the drug release as compared to SP-grafted NaCMC micelles.
The intrinsic biological adhesion of NaCMC ensures sustained drug release for up to 40 h
(Figure 9). Folate-decorated CMC was also used to prepare amphiphilic graft copolymers
for loading DOX [87].

3.2. Hyaluronic Acid

Hyaluronic acid (HA) is a naturally charged glycosaminoglycan composed of D-
glucuronic acid and N-acetyl-D-glucosamine alternating on the backbone connected by
β-1,4 and β-1,3 glycosidic linkages. HA is biocompatible, non-toxic, non-immunogenic,
non-inflammatory, and degradable by native enzymes [88]. Thus, it has been used for
various medical applications including arthritis treatment, wound dressing, ocular surgery,
and tissue regeneration. The molecular weight of HA is crucial in the formulation of
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pharmaceutical products to achieve specific biological effects. Different from native HA,
HA fragments exhibit diverse effects on inflammation, angiogenesis, fibrosis, cancer, and
autoimmune response [89,90]. HA also has received much attention as a biopolymer for
the development of drug delivery systems, including ocular and nasal delivery systems,
and sustained release formulations via subcutaneous injection. Furthermore, the affinity
of HA to the CD44 receptor, which is overexpressed in various tumor cells, makes HA an
important biopolymer in cancer-targeted drug delivery.
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Nanocarriers prepared from HA-based amphiphilic block copolymers, including pro-
drug, dendrimers, or micelles, can not only reduce phagocytosis by the reticuloendothelial
system (RES), but also achieve active targeting of tumor cells due to the overexpression of
CD44 [91–93]. Jiang et al. prepared theranostic nanocarriers by the self-assembly of HA-
based block copolymers for chemotherapy and MR imagining, as shown in Figure 10 [55].
Redox-sensitive and active targeting HA-ss-PCL block copolymers were synthesized by
successive ROP, reductive amination, and click reaction. These copolymers could form
spherical micelles with average sizes between 83 and 193 nm. The micelles showed a high
loading capacity for both DOX and superparamagnetic iron oxide (SPIO) and exhibited a
quicker release of DOX in the presence of 10 mM glutathione (GSH). MTT assay and flow
cytometry results demonstrated that DOX-loaded HA-SS-PCL micelles enhanced cellular
uptake and cytotoxicity against HepG2 cells compared to normal HA-PCL micelles. Addi-
tionally, SPIO-loaded HA-SS-PCL micelles exhibited higher MRI sensitivity and relaxivity,
showing significant potential as actively targeted, redox-sensitive theranostic nanocarriers
for the diagnosis and chemotherapy of hepatic carcinoma.

HA-based polymeric micelles were also studied as carriers for photodynamic cancer
therapy [56]. HA-PLGA block copolymer was synthesized by the end-to-end coupling
of HA-NH2 and PLGA-COOH. Protoporphyrin IX (PpIX), a potent photosensitizer, was
loaded in HA-PLGA micelles via dialysis. The micelles exhibited a particle size of ap-
proximately 200 nm, and the drug encapsulation efficiency exceeded 43%. Significantly
enhanced phototoxicity toward CD44-overexpressing A549 cells was observed in both the
2D monolayer cell culture and 3D tumor spheroids. This enhanced effect was attributed to
the promoted cell uptake and deeper penetration of the micelles into the spheroids. Jiang
et al. reported the synthesis of an amphiphilic galactosamine–hyaluronic acid–vitamin E
succinate (Gal-HA-VES) block copolymer [57]. Multifunctional micelles were prepared for
the delivery of norcantharidin (NCTD) to a hepatic carcinoma. NCTD-loaded Gal-HA-VES
showed higher cytotoxicity toward CD44- and ASGP-R-overexpressing cells, in agreement
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with the enhanced cellular uptake. A cell apoptosis assay indicated that NCTD-loaded
Gal-HA-VES micelles were more effective in triggering apoptosis, compared with free
NCTD or NCTD-loaded HA-VES micelles. In vivo tests demonstrated that NCTD-loaded
Gal-HA-VES micelles exhibited enhanced tumor targeting and antitumor activity with
lower systemic toxicity, suggesting that they can achieve significant tumor targeting and
effective treatment of hepatic carcinoma.
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3.3. Dextran

Dextran is a representative of neutral polysaccharides and primarily comprises α-1,6-
linked glucopyranoside units with small quantities of α-1,2-, α-1,3-, and α-1,4-branched
chains [94]. It is generally synthesized by lactic acid bacteria, but a commercially avail-
able biopolymer is typically derived from sucrose-containing sources. The hydroxyl
groups present on the dextran backbone allow for easy functionalization. Moreover,
dextran exhibits biodegradability, biocompatibility, hydrophilicity, non-toxicity, and sta-
bility within the bloodstream. Dextran has also demonstrated anti-thrombotic and anti-
inflammatory properties.

Dextran has found various applications, including the preparation of hydrogels [95,96],
micelles [96,97], and nanoparticles [98]. The use of grafted dextran for micelle formation has
been extensively explored, particularly in the context of anticancer drug delivery [99,100].
Lipids such as cholesterol, oleic acid, and stearic acid have been conjugated with dextran,
yielding amphiphilic polymers conducive to efficient micellization and entrapment of
chemotherapeutic agents [101–103]. For instance, PTX-loaded dextran-stearate micelles
were developed for breast cancer therapy, demonstrating the potential of dextran–stearate
micelles for intracellular DOX delivery [101].

A number of dextran-based amphiphilic block copolymers have also been synthe-
sized by attaching a hydrophobic block such as polystyrene [32,104], PCL [105–107],
PLA [108–110], poly(alkyl cyanoacrylate) [111], polypeptides [112], and deoxycholic acid
polyesters [58]. Nichifor et al. synthesized copolymers by dipolar 1,3-cycloaddition reaction
between dextran with azide end groups and deoxycholic acid—oligo(ethylene glycol)s
polyester with propargyl end groups [58]. Different copolymer compositions were ob-
tained by varying the molecular weights of dextran (Mn 4.5, 8, 15 kDa) and polyester (Mn
2–6 kDa). Micelle-like aggregates were obtained by the self-assembly of copolymers in an
aqueous medium with nanometric sizes (50–600 nm) and spherical forms. Curcumin, a
hydrophobic antitumor drug, was encapsulated in micelles with greatly enhanced water
solubility. Slow curcumin release from micelles was observed with a reduced burst effect.
A star-shaped copolymer, sPCL-dextran, was also studied as a drug delivery system [59].
The copolymer consists of a dipentaerythritol core, with a hydrophobic PCL inner arm
block and a hydrophilic dextran outer arm block.

Edgar et al. reported a new route to synthesize dextran-based block copolymers by
regioselective bromination of the dextran non-reducing end, as shown in Figure 11 [60].
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The regioselective bromination of the exclusive primary alcohol group at the C-6 position
of the non-reducing end was achieved through the use of N-bromosuccinimide (NBS) and
triphenyl phosphine (PPh3). The functionalized dextran was subsequently utilized in the
synthesis of block copolymers with various amine-terminated polymers, leading to the
formation of diverse block copolymers such as DEX-b-PEG, DEX-b-polystyrene (DEX-b-PS),
and DEX-b-poly(N-isopropylacrylamide) (DEX-b-PNIPA). The latter exhibits thermally
induced micellization, with micelle formation occurring above 33 ◦C.
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3.4. Chitosan

Chitosan is a N-deacetylated product of chitin, the second-most abundant polysac-
charide in nature [113]. On the chitosan chain, there are amounts of amino and hydroxyl
groups, which can act as reaction points for combinations with crosslinkers, target ligands,
or drugs. Chitosan is soluble in mildly acidic media due to the presence of amino groups
and is pH-responsive as the amino groups can be converted to ammonium ones [114]. As a
natural cationic polymer, chitosan has been explored to construct drug delivery systems
due to its low immunogenic, biocompatible, and hydrophilic properties [115,116]. In addi-
tion, chitosan is readily biodegradable in vivo by several enzymes [117]. Nevertheless, like
other biopolymers, chitosan has poor water solubility due to strong hydrogen bonding. The
water solubility of chitosan can be improved by introducing hydrophilic groups [48,118]
or by degradation into short chains [119]. In general, chitosan with a lower molecular
weights and a higher degree of deacetylation demonstrates increased solubility and faster
degradation compared to chitosan with a higher molecular weight and lower degree of
deacetylation [120].

Chitosan particles prepared via the coacervation method were used to encapsulate
genetic material for applications in gene therapy. Coacervation between positively charged
amine groups on chitosan and negatively charged phosphate groups on DNA facilitates the
formation of chitosan–DNA nanoparticles, as reported in the literature [121]. The system
could efficiently protect the genetic material from a nuclease attack. The weight ratio of
the two polymers significantly influences the particle size, surface charge, entrapment
efficiency, and release characteristics of the nanoparticles. The transfection efficiency is
dependent on the molecular weight of chitosan, concentration of nucleotide, and type of
cells [122,123]. Hydrogels based on chitosan have been used as drug carriers in the field of
cancer treatment, using various methods of preparation and crosslinking agents. Entrapped
drugs included PTX, DOX, and CPT [124].

Several studies have focused on the development of chitosan-based micelles through
modification of the backbone structure. Efficient drug delivery vehicles have been obtained
from lipid-modified chitosan [125,126]. Another approach involved the conjugation of
PEGylated chitosan with lipoic acid, forming a drug delivery platform [127]. Chitosan
was also modified with cholesterol to prepare a drug delivery system for poorly soluble
anticancer drugs [126]. Palmitic acid was utilized to functionalize the amine groups in
chitosan for the delivery of a hydrophobic drug, tamoxifen [128]. The resulted nanocarrier
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demonstrated efficient drug encapsulation, sustained drug release, and hemocompatibility.
Polymer-grafted chitosan has also been investigated for drug delivery applications [129,130].
For instance, chitosan-g-PLA was synthesized through the ROP, and nanomicelles were
prepared from the graft copolymer to load a hydrophobic antioxidant, β-carotene [129].

Chitosan-based block copolymers have also been reported. An amphiphilic chitosan-
b-poly(p-dioxanone) (CS-b-PDO) block copolymer was synthesized by intermolecular
nucleophilic reaction between free-radical-containing chitosan and a carbon–carbon double
bond-containing PDO-macromer [61]. The copolymer was capable of self-assembling in
neutral aqueous solutions and partially disassembling in acidic endosomal/lysosomal
environments. Copolymer micelles were utilized to encapsulate CPT, an antitumor drug.
In vitro drug release studies revealed a significantly faster CPT release at pH 5.0 compared
to pH 7.4. Blank micelles demonstrated non-toxicity in preliminary cytotoxicity assays. Cell
experiments confirmed the effective internalization of CPT-loaded micelles by Hela cells,
leading to potent antitumor efficacy. Another chitosan-based block copolymer, N-succinyl-
N’-4-(2-nitrobenzyloxy)-succinyl-chitosan was synthesized to develop near-infrared (NIR)
light-breakable micelles [131]. By encapsulating an NIR dye cypate into the hydrophobic
core of micelles, the dissociation of micelles under NIR exposure could trigger the release of
co-loaded hydrophobic species [62]. The micelles formed from a chitosan-co-poly(ethylene
glycol) methyl ether methacrylate block copolymer present a promising strategy for hy-
drophobic drug delivery [63]. Their pH-responsive swelling mechanism, driven by chitosan
protonation, facilitates a controlled drug release. The polymeric micelles, with a protective
PEG corona, resist protein adsorption and extend circulation times. Sized between 50
and 350 nm, these stable micelles offer a potential solution for enhanced and prolonged
drug administration.

3.5. Alginate

Alginate is a type of anionic hydrophilic polysaccharide primarily derived from brown
algae and some soil bacteria [132]. It consists of linear chains of alternating residues of
two monosaccharides: α-L-guluronic acid (G-blocks) and β-D-mannuronic acid (M-blocks).
The composition and sequence of G and M blocks, including GG, MM, MG, and GM blocks,
can vary to a large extent, leading to different molecular weights and physical properties of
alginates. Alginates can have molecular weights ranging from 10 to 1000 kDa [132]. The
versatility of alginate-based materials in terms of structure, functionality, and ability to
carry different active substances makes them very attractive for a wide range of medical
and pharmaceutical applications [133,134].

Alginate-based drug delivery systems have been developed, including hydrogels,
nanoparticles, microparticles, liposomes, and tablets. Thermo-sensitive hybrid polymer
complex micelles were prepared from sodium alginate-g-poly(N-isopropyl acrylamide)
(SA-g-PNIPAM) and divalent metal ions to encapsulate DOX [135] and 5-fluorouracil (5-
FU) [136]. The micelles were spherical in shape and exhibited excellent drug encapsulation
performance. The cumulative drug release from micelles was controlled by pH, ionic
strength, or temperature of the medium. An ABC-type triblock copolymer alginate-b-PEG-
b-PLA was synthesized by the covalent attachment of alginate with a PLA-PEG diblock
copolymer [64]. These amphiphilic block copolymers self-assembled into nanoparticles in
an aqueous medium and could encapsulate both hydrophobic and hydrophilic payloads. A
spatiotemporal release of the co-formulated drug payloads was observed, showing promise
as a co-delivery system for combination therapies.

4. Conclusions and Perspective

The utilization of polysaccharides as hydrophilic building blocks in the construction
of amphiphilic block copolymers presents great interest in the realm of drug delivery
systems. The advantages of employing polysaccharide-based copolymers, including their
biocompatibility, versatility, and tunable properties, underscore their significance in en-
hancing the performance of nanocarriers. Thanks to the presence of a reducing end in
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polysaccharide chains, various amphiphilic block copolymers can be constructed from
polysaccharides and hydrophobic polymers bearing amine end groups. The exploration
of various nanocarrier structures, such as nanogels, nanoparticles, and micelles, further
expands the potential applications of polysaccharide-based systems in delivering therapeu-
tic agents with precision and efficiency. The synthesis methods discussed, encompassing
reductive amination, oxime ligation, and other chain-end modification reactions, offer
a toolkit to tailor the structure properties of copolymers for specific applications. The
description of specific polysaccharides, including cellulose, hyaluronic acid, dextran, al-
ginate, and chitosan, highlights their unique attributes as hydrophilic blocks to construct
amphiphilic block copolymers. The showcased examples demonstrate the feasibility of the
construction of polysaccharide-based nanocarriers for controlled or targeted drug deliv-
ery. Future research could explore novel polysaccharides or combination strategies that
enhance the performance and functionality of nanocarriers. Additionally, advancements in
understanding the interactions between nanocarriers and biological systems will be crucial
for optimizing drug delivery efficiency and minimizing potential side effects. Therefore,
the development of polysaccharide-based nanocarriers holds great potential for further
innovations and breakthroughs, opening new avenues in drug delivery and nanomedicine.
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Abbreviations
HAMA N-(2-hydroxypropyl)methacrylamide
PLA polylactide
PCL poly(ε-caprolactones)
PGA polyglycolide
PDO polydioxanone
PLGA poly(lactide-co-glycolide)
Dex dextran
PS polystyrene
HPMC hydroxypropyl methyl cellulose
ROP ring-opening polymerization
Boc N-tert-butoxycarbonyl
PTX paclitaxel
CMC critical micelle concentration
ATRP atom transfer radical polymerization
RAFT reversible addition-fragmentation chain transfer
NMRP nitroxide-mediated radical polymerization
Mn molecular weights
PDMAEMA poly(2-(dimethylamino)ethyl methacrylate)
ROMP ring-opening metathesis polymerization
CTA cellulose triacetate
CA cellulose acetate
MC methyl cellulose
HEC hydroxyethyl cellulose
EC ethyl cellulose
CMC carboxy methyl cellulose
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HEMC hydroxymethyl cellulose
DTT DL-1,4-dithiothreitol
LCST lower critical solution temperature
DOX doxorubicin
MOF metal–organic frameworks
CPT camptothecin
SP spiropyran
HA hyaluronic acid
RES reticuloendothelial system
SPIO superparamagnetic iron oxide
GSH glutathione
PpIX protoporphyrin IX
Gal-HA-VES galactosamine-hyaluronic acid-vitamin E succinate
NCTD norcantharidin
NBS N-bromosuccinimide
PPh3 triphenyl phosphine
DEX dextran
PNIPA poly(N-isopropylacrylamide)
CS-b-PDO chitosan-b-poly(p-dioxanone)
NIR near-infrared
SA-g-PNIPAM sodium alginate-g-poly(N-isopropyl acrylamide)
5-FU 5-fluorour
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