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Abstract—The development of smart devices has highlighted
the need for human-device interaction. A key aspect of this
interaction lies in the estimation of the physical orientation of
the device, which is crucial for various applications. Conventional
methods employing Inertial Measurement Units (IMU) encounter
limitations such as cumulative errors and magnetic interference.
In this paper, we propose UWBOri, a novel method for orienta-
tion estimation using Ultra-wideband (UWB) technology. UWB
technology, which is increasingly integrated into smart devices,
offers superior ranging accuracy owing to its large bandwidth. By
leveraging the localization information obtained between a fixed
UWB-equipped anchor device and the user device, UWBOri can
accurately estimate the orientation of the user device. The efficacy
of UWBOri has been validated through extensive laboratory
experiments designed to evaluate the accuracy of orientation
estimation. Furthermore, we demonstrate the practical applica-
bility of UWBOri in two distinct scenarios: IoT device selection
and augmented reality (AR). These applications illustrate the
potential of our solution in real-world scenarios.

Index Terms—Orientation, Ultra-wideband, Smart devices,
Human-device interaction

I. INTRODUCTION

Recent years have witnessed the rapid development of smart
devices, including smartphones, smartwatches, earphones, and
smart glasses. A growing focus is on improving human-device
interaction to create innovative and practical applications. To
achieve efficient interaction, it is often necessary to determine
the physical state of a smart device, including its location and
orientation. While localization has been extensively studied,
research on orientation estimation for smart devices remains
relatively limited. However, orientation estimation is critically
important as it supports numerous applications. For instance,
in AR applications, accurate orientation allows users to interact
seamlessly with virtual objects overlayed in the real world.
Knowing the device’s orientation improves directional guid-
ance and spatial awareness in precise navigation. Accurate
orientation information can significantly enhance the user
experience and extend the functionality and usability of smart
devices in various complex scenarios.

On smart devices such as smartphones, conventional orien-
tation estimation typically relies on IMUs. Within the IMU,
the gyroscope and the magnetometer are commonly used for
orientation estimation. However, gyroscopes often face the
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issue of cumulative errors, leading to drift over time. On
the other hand, magnetometers can be affected by magnetic
interference from components in commercial devices, resulting
in inaccurate measurements [1]. To this end, researchers have
also proposed installing various wireless signal modules on
devices for orientation estimation, including RFID [2], [3],
Wi-Fi [4], LoRa [5], Bluetooth [6], and acoustic signals [1],
[7]. By analyzing the signals received or transmitted by the
antennas at different locations on the device, the orientation
of the device can be inferred. However, these signals are
either unavailable on commercial smart devices or difficult to
extract the channel state information needed for orientation es-
timation. Therefore, achieving precise and reliable orientation
estimation in commercial devices remains a challenge.

In this paper, we propose a novel orientation estimation
method for smart devices utilizing UWB technology. Cur-
rently, UWB technology is being widely deployed in vari-
ous smart devices, including smartphones, smartwatches, and
smart speakers. Due to its larger bandwidth (i.e., 500 MHz)
compared to other Radio Frequency (RF) signals, UWB of-
fers superior ranging accuracy. Additionally, when combined
with multi-antenna technology, the Angle-of-Arrival (AoA) of
UWB signal can also be estimated. Therefore, UWB is highly
suitable for device localization. For example, a UWB-equipped
iPhone can locate an AirTag attached to an item, facilitating
item tracking [8].

In this paper, we further explore the application of UWB’s
localization capabilities to facilitate orientation estimation.
Specifically, our core idea is that, given the fixed locations
of two UWB-enabled devices (denoted as devices A and B),
when the orientation of device A changes, the relative location
of device B with respect to device A also changes. There-
fore, the localization data inherently incorporates orientation
information. With this key insight, we propose UWBOri, a
UWB-based orientation estimation method. First, one UWB-
equipped device (e.g., a smart speaker or a smart TV) is fixed
in the environment as an anchor. Subsequently, leveraging the
UWB connection between the anchor and the user’s smart
device (e.g., a smartphone) and the corresponding localization
information reported, we can accurately estimate the orienta-
tion of the user’s device.

We implement UWBOri on UWB-equipped iPhones. To val-
idate the effectiveness of the proposed orientation estimation



approach, we conduct comprehensive benchmark experiments
in laboratory scenarios. Then, we demonstrate the application
of UWBOri in two real-world scenarios, including IoT device
selection and AR.

The main contributions of this work are summarized as
follows:

• We present a novel orientation estimation solution using
UWB-equipped smart devices.

• We prototype the proposed method based on commodity
smartphones.

• We validate the effectiveness of our method in laboratory
settings and demonstrate its potential through practical
applications in real-world environments.

II. PRELIMINARY

In this section, we first present the background knowledge
of UWB and then introduce the definition of orientation.

A. Background of UWB

The typical characteristic of UWB signals is their large
bandwidth. In the time domain, UWB signals appear as very
short pulses. The bandwidth of UWB signals transmitted by
commercial devices is typically 500 MHz, which corresponds
to a pulse duration of 2 ns [9]. Therefore, the direct path signal
between two devices can be distinguished from multipath sig-
nals in the time domain, enabling precise measurement of the
signal’s Time-of-Flight (ToF). Furthermore, using Two Way
Ranging (TWR) [10], [11] algorithms, the distance between
two devices can be estimated. Meanwhile, if the UWB receiver
is equipped with multiple antennas, the AoA of the received
signal can be estimated by measuring the phase differences
between signals received by different antennas [12]. Finally, by
combining distance and angle information, the relative location
coordinates between devices can be calculated.

In recent years, more and more manufacturers have included
UWB modules in their smart devices (e.g., smartphones,
smartwatches, smart speakers, earphones, and TVs) for lo-
calization, including Apple [13], Samsung [14], Xiaomi [15]
and Google [16]. In this paper, we use the UWB-equipped
iPhone (i.e., iPhone 11 and later) as the platform to implement
the proposed orientation estimation method. Using the Nearby
Interaction API [13] provided by Apple, UWB connections
can be established between iPhone devices. After its establish-
ment, each smartphone can measure and report the distance
and angle of other devices relative to itself, enabling device
localization.

B. Definition of Orientation

For simplicity, in this paper, we assume the user’s smart
device is a smartphone. First, we define a smartphone coordi-
nate system (Cs) that is bound to the smartphone. As shown
in Figure 1a, the x-axis and z-axis of Cs are parallel to the
two sides of the smartphone respectively, and the y-axis is
perpendicular to the smartphone surface. Then, we define a
base coordinate system (Ca), which can be established with
a fixed point in the environment as the origin. As shown in

(a) Smartphone
coordinate
system.

(b) Illustration of smartphone orientation.

Fig. 1: The definition of smartphone orientation. The orienta-
tion of a smartphone is determined by its y-axis direction in
the base coordinate system.

Figure 1b, we define the orientation of the smartphone as
the direction of the y-axis of Cs, which can be represented
as a unit vector nori = (ex, ey, ez)

T in Ca. Based on this
definition, we present the principle of orientation estimation
and the system prototype.

III. PRINCIPLE OF ORIENTATION ESTIMATION

In this section, we propose the detailed principle of orienta-
tion estimation. As introduced in Section II-B, the orientation
of the smartphone is defined as the direction vector (nori) of
the y-axis of the smartphone coordinate system Cs and the
y-axis is perpendicular to the smartphone surface. Traditional
orientation estimation approaches on smart devices are based
on sensors such as accelerometers and magnetometers [17],
[18]. However, magnetic fields from ferromagnetic objects in
the indoor environment and ferromagnetic components inside
the smartphone can interfere with the measurement of the mag-
netometer, resulting in inaccurate orientation estimation [1]. In
this paper, we estimate the orientation only based on the UWB
readings, which are more resistant to interference.

As introduced in Section II-A, UWB technology is ded-
icated to device localization. To this end, a UWB-equipped
anchor is required to be fixed in the environment. In this
paper, we use an iPhone as an anchor to validate and prototype
our method. Note that in real-world deployments, this anchor
could be a smart device (such as a smart speaker or a smart
TV) or a dedicated UWB device. The key observation behind
our solution is, when the user device and anchor have different
orientations, the angle of the user device with respect to the
anchor is always different from the angle of the anchor with
respect to the user device. This angle difference also induces
different location estimation results for the user device and
anchor, i.e. the location of the user device estimated by the
anchor is different from the location of the anchor estimated
by the user device.

As shown in Figure 2a, we define the base coordinate system
(Ca) which is bound to the anchor. When the orientation of the
user device changes, the locations of the anchor in Cs (user
device’s view) are different. Let pa = (xa, ya, za)

T denote the
location of the anchor in the view of the user device (Cs). It is
intuitive that the locations of the anchor in the view of the user



(a) Illustration of the initial orientation. (b) Rotating around the z-axis. (c) Rotating around the x-axis. (d) Illustration of
user device’s orien-
tation.

Fig. 2: Illustration of orientation estimation. The orientation of the user device can be represented as obtained by rotating the
initial orientation by α around the z-axis and β around the x-axis in sequence.

device can be used to infer its orientation. We first define an
initial orientation, which is the same as the orientation of the
anchor as shown in Figure 2a. In the initial state, the axes of Cs

are parallel to that of Ca. Note that the location of user device
in Ca is ps = (xs, ys, zs)

T . Thus, the location of anchor in Cs

is pa0 = (−xs,−ys,−zs)
T and the initial orientation vector

is n0 = (0, 1, 0)T . Then, the user device can be rotated to
different orientations. As shown in Figure 2b, the user device
can rotate around the z-axis. Furthermore, it can rotate around
the x-axis as shown in Figure 2c. The angle of rotation around
z-axis and x-axis is denoted as azimuth angle α and elevation
angle β, respectively. Thus, any orientation can be expressed
by rotating the initial orientation by α around z-axis and β
around x-axis as shown in Figure 2d. Note that for the initial
virtual and true orientation, the locations of the anchor in the
view of the user device are pa0 and pa, respectively. We can
use a rotation matrix, MR, to characterize the transformation
of the location of the anchor from the initial virtual orientation
to real orientation [19]:

MR = MxMz

=

 1 0 0
0 cosβ − sinβ
0 sinβ cosβ

 cosα − sinα 0
sinα cosα 0
0 0 1

 ,

(1)

where Mx and Mz are the rotation matrices around x-axis
and z-axis, respectively. Note that the initial orientation is a
virtual orientation indicating the user device is facing the same
orientation as the anchor. Then, the transformation relationship
between the anchor location before and after the user device’s
rotation can be expressed as:

pa = MRpa0 = MxMzpa0. (2)

Then, the azimuth angle (α) and elevation angle (β) can be
calculated as:

β =


arccos

−zs
d

+ arctan
ya
za

, if za < 0

arccos
−zs
d

+ arctan
ya
za

− π , if za ≥ 0

α = arctan
xays −Axs

xaxs +Ays
, A = ya cosβ − za sinβ.

(3)

Consequently, the orientation vector of the user device (i.e.,
the direction of the y-axis) can be obtained as below:

nori = (cosαcosβ, cosαsinβ, sinα)T . (4)

Thus, for orientation estimation, we rely solely on the location
of the user device as measured by the anchor, and the location
of the anchor as measured by the user device.

IV. IMPLEMENTATION

In this paper, we implement our design based on Apple
products. Specifically, we employ an iPhone 11 as a fixed
anchor in the test environment, while an iPhone 12 Pro Max
is used for orientation estimation. To facilitate our design,
we build an iOS application leveraging Nearby Interaction
framework [13], which enables the establishment of a pear-to-
pear UWB connection between the two iPhones. Then, both
smartphones are able to measure the distance and angle of the
other, resulting in the acquisition of UWB measurements from
both sides. To evaluate our design, we export the collected data
from two smartphones to a server laptop (a MacBook Pro with
an Intel Core i7 CPU and 32GM RAM) via a UDP connection.
It is worth noting that Android also provides UWB mea-
surement collection API for devices [20]. Meanwhile, Apple
devices possess the capability to establish a UWB connection
with third-party UWB-equipped hardware [21]. This implies
that our design has the potential to be implemented on a
broader range of devices.

V. EVALUATION

In this section, we first conduct benchmark experiments in
laboratory environments to evaluate the performance of orien-
tation estimation. Then, we present two real-world application
scenarios in which our proposed method can be employed,
including IoT device selection and AR.

A. Evaluation of Orientation Estimation

In this section, we conduct benchmark experiments to
evaluate the performance of orientation estimation.

1) Experiment Setting: We evaluate the accuracy of the
orientation estimation across different smartphone positions.
We move the smartphone away from the anchor from 1 m
to 5 m at a step of 1 m. At a distance of 3 m, we move
the smartphone from −40◦ to 40◦ at a step of 20◦. In each
position, we vary the orientation of the smartphone from −50◦

to 50◦ at a step of 10◦ for both azimuth and elevation angles.
We calculate the mean absolute error (MAE) between the
estimated value and ground truth. We also compare the results
estimated by our method with those by IMU readings.



(a) Overall performance. (b) Different orientations. (c) Different distances. (d) Different angles.

Fig. 3: Performance of orientation estimation.

2) Overall Performance: Figure 3a shows the overall ori-
entation estimation errors using our design and IMU-based
solutions. The median error of our design is 1.52◦ and 1.48◦

for azimuth angle and elevation angle, respectively, while
that of IMU-based solution is 41.2◦ and 46.8◦. This result
shows that our design significantly outperforms the method
based on IMU data on the smartphone. Figure 3b shows the
estimation error for different orientations. For all orientations,
the estimation errors are below 2.4◦.

3) Impact of Distance and Angle between the User Device
and Anchor: Figures 3c and 3d show the impact of distance
and angle between the smartphone and the anchor. We can
observe that for all distances between the user’s smartphone
and the anchor, the median orientation error is lower than
1.4◦. We also find that the orientation error slightly increases
with the angle of the user’s smartphone with respect to the
anchor. When the angle of the smartphone is −40◦, the median
orientation error reaches a maximum value of 2.6◦ and 2.8◦

which are still small enough for azimuth angle and elevation
angle, respectively. These results show that our design can
achieve a high orientation estimation accuracy.

B. Application 1: IoT Device Selection

In smart homes, an increasing number of appliances can
be connected to the network. How to efficiently enable users
to select the device they want to control is a crucial factor
affecting the user experience. Traditional methods involve
selecting from a list on a smartphone or using a voice assistant.
Our proposed orientation estimation method provides a new
and simple way for IoT device selection. Regardless of the
user’s location, they can select the device they want to control
simply by pointing their smartphone at it. To achieve this, it
is necessary to know the location and orientation of the user’s
smartphone. The location can be measured directly by the
anchor, and the orientation can be estimated using our method
based on the location information. Based on the location and
orientation of the smartphone, the pointing direction of the
user can be obtained as a line equation:

p = ps + k · nori, (5)

where p represents the points in the pointing direction and k is
the variable parameter of the line equation. Subsequently, the

selected device can be identified by determining whether each
IoT device lies in the direction the smartphone is pointing.

1) Experiment Setting: We first validate the concept and
evaluate the performance of pointing direction estimation in a
laboratory environment. As shown in Figure 4a, we place nine
points on a wall. The distance between adjacent points is 1 m.
The anchor is next to the point in the middle of the left column.
We recruit six participants to hold the smartphone and point
at all points at different distances, angles, and heights. The
estimation error is calculated as the shortest distance between
this point and the pointing direction of the smartphone.

2) Impact of Distance: Figure 4b shows the pointing di-
rection estimation errors under different distances between
the anchor and user smartphone. When the distance from the
smartphone to the anchor is 2 m, 3 m, 4 m, and 5 m, the
median values of the errors (including all nine points) are
0.06 m, 0.10 m, 0.16 m, and 0.25 m, respectively. Figure 4e
to 4h show the errors when pointing to the nine points
respectively. The accuracy of pointing direction estimation
decreases with the increase of distance between the anchor
and target point. When the distance between the wall and
smartphone is 5 m, the system reaches a maximum error of
0.314 m. Considering the typical size of a room, placing the
anchor at the center position of a wall can ensure sufficient
pointing direction estimation accuracy of all the IoT devices
in the room.

3) Impact of Angle: Figure 4c shows the CDF plot of
pointing direction estimation errors at different angles. When
the angle varies from 0◦ to 40◦, the average error is slightly in-
creases by 0.06 m, indicating a small effect of the smartphone
angle on the performance.

4) Impact of Height: Figure 4d shows the CDF errors at
three smartphone heights (i.e., 0.5 m, 1 m, and 1.5 m). The
pointing direction estimation errors at these three heights are
0.14 m, 0.11 m, and 0.09 m, respectively. These results show
that our system can achieve good performance for different
user body postures such as lying (i.e., 0.5 m), sitting (i.e.,
1.0 m), and standing (i.e., 1.5 m).

5) Impact of Anchor Location: In this experiment, we
evaluate the impact of anchor location on pointing direction
estimation. In the experiment setting (Figure 4a), we change
the location of the anchor in two dimensions. First, starting
from the anchor location shown in the figure, we change the



(a) Experiment setting. (b) Smartphone at different distances. (c) Smartphone at different angles. (d) Smartphone at different heights.

(e) At a distance of 2 m. (f) At a distance of 3 m. (g) At a distance of 4 m. (h) At a distance of 5 m.

Fig. 4: Accuracy of pointing direction estimation.

distance of the anchor to the wall from 0 m to 2 m at a step
of 0.5 m. Then, starting from the center point in the figure,
we move the anchor to the left from 0 m to 2 m at a step of
0.5 m. During this experiment, the distance between the wall
and the person is 4 m. Figure 5a and 5b show the pointing
direction estimation error with different anchor locations. As
the distance between the anchor and the wall increases, the
pointing direction estimation error decreases. This is because
when the distance between the anchor and user smartphone
becomes closer, the angle estimation error declines. As the
distance between the anchor and the center point increases,
the estimation error also increases. This is due to the angle
of anchor measured by the user smartphone and the angle of
user smartphone measured by the anchor increases, resulting
in a larger angle and orientation estimation error.

(a) Impact of the distance between an-
chor and wall.

(b) Impact of the distance between
anchor and center point.

Fig. 5: Impact of anchor location.

6) Evaluation in Real-world Environments: In this section,
we evaluate our system in four real-world environments shown
in Figure 6. The first environment is a small bedroom with

a size of 2.7 m × 5 m. There are eight devices in the
bedroom, including two lamps (D1 and D8), a humidifier (D2),
a monitor (D3), a curtain (D4), a window (D5), a heater (D6)
and a router (D7). The second environment is a large bedroom
with a size of 4.3 m × 6.5 m. There are nine devices in
the bedroom, including a window (D1), a curtain (D2), three
lamps (D3, D4 and D7), a TV (D5), an air purifier (D6),
an air conditioner (D8) and a refrigerator (D9). The third
environment is a meeting room with a size of 2.5 m × 3 m.

(a) A small bedroom. (b) A large bedroom.

(c) A meeting room. (d) A lounge.

Fig. 6: Four real-world environments.



(a) A small bedroom. (b) A large bedroom. (c) A meeting room. (d) A lounge.

Fig. 7: Confusion matrices of IoT device selection.

There are eight devices in the meeting room, including an
air conditioner (D1), a light (D2), a ventilation fan (D3), a
TV (D4), a router (D5), a smart speaker (D6), a window (D7)
and a curtain (D8). The fourth environment is a lounge with
a size of 3 m× 3.5 m. There are eight devices in the lounge,
including a refrigerator (D1), three coffee machines (D2 and
D4), a kettle (D3), a microwave oven (D5), a light (D6), a
window (D7) and a curtain (D8). In each environment, we
recruit six participants to point at all devices at ten different
locations. At each location, each participant points at each
device five times.

Figure 7 shows the confusion matrices of device selection
in each environment. The average accuracy of device selection
in four scenarios is 97.1%, 98.1%, 98.4%, and 96.0% respec-
tively. We further analyze the cases of incorrect selection. The
reason for wrong selection is mainly due to the close proximity
of IoT devices. Take D6 and D7 in S1 as an example. As
shown in Figure 6a, when pointing at D7 near the left wall of
the room, D6 is also close to the direction the smartphone is
pointing at. This shows that when pointing at one IoT device,
the user is suggested to make sure other devices are not in the
direction the smartphone is pointing at.

C. Application 2: AR Scenarios

In this section, we demonstrate the potential of our design in
AR scenarios in two real-world environments. In environments
such as a museum, an AR app on the mobile device can
help improve user experience and provide innovative ways to

(a) A museum environment. (b) A conference environment.

Fig. 8: Application in AR scenarios.

interact with the surroundings [22], [23]. For example, when
a person enters a museum and wishes to find a certain exhibit
or preview the exhibits in a room, she/he can take out the
smartphone and point it at each exhibit. The AR app can
display the information of each exhibit on the screen, thereby
helping users quickly find the location of her/his interests. We
demonstrate the feasibility of our design for an AR app in
a museum environment with a size of 3 m × 7 m and a
conference environment with a size of 2.5 m× 6 m as shown
in Figure 8. There are 9 objects in each environment. When
the user picks up the smartphone and points it at an object,
our method is used to identify it. We point at all objects
at ten different locations. Results show that the accuracy of
object selection in two environments is 95.2% and 96.8%,
respectively.

VI. RELATED WORK

In this section, we discuss the most related literature.

A. Orientation Estimation

With the rapid development of smart devices, accurate
orientation estimation has become essential for various ap-
plications. Researchers have explored multiple approaches
for orientation estimation. Conventional orientation estimation
relies on the IMU, which faces challenges such as cumulative
drift errors and magnetic interference. Traditional filtering
methods [24], [18] and deep learning techniques [25], [26]
have been explored to address these issues. However, even
with advanced deep learning methods, orientation estimation
errors remain at a minimum of 4.6◦ [26]. In recent years,
researchers have explored orientation estimation based on
various wireless signals, including RFID [2], [3], Wi-Fi [4],
LoRa [5], Bluetooth [6], and acoustic signals [7], [1]. For
example, LoRa backscatter tags have been placed on drones
for orientation detection [5]. BLESelect [6] estimates the
orientation of smart glasses by installing multi-antenna BLE
devices. FaceOri [7] measures the distance difference between
microphones on an earphone and a speaker to determine the
earphone’s orientation. However, RFID and LoRa are not
available on most commercial smart devices. Wi-Fi and BLE
on commercial devices are primarily used for communication,
making it difficult to extract the raw signals needed for



orientation estimation. Acoustic signals have a short working
range and are easily interfered. In this paper, we propose using
UWB signals for orientation estimation. UWB has already
been widely deployed in commercial devices and can provide
the necessary positioning information for accurate orientation
estimation.

B. UWB Techniques

UWB technology utilizes large bandwidth pulses as the
baseband signal, making precise device positioning possi-
ble [27], [28]. This has led to numerous positioning-related
applications, including tracking [29], [30], item finding [8],
[31], digital keys [32], and handwriting recognition [33], [34].
By analyzing the propagation of UWB signals in space, it can
also be used for contactless sensing, such as monitoring respi-
ration [35], [36], heartbeat [37], [38], and blood pressure [39].

VII. DISCUSSION

A. System Generalization

1) Generalization Across Smart devices: In this paper, we
implement our system using iPhones due to the availability of
detailed UWB reading extraction APIs provided by Apple for
all UWB-equipped iPhones. We also observed a growing trend
in the integration of UWB technology in Android smartphones.
As of June 2023, the Android 12 API includes the UWB
API [20] that supports UWB data extraction from Samsung
and Google Pixel phones. Recent work [12] compares the
accuracy of UWB data extracted from various smartphone
models, and the results indicate similar levels of accuracy.
Consequently, our system can be extended to Android devices
that support UWB data extraction. Looking ahead, we ex-
pect that more Android smartphones will incorporate UWB
technology, enabling the application of our design on a wide
range of smartphones. We also observe that more and more
smartwatches are equipped with UWB. At the same time, we
envision that more smart devices will be equipped with UWB
in the future, allowing our technology to be used in more
scenarios.

2) Implementation of UWB Anchor: In this paper, we utilize
an iPhone 11 as the fixed UWB anchor in the environment.
For real-world deployment, we envision two alternatives for
the anchor. Firstly, the anchor can be realized by utilizing
UWB-equipped smart devices. For example, smart speakers
and TVs produced by Apple and Xiaomi have integrated
UWB modules. Currently, these manufacturers have not re-
leased the UWB data collection API for these smart devices.
Alternatively, the UWB anchor can be implemented by lever-
aging third-party UWB chips and development boards [40],
[41]. These third-party UWB products can establish UWB
connections with commercial smartphones and support data
extraction, enabling our system design.

B. System Extension

In Section V-C, we present an example application of our
system. In AR/VR scenarios, accurate estimation of orientation
and pointing direction serves as a fundamental requirement

for various applications. Our method offers a solution for
estimating the orientation and pointing direction of devices,
thus providing essential information for a wide range of
AR/VR applications. Compared to existing pointing direction
estimation technologies in AR/VR, our design offers a notable
advantage by seamlessly combining the device’s pointing
direction with the actual position of objects in the physical
space, resulting in an enhanced interactive experience. By
implementing orientation and pointing direction estimation on
smartphones and wearable devices, our method can support a
large range of other applications including activity and gesture
recognition [7] and 3D reconstruction [1].

VIII. CONCLUSION

In this paper, we present a novel design for estimating
the orientation of smart devices using UWB technology. The
key innovation of our design lies in leveraging localization
information to infer orientation. To validate our system, we
conduct comprehensive evaluations in both controlled lab
settings and real-world environments. The results demonstrate
the promising potential of the proposed system for real-world
deployment. We believe that our technology can benefit a wide
range of AR/VR/HCI applications.
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