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Abstract

The structure of communities is influenced by many ecological and evolutionary processes,

but the way these manifest in classic biodiversity patterns often remains unclear. Here we

aim to distinguish the ecological footprint of selection–through competition or environmental

filtering–from that of neutral processes that are invariant to species identity. We build on

existing Massive Eco-evolutionary Synthesis Simulations (MESS), which uses information

from three biodiversity axes–species abundances, genetic diversity, and trait variation–to

distinguish between mechanistic processes. To correctly detect and characterise competi-

tion, we add a new and more realistic form of competition that explicitly compares the traits

of each pair of individuals. Our results are qualitatively different to those of previous work in

which competition is based on the distance of each individual’s trait to the community mean.

We find that our new form of competition is easier to identify in empirical data compared to

the alternatives. This is especially true when trait data are available and used in the infer-

ence procedure. Our findings hint that signatures in empirical data previously attributed to

neutrality may in fact be the result of pairwise-acting selective forces. We conclude that

gathering more different types of data, together with more advanced mechanistic models

and inference as done here, could be the key to unravelling the mechanisms of community

assembly and question the relative roles of neutral and selective processes.

1 Introduction

Understanding the assembly of ecological communities is a key goal of research in both ecol-

ogy and evolution. Some studies characterise community assembly as either neutral, where

individual species identities are interchangeable [1], or under selection (sensu Vellend [2]),

where species identities have influence on life history outcomes, for example through abiotic

conditions or biotic interactions [3–6]. Such selective interactions may have varying strengths,

building a continuum from neutrality (no selection) to strong selection [7]. The type and
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strength of species’ interactions has been shown to influence the evolution of species richness

[8, 9], and species’ phenotypic adaptation [10]. Despite recent advances, it remains challenging

to characterise selection from empirical data, leading to varied opinions and conclusions. The

complexity of natural ecological communities is such that unravelling the role of selection,

defined as a “deterministic fitness difference between individuals of different species” [2],

from empirical data is a formidable and unsolved computational challenge.

The question of whether competition among species is important for structuring ecological

communities has been a matter of particular ongoing debate [4, 6, 11, 12]. Many studies sup-

port the idea that competition for limiting resources is the driving factor of niche differentia-

tion, which facilitates coexistence of different species due to a high intra-specific competition,

also known as density-dependence [3, 4, 13]. These niche-based competitive interactions are

thought to be mediated by organismal traits [4, 14]. Yet, detecting such competition statisti-

cally, and therefore understanding its generality across systems, remains a challenge [4, 15,

16]. In contrast, neutral theory, as the prevailing alternative model to niche-based competition,

is much easier to test statistically because it is a low-complexity model [17], but it is unclear

whether tests that reject or fail to reject neutrality do so for valid reasons [18–20], or whether

false positives or false negatives prevail.

Being able to retrieve the strength and nature of ecological competition from empirical data

would be valuable to improve our understanding of competitive interactions, in ecology

(shorter timescales and individual interactions) as well as in evolution (longer timescale and

species interactions). One of the reasons why this has proved elusive may be that only limited

data of a few types have been used to compare model predictions to reality. Multiple comple-

mentary data axes should provide more inference potential [18]. To date, competition and

neutrality have largely been evaluated using species abundance distributions (SAD), as this

data is historically the easiest to collect [1, 3, 19]. Other data have been used including phyloge-

nies, which account for the evolutionary history of the local species and their past interactions

[21–23], metabarcoding data, which gather abundances and genomic proximity information

[24], a combination of genetic data and SADs [25, 26], and traits, which can inform on the

interactions between the species and with their environment [4, 14, 27, 28]. Yet, these data are

generally used in isolation from each other.

The Massive Eco-evolutionary Synthesis Simulations (MESS) model of Overcast et al.

(2021) [29] allows testing mechanistic hypotheses across a combination of three data axes: spe-

cies abundances, population genetic variation and trait values. These three axes reflect a variety

of processes operating over a variety of time scales, from a few generations (abundances) to

several tens of thousands of generations (genetic variation). Moreover, traits and genetic varia-

tion can reflect the information present in phylogenetic data, whilst the SAD and some genetic

variability can be recovered from metabarcoding data. The three highlighted data axes cover

the readily available and collectable data for many systems. MESS is a simulation model that

can be fitted to empirical data using machine learning procedures, and thus is an ideal tool to

study the eventual traces of selection in community assembly data.

Selection in the MESS model, consistent with conventional thinking [4, 14], is driven by

evolving traits and interactions of individuals either with the environment or with other indi-

viduals. However, an individual’s fitness in the competition model of MESS is determined by

the distance of its trait to the mean trait value of individuals in the local community, a decision

made for computational convenience rather than to reflect any real mechanistic connection to

the community mean trait. This “mean competition” is attractive because it delivers substantial

computational gains, which are important to run enough simulations for machine-learning

based inference from data. Mean competition is often used to model the probability of persis-

tence of a species [27] and has the advantage of still taking into account biotic interactions
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between individuals, although as if the community were homogeneous [30] whilst being com-

putationally efficient to simulate. It is, however, a weak approximation for the mechanistic

reality where competition is fundamentally driven by interactions between individual organ-

isms [31, 32]. Simulating mean competition may thus generate patterns that do not reflect real

competitive processes and may fail to correctly detect competition in empirical data.

In this manuscript, we investigate the importance of competition in community assembly

and our ability to detect it from empirical data through simulation models. To do this, we

apply a new and more realistic pairwise competition model to the MESS system, enabled by

substantial computational optimisations in the simulation method. We find that previous con-

clusions about the presence and strength of selection may be artefacts of the mean competition

simulation method. We also find, consistent with intuition, that more data types enhance the

power of inference. We show that trait data are most helpful in detection of selective forces as

an alternative to neutral ones and are therefore crucial to study ecological and evolutionary

forces.

2 Material & methods

2.1 The MESS model

Our simulations are individual-based with a distinct metacommunity and local or island com-

munity [1, 25, 33]. Simulations are run as a time series, enabling the study of both dynamic

equilibrium and non-equilibrium behaviour. A single trait value is associated with each species

identity, which can be used in different ways to model non-neutral dynamics. After the com-

munity simulation is completed and population size fluctuations for each species are known,

this information is used to constrain a coalescence-based simulation of genetic variation

within each species [34].

Following the MESS model of [29], we simulate a fixed number of individuals in the local

community. Each individual i has a value for a single trait zi. At each time step, one individual

dies and is replaced by another individual, which comes either from immigration from the

metacommunity, at rate m, or from a reproduction event within the local community. We

apply selection on the death event only, and not to the birth process. Future work could imple-

ment selection on the birth event to investigate the possible effect of this choice. Speciation

occurs by point mutation with probability ν at each reproduction event. The metacommunity

is modelled as a very large regional pool, which is fixed with respect to the timescale of the

assembly process in the local community. It arises from ecological and evolutionary processes,

including speciation sensu Hubbell [1].

Under the assumption of neutrality, the probability of death Pneutral for any given individual

i in the local community at each time step is given by

Pneutral ið Þ ¼
1

J
ð1Þ

where J is the number of individuals in the local community. Selection is incorporated in

MESS by computing, at each time step, each individual’s probability of death according to a

chosen model of selection (competition or environmental filtering).

In the environmental filtering model, the trait value of each individual is compared to an

optimal trait value that depends solely on the environment. The death rate qfilt of any given

individual i is computed as

qfiltðiÞ ¼ 1 � exp½� sEðzi � zEÞ
2
� ð2Þ

where zE is the environmental optimum and sE determines the strength of the filtering.
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Intraspecific variation is assumed to be negligible in face of interspecific variation, and all indi-

viduals of the species a have the same trait value za which represents the mean phenotype of

the species. The probability of death in the next time step, for any given individual is given by

the normalized death rate Pfilt ið Þ ¼
qfiltðiÞPJ

1
qfiltðjÞ

.

In [29], competition is modelled by a mean-field approximation: the trait value of an indi-

vidual is compared to the mean trait value of the local community. The death rate qMF of any

given individual i is then given by

qMFðiÞ ¼ exp½� sEðzi � �zÞ2� ð3Þ

where �z is the local community mean trait and sE determines how quickly competitive pres-

sure decays with the distance between trait values. Just as for environmental filtering, the death

probability PMF(i) for each individual i is derived through normalization by

PMF ið Þ ¼ qMFðiÞPJ

j¼1
qMFðjÞ

The mean-field approach collapses all trait differences into one value and can therefore gen-

erate counter-intuitive results. For example, the distribution of species across the trait axis

might be bimodal as two groups of species diverge away from the central mean value, leading

to an obvious gap around the mean (see S1 Fig). The area around the mean in trait space is

thus free from species and competition but is still the most penalised trait, while denser areas,

further away from the mean but with more species, are favoured.

Here, we correct this artefact by using a new and more realistic competition model based

on pairwise comparisons between all individuals. In our model, the death rate qpair of any

given individual i is based on the mean of all pairwise trait differences with the other individu-

als in the local community:

qpairðiÞ ¼
XJ

j¼1;j6¼i

exp½� sEðzi � zjÞ
2
� ð4Þ

The added computational cost of the pairwise model was partially offset by optimizing the

underlying data structures of the original MESS model [29], which was essential due to the

large number of simulations needed to train our inference procedure (see S2 Table). In con-

trast to the mean competition model, the pairwise competition model is expected to produce

uniformly and regularly distributed species along the trait axis, which is confirmed by test sim-

ulations (see S1 Fig). The pairwise competition model does not, however, allow us to refine the

strength of intra-specific competition: individuals of the same species have the exact same trait

value and thus the exponential in Eq (4) is always equal to 1. To allow investigation of this, we

also implement a third “β-competition” model that introduces an interaction matrix parame-

ter βij to modulate competition strength between all possible pairs of individuals. Larger values

of βij increase the strength of competition between individuals i and j. We set βij = βintra when

individuals with indexes i and j are conspecific, and βij = βinter when they are heterospecific.

The resulting death rate is given by

qbðiÞ ¼
XJ

j¼1;j6¼i

bijexp½� sEðzi � zjÞ
2
� ð5Þ

By allowing intra- and inter-specific competition to differ according to a parameter, we are

in effect modelling differing levels of negative density dependence: βintra >> βinter corresponds

to strong intraspecific density dependence whilst βintra << βinter corresponds to no density
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dependence. We leave the βintra << βinter case for future work, noting that preliminary tests

suggest the model will lead to mono dominance. The three competition models that we study

here are summarised in Fig 1. Notably, the death probability for each individual, computed

from the given death rates, converges toward a neutral probability 1

J as the strength of selection

SE converges toward 0, in accord with the theory of a continuum spectrum from neutrality to

strong selection [6].

2.2 Exploration of in silico experiments

To explore the behaviour of the proposed competition models and understand how the differ-

ent models affect the outcome of community assembly, we ran 10 000 simulations for each of

the five community assembly models (neutral, filtering, mean competition, pairwise competi-

tion and β-competition), covering wide ranges of possibilities for the main parameters of the

simulations: the age of the community (through Λ, a parameter used to quantify the progress of

the simulation toward equilibrium), the number of individuals J, the strength of the ecological

filtering or competition sE, the strength of inter-individuals interactions β, the migration rate m,

the speciation rate ν, and the abundance/effective population scaling factor α (see S1 Table).

We compare our results to those from the previous implementation of MESS to illustrate

the important effects of our improvement. To do this, we use the same simulation descriptors

as [29]. To briefly summarise these here, each simulation is characterised by a number of sum-

mary statistics along each data axis (species abundances, population genetic variation and trait

values). These summary statistics are: the first moments of each community-wide distribution,

Spearman rank correlations among all data axes, differences between metacommunity and

local community values of trait mean and standard deviation, and Hill numbers of several

orders to quantify the shape of each distribution [35]. Hill number of order q for a data axis X
(SAD, traits data or genetic diversity data), will be noted qX. These calculations were done with

Fig 1. Depiction of the different forms of competition. Each circle represents an individual, with the colour specifying which species it

belongs to and the number its (one dimensional) trait value. The effect of competition on fitness (symbolized by arrows) is shown for all

individuals. Mean competition model: the trait value of each individual is compared to the mean trait value for the community to which

all species contribute. Pairwise competition: the trait value of every individual is compared individually to every other individual’s trait

value. β-competition: the trait value of each individual is compared individually to each other individual’s trait value, weighted by a

factor depending on whether the pair of individuals belong to the same species. The style of arrows in the case of β-competition

symbolizes the type of competition: intra-specific competition (solid black arrows) or inter-specific competition (dotted gray arrows).

https://doi.org/10.1371/journal.pone.0302794.g001
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built-in functions of MESS, and the detailed method is described in the supplementary mate-

rial of [29]. The temporal trends are studied in terms of Λ, a parameter used to quantify the

progress of the simulation toward equilibrium [25], used in common with the original MESS

model [29]. A community is considered at equilibrium, and Λ = 1, when the initial conditions

are no longer detectable in the system, and this advancement toward equilibrium is measured

as the proportion of individuals in the community descending from a lineage that colonized

during the simulation [33]. We visually inspected the resulting simulations by collapsing simu-

lated summary statistics using a PCA after [29] (Fig 2). This enabled us to distinguish between

the different community assembly models.

2.3 Machine learning and inference

We follow the same procedure as [29] for model classification and parameter estimation: Ran-

dom Forest [36] with python and the scikit-learn module (v0.20.3) [37]. We first train a

Fig 2. The first two principal components of the simulation summary statistics at different equilibrium stages

(Λ). The different community assembly models shown as neutral (yellow), environmental filtering (green), mean

competition (orange), pairwise competition (dark blue) and β-competition (light blue). The percentage of variance

explained is indicated for each component.

https://doi.org/10.1371/journal.pone.0302794.g002
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machine learning classifier in a supervised fashion on 50,000 simulated datasets (10,000 for

each assembly model). We then use the trained classifier to predict model class probabilities

for each of the empirical datasets. A confidence percentage is associated to each model. We

quantified classifier accuracy using 5-fold cross-validation on simulated data and evaluated

model misclassification by combining these results into a confusion matrix. We evaluated clas-

sifier accuracy using three different suites of simulated data axes, one composed of SAD and

genetic data, another composed of trait values and genetic data and a third corresponding to

an ideal case scenario, with all three data axis. The first two of these simulated data sets mirror

the data configurations of our empirical datasets. Results from the third data configuration

demonstrate that extensive gathering of empirical data would substantially improve the perfor-

mance of the classifier (see Fig 4B).

2.4 Study of empirical datasets

We used the empirical datasets following [29]: 1) a spider community from Réunion island

with standardized sampling for abundance and genetic diversity of ten 50 m x 50 m plots and

1282 individuals sequenced for one 500bp mtDNA region (COI) [38]; 2) two weevil communi-

ties from two Mascarene islands (one from Réunion and one from Mauritius) which have

been densely sampled for abundance and sequenced for one mtDNA region (600bp COI) at

the community-scale [39]; 3) three subtropical rain forest tree communities scored for multi-

ple continuous traits and shotgun sequenced for whole cpDNA [40]; 4) Galapagos snail com-

munities collected from all major islands (three in total), sampled for one mtDNA region

(500bp COI; [41]) and scored for two continuous traits [42]. We compared summary statistics

linked to the SAD, genetic diversity and traits computed on the empirical data to those com-

puted on 50,000 simulations (10,000 for each community assembly model).

3 Results

Community assembly model simulations progressively differentiate themselves into clusters

on a PCA of summary statistics so the underlying community assembly model is easier to dis-

criminate in older communities (Fig 2). Results from the β-competition data are broadly

spread across the first two PCA axes, and especially hard to distinguish from pairwise competi-

tion. However, the first two PCA components only account for around 30% of the variance,

hinting that there is much more variability to be recovered elsewhere. The groups formed by

pairwise competition and β-competition partially overlap with the neutral simulation group

(Fig 2). The filtering and mean competition groups resemble one another before reaching

equilibrium (Λ< 1).

Consistent results are found in the temporal dynamics of the individual summary statistics

over time (Fig 3): the summary statistics from the mean competition and environmental filter-

ing simulations most often follow similar trajectories. The β-competition and pairwise compe-

tition simulations were also similar to each other (but distinct from mean competition and

environmental filtering). The neutral simulations most closely resembled the β-competition

and pairwise competition simulations (Fig 3).

The misclassification rates when using trait values and genetic diversity show that commu-

nity assembly model can be correctly determined from the simulation results in around 50%

of the cases, while a random classifier would only be correct in 20% of the cases (see Fig 4A).

The greatest confusion in the classifier is between pairwise competition and β-competition,

which is expected as β-competition is a generalisation of pairwise competition with additional

parameters. The neutral model was the best recovered by the classifier, but filtering and mean

competition models were also easily distinguished by the inference procedure. A confusion
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matrix with SAD and genetic diversity data shows similar results (See S2 Fig). The best classifi-

cation is achieved when all three data types are used (See Fig 4B), but the combination of all

three are not yet available for empirical communities. Given the difficulty of the classifier to

distinguish between pairwise competition and β-competition, we consider both together as an

indistinguishable whole for the remainder of our analyses.

We first consider the three datasets with SAD and genetic data: for the Reunion spider data-

set, the confidence percentage in favour of competition is around 40% (Fig 5) while it was not

inferred in [29]. For the two Mascarene weevil datasets, the confidence percentage predicted

for the neutral model remains the same as in the analysis by [29], but the circa 40% confidence

for both mean competition and filtering in the original analysis is now exceeded by the combi-

nation of pairwise competition and β-competition (Fig 5). Pairwise competition and β-compe-

tition largely dominate over mean competition, which now receives no support. With

inclusion of more nuanced competition models, the inference of environmental filtering also

now totally disappears in our results for these datasets compared to [29].

Environmental filtering is substantially detected only in the subtropical rainforest tree and

Galapagos snail communities, which are also the datasets that contain trait measurements. For

empirical data that include trait information, the β -competition model was overall a better fit

than the other competition models.

For all datasets, the added confidence percentages for all three competition models is

exceeds the confidence percentage for competition in [29]. Among competition models, the

mean competition is greatly under-represented, and in many cases totally absent when other

Fig 3. Selected community summary statistics through time for the five different community assembly models. Each panel shows a

summary statistic computed at equally spaced time points for over 1500 simulations for each model, with a community size J = 1000, an

ecological strength sE = 0.1 and a migration rate m = 5e – 3. Each row of panels corresponds to a different simulated speciation rate: No

(ν = 0), Low (ν = 0.0005) and High (ν = 0.005). The different community assembly models are shown in the same colours as Fig 2.

Simulated values are depicted as points with a least square polynomial fitted for each community assemble model using the poly fit

function of NumPy v.19.0 [43] to illustrate trajectory. The far left column of panels illustrate species richness on the y-axis (S). The y-

axes of the other columns illustrate the Hill number of order 1 for abundance, genetic diversity, and trait values, respectively.

https://doi.org/10.1371/journal.pone.0302794.g003
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Fig 5. Machine learning classification probabilities for each empirical community for five focal community assembly models. For each dataset, the first

bar depicts the result of the original MESS model [29] and the second bar the result with our new competition models. The proportion of colour within each

bar represents the proportional predicted model class for neutrality (yellow), environmental filtering (green), mean competition (orange), pairwise competition

(dark blue) and β-competition (light blue).

https://doi.org/10.1371/journal.pone.0302794.g005

Fig 4. Machine learning classification confusion matrix for datasets simulated under the 5 community assembly models and classified

using only trait and genetic diversity data (A—as is the case for the subtropical forest trees and Galapagos snails datasets), or using all

three data axis (B). Numbers correspond to the number of datasets simulated under a given community assembly model (rows) that are

classified in each model (column). In the case of perfect classification, all values would fall along the diagonal. Percentages indicate the

proportion of simulations run with one given class (row) assigned to the column class.

https://doi.org/10.1371/journal.pone.0302794.g004

PLOS ONE Detecting the ecological footprint of selection

PLOS ONE | https://doi.org/10.1371/journal.pone.0302794 June 7, 2024 9 / 15

https://doi.org/10.1371/journal.pone.0302794.g005
https://doi.org/10.1371/journal.pone.0302794.g004
https://doi.org/10.1371/journal.pone.0302794


competition models are available as an alternative. A significant part of the newly identified

competition comes from a reduction in the amount predicted for neutrality: data previously

predicted to be mainly neutral could be false negatives in the attempt to detect selection

(Fig 5).

4 Discussion

In this manuscript, we investigated the power of inference in community assembly models

given different combinations of empirical data. A key advance was the use of a new and more

sophisticated competition model that considers the interaction between pairs of individuals

instead of making a mean field approximation. Our results show that the mean field approxi-

mation can lead to underestimation of the role of competition and overestimation of the role

of environmental filtering. We also find that mean competition and environmental filtering

produce very similar results in our PCA on approach to equilibrium (Λ< 1) (Fig 2). This may

be because mean competition produces a bimodal trait distribution that is effectively filtering

against midpoints in the trait space, while pairwise competition in contrast generates density-

dependence mechanisms and allows for a broader range of species to coexist.

In our empirical data analysis, the mean competition model receives almost no support

when pairwise and β-competition models are added to the analysis as alternatives. This is con-

sistent with the intuition that the new pairwise and β-competition models better reflect the

biological reality of competition. Indeed, mechanistic simulations with the pairwise competi-

tion model were mostly classified by the original MESS inference method [29] as mean compe-

tition (S3 Table) though sometimes classified as neutral or environmental filtering. This

demonstrates that competition can be mistaken for neutrality or environmental filtering if the

model of competition is of insufficient complexity. The disappearance of support for the mean

competition in our new classifier further supports the hypothesis that pairwise competition is

a better description of the empirical data.

Pairwise and β-competition simulations have on average more species than the mean com-

petition simulations (see Fig 3). This is expected because selecting for evenly distributed spe-

cies across the trait space, as in these competition cases, allows for more diversity than

selecting for two diverging groups of species, as in the mean competition case. As β-competi-

tion depicts density-dependence more accurately, we could expect it to have a significant

advantage over pairwise competition. However, the PCA results (Fig 2) show that simulation

outcomes mostly overlap between pairwise and β-competition: they could be interpreted as a

single indistinguishable category. This is further supported by the confusion matrices (Fig 4

and S2 Fig), which suggest that βij has no significant influence on the simulation outcome.

Density dependence may therefore not play a major role in our analyses of empirical data sim-

ply because it was not easily detected by the model selection process. Future work could add

further parameters and retrieved summary statistics to better model and better detect density-

dependence, but will likely come at a high computational cost.

The striking proximity of the pairwise and β-competition simulations to the neutral simula-

tions in our PCA results (Fig 2) was not apparently consistent with our confusion matrices

(Fig 4 and S2 Fig). The random forest algorithm seems to be able to distinguish between neu-

tral and non-neutral models, which are indistinguishable for the human eye in the PCA, as

well as in most summary statistics (Fig 3). Weaker inference procedures, backed with less

detailed empirical data, may therefore misinterpret competition as neutrality and furthermore,

competition-based simulations may often resemble neutral simulations in terms of the com-

munity properties studied. This may be an example of emergent neutrality [44], and consistent

with niche-neutral models [19] where communities consist of multiple niches but with
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individuals of multiple species interacting neutrally within each niche. Our results show that

despite the now better understood potential for confusion between mechanisms, the combina-

tion of ecological data (abundances / traits) and evolutionary (genetic) data, together with

machine learning, is a promising approach to distinguish neutrality and selection that outper-

forms what could be achieved with a single type of data.

The striking difference in our inferences based on the type of data used have implications

for the kinds of data we gather to study community assembly. Selection was revealed best by

our inference procedure when all data (Fig 4B), or at last trait data, are available (Fig 4A versus
S2 Fig). Our result that the neutral model was the best fitting for the spider and weevil datasets

that lack trait data seems more likely to be an artefact of data types used in the inference rather

than a signal that these communities are assembled by forces closer to neutrality. A compari-

son of the confusion matrices shows, that while the presence of trait data is not essential for

detecting filtering or competition, the more data are available, the better our inference per-

forms (Fig 4B). The signal in the spider and weevil datasets might be too weak to be detected

with only 2 data types. Contrary to what has been suggested in the metabarcoding literature

[45], our result therefore suggests that genetic data alone may not suffice to measure the selec-

tive pressure on a group, traits may be needed as well [30, 46].

During our inference process on empirical data, the selected model is either neutral, com-

petitive (in one of a number of ways) or with environmental filtering. There was not a single

model simulated that combines all these processes in varying amounts. Another fruitful direc-

tion for future work would be to simulate a simultaneous combination of all the processes in a

single model. This would enable us to verify that our inferences (choosing between starkly con-

trasting models) correspond to what would be predicted by a more nuanced and continuous

view of mixed community assembly process. Another direction would be to add intraspecific

trait variation which could enable a different handling of the distinction between inter- and

intra-specific competition and thus permit several species to occupy the same niche [47]. The

β factors used in the simulations could also be refined in future work to allow for differences

among each pair of species to reflect species-specific interactions, which may generalise to

include positive interactions as well as direct competition. This would however necessitate a

wide parameter exploration in the simulation, which lead to exponentially greater computa-

tional time complexity.

We hope that future empirical studies will be inspired by these findings to provide datasets

with all three types of data (genetic diversity, SAD and trait values) rather than having to rely

on only two of these three as we did in our present work. As underlined by the Fig 4B, this

would enable our classifier to reach an overall 65% accuracy or 75% accuracy in model classifi-

cation if we collapse pairwise competition and β-competition in a single group, as they are the

most similar mechanistically and the hardest to distinguish. Our confusion matrices (Fig 4 and

S2 Fig) show that the absence of trait data makes it harder to distinguish between the different

forms of selection, and future empirical datasets with all three data axes, could be used to verify

this sensibility of the prediction to the used data axis.

Our study highlights the importance of the range of empirical data available to detect the

ecological footprint of selection, in contrast to neutrality. Our results reiterate a warning that

we should not jump too quickly to conclusions about the presence or absence of selection,

especially when only one type of data is available. We show that our pairwise competition

model (and similar β-competition model) are a clear improvement of the previously used

mean competition model. Failure to detect pairwise competition in some data sets likely

means that competition does not act this way, not that competition, or selection in a broader

sense, are absent. We hope that this work will pave the way to improved mechanistic eco-evo-

lutionary models and associated inference procedures for community assembly. We also hope
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to inspire new empirical data collection and place greater emphasis on the synergistic power of

genetic, abundance and trait data when analysed jointly.

Supporting information

S1 Table. MESS model parameters. All MESS model parameters, their interpretations and

range of possible values. Parameters indicated with an asterisk (*) are pseudo-parameters

which are either emergent, compound, or randomly sampled from a distribution with parame-

ters determined by other elements of the model. Parameters for the simulations where either

uniformly (†) or loguniformly (˚) drawn in the range referenced as tested range, when applica-

ble. The chosen ranges are based on [29].

(DOCX)

S2 Table. Comparison of the speed of the simulations for different version of the code

(mean value per run, ± standard deviation, in seconds). Results are for 50 simulations of 200

generations on a single core.

(DOCX)

S3 Table. Inference of 100 simulations run under the pairwise competition model classi-

fied by a classifier trained only with mean competition, neutral and environmental filter-

ing simulations.

(DOCX)

S1 Fig. Typical trait values distribution for four studied 4 community assembly models.

Two examples (red and blue) are given for each model. Two groups of species are distancing

themselves in the mean competition model (C), while the species are much more grouped

together in the environmental filtering case (D) and evenly distributed in the pairwise compe-

tition model (A). In the neutral case, they are random and their abundances follow a typical

log-normal distribution. This also shows that we can expect significantly different results in

the summary statistics resulting from trait data, but also in the species abundances and their

variation and thus in the phylogeny.

(TIF)

S2 Fig. Machine learning confusion matrix for data set produced by simulation using the 5

community assembly models and classified using only SAD and genetic diversity data. Per-

centages indicate the proportion of simulations run with one given class (raw) assigned to the

column class. Mean competition is often mistaken for filtering, and pairwise competition for

both neutrality and β-competition.

(TIF)

S1 File.
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