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Abstract. Trajectory surface hopping (TSH) is a widely used mixed quantum-classical 

dynamics method, which is used to simulate molecular dynamics with multiple electronic 

states. In TSH, the time-derivative coupling (TDC) is employed to propagate the electronic 

coefficients and in that way to determine when the electronic state on which the nuclear 

trajectory is propagated switches. In this work, we discuss nonadiabatic TSH dynamics 

algorithms employing curvature-driven approximation and overlap-based time derivative 

couplings, and we report test calculations on six photochemical reactions where we compare 

the results to one another and to calculations employing analytic nonadiabatic coupling 

vectors. We correct previous published results, thanks to a bug found in the software. We also 

provide additional more detailed studies of the time derivative couplings. Our results show 

good agreement between curvature-driven algorithms and overlap-based algorithms. 
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1. Introduction 

In a recently published work1, some of the current authors reported a benchmark study on 

the accuracy of various approximations to the time-derivative coupling (TDC) that governs 

electronic-wave-function-propagation algorithm in nonadiabatic dynamics calculations 

carried out by trajectory surface hopping2,3,4,5 (TSH). One of the conclusions was that the 

curvature-driven approximation to the TDC6,7,8 that was implemented in SHARC-MN v1.2 

deviates from most of the other algorithms. Unfortunately, this was due to a bug in SHARC-

MN v1.2. In this work, we show the high accuracy of the curvature-driven approximation, 

correcting the original conclusion. We also present additional discussion of various 

approximations to the TDC.  

The deviation reported in ref. 1 was caused by a bug in SHARC-MN v1.2 in evaluating 

the curvature-driven time-derivative coupling (κTDC) by second-order finite differences of 

energies, which we will call the energy formula. An alternative formula, called the gradient 

formula, involves the dot product of the velocity and first-order finite differences of gradients.  

The previous works using curvature-driven approximations and the gradient formula with 

SHARC-MN were not affected by the bug. (To be perfectly clear: None of the published work 

of the Minnesota group is affected by the bug.) Although the approach for evaluating the 

κTDC to be preferred is the gradient formula, we do show here that the energy formula is 

accurate as well. Both formulas are coded correctly in SHARC-MN v2.09 and SHARC 3.0,10 

either may be used in future work.  

In addition to correcting the results of the earlier benchmark that were affected by the 

bug, the present paper reports more extensive studies on electronic propagation algorithms. 

Specifically, we will show the accuracy of κTDC when compared to the analytic TDC 

evaluated from nonadiabatic coupling vectors (NACs).  

2. Theoretical Background 

The most efficient methods for simulating electronically nonadiabatic processes are 

semiclassical methods, in which the electronic structure is modeled quantum mechanically, 

and nuclear motion follows a semiclassical trajectory.11,12,13,14,15,16,17,18,19,20 We consider 

calculations in the adiabatic representation, where the coupling of electronic states is due to 

the nonadiabatic coupling vector (NAC). We focus first on the coherent propagation of 
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electronic coefficients, but decoherence21 will be added below. The key step in coherently 

propagating the electronic coefficients in a trajectory surface hopping calculation is to 

evaluate the TDC. There are three kinds of  algorithms for this: (i) NAC-based algorithms that 

compute the TDC as a scalar product between the NAC and the velocity vector;4,22 (ii) 

overlap-based algorithms approximate TDC by exact or approximate overlaps of electronic 

adiabatic wave functions at successive time steps23,24  (in the following discussion, we will 

call simply label such integrals as the overlap integral); (iii) curvature-driven algorithms 

approximate the TDC in terms of derivatives the adiabatic potential energy surfaces.6,7,8 

(Algorithms that use nonadiabatic models – the original Landau–Zener model of Preston and 

Tully2 or the Zhu–Nakamura model25 – rather than propagating the electronic wave function 

are outside the scope of this discussion.)  

NAC-based algorithms require computing NACs from electronic structure programs26,27 

or from fitted diabatic potential energy matrices;28 overlap-based algorithms require 

computing adiabatic-wave-function overlap integrals,29 thereby avoiding NAC calculations; 

and curvature-driven algorithms avoid both NACs and overlaps. Not only are curvature-

driven algorithms more efficient, but also, they can be interfaced with electronic structure 

methods for which NACs are not available (e.g., multi-state pair density functional 

theory.30,31) or with machine-learned potentials for which the adiabatic wave functions are not 

available.32,33  

We emphasize the distinction between the propagation algorithm and the way to 

approximate the TDC. For dynamics methods that do not use NACs, we use “t” and “κ” as 

prefixes to denote which kind of approximation is used. For example, tTSH denotes a TSH 

dynamics method that uses an overlap-based algorithm, and κTSH denotes a TSH method that 

uses a curvature-driven algorithm, whereas tCSDM and κCSDM denote using these kinds of 

algorithms in the coherent switching with decay of mixing34 (CSDM) dynamics method. 

Overlap-based algorithms are the most widely used due to their simplicity (they calculate 

only the one needed component of the NAC rather than all components followed by a scalar 

product to project out the component of interest) and due to their high accuracy for narrowly 

avoided crossings (or trivial crossings).35,36,37,38 The overlap may be computed accurately29 or 

by several approximation schemes. The conversion of an overlap integral to the TDC is called 
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an HST23 scheme in ref. 1, and ref. 1 provides the accuracy of two ways to approximate the 

overlap integral. The first one named HST(CIV) utilizes coefficients of configuration state 

functions in a configuration interaction calculation (also called CI vectors).39 The HST(CIV) 

scheme neglects the contribution to the overlap integrals from the changes in the difference in 

the molecular orbitals at successive steps. The alternative, called HST(BiO), approximates the 

overlap by using a biorthogonal transformation of orbitals40 that is implemented in 

OpenMolcas41 in Ref. 1. This is a better approximation because it includes the change in 

shape of the molecular orbitals, but it still neglects their translation due to the time step. As 

explained below, a related but more accurate approach than the HST scheme is to use the 

norm-preserving interpolation (NPI) scheme to evaluate the TDC.42 In SHARC and SHARC-

MN, the NPI scheme is combined with substep propagators; this combination constitutes the 

NPI algorithm.43  

It has been proposed that the HST(CIV) scheme can be improved by diabatizing the 

orbitals at the current time step to those at the previous time step44  (available in Molpro,45 

basically a block diagonalization that is done by maximizing overlaps of orbitals for a 

reference geometry), but that is not employed here or in OpenMolcas. 

Another way to use the overlap integrals is the local diabatization method. In this 

approach, instead of using overlap integrals to calculate the TDC, one uses overlap integrals 

to construct a local diabatic representation, and one propagates electronic coefficients in the 

quasidiabatic basis.24 This is called the local diabatization (LD) scheme.1 Technically, one is 

not approximating the TDC, but since the method is closely related to the overlap methods 

used to approximate the TDC, we include it in this category.  This kind of local diabatic 

representation was introduced for time-dependent propagation in 2001,24 but basically the 

same idea was introduced for time-independent propagation of wave functions much earlier.46  

Next consider curvature-driven algorithms. There are two ways to approximate TDCs in 

curvature-driven algorithms,7 one uses first-order finite differences on the scalar product of 

the gradient with the velocity vector (gradient formula),7 and the other uses second-order 

finite differences of potential energies (energy formula).6,7,8 The gradient formula appears to 

be numerically more stable, and it is the preferred method.6,47,48,49 However, when employing 

TSH for internal conversion with propagation at any given time requiring the gradient of only 
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the active potential energy surface, the energy approach is more efficient because the gradient 

formula requires computing gradients of all electronic states. This advantage of the energy 

method is not present when one does κCSDM7 or when one calculates intersystem 

crossing.50,51 (The reason why this advantage is not present for intersystem crossing 

calculations is that those calculations require all the gradients.51) 

3. Sections 

In the present work, we compare several schemes, included all three categories of 

algorithms, to investigate TSH nonadiabatic dynamics of six typical reaction systems. In 

section 4, we introduce the propagation of electronic coefficients and introduce various 

schemes and approximations for estimating the TDC. Section 5 provides some computational 

details. In section 6, we show two sets of simulation results; set 1 is used to test the accuracy 

of curvature-driven schemes, and set 2 is an investigation on how the curvature-driven 

approximation influences the nonadiabatic dynamics in detail. Section 7 has a summary of the 

conclusions. 

4. Theory 

This article is limited to internal conversion processes (processes that do not change the 

total electronic spin, which is assumed to be conserved), and in this section, we describe in 

detail the electronic propagators used in this work. Section 4.1 briefly recaps the electronic 

equation of motion. Section 4.2 summarizes the approximations to compute TDCs.  

4.1. Coherent Electronic Equation of Motion  

The time-dependent wave function can be written as  

Ψ =#𝑐!𝜙!
!

 (1) 

where 𝜙! is a basis function, and 𝑐!	is an electronic state expansion coefficient. In the 

adiabatic representation the 𝜙! are eigenfunctions of the electronic Hamiltonian, and the 

coherent electronic equation of motion in the electronically adiabatic representation is  

[𝑐̇"]# = −
𝑖
ℏ -𝑐"𝑉" − 𝑖ℏ#𝑐!𝜎"!

!$"

0 
(2) 

where an overdot denotes a time derivative, 𝑉" is the adiabatic potential energy of state I, [… ]# 

denotes the coherent time development, and 𝜎"! is an element of the TDC matrix s between 
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electronic states I and J,  

𝜎"! = 3𝜙"4
𝑑
𝑑𝑡 4𝜙!7 

(3) 

The TDC can be written as  

𝜎"! =	𝐝"! ∙ 𝐑̇ (4) 

where 𝐑̇ is the nuclear velocity vector, and 𝐝"! is the NAC between electronic states I and J,  

𝐝"! = 3𝜙";
𝜕
𝜕𝐑 ;𝜙!7 

(5) 

In labeling the various algorithms in the discussion below, we call direct use of eq (4) the 

analytic scheme for computing the TDC.  

It is convenient to rewrite eq (2) in the more general matrix form 

𝐜̇ = −>
𝑖
ℏ𝐇

%&%' + sA 𝐜 (6) 

where we dropped the subscript C to simplify the notation, 𝐇%&%' is the electronic Hamiltonian 

in a general basis (or, as we sometimes say, in a general representation), and s is the TDC 

matrix in that basis. When we use the adiabatic representation, 𝐇%&%' is diagonal, and the 

diagonal matrix elements are the adiabatic potential energies 𝑉". When we use a diabatic 

representation, 𝐇%&%' is a nondiagonal matrix called the diabatic potential energy matrix 

(DPEM). The diagonal and off-diagonal matrix elements of DPEM are called diabatic 

potentials and diabatic couplings respectively. A diabatic representation is one where we can 

safely approximate s as a zero matrix.52 Therefore, in a diabatic representation, the population 

transfer between diabatic electronic states is driven by off-diagonal matrix elements of the 

DPEM.  

Electronic structure programs provide electronic wave functions in the adiabatic 

representation, and to propagate the electronic state coefficients in the adiabatic 

representation, one needs to compute or approximate s. (The TDC can be neglected if one 

performs an adiabatic-to-diabatic transformation but the construction of global diabatic bases 

is laborious,52 especially for large molecules, so this is not usually done.) Approximate 

methods for computing s are discussed in sections 4.2.1 to 4.2.3, and construction of locally 

diabatic states using the LD scheme is discussed in section 4.2.4.  
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4.2. Time Derivative Couplings 

4.2.1. The Hammes-Schiffer–Tully Scheme 

Hammes-Schiffer and Tully were the first to publish the relation shown in eq (4), and 

they proposed a scheme to compute the TDC using overlap integrals,23 

𝑆"!(𝑡, 𝑡() = 3𝜙𝐼(𝑡)4𝜙𝐽(𝑡
()7 (7) 

where 
𝑡( ≡ 𝑡 + ∆𝑡 (8) 

and where 𝜙"(𝑡) is the wave function of adiabatic electronic state I at time 𝑡, 𝜙!(𝑡() is the 

wave function of adiabatic electronic state J at time 𝑡(, and ∆𝑡 is the time step to propagate 

the nuclear equation of motion (in some algorithms, the electronic equation of motion is also 

propagated with time step ∆𝑡). The HST approximations are 

𝜎"!) >𝑡 +
1
2∆𝑡A =

𝑆"!(𝑡, 𝑡() − 𝑆!"(𝑡, 𝑡()
2∆𝑡  

(9) 

and 

𝜎"!) >𝑡 −
1
2∆𝑡A =

𝑆"!(𝑡*, 𝑡) − 𝑆!"(𝑡*, 𝑡)
2∆𝑡  

(10) 

where 
𝑡* ≡ 𝑡 − ∆𝑡 (11) 

Therefore, one can approximate 𝜎"!(𝒯) for any point in the time interval 𝑡 − +
,
∆𝑡 ≤ 𝒯 ≤ 𝑡 +

+
,
∆𝑡 by  

𝜎"!)-.(𝒯) = 𝜎"!) >𝑡 −
1
2∆𝑡A +

𝒯 − K𝑡 − 12∆𝑡L
∆𝑡 M𝜎"!) >𝑡 +

1
2∆𝑡A − 𝜎"!

) >𝑡 −
1
2∆𝑡AN 

(12) 

Clearly, eq (12) linearly interpolates the TDC between two times, namely, 𝑡 − +
,
∆𝑡 and 𝑡 +

+
,
∆𝑡. One disadvantage of such a linear interpolation is that it might completely miss the peak 

of the TDC when a NAC is narrowly distributed. This would make the integration of 

electronic coefficients wrong. Such a problem is amplified for trivial crossing situations. This 

deficiency has stimulated methods like norm-preserving interpolation and local diabatization 

algorithms, which will be discussed in later sections. When 𝒯 = 𝑡, this becomes 

𝜎"!)-.(𝑡) =
𝑆"!(𝑡, 𝑡() − 𝑆!"(𝑡, 𝑡() + 𝑆"!(𝑡*, 𝑡) − 𝑆!"(𝑡*, 𝑡)

4∆𝑡  
(13) 

One can use approximated overlap integrals instead of true overlap integrals in HST 
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scheme. As reviewed in Section 2, computing overlap integrals using only configuration 

interaction coefficients generates the so-called HST(CIV) scheme, and using configuration 

interaction coefficients and biorthonormal orbitals generates the HST(BiO) scheme. 

Because 𝑆"!(𝑡, 𝑡() can be computed without computing NACs, the HST scheme, with 

either accurate or approximate overlap integrals, allows one to compute the TDC without 

computing NACs. In addition, the HST can alleviate the trivial crossing problem.42 Therefore, 

HST scheme is widely used.35,36,53,54,55 

4.2.2. The Norm Preserving Interpolation Scheme 

The accuracy of the HST scheme depends on the time step because of the linear 

interpolation. An improved version developed by Meek and Levine42 and called norm-

preserving interpolation (NPI), includes higher-order contributions. The HST scheme can be 

considered as a linear approximation to the NPI scheme. The NPI scheme approximates the 

evolution of the electronic wave function in the  time interval 𝑡 ≤ 𝒯 ≤ 𝑡( by using a two-

state rotation matrix at time 𝒯: 
𝜙𝐼(𝒯) = 𝚯(𝒯)𝜙𝐼(𝑡) (14) 

where the elements of the rotation matrix 𝚯(𝒯) are  

𝛩""(𝒯) = cos >cos*+ K𝑆"!(𝑡, 𝑡()L
𝒯 − 𝑡
∆𝑡 A (15) 

𝛩"!(𝒯) = sin >sin*+ K𝑆"!(𝑡, 𝑡()L
𝒯 − 𝑡
∆𝑡 A (16) 

Therefore,  

𝜎"!/01(𝒯) = 3𝜙𝐼(𝑡);𝚯
2(𝒯) 𝜕𝜕𝒯 𝚯(𝒯);𝜙𝐽(𝑡)7 

(17) 

The NPI scheme is a higher-order way to use overlap integrals without requiring NACs. 

Although not implemented and never tested, one could imagine converting approaches like 

HST(CIV) and HST(BiO) to NPI(CIV) and NPI(BiO).  

4.2.3. Curvature Approximation 

The curvature approximation is very different from the HST or NPI schemes in that it does 

not require computing overlap integrals; all that is needed is the second-order time derivative 

of adiabatic potential energies. The curvature approximation stems from the Baeck-An 

coupling approximation6 that was originally derived for 1-dimensional systems by 

considering the relationship between the Lorentzian dependence of NACs along a 
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diabatization coordinate and the linear vibronic coupling scheme and conjecturing that the 

approximation so derived could be useful not only near a diabatic crossing sems but also 

nearby. By recognizing that a trajectory is 1-dimensional propagation along a time coordinate, 

one can approximate the TDC in terms of the curvature of the potential energy surfaces along 

the time coordinate7,8 (that is why we call it the curvature approximation): 

Ξ"!3 (𝑡) = X
1
2
Y
𝑑,∆𝑉"!(𝑡)
𝑑𝑡,

1
∆𝑉"!(𝑡)

Z
+/,

				0	for	radicand	negative	
	for	radicand	postive 

(18) 

𝜎"!3 (𝑡) = Ξ"!3 (𝑡)	for		𝐽 > 𝐼 (19) 

𝜎"!3 (𝑡) = −Ξ"!3 (𝑡)	for		𝐽 < 𝐼 (20) 

where  
∆𝑉"!(𝑡) = 𝑉"(𝑡) − 𝑉!(𝑡) (21) 

The curvature approximation to the TDC is called κTDC.  

We can consider two formulas for computing the second-order time derivative of ∆𝑉"!(𝑡): 

the energy formula,7,8 which can start at the third step with  

 5
!∆7"#(9)
59!

≈ +
∆9!

j∆𝑉"!(𝑡) − 2∆𝑉"!(𝑡*) + ∆𝑉"!(𝑡 − 2∆𝑡)k (22) 

and at the fourth step switch to  
𝑑,∆𝑉"!(𝑡)
𝑑𝑡, ≈

1
∆𝑡, j2∆𝑉"!

(𝑡) − 5∆𝑉"!(𝑡*) + 4∆𝑉"!(𝑡 − 2∆𝑡) − ∆𝑉"!(𝑡 − 3∆𝑡)k (23) 

and the gradient formula,7  
𝑑,∆𝑉"!(𝑡)
𝑑𝑡, ≈

∆𝑉̇"!(𝑡) − ∆𝑉̇"!(𝑡*)
∆𝑡  (24) 

The gradient formula follows from 

∆𝑉̇"!(𝑡) =
∂∆𝑉"!(𝑡)
∂𝐑 ∙ 𝐑̇ 

(25) 

Note that for a small enough step size, these two formulas should give the same result. The 

gradient formula is more stable numerically than the energy formula because lower-order 

finite differences are always more stable. However, when one uses the TSH method without 

spin-orbit coupling with the energy formula, one needs gradients only for the active surface, 

but the gradient formula requires gradients for all electronic states, which can add to the 

computational cost. For methods that uses self-consistent potentials,34,56,57,58,59,60,61,62 or for 

calculations that include spin-orbit coupling,50,51,63,64 the gradient formula should be preferred.  
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We denote the energy κTDC formula as κTDC/E and its result as 𝜎"!
3/;(𝑡); we denote the 

gradient κTDC formula as κTDC/G and its result as 𝜎"!
3/<(𝑡). 

4.2.4. Local Diabatization scheme 

Instead of directly approximating the TDC, the LD scheme performs an adiabatic to 

diabatic transformation;24 because such diabaticity is only valid within a time step, the states 

are locally but not globally diabatic. The locally diabatic states are defined by 

𝐇=>(𝑡() = 𝐒(𝑡, 𝑡()𝐇(𝑡()𝐒(𝑡, 𝑡()2 (26) 

One assumes that the electronic coefficients are the same in the adiabatic and diabatic bases at 

time t; then the propagation from time 𝑡 to 𝑡( is carried out diabatically,  

𝐜̇ = − >
𝑖
ℏ𝐇

%&%'A 𝐜 (27) 

As in the HST and NPI schemes, one can use approximated overlap integrals in performing 

the locally diabatic transformation shown in eq (26).  

4.2.5. Summary of Time-Derivative couplings 

We have introduced the following schemes to compute or approximate the TDC: analytic 

scheme, HST scheme, NPI scheme, κTDC/E formula, and κTDC/G formula. Furthermore, 

one can think of the LD scheme as an effective computation of the TDC by constructing a 

locally diabatic basis. For the schemes using overlap integrals, one may use either exact or 

approximated overlap integrals, where the HST(CIV) scheme and HST(BiO) scheme are 

prominent examples of the latter. If one uses exact overlap integrals and a small enough step 

size, the overlap methods and LD method should yield results identical to the analytic method 

because the overlap method is an analytically correct way to calculate the needed component 

of the NAC, but curvature-driven methods differ from the analytic method even for a 

converged step size because the curvature-driven method involves an approximation to the 

NAC. 

In the above notation, the NAC-based algorithm uses the analytic scheme; the overlap-

based algorithms use HST schemes, NPI schemes, or LD schemes (where we use plural 

“schemes” because of the possibility of using accurate or variously approximated overlap 

integrals); and the curvature-driven algorithms use κTDC/E or κTDC/G formulas.  

5. Computational Details 
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We present two sets of simulations in this work. The first set of simulations is like that of 

ref. 1 except that we use the bug-fixed SHARC-MN v2.0; note that SHARC 3.0 has the same 

code for these calculations as SHARC-MN v2.0, and thus the calculations could have been 

equivalently done with SHARC 3.0. The second set of simulations involves a more detailed 

study of the accuracy of TDC approximations.  

In the first set of simulations, six different systems have been studied, namely, cis-

azomethane (cis-AZM), trans-azomethane (trans-AZM), cis-azobenzene (cis-AZB), trans-

azobenzene (trans-AZB), butyrolactone, and furanone. All electronic structure calculations 

are performed with OpenMolcas.41 State averaged complete active space self-consistent field 

theory (SA-CASSCF)65,66 is employed for the electronic structure, and the number of states 

averaged, the active space, and basis set used for each system is summarized in Table 1. Table 

1 also gives the number of trajectories in each ensemble and the simulation time.  

The initial conditions are sampled from the ground-state Wigner distribution implemented 

with Newton-X67,68.  

	

Table 1. Electronic structure and dynamics details for simulation set 1 

system 

electronic structure calculation dynamics simulation 

number of states averaged 

and active space size  
basis set 

number of 

trajectories  

simulation  

time (fs) 

cis-AZM  SA(2)-CASSCF(6,4) 6-31G(d) 100 145 

trans-AZM 
 

SA(2)-CASSCF(6,4) 6-31G(d) 200 350 

cis-AZB 
 

SA(4)-CASSCF(14,12) ANO-RCC-VDZP 100 100 

trans-AZB 

 

SA(4)-CASSCF(14,12) ANO-RCC-VDZP 100 100 

butyrolactone 
 

SA(3)-CASSCF(10,8) ANO-RCC-VDZP 200 100 

furanone 
 

SA(3)-CASSCF(12,10) ANO-RCC-VDZP 100 150 
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For each system, five schemes for computing the TDC are employed, namely, the 

analytic scheme, LD scheme, HST(CIV) scheme, HST(Bio) scheme, and κTDC/E formula. 

(We present only results with the correct SHARC-MN v2.0 and do not repeat the incorrect 

results from ref 1 caused by the bug in SHARC-MN v1.2.) We used four different dynamics 

programs as specified with time steps and number of electronic substeps in Table 2. 

 

Table 2. Dynamics methods details for set 1 

TDC Scheme time step (fs) # of substeps software 

analytic 0.5 100 SHARC 2.1 

LD 0.5 1a Newton-X 

HST(CIV) 0.48 96 OpenMolcas 

HST(BiO) 0.48 96 OpenMolcas 

κTDC/E  0.5 100 SHARC-MN v2.0 
aThe implementation in Newton-X for the LD scheme does not use a substep propagator. It 
propagates the coefficient over the full time step. See for example, eq 6 of ref 67.  

 

All calculations employed Tully’s fewest-switches version5 of trajectory surface hopping 

with an energy-based decoherence correction (EDC).69  The constant C in the EDC formula is 

set to the standard value of 0.1 hartree.  

After a hop, nuclear velocity is rescaled along the velocity vector direction in all 

calculations, and all frustrated hops are ignored. These choices were adopted for consistency 

with ref 1, but we remind the reader that our preferred choice for momentum adjustment is 

using a projected NAC70 when NACs are available, or a projected effective NAC when they 

are not, and our preferred choice for the treatment of frustrated hops is the ∇V scheme.71 

(Projected NACs, projected velocities, and the ∇V scheme are all now available in SHARC 

MN v2.09 and SHARC 3.0.10) 

The second set of simulations is a detailed investigation of the TDC approximations for 

cis-AZM and trans-AZM dynamics. Four TDC schemes are compared, namely the LD 

scheme, NPI scheme, κTDC/E formula, and κTDC/G formula. The electronic structure 

method, dynamics method, and initial condition selection are identical to set 1. The Molpro 
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software package is used for SA-CASSCF calculations.45 We used a locally modified version 

of SHARC MN v2.0 that enables us to compute all TDCs by different schemes at the same 

time. 

6. Results  

6.1. Ensemble Averaged Population for All Systems 

First, as in ref. 1, we study the accuracy of κTDC/E formula as compared to the other 

schemes. Table 3 shows the extent of energy nonconservation in the trajectories, and Figure 1 

shows the ensemble-averaged populations as functions of time. Notice that the results of the 

analytic scheme shown in Figure 1 have very small differences from those reported in ref 1 

because in ref 1, the analytic scheme was done by Newton-X, whereas in the current study, it 

is done by SHARC-MN v2.0. All trajectories that failed to conserve energy within 0.5 eV are 

discarded in the analysis of set 1. 

Table 3 reports the percentage of trajectories that fail to conserve energy within a given 

threshold for each scheme for all six systems. In TSH calculations, the algorithm employed to 

propagate the electronic coefficients has no direct effect on energy conservation because the 

trajectory propagates on a single potential energy surface between hops. However, the 

algorithm does affect active state switches. Since energy conservation is enforced by 

construction at a hop, the energy nonconservation may be attributed to the regions between 

hops. For surface-hopping simulations, energy nonconservation may have therefore have 

more than one source: finite difference error or roundoff in the algorithm with which the 

nuclear motion is integrated, numerical inexactness of the energy gradients, and – in direct 

dynamics with SA-CASSCF –  energy nonsmoothness of the SCF convergence. In the general 

case, nonsmoothness of SCF convergence has two possible causes: (i) Sometimes this is due 

to orbitals that go into or out of the active space. (ii) However, in other situations, some active 

orbitals and some inactive orbitals may have different mixtures in different steps. In light of 

these considerations, the relation of energy conservation or nonconservation to the scheme is 

for evaluating the TDC is complicated, and different algorithms and different molecules may 

be more or less sensitive to various factors. Upon comparing algorithms, Table 3 shows, 

nevertheless, that, on average, all methods have similar energy conservation when applied 

with the same time step, although HST(CIV) does show the worst conservation. Upon 
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comparing molecules, though, there is one exception to the good energy conservation, namely 

trans-AZB; Table 3 shows a larger number of trajectories with poor energy conservation for 

all schemes for this molecule. 

Inspection of the trajectories indicate that error in energy conservation is mostly caused 

by sudden jumps in potential energy surfaces; however, although in general active orbitals can 

mix from one time step to the next (within the active space), no rotation of orbitals in and out 

the active space was observed in the present work, demonstrating a rather stable active space. 

This indicates that type-ii nonconservation is involved. An example is illustrated in Figure S1 

in the SI, which shows a prototypical trajectory that conserves energy better than  0.2 eV, but 

nevertheless shows this kind of problem. The top panel of Figure S1 is the TDC evaluated by 

the κTDC/E formula, and the bottom panel is the potential energy surface as a function of 

time. The sudden jumps are highlighted with circles in the bottom panel; apparently, these 

sudden jumps cause artificial local spikes of TDCs. This example shows how one must be 

careful to distinguish errors caused by the dynamic algorithms, from errors caused by the 

underlying direct electronic structure calculations, or from the coupling between the two. 

Indeed, with direct dynamics methods, small or large instabilities in the electronic structure 

calculations can have consequences on the dynamics results, and different dynamics 

algorithms  have different behaviors with respect to details of electronic structure calculation. 
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Table 3. Percentages of trajectories that do not conserve energy within a given threshold amount 

Threshold analytic LD HST(Bio) HST(CIV) κTDC/E  

cis-azomethane 
0.5 eV 2 2 3 2 2 
0.2 eV 2 2 3 2 3 

trans-azomethane 
0.5 eV 2 1 0 0 0 
0.2 eV 2 1 0 0 0 

cis-azobenzene 
0.5 eV 0 1 3 5 2 
0.2 eV 24 19 23 22 21 

trans-azobenzene 
0.5 eV 1 7 4 18 12 
0.2 eV 34 42 37 63 48 

butyrolactone 
0.5 eV 2 1 1 8 1 
0.2 eV 11 12 10 23 20 

furanone 
0.5 eV 2 1 4 4 3 
0.2 eV 6 2 7 8 13 

Average 
0.2 eV 13 13 13 20 18 

Average omitting trans-AZB 
0.2 eV 9 7 9 11 11 

 



 16 

 

 
Figure 1. Ensemble-averaged population as a function of time for (a) cis-azomethane, (b) trans-
azomethane, (c) cis-azobenzene, (d) trans-azobenzene, (e) butyrolactone, (f) furanone. For 
panels a, b, c, d, the ground-state population is shown as dotted curve. For panels e and f, we 
show the populations for S0, S1, and S2 in separate subpanels. 
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Figure 1 shows that κTDC/E gives accurate time-dependent populations for most 

systems, with the only exception being trans-AZB. The differences are not due to poor energy 

conservation because trajectories with poor energy conservation are removed from the 

analysis. Furthermore, the smaller sudden jumps that may still be present are there in all 

schemes. It seems that the different schemes do not have all the same sensitivity to details of 

the electronic structure calculations. 

We do not discuss the chemical aspects of the photochemical behaviors for the six 

systems because that is already given in ref 1.  

6.2 Comparisons of TDCs from Various Schemes 

Next, we discuss the dynamics calculation of set 2, which are used to compare TDCs 

computed by different schemes. All trajectories that failed to conserve energy within 0.2 eV 

are discarded in the analysis of set 2. We compare TDCs computed by the analytic scheme, 

the NPI scheme, the κTDC/E formula, and the κTDC/G formula. The ensemble averaged 

population as a function of time for cis- and trans-AZM is shown in Figure S2 in the SI; the 

results are very similar to those in panels a and b of Figure 1. (The analytic and κTDC/E 

results in Figure 1 and Figure S2 are not the same because the results in Figure S2 are from a 

different dynamic simulation using Molpro.) 

To assess the accuracy of the TDC computed by various methods, especially by the 

curvature-driven approximations, we plotted the TDCs evaluated from κTDC/E, κTDC/G, and 

NPI formulas versus analytic TDCs along the trajectory. The TDC shown in the figures has 

units of 1/(aut), where aut is the atomic unit of time, which equals 0.02419 fs. Scatter plots for 

every time step for the whole ensemble are shown in Figure 2. In Figure 2 we do not include 

those points correspond to κTDC equals zero because they cannot be shown in a logarithm 

plot. To assess the corresponding analytic TDCs of such points, histograms of points with 

κTDC/G or κTDC/E equal to zero are shown in Figure S3 in SI. Clearly these points 

correspond to small analytic TDC values. 

The color of each point in Figure 2 corresponds to the energy gap according to the color 

bar shown on the right of each panel. We see that the κTDC/E and κTDC/G formulas tend to 

overestimate the TDCs compared with analytic TDC for points where the TDC is small, i.e., 
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less than 10-3.  However, we expect that the rate of internal conversion is typically dominated 

by regions where the coupling is large, and inaccuracies in regions where the coupling is 

weak are expected to have only a small effect on the overall accuracy in most cases. 

Therefore, the points that are especially important for photochemical dynamics are those for 

which the TDC is relatively large. Those are the points toward the upper right of the plots. As 

expected, they tend to be blue, indicating that they correspond to places where the energy gap 

is small. For large TDCs and small gaps we see a good correlation of the curvature-driven 

TDC and the analytic TDC.  

 

 
Figure 2. The scatter plot of TDCs evaluated from κTDC/E (right), κTDC/G (mid), NPI 
(right) formulas compared with the analytic TDC for both cis- and trans-AZM molecule.  

 

Next we compare the curvature-driven algorithms with overlap-based algorithms. 

Specifically, we investigated the time at which a hop happens for cis- and trans-AZM 

trajectories that use κTDC/E and κTDC/G approaches as compared to those that use the LD 

scheme. This is shown in Figure 3. (Although other discussion involves comparing to analytic 

TDCs, the comparison for when a hop occurs is carried out using LD trajectories because LD 

trajectories should have no trivial crossing problem. A figure similar to Figure 3 but that 

compares the hopping time for cis- and trans-AZM trajectories that use κTDC/E, κTDC/G 
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approaches, and NPI schemes with analytic scheme is shown in Figure S4 in the SI.) The 

orange and blue points in Figure 3 are for cis- and trans-AZM respectively. The times are 

comparable because we used a fixed time step and the same random number seeds for the 

different methods. Figure 3 shows reasonably good correspondence between the methods. 

 
Figure 3. The time (in fs) at which a hop occurs for trajectories that use κTDC/E (on the left) 
and κTDC/G (on the right) formulas as compared to the time at which a hop occurs with the 
LD scheme. Orange and blue points are for cis- and trans-AZM respectively. 

 

Figure 4 compares the TDCs evaluated with κTDC/E and κTDC/G formulas to the 

analytic TDCs for the geometries where hops happen in cis- and trans-AZM trajectories. This 

figure shows that both κTDC/E and κTDC/G approaches are reasonably accurate, but 

κTDC/G is generally closer than κTDC/E to the analytic TDC. The curvature-driven scheme 

appears to be more accurate when the coupling is large than when it is small. The main 

limitation of the trajectories in Figure 4 is probably the semiclassical nature of the dynamics 

algorithms and the propagation on a non-self-consistent potential in surface hopping 

calculations, not the quantitative values of the coupling constants. The main conclusion to be 

drawn from Figure 4 is that the curvature-driven approximation works well for most 

trajectories. 
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Figure 4. Scatter plot of TDCs evaluated with κTDC/E (left) and κTDC/G (right) approaches 
as compared to analytic TDC at the geometries where hop occur. Orange and blue are points 
for cis- and trans-AZM trajectories respectively. 

 

Figure 5 shows the TDC and potential energy as functions of time for a randomly 

selected cis-AZM trajectory.  A similar plot for trans- AZM is shown in Figure S5 in the SI. 

We see especially good agreement in the important region where the TDC is large. We thus 

draw the same conclusions as from Figure 4. 
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Figure 5. A randomly selected trajectory for cis-AZM. The upper left panel shows the TDC 
evaluated by the analytic scheme, the NPI scheme, and the κTDC/E and κTDC/G formulas as 
functions of time. The upper right panel is a zoom on the region between 40 and 60 fs. The 
bottom left panel shows the potential energy as a function of time for both ground and excited 
state as well as the potential energy Vactive of the active state; the bottom right panel zooms 
this for 40–60 fs.  

 

7. Concluding Remarks 

We showed that the previous large differences in ensemble populations as functions of 

time predicted by trajectory surface hopping calculations using the curvature-driven algorithm 

and by trajectory surface hopping calculations using the NAC-based or overlap-based 

algorithms is removed when a bug is fixed in SHARC-MN. This work shows that the correct 

application of the curvature-driven methods leads to good agreement of curvature-driven 

algorithms with analytic evaluation of the time derivative coupling from NACs, and this good 

performance is consistent with good performance we have obtained7,47,49,72 on other problems. 

We also showed that accurate results can be obtained with both the energy and gradient 

formulas (denoted as κTDC/E and κTDC/G respectively) for the curvature-driven 

approximations to the time-derivative coupling. 

We have demonstrated the accuracy of curvature-driven approximation and the overlap-

based approximations not only for ensemble-averaged populations as functions of time but 

also by examining the times at which hops occur and the magnitudes of TDC along the 

trajectory. In the regions where the coupling is large, there is good agreement of the couplings 

obtained analytically from NACs, those obtained from overlap integrals, and those obtained 

by the curvature-driven formulas.  

The curvature-driven approximation to the TDC is available for  kTSH calculations in 

SHARC-MN v2.0,9 SHARC 3.0,10 ANT73 and Newton-X67,68 (in Newton-X, the curvature-

driven approximation for the TDC is called Baeck-An coupling). The curvature-driven 

approximation to the TDC along with a curvature-driven approximation to an effective NAC7 

is available for kCSDM calculations (which require all components of the NAC or an 

effective NAC) is available in SHARC-MN v2.0, SHARC 3.0, and ANT. Use of the 

curvature-driven approximation eliminates the cost, limited availability, and inconvenience of 
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using analytic NACs. In addition to expense and inconvenience, even when NACs are 

available, they present problems due to phases, origin dependence, improper treatment of 

electronic translation, spurious long-range couplings, and artificial nuclear translational and 

rotational components, all of which are avoided when using the curvature-driven 

approximation. 
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