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Abstract Targeted radionuclide therapy has gained an increasingly
important role in cancer treatment in recent years, in which molecular
imaging techniques such as SPECT can be employed to plan and
monitor the treatment. However, rigid patient motion is degrading
the quality of SPECT images and may impact the treatment planning.
It has been recently proposed to use exponential data consistency
conditions — equations describing the redundancy of exponential
SPECT measurements — to detect and correct for patient motion. This
study aimed at developing a data consistency-based method to estimate
and correct for rigid patient motion during SPECT acquisitions. The
proposed method was evaluated on Monte Carlo simulated data of a
liver patient. The method led to a significant improvement in the image
quality. An activity recovery coefficient above 95% with respect to
the reconstructed images from motion-free projections was obtained
across all tested cases. In particular, for a motion in the middle of the
acquisition, the activity recovery coefficient was improved from 66 %
(non-corrected projections) to 99% (motion-corrected projections).

1 Introduction

Targeted radionuclide therapy is a favorable option in cancer
treatment thanks to its ability to selectively deliver radiation
to cancerous cells, thus minimizing toxicity on surrounding
healthy tissues [1]. Functional imaging such as single photon
emission computed tomography (SPECT) can be used to
optimize the treatment plan, i.e. to adjust the amount of
injected radionuclides [2–4].

After injecting the patient, the SPECT scanner collects pro-
jections of the emission map with one or several rotating
gamma cameras. However, data acquisition requires a long
time, typically 5 to 40 minutes. During this time, rigid patient
motion is likely to occur [5], potentially leading to artifacts
in reconstructed images [6].

Exponential data consistency conditions (eDCCs) are mathe-
matical equations that describe redundancies among measure-
ments modeled by a linear operator called the exponential
Radon transform. Recently, Wells and Clackdoyle showed
the feasibility of using eDCCs to align the attenuation map
to the emission map in pinhole cardiac SPECT [7]. In [8],
Robert et al studied the ability of eDCCs to detect motion on
realistic simulated data in parallel SPECT.

To our knowledge, motion compensation in SPECT exploit-
ing eDCCs exclusively has not been studied yet. This study
aimed at employing eDCCs for automated estimation and
correction of patient motion, requiring solely the acquired
projections and the attenuation map of the patient.

2 Materials and method

2.1 Exponential data consistency conditions

The exponential Radon transform is a two-dimensional (2D)
operator and eDCCs can be expressed in 2D. Throughout this
study, we express them in a three-dimensional (3D) space for
deriving the correction of 3D motions but their 2D expression
can be obtained by dropping the third coordinate.
Consider a 3D radioactivity distribution f and an attenuating
medium µ . The ideal measurement of f in parallel SPECT
geometry can be modeled by the attenuated Radon transform:

pµ(θ ,s,z) =
∫ +∞

−∞
f (suθ + tvθ + zez)

exp
(
−
∫ +∞

t
µ(suθ + t ′vθ + zez)dt ′

)
dt (1)

where uθ = (cosθ ,sinθ ,0), vθ = (−sinθ ,cosθ ,0) and ez =
(0,0,1).
Assuming that there is a known convex region K where the
attenuation is constant, i.e. µ(x,y,z) = µ0 if (x,y,z) ∈ K, and
all radioactivity is encompassed inside K, the exponential
projections p(θ ,s,z) can be derived from pµ(θ ,s,z) by a
point-wise conversion, as:

p(θ ,s,z) = pµ(θ ,s,z)C(θ ,s,z). (2)

The conversion factor C(θ ,s,z) was introduced in [9]

C(θ ,s,z) = exp
(

τθ ,s,zµ0 +
∫ +∞

τθ ,s,z

µ(suθ + t ′vθ + zez)dt ′
)

(3)
with τθ ,s,z the point along the integral line towards the detec-
tor where the photon leaves the convex region K.
Range conditions of the exponential Radon transform, known
as eDCCs, state that two projections at θi and θ j which are
not 180◦ apart (θi−θ j ̸= π [2π]) are consistent if and only if

P(θi,σi j,z) = P(θ j,σ ji,z) (4)

with P(θ ,σ ,z) =
∫ +∞
−∞ p(θ ,s,z)eσs ds the two-sided Laplace

transform of projection line p(θ , ·,z) and σi j = −σ ji =
µ0 tan((θi−θ j)/2).
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2.2 Motion simulation

Using a validated GATE model of the Symbia Intevo Bold
scanner [10, 11], we simulated a liver radioembolization
patient using a CT image and a voxelized sphere source of
20 mm-radius located inside the liver with a 99mTc activity
of 150 MBq. Data were acquired within a primary energy
window of 15% centered around the main photopeak of 140.5
keV and a lower scatter window of 15% centered around 120
keV — later used to correct scatter from acquired primary
projections. Several sets of projections were generated, each
consisting of 60 projections covering 360◦, an acquisition
time of 15 s per projection with 256 × 256 pixels of 2.39
mm spacing. The SPECT camera followed a circular orbit
with a detector-to-center distance of 38 cm.
In this study, we considered a single rigid patient motion
between two successive projections of the acquisition. The
rigid patient motion was simulated by shifting simultaneously
the attenuation and emission maps. One set of projections
was simulated without motion and used as a reference. The
performance of the motion detection and correction method
was evaluated regarding:

1. Motion index: with a motion vector set to
(20,20,20) mm, all possible values of motion index
(defined as the first frame index affected by motion),
were evaluated.

2. Motion magnitude: with a motion index fixed at the mid-
dle of the acquisition, several motions were evaluated:
1, 3, 5, 10, 20 and 30 mm in all three axes.

2.3 eDCCs assessment

To replicate a clinical scenario with the CT image acquired
only once before the SPECT acquisition, we used the attenu-
ation map placed at the original position to compute eDCCs.
We defined the convex K region covering the whole liver
(created with auto segmentation of 3D Slicer on the CT im-
age). To evaluate the consistency of the i-th and j-th SPECT
projections pµ with N detector lines in the axial direction,
we employed the noise-aware metric [8, 12]

NEpµ (i, j) =
1
N ∑N

l=1 |P(θi,σi j,zl)−P(θ j,σ ji,zl)|√
N
√

Var(Pi j)+Var(P ji)
(5)

with zl the discretized z coordinate of the l-th line of the
detector, the variance

Var(Pi j) =
(∆s)2

N2

N

∑
l=1

M

∑
k=1

C2
l (θi,sk,zl)pµ(θi,sk,zl)e2σi jsk (6)

∆s the pixel spacing and M the number of pixels per projec-
tion line.
According to findings in [8], rigid patient motion is the main
contributor to projection inconsistency, i.e. high NEpµ (i, j),
whereas the physical effects have almost negligible (Poisson
noise and collimator resolution) or moderate (scatter) impact
on eDCCs.

To mitigate the effect of scatter on the motion estimation
model, we applied scatter correction with the dual energy
window (DEW) with a k factor of 1.1. The value of k was
chosen to minimize the inconsistency in the reference motion-
free acquisition. Then, a mask, defined as the forward projec-
tor of the K region, was applied to scatter-corrected frames
after DEW to remove the remaining scattering from outside
of the convex region.

2.4 Motion correction

If the patient’s displacement is known, motion-free projec-
tions can be calculated by compensating for the patient’s
motion in the projection domain. When both the emission
and attenuation maps are shifted by a vector in a transverse
plane, the corresponding projections are shifted by a trans-
lation along the s-axis. Motion in an orthogonal direction,
along the rotation axis z, can be directly interpreted as the
same shift along the axial coordinate. Together, any 3D mo-
tion shift a can be corrected in the attenuated projection at
a given detector angular position θ by a translation of the
projection,

pa
µ(θ ,s,z) = pµ(θ ,s+uθ ·a,z+ ez ·a). (7)

2.5 Motion estimation

Let’s define motion index m0 as the first frame index affected
by motion. m0 divides the acquisition into no-motion pro-
jections pµ(θi, ·) for i < m0 and motion-affected projections
pµ(θ j, ·) for j ≥ m0. Pairing projections in the second set
with projections in the first set should result in non-zero
eDCCs. In contrast, if these motion-affected projections
pµ(θ j, ·) are corrected by the true shift a0, the eDCCs should
be closer to zero. To estimate m0 and the shift a0, we there-
fore minimized the inconsistency between pairs of motion-
corrected projections pa

µ of the two sets by solving the mini-
mization problem

(m̂, â) = argmin
m∈Ωm, a∈R3

F(m,a) (8)

with Ωm = [2,L], L the number of projections within the
acquisition, the cost function

F(m,a) =
1
K ∑

i<m, j≥m
NEpa

µ (i, j) (9)

and K the number of evaluated projection pairs (fulfilling
i < m≤ j and |θi−θ j| ̸= 180◦).
The problem was solved by first calculating

ãm = argmin
a∈R3

F(m,a) (10)

for every m ∈ Ωm with the Nelder-Mead downhill simplex
algorithm [13] and then taking the value m that minimizes F ,
i.e., â = ãm̂ with

m̂ = argmin
m∈Ωm

F(m, ãm). (11)
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2.6 Quantitative assessment of motion correction

The estimated motion shift was compared to the simulated
value. For each projection set, the optimization was repeated
20 times with random initializations to estimate the robust-
ness of the estimation.
The effect of motion correction on reconstructed SPECT
images was visually assessed with a (20,20,20) mm shift
occurring in the middle of the acquisition. The estimated
motion was taken as the median of 20 random initializa-
tions. The motion-free projections, non-corrected projections
and motion-corrected projections were reconstructed by the
ordered subset expectation maximization (OSEM) imple-
mented in RTK [14] using 5 iterations and 4 subsets with
attenuation correction. The quality of reconstructed images
was assessed via the activity recovery coefficient (ARC) in
reference of the reconstructed SPECT images from motion-
free projections

ARC(%) =
A

Amotion-free
×100%. (12)

The values A and Amotion-free are the estimated activities in
the source region obtained respectively from evaluated pro-
jections (non-corrected or motion-corrected projections) and
from motion-free projections taken as reference.

3 Results

The ability to detect a (20,20,20) mm translation appearing
at different motion indices of the acquisition is shown in
Fig. 1. Plot A indicates the values of the cost function after
optimization for every position m ∈ [2,60], i.e., F(m, ãm),
while B shows the difference between the estimated m̂ and
the true motion index m0 for all possible m0 ∈Ωm with two
selected examples of motion magnitude. For a 20 mm motion
per axis (blue curve in Fig. 1B), the motion index was ade-
quately estimated. For 3D motions below 5 mm per axis, for
instance the black curve in Fig. 1B, m̂−m0 was not zero, i.e.,
the estimation of the motion index was incorrect for several
values of m0.
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Figure 1: A. Illustration of motion detection with sliding value
m ∈ [2,60] for (20,20,20) mm displacement in the middle of ac-
quisition; B. Performance of motion detection for different mo-
tion indices m0 with respectively (20,20,20) mm shift (blue) and
(3,3,3) mm (black).

Fig. 2 illustrates the estimation of (20,20,20) mm translation
occurring at different motion index m0 along the acquisition.

The proposed method returned promising accuracy where the
absolute differences were close to or below the pixel size of
2.39 mm for each direction. There was also a significant pre-
cision at the sub-millimeter level across different repetitions
of the optimizer, with only a minor number of outliers.
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Figure 2: Box and whisker plot (blue) for absolute error of motion
estimation at different motion indices m0 for a0 = (20,20,20) mm.
Horizontal red lines inside the box represent the median value and
circular red dots are outliers with high bias, i.e. values greater than
1.5 inter-quartile range.

In general, motion assessment along z was highly accurate
with an error below 1 mm. The mean deviation for all val-
ues of motion index m0 was around 0.05 mm in this axis
compared to respectively 1.4 and 2.2 mm in x and y. Also,
misestimation in x and y were generally synchronous.
For smaller shifts below 5 mm, the absolute relative errors
were larger (data not shown), e.g., up to 10 to 50 % compared
to the true values for mid-acquisition motion. When the shift
is above 5 mm per axis, these errors are below 10% for all
three components. These findings are consistent with the
results above.
The ARC before and after motion correction is shown side-
by-side in Fig. 3. Without correction, the values of ARC
spread in a wide range from 15% to nearly 100%. In contrast,
motion correction brought a comparable ARC to motion-free
images, i.e. less than a 5% drop for motion occurring early
in the acquisition and below 1% for motion occurring after
one-third of the acquisition.
The improvement in the reconstructed image is illustrated
in Fig. 4. Motion correction greatly mitigated the artifacts,
namely blurring and distortion of the sphere.

4 Discussion

In this study, eDCCs were exploited to detect and correct for
rigid patient motion in SPECT projections simulated with
Monte Carlo simulations using a realistic SPECT scanner
model.
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Figure 3: Activity recovery coefficient (ARC) as a function of
motion index m0 for a0 = (20,20,20) mm.
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Figure 4: Visualization of reconstruction with motion-free, non-
corrected, and motion-corrected projections for m0 = 31 and a0 =
(20,20,20) mm.

The current two-step procedure first showed the reliability of
detecting sudden inter-frame translation of (20,20,20) mm
happening between any two successive frames of the ac-
quisition, i.e. different possibilities of m0. For the sliding
value of m ∈ [2,60], frames after m were corrected simulta-
neously with the same shift to optimize projection consis-
tency. If m ̸= m0, some motion-free (p(θi, ·) for i < m0) or
non-corrected (p(θ j, ·) for j ≥ m0) projections are wrongly
motion-corrected or non-corrected, respectively, and both
raised the inconsistency in the cost function (Fig. 1A).
For a known motion index m0, the motion correction per-
formed on projections from Monte Carlo simulation already
achieved quite good agreement with true values. In general,
estimation on the z-component, which was independent of
motion index m0, surpassed those in the other two directions
in terms of accuracy. Indeed, translation in z is more sensitive
to eDCCs than in the other two directions since it directly
correlates to the same translation for all angular positions of
the detector θm.
In good agreement with the findings from Robert et al. [8],
we observed that the collimator resolution and Poisson noise
had a minor impact on the correction of motion with eDCCs
using scatter-free simulations obtained by RTK ray tracing
modeling these two effects [14] (data not shown). On the con-
trary, the presence of scatter in the Monte Carlo simulation
noticeably degraded the accuracy of our proposed correction
method when no scatter correction was performed (data not
shown).

5 Conclusions

Rigid patient motion in SPECT has been detected and cor-
rected with an algorithm exploiting exponential data con-
sistency conditions. A two-step process was shown to be

practical for SPECT measurements simulating all physical ef-
fects which is promising for future application to real scanner
data.
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