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Abstract

This paper is devoted to the study of Markov kernels on general measurable space
under a first-order minorization condition and a modulated drift condition. The fol-
lowing issues can be addressed: Existence and uniqueness of invariant measures, recur-
rence/transience properties including Harris-recurrence property, convergence in total
variation of iterates, Poisson’s equation, perturbation schemes and rate of convergence of
iterates including the so-called geometric ergodicity. All theses issues are discussed in the
present document except the perturbation schemes and the non-geometric rate of conver-
gence of iterates, both which will be included soon to form our final text. All the results
reported here focus on Markov kernels using a residual kernel approach. This turns out
to be a very simple and efficient way to deal with all mentioned issues on Markov kernels.
In particular, the document is essentially self-contained.
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1 Introduction

The purpose of this work is to study Markov kernels on general measurable space under the
so-called Minorization and modulated Drift conditions, generically denoted here by M & D
conditions. The following issues are addressed: Existence and uniqueness of invariant mea-
sures, recurrence/transience properties including Harris-recurrence property, convergence in
total variation of iterates of the Markov kernel in the aperiodic and periodic cases, Poisson’s
equation, perturbation schemes, and finally rates of convergence in weighted total variation
norms of iterates including the so-called geometric ergodicity. All these issues are discussed
in the present document except the perturbation schemes and the non-geometric rates of
convergence of iterates, both which will be included soon to form our final text on Markov
kernels under conditions M & D. These two issues will be a revisited version of the material
to be found in [ , ]. In this paper, the focus is on non-negative kernels, adopting
in this sense the point of view in Seneta’s book | | where discrete Markov chains are
studied via non-negative matrices. It can also be thought of as a tribute to Nummelin’s
book [ | from which the idea of the treatment of Markov kernels via a residual kernel
approach is borrowed. However, we decide here to keep a total focus on this kernel framework
from the beginning to the end. This turns out to be a very simple and efficient way to deal
with all mentioned issues on Markov kernels.

The M & D conditions are nowadays well known, widely illustrated and used in the lit-
erature on Markov chains via the splitting technique for extending the materials on atomic
Markov chains to the non-atomic case, or via the coupling technique to derive convergence
rates. Both techniques are based on a minorization condition. The reference books on this
topic are | , ] and more recently [ ]. Here we use neither the splitting
technique, nor the coupling construction. This also implies that no regeneration type-method
is used here. Actually, with the exception of Section 6 which contains a few (fairly elemen-
tary) spectral theory arguments for studying the geometric ergodicity, the only prerequisite
for this work is the handling of non-negative kernels. Indeed, the choice we have made to
consider Markov kernels satisfying a minorization condition allows us to work immediately
with the residual kernel, from which the issues on invariant measures, recurrence/transience
including Harris-recurrence and convergence of iterates, can be treated simply. Then addi-
tional modulated drift conditions enable us to investigate series of residual kernel iterates,
from which solutions to Poisson’s equation and the perturbation issue as a by-product are
easily deduced. Also mention that the recent book | | proposes a relevant and interesting
study under additional weak topological conditions, such as the weak Feller condition. This
point of view is not addressed in our work.

The theory in | , , | is developed under general minorization con-
ditions involving, either the so-called definition of small-set (or small-function), or the even
more general definition of petit sets. Both of these definitions are based on some n—th iterate
of the transition kernel. In our work we have chosen to focus on the first order minoriza-
tion condition with small-function, which corresponds to the definition | , Def. 2.3] at
first order (n := 1). This choice provides a relatively simple, straightforward, homogeneous
and self-contained presentation, dealing first with the residual kernel, then with the Markov
kernel. Note that the choice to deal with small-functions instead of small-sets requires here
no additional effort. The choice of the order one is also motivated by the fact that most of
classical examples of Markov chains verifying a minorization condition satisfy it at the first



order. We therefore found it interesting to emphasise the order one, as long as the results
are complete and the first-order minorization condition does not need to be strengthened by
artificial assumptions.

All the results in this work apply to any discrete-time homogeneous Markov chain sat-
isfying the M & D conditions. For such examples, readers can consult the reference books
[ , , |, as well as the following more specialized works: | ,

, ] in the context of the Metropolis algorithm, | , ] for autoregres-
sive models, [ , | for queueing systems, | | for Markov chains associated with
the mean of Dirichlet processes, | | for Markov models in control. Classical instances of

V —geometrically ergodic Markov chains can be found in e.g | , , ]

Although our method differs substantially from the splitting or coupling based methods,
the conditions sometimes added to the M & D assumptions are related to the classic ones
(e.g. accessibility, irreducibility, period). Here these additional assumptions can be directly
introduced under their simplified form, i.e. expressed with the small-function. Finally, as pre-
viously quoted, the central point is that a non-negative kernel approach is used for deriving
all the proposed material. All the needed prerequisites are recalled in Subsection 2.1. The
few probabilistic material you need (see Subsection 2.2) is applying well-known formulas in-
ducing the marginal laws of the Markov chain and the iterates of its transition kernel to deal
with Harris-recurrence in Subsection 4.1. Of course, most of statements expressed in terms of
Markov kernels in this work can be translated into a purely probabilistic form for discrete-time
homogeneous Markov chains with general state space. To facilitate a comparative reading
with the statements in reference probabilistic works as [ , , |, the prob-
abilistic interpretation of the main quantities used in this paper is reported in Appendix A.
Further discussions are included in bibliographical comments at the end of each section.

2 Main notations and prerequisites

The main notations and definitions used throughout this document are gathered in this
section. Most of them are concerned with non-negative kernel calculus. They are standard
and the material of this section can be omitted in a first reading.

Let (X, X) be a measurable space and X* := X'\ {} be the subset of non-trivial elements
of X. For any A € X*, we denote by 14 the indicator function of A defined by 14(z) :=1 if
x € A, and 14(z) := 0 if z € A°, where A°:= X\ A.

2.1 Measures and kernels

e We denote by B the sets of bounded measurable real-valued functions on (X, X). The
subset of non-zero and non-negative functions in B is denoted by B .

e Non-negative measures on (X,X). We denote by My (resp. M7 ;) the set of
non-negative (resp. finite positive) measures on (X,X). For any u € M, and any
p-integrable function g : X =R, p(g) denotes the integral [y gdu. Let p be a positive
measure on (X, X). A set A € X is said to be p—full if p(14c) = 0.

e Non-negative kernel on (X, X). A non-negative kernel K on (X, X) is a map K :
X x X —[0, +00] satisfying the two following properties:



(i) For every A € X, the function x — K(z, A) from X into [0, +o0] is a measurable
function on (X, ),

(ii) For every z € X, the set function A — K(z,A) from X into [0, +o0] is a non-
negative measure on (X, X), denoted by K(z,dy) or K(z,-).

The set of non-negative kernels on (X, X) is denoted by K. An element K € K, is
said to be bounded if the function z — K(z,X) is bounded on X.

Product of two non-negative kernels. If K; and K» are in K, then KsK7 is the
element of K4 defined by

VeeX, VAe X, (K2Ki)(z,A):= /XKl(y,A) Ky(z,dy). (1)

The above term (K2K1)(z,A) is well-defined in [0, 4+o00]: indeed y — Ki(y,A) is a
measurable function from X into [0, +00], and its integral is then computed w.r.t. the
non-negative measure Ko(z,dy). If K; and K3 are both bounded, then so is Ko K.

Product of a non-negative measure by a non-negative measurable function.
For any u € My and any measurable function f : X —[0, +00], we define the following
non-negative kernel, denoted by f ® p,

Ve eX, VA€ X, (f®u)(x,A) = f(z)u(A). 2)

Product of a non-negative kernel by a non-negative measure. Any u € M,
may be obviously considered as a non-negative kernel (i.e. Vo € X, u(x, A) := p(1a)). If
u € My and K € K4, then the product pK is given as a special case of Definition (1),
that is

VeeX, VAe X, (uK)(z,A):= /XK(y,A) w(dy). (3)

Note that K € M since it does not depend on x € X. The measure p is said to be
K —invariant if uK = p.

Iterates of a non-negative kernel. Let K € K. For every n > 1 the n—th iterate
kernel of K, denoted by K™, is the element of K, defined by induction using the above
formula (1). By convention KV is defined by: Vo € X, VA € X, K%z, A) = 14(x)
(i.e. K%(z,-) is the Dirac measure at z).

Functional action of a non-negative kernel. Let K € K. We also denote by K
its functional action defined by

VreX, (Kg)():= /X o(y) K (z, dy), (4)

where g : X — R is any measurable function assumed to be K (x,-)—integrable for every
x € X. For such a function g, we have

|Kg| < K|g|, (5)

where |g| denotes the absolute value of g (or its modulus if g is C—valued) since
veek, (KD =| [ o) K| < [ o) Ke,an) = (Klg(o).
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Obviously K is a linear action.

If K1,Ke € K4 and if ¢ : X— R is a measurable function such that g; := Kjg is
well-defined as well as Kog1, then

(K2K1)(g) = (K20 K1)(9)

where the first term (K2K1)(g) denotes the functional action on g of the product kernel
K5 K given in (1), while K90 K7 denotes the usual composition of maps. In particular,
for every n > 1, the functional action of the n—th iterate kernel of K™ of K is the n—th
iterate for composition of the functional action of K. Finally note that the functional
action of the kernel KV is the identity map I (i.e. (Kg)(z) = g(z)), which corresponds
to the standard convention for linear operators.

Most questions involving a non-negative kernel can be addressed through its functional
action, and this is the choice that will generally be made in this paper. In particular
Property (5) will be used repeatedly in this work.

Functional action of a non-negative measure. If y € M, (thus p € K;), then
its functional action (see (4)) is given by

Ve € X, (ng)(w) :Z/Xg(y) p(dy), thatis pg:= p(g)lx,

provided that g is u—integrable.

Order relation for non-negative kernels. If K; and K5 are in X, the inequality
K7 < K9 means that

VeeX, VAe X, Ki(z,14) < Ks(z,14).

In others words, K1 < Ky if K := Ky — K;j is a non-negative kernel, where K is
defined by K(x,14) := Ko(x,14) — K1(x,14) for any z € X and A € X. Thus, for any
Ky, Ky € K4, we have K7 < K> if, and only if, the following property holds

Vg : X —[0, +00) measurable, 0 < K19 < Kag

provided that K;g and Kyg are well-defined (if not, this inequality still holds but in
[0, 4+00]). In connection with this order relation, we shall often write K > 0 for recalling
that K € K. Recall that

Ki,Ks € IC+ — Ki1Ks € ’C+ and KyK; € IC+

from the definition of the products of two elements of K1 (see (1)). From this, the follow-
ing expected rules for sum and product can be easily deduced for any K, K, K, K1, K},
in Ky (i.e. each element in (6a)-(6¢) is a non-negative kernel):

K < Ko, K{SK& — Kl—l-K{SKQ—i-Ké (6&)
Ki <Ky K € K:+ — KK{ < KKy and KiK < Ky)K.. (Gb)
K1 < KQ, = Vn > O, Kln < K2n. (6(3)

Properties (6a)—(6¢) will be used repeatedly hereafter, mainly through the functional
action of the involved non-negative kernels.



e Series of kernels. For any (K;);c; € K fr where [ is any countable set I, the element
K =3 . .; K; is defined in K by

VieX, VAe X, K(z,A) ZK z, A).
el

The following formula holds for all sequences (Ky)n>0 € KN and (KJ)n>0 € K:

+o0 ~+00 +oo
Y KK, =KK with K:=)» K, and K :=) Kj. (7)
k,n=0 n=0 =

Since this formula is repeatedly used in this work, let us give a proof. Let x € X and
A € X. Then (7) is obtained from the following equalities in [0, +oo]:

+00 +°O
S (KuKf)(z,A) = / K}y, A) K, (. dy)
k,n=0 k,n=0

= ( /K,c Yy, A (x dy))
_ 2 /X (kZ:OK,g@,A))Kn(m,dy)

+oo
= Z/K’(y, (x, dy) = /K’ y, A K (x,dy).
— Jx

Indeed the first equality is just the definition of K, K7, the second one is due to Fubini’s
theorem for double series of non-negative real numbers, the third one follows from the
monotone convergence theorem w.r.t. each non-negative measure K, (z, dy), and finally
the fourth and fifth ones are due to the definition of K'(y, A) and K (z, dy) respectively.

e Markov and submarkov kernels. A non-negative kernel K is said to be Markov
(respectively submarkov) if K(z,X) = 1 (respectively K(z,X) < 1) for any z € X. In
both cases, K is obviously a bounded kernel.

If K is a Markov kernel, then an element A € X’ is said to be K —absorbing if K (x, A) =
1 for any x € A. An element A € X is said to be an atom for K if the following condition
holds: V(z1,72) € A%, K(z1,dy) = K(z2,dy) (such a set is sometimes called a proper
atom too, e.g. see | 1.

If K is a submarkov kernel, then K (B) C B. A function g € B is said to be K —harmonic
if Kg =g on X. When K is Markov, then the function 1x is always K —harmonic.

e Restriction of functions, measures ans kernels to a subset. For any F € X we
denote by X'g the o—algebra induced by X on the set E, i.e. Xg:={ANE A e X}.
For any g € B, the restriction gg to E of g is the bounded X g—measurable function
defined on F by: Vz € E, gp(z) = g(x). If n € M4, then the restriction ng to E of n is
the non-negative measure on (E, X' g) defined by: VA" € X, np(1a/) = n(1ang) where
A is any element in X such that A’ = ANE. If K € K, then the restriction K of K to
E is the non-negative kernel on (E, X ) defined by: Vz € E, VA’ € X, Kg(z, A') =



K(z,AN E) where A is any element in X such that A’ = AN E. When the notation
of the function/measure/kernel on X involves an index, the restriction to E is denoted
by - to avoid confusion (for instance, if n; € M., the restriction of 7; to E is denoted
by 7). Finally observe that, if K is Markov on (X, X) and E is K—absorbing, then
K is a Markov kernel on (E, Xg).

o V—weighted space and V—weighted total variation norm. Let V : X —(0, +00)
be any measurable function. For every measurable function g : X — R, we set

|g(2)]
= Ssu

and we define the V —weighted space

€ [0, 4o0],

By := {g : X— R, measurable such that [|g|ly < oo}.
Note that B1, = B. The following obvious fact will be repeatedly used hereafter:

Vg€ By, lgl<lglvV, ie VzeX, |g(x)| <|glvV(z)

If (1, p2) € (M7 ,)? is such that (V) < oo,i = 1,2, then the V-weighted total
variation norm || — poll}, is defined by

s = p2lly == sup [ua(g) = pa(g)]- (®)
lgllv <1
If V.= 1x, then || - ||, = || - [l7v is the standard total variation norm.

2.2 Markov chain

A Markov chain (X,,),>0 on the state space X with transition/Markov kernel P is a family
of random variables on a probability space (€2, F,P) such that

VieB, E[f(Xny1)|o(Xo,...,Xn)] = (Pf)(Xn)

where o (X, ..., X,) is the sub-c—algebra of F generated by the r.v’s Xo,..., X,. In par-
ticular, for any A € X,

E[la(Xnt1) | 0(Xo, ..., Xn)] = (Pla)(X,) = /AP(x,dy) = P(z, A).

Assertions a)-b) below are relevant to link iterated kernels and the Markov chain. The
classical statements c)-d) are prerequisites on occupation and hitting times of a set A, which
are only used in Subsection 4.1 to study the Harris-recurrence property.

a) We have for any k > 0, E[f(X,4x) | 0(Xo, ..., Xn)] = (P*f)(X,).

b) The probability P when P{Xy = z} = 1, is denoted by P,, and E, is the expectation
under P,.



c) Let A € X. Then the function defined by

Ve eX, g%(x { Z Lix,eay = } 9)

is bounded on X and P—harmonic, e.g. see | , Prop. 4.2.4], | , Th. 3.4].

d) Let A € X and let g4 be the function on X defined by

Ve e X, ga(x)=P,{Ta < o0} (10)
where Ty := inf{n > 0 : X,, € A} is the hitting time of the set A. Then g4 is superhar-
monic, i.e. Pga < ga, and we have (e.g. see | , Th. 34], [ , Th. 4.1.3]):

gx = lim N\ P'ga. (11)

3 Minorization condition, invariant measure and recurrence

In this section a standard first-order minorization condition on the Markov kernel P is in-
troduced: P > 9 ®@ v where v € MY , and ¢ € BY. This allows us to decompose P as the
sum of two submarkovian kernels R := P — ¢ ® v, called the residual kernel, and ¢ ® v. Two
quantities of interest are defined from the residual kernel and its iterates: first the positive
measure g ‘= ::OB vR*, second the R—harmonic function h$ :=lim, R"1x. Then the ex-
istence of a P—invariant positive measure and the classical recurrence/transience dichotomy
are studied according that (1)) = 1 or not (equivalently v(h3) = 0 or not).

3.1 The minorization condition (M, ,) and the residual kernel

Recall that B is the set of non-negative and non-zero measurable bounded functions on X
and that M’ , is the set of finite positive measures on (X, X'). Let P be a Markov kernel on
(X, X). Let us introduce the minorization condition which is in force throughout this paper:

I, ) e My x By P>y v (e Vo eX, P(x,dy) > ¢(x)v(dy)). (M, )

The function v is called a first-order small-function in the literature on the topic of Markov
chains. That the non-negative function v in (M, ) is bounded is required since ¥ (x) v(1x) <
P(z,X) =1 for any € X and v(1x) > 0. Moreover for any (v, ¢) € B x B} such that
W > ¢, if (M, ) is satisfied then so is (M, 4).

Under (M, ), we can introduce the following submarkov kernel, called the residual kernel,
which is central in our analysis of the Markov kernel P:

R=R,y:=P—v¢ov (ie. VzeX, R(z,dy) = P(z,dy) —(z)v(dy)). (12)

The most classical instance of minorization condition is when v := 1g for some S € X*,
that is

I, 8) e M, x X" P>1s5®v (e VzeX, P(r,dy) > 15(z) v(dy)), (M,1,)



in which case the residual kernel is:
RERVJS =P —-1g®v.

Such a set S is called a first-order small-set.

The following statement provides a general framework for Condition (M, ) to hold.
Moreover this proposition shows that, even if the minorizing measure v is defined from
(M ,,1,) with some set S, this condition (M, ;) is not the only one possible.

Proposition 3.1 Assume that
Ve eX, P(z,dy) = q(z,y) Mdy) (13)

where q(-,-) is a non-negative measurable function on X2 and X is a positive measure on X.
Let S € X* be such that the measurable non-negative function qs defined by

VyeX, gs(y) = ;Ielg q(z,y)

is not A—null, that is: A(1a) > 0 where A := {y € X : gs(y) > 0}. Let v € M}, and
g > 1g be defined by

v(dy) :== qs(y)Mdy) and Vx €X, ¢g(z):=1ls(z) ynel,fax qq(gx{yy))‘

(14)

Then P satisfies Condition (M, ) and so (M, 15).

Proof. For any fixed 2 € S, we have v(lx) < [;q(z,y)\(dy) < P(x,X) = 1 from the
definition of v, g5 and from (13). Thus v is finite and v(14) > 0, so that v € M’ ;. Next, from
the definition of ¢g we obtain the following property: V(x,y) € S x A4, q(z,y) > qs(y) vs(x).
In fact this inequality holds for every (x,y) € X? since ¢(z,y) > 0. Finally it follows from
(13) that, for every z € X, we have P(x,dy) > ¥g(x)qs(y)A(dy), i.e. P satisfies (M, ).
Note that 15 > 1g from the definition of the function gg, so that (M, 1) is satisfied. O

The next kernel identity (16) is the first key formula of this work. Recall that the residual
kernel R = P — ¢ ® v is a submarkov kernel, so that the n—th iterate kernel R™ of R defined
by induction using Formula (1) is a submarkov kernel too. Also recall that by convention
R%(z,-) is the Dirac measure at x. Finally note that, for every k > 1, we have v RF € My

(see (3)).

Lemma 3.2 Let P satisfy Condition (M, ). Then we have

¥n>1, 0<R"<P" (15)
P"=R"+> P"MpouRM (16)
k=1

and

+o00o +o0 +o0 +o0
Sy me (X ) (). a7
n=0 n=0 n=0 k=0
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Proof. We have 0 < R < P, thus 0 < R™ < P" using (6¢). Set T := 0 and T, := P" — R"
for n > 1. Note that Property (16) is equivalent to

Vn>1, T,=)» P"FpeuvRF! (18)

Equality (18) is clear for n = 1 since 73 = P — R = ¢ ® v. Next we have for any n > 2
P"—T,=R'"=R"'R=(P" ! -T,1)(P-T),

so that T, = P"'Ty +T,,_1R. Then (18) holds for n > 2 by an easy induction based on the
previous equality for Ty,: For instance use the functional action of kernels to check that, for
every g € B, if T,_19=> p_; LU(RF1g) Pk then Tpg = SR v(RF1g)PrFe.

From (16) and the convention for P° = R? we obtain that (see (7))

+o00 +o0o n +00 +00
ZPn — ZRn+ZZPn kw®l/Rk1 ZRn—I_ZZPn k@ZJ@I/Rkl
n=0 n=1 k=1 k=1n=k
= ZR”+ <Z P%) ® (Zm’f)
n=0 n=0 k=0
Thus (17) holds and the proof of Lemma 3.2 is complete. O

Under Condition (M, ), we have 0 < Rlx < 1x. Since R is a non-negative kernel, we
get 0 < R"1x < R™1x for any n > 0. Thus the sequence (R"1x),>0 is non-increasing so
that it converges point-wise. Consequently we can define the following measurable function
hsy : X —[0,1]:

hy = li7rln N R"1x. (19)

Note that h%® is R—harmonic: indeed, for every = € X, we have (R""'h%)(z) = (RR"hS)(z),
so that h$(z) = (RhSY)(z) from Lebesgue’s theorem applied to the finite non-negative mea-
sure R(x,dy) observing that R"hyy < R"1x < Ix.

Recall that, for every k > 0, we have vRF € M, ; (see (3)). Under Condition (M) let
wr denote the positive measure on (X, X') (not necessarily finite) defined by

“+o00

pr = » VR (20)

k=0

The measure pip is positive from pz(1x) > v(1x) > 0. The measure uy as well as the function
h% are used throughout this section.

3.2 P—invariant measure
First prove the following simple lemma.

Lemma 3.3 Assume that P satisfies Conditions (M, ). Let g be a P—harmonic function.

Then we have .

Vn >0, v(g) ZRkw =g— R""yg. (21)
k=0
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In particular we have

Vn >0, 0<v(lx)) Rfp=1x - R"'ix < 1x. (22)
k=0

Proof. Let g € B be such that Pg = g. We have v(g)y = (I — R)g from the definition (12)
of R. Then Property (21) follows from

n n n n+1
Vn >0, v(g)) Ry= (ZR’“)(I— Rjg=> Rfg-> Rfg=g-R""g.
k=0 k=0 k=0 k=1
Since Plx = 1x, Property (21) with ¢ := 1x is nothing else than (22). O

Recall that the positive measure v in (M, ) is finite (i.e. v(1x) < 00).

Proposition 3.4 Let P satisfy Condition (M,,). Then the function series > ;o0 RF1p
point-wise converges and is bounded on X. More precisely we obtain that

+oo
0< v(lx) Y R =1x — b3y < 1x. (23)
k=0

Moreover we have pg(1) = S35 v(RF) € [0,1], and the following equivalences hold

e(®) =1 = v(h3) =0 < pa(hy) = 0. (24)

The property pg(1) < 1 proved above implies that there exists A € X* such that ug(14) < 0.

Proof. Tt follows from (22) that the series of non-negative functions Y% RFt point-wise
converges. When n growths to +00 in (22), we get the equality in (23) from the definition (19)
of hiy.

Next integrate w.r.t. the measure v in (23) and apply the monotone convergence theorem to
get 0 < v(lx)pr(v) = v(lx) — v(hg) < v(lx). Since v(1x) > 0, it follows that pg(1) € [0, 1]
and the first equivalence in (24) holds. Since Rh$ = h$, we have from (20) that v(h3?) =0
implies that pz(hy) = 0. Finally, we have puz(hy) > v(hy) > 0 from the definition (20) of
g so that pg(h$y) = 0 implies that v(h$y) = 0. The proof of the second equivalence in (24)
is complete. O

Theorem 3.5 (P—invariant positive measure) Assume that P satisfies Condition (M, y).
Then the following assertions hold.

1. If ur(vp) =1 (or equivalently v(hyy) = 0), then pg is a P—invariant positive measure.

2. If there exists ( € BY such that v(¢) > 0 and pr(P¢) = pr(¢) < oo, then we have
pr() = 1.

In particular, if v(v) > 0, then

pr is P—invariant <= up(y) =1 <= v(hyy) =0 <= ur(hy) = 0.

12



Recall that the condition v(¢)) > 0 is the so-called strong aperiodicity property.
Proof. From the definitions (12) of R and (20) of ug, the following equalities hold in [0, +o0]:

VAe X, pr(Pla)=pr(R1a)+v(1a)ur(®) = pa(la) +v(1a)(ua(y) — 1)

since we have ugr(R14) = pr(la) —v(1a) in [0, +oc0]. Consequently, if pg(1)) = 1, then ug
is a P—invariant positive measure and Assertion 1. is proved. Next, if ( € B’ satisfies the
assumptions in Assertion 2., then we deduce from px(¢) = pr(P¢) = pr(¢) +v(C) (pr(¥) —1)
that pgz(10) = 1. In the last assertion, that pz(1)) = 1 implies the P—invariance of up is just
Assertion 1. Next, if v(¢)) > 0 and uy is P—invariant, then Assertion 2. can be applied to
¢ := 1 since we know that (1) < oo from Proposition 3.4, so that we have pz(10) = 1. The
two last equivalences are (24). O

Theorem 3.6 (P—invariant probability measure) If P satisfies Condition (M, ), then
the following assertions are equivalent.

1. There exists a P—invariant probability measure n on (X, X') such that n(v) > 0.
2. pr(lx) = S0 v(RF1x) < oo.

Under any of these two conditions, the following probability measure on (X, X))

+oo
mr = pr(lx)  pur  with pg = ZI/Rk € M:b (25)
k=0

is P—invariant with pg(yp) = 1 and 75(1) = pr(lx) ™" > 0.

Proof. Assume that Assertion 1. holds. Then apply Formula (16) to 1x and compose on the
left by 1 to get 1 = n(R"1x) +n(y) Y r_, v(RF11x). It follows that

n
0<n(R"1x) =1-n() ) v(R*'x)
k=1

from which we deduce that ux(1x) = 4% v(RF1x) < ()" < oo since (1)) > 0 by
hypothesis. This proves that Assertion 1. implies Assertion 2.

Conversely, if Assertion 2. holds, then Assertion 2. of Theorem 3.5 can be applied with
¢ := 1x. Indeed, v(lx) > 0 and pgr(Plx) = pgr(lx) < oo since P is Markov. Hence
we have pg(v) = 1, so that pup is P—invariant from Assertion 1. of Theorem 3.5. Thus
TR i= ,uR(IX)_l i is a P—invariant probability measure such that 7g(¢) = ,u,R(lx)_1 > 0.

[l

The following standard example of uniform ergodicity illustrates Theorem 3.6. Moreover,

the well-known rate of convergence of ||P"(x,) — mx(+)||7v is obtained from Formula (16).

Example 3.7 (Uniform ergodicity) Let P satisfy Condition (M, 1), that is there exists
v E M’jﬁb such that P > 1x ® v. In other words the whole state space X is a first-order
small-set for P. Then Condition 2. of Theorem 3.6 holds and we have

Vn1, Vo eX, [PMa,) -y < 2(1— v(1x)"

13



where w is the P—invariant probability measure given by (25). Indeed the residual kernel
R =Ry, is here R =P — 1x ®@ v so that we have Rlx = (1 — v(1x))1x. Consequently we
obtain that

Vn > 1, Rnlx = (1 — l/(lx))nlx.
Thus pr(lx) = S5 v(REx) = 1, and it follows from Theorem 3.6 that the probability
measure wg given in (25) is P—invariant (mg = pg here). Moreover Formula (16) gives

n
Yn>1, P'=R"+1x® u, with un::ZyRk_l.

k=1
Consequently we have
+oo
¥n>1, P'-1x®m,=R"-1x® Y wvR'!
k=n-+1
from which we derive that
Vn>1, Ve eX, [[P'(x,-)—mllzy < |R"(=z,)llrv + Z vRF!
k=n+1 TV
+0o0
=R"(z,1x)+ Y v(RF'1x)
k=n+1

= 2(1 — v(1x))".

3.3 Recurrence/Transience

If P satisfies Condition (M, ), then P is said to be recurrent if the following condition
holds:

+00 +oo
VA€ X: pp(la) >0= )Y PFly=+ocoonX (ie Vo €X, Y P¥(z,A)=+00), (26)
k=0 k=0
where (i is the positive measure on (X, X') defined in (20). Note that if A € X is such that
v(14) > 0 then pgr(14) > 0. Observe that Equality (17) reads as

+oo +oo +oo
ZP”:ZR”Jr(Z P%)@uR (27)
n=0 n=0 n=0

and is relevant in this section. To get a complete picture of recurrence/transience property for
P satisfying Condition (M, ) in the next statement, let us introduce the following definition.
The Markov kernel P is said to be irreducible if

+oo

Y Pp>00nX, ieVeeX, Jg=gq(z) > 1, (PW)(z) > 0. (28)

n=1

Recall that under (M, ), we have pug(¢) € [0,1] from Proposition 3.4, and that pz is a
P—invariant positive measure when uz(¢) = 1, or equivalently v(h3y) = 0 (see (24)), from
Theorem 3.5. Finally, recall that || - |1, denotes the supremum norm on B (i.e. |g|i, ==

supgex |9(2)])-
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Theorem 3.8 Let P satisfy Condition (M, ). Then the following assertions hold.

1. Case pr(vp) =1 (or equivalently v(hyy) = 0). The Markov kernel P is recurrent if and
only if P is irreducible (see (28)). When P is recurrent, ug is the unique P—invariant
positive measure n (up to a multiplicative positive constant) such that n(y) < oo.

2. Case prp(v) < 1 (or equivalently v(h) > 0). The function series > ;20 PFip is bounded
on X. If P is irreducible, then P is not recurrent, more precisely P is transient in the
following sense: Defining for every k > 1 the set Ay := {x € X : Z;?:O(Rjz/})(a:) > 1/k}

we have
“+o00

X=UfNAy and  Vk>1, ¢ =) P"lalhy < oo

n=0

Actually we have: Yk > 1, ¢ < k(k+1)(v(1x) ™" + M) with M := || 32525 Py,
When P is irreducible, we have the following characterization of recurrence.
Corollary 3.9 Assume that P satisfies Conditions (M, ) and is irreducible. Then

P is recurrent <= pugr(¢) =1 <= v(hy) =0 < ux(hy)=0.

Proof. Assume that pz(¢0) € [0,1). Then P is not recurrent from the second assertion of
Theorem 3.8. This proves the first direct implication. The converse one follows from the first
assertion of Theorem 3.8. The two last equivalences are (24). O

The proof of Theorem 3.8 is based on the the two following lemmas.

Lemma 3.10 Let P satisfy Condition (M, ). If P is irreducible then the following state-
ments hold:

1. 37 RMp > 0 on X.
2. If ur(vp) = 1 (or equivalently v(h) = 0) then 3% P™) = 400 on X.

Proof. We prove Assertion 1. by contradiction. Assume that there exists ¢ € X such that

0 (R™p)(x) = 0. Then we have h(x) = 1 from (23). From the definition of A% (x) and
R"1x < 1, it then follows that: Vn > 1, (R"1x)(z) = 1. Hence we deduce from Formula (16)
and (P"1x)(z) =1 that

n

Vn>1, > (P"Fp)(x)v(RFx) = 0.
k=1

In particular the first term of this sum of non-negative real numbers is zero, that is we have:
Vn > 1, (P" %) (z)v(1x) = 0. Since P is irreducible (see (28)), we know that there exists
q = q(z) > 1 such that (P%))(xz) > 0. Then the previous equality with n = ¢+ 1 implies that
v(1lx) = 0: Contradiction. Assertion 1. is proved. Next, if pz(1) = 1, then Equality (27)
applied to 1 and Assertion 1. imply that Z;ﬁ% P™) = +00 on X. O

Lemma 3.11 Let P satisfy Condition (M, ) with pugr(¢) > 0. If P is recurrent, then
S28 PRy = +o00 on X.
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Proof. Since pg(¢) > 0, there exists ¢ > 0 such that the set F. := {z € X : ¢(z)
satisfies pz(17. ) > 0 (otherwise we would have pgz({x € X: ¢(x) > 0}) = 0, thus pg(¢)
From recurrence and 15 < /e, we obtain that Z:ﬁ% P™p = 400 on X.
Now, let us provide a proof of Theorem 3.8.

Proof of Theorem 3.8. Assume that g (1)) = 1. If P is irreducible, then > %0 P¥¢) = 400 on
X from Assertion 2. of Lemma 3.10. It follows from (27) applied to 14 that ;25 P¥14 = +oo
for every A € X such that pg(14) > 0, i.e. P is recurrent. Conversely, if P is recurrent, then
it follows from z(1)) = 1 and Lemma 3.11 that >0 P" = +oo on X. Thus P satisfies
(28) (i.e. P is irreducible). Now let 7 be a P—invariant positive measure on (X, X) such that
n(y) < oo. From (16) we have

e}
0).
O

v

Vn>1, n>n() ZVRk_I.
k=1

We deduce from the definition (20) of pg that n > n(¢)ug. Hence X := n — n(¢)ug is a
non-negative measure, which is P—invariant since pp and n are. We have A(¢)) = 0 since
pr(p) = 1. Thus we have A(P*y) = 0 for every k € N. From the monotone convergence
theorem, it follows that

+oo +oo
A PRy) =D A(Pry) =0,
k=0 k=0

Moreover we know from the irreducibility definition (28) that "0 P*¢ > 0 on X. It follows
that A = 0, i.e. n = () ugr. Thus any P—invariant positive measure 1 such that 7(¢) < oo is
such that n = n(¢)ugr (which implies that n(v) > 0). The second statement of Assertion 1. is
proved.

Now assume that pz(¢) < 1. We have v(h3y) > 0 from (24) since pgr(¢)) < 1. Recall that
Rh$; = hg. Then, Formula (16) applied to hy and Rh$ = h$y give

n—1
¥n>1, P'hy =hy +v(hy)> Py,

k=0
from which we deduce that: ¥n > 1, ZZ;Ol Pk < w(h) My since hy > 0 and P"hy < 1x
from hy < 1x. Consequently the function Zgﬁg P4} is bounded on X. Now assume that P is
irreducible. Note that () = v(3, 2 R™¢) from the monotone convergence theorem. Since
v is a positive measure, it follows from Lemma 3.10 that pz (1)) > 0. Thus, as in the proof of
Lemma 3.11, there exists ¢ > 0 and a set F; such that pz(1r ) > 0and 15 < 1/s. We deduce
that Z:ﬁ% P"1r is bounded on X. Consequently P is not recurrent. Next let us prove that
P is transient as defined in Theorem 3.8. We have X = U;ﬁ‘iAk. Indeed, otherwise there
would exist x € X such that: Vk > 1, Z?:O(Rjd})(l‘) < 1/k, so that ZjﬁS(Rsz))(:E) = 0:
This contradicts Lemma 3.10. Finally let & > 1. Observing that 14, < kZ;?:O Riq), we
obtain that (see (7))

400 00 k k +oo
> RMg, < kZR”(Zth) :kZRﬂ'(ZR%)
n=0 n=0

j=0 j=0 n=0
k .
<kv(lx)™" ) Rilx < k(k+ 1)v(1x) 'x (using (23) and Rlx < 1x).
j=0
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Moreover, composing on the left the previous inequality by v, it follows from the monotone
convergence theorem that pp(la,) < k(k + 1). Then the last inequalities combined with
Formula (27) applied to 14, provide

+00 +oo
> P <k(k+1)[v(1x) N+ M]lx with M=) PRy,
n=0 k=0
The proof of Theorem 3.8 is complete. 0

When the positive measure py is finite (i.e. pr(lx) < 00), then we have pz(y) = 1 from
Theorem 3.6. Moreover any P—invariant probability measure 7 is such that 7(¢) < oo since
1 is bounded. Therefore, the following statement is a direct consequence of Assertion 1. of
Theorem 3.8.

Corollary 3.12 Assume that P satisfies Condition (M, ;) with pp(lx) < oo and is irre-
ducible. Then P is recurrent, and the probability measure wg given in (25) is the unique
P—invariant probability measure.

If Condition (M, ) holds with pgz(¢)) > 0, then the following statement shows that
the recurrence property actually implies that puz(¢)) = 1, so that pg is P—invariant. Note
that the condition pgz(1)) > 0 is satisfied, either when P is irreducible from Lemma 3.10
since pg(Y) = v( :208 RF1), or when the strong aperiodicity property (1) > 0 holds since

pr(Y) = v().

Proposition 3.13 Let P satisfy Condition (M, y) with pg(¢p) > 0. If P is recurrent, then
e s P—invariant.

Proof. Since pr(1) > 0 and P is assumed to be recurrent, we deduce from Lemma 3.11 that
S 120 Pep = 400 everywhere. Moreover, the sequence (v(R"1x)),>0 is non-increasing since
(R"1x))n>0 is. Then, it follows from the kernel equality (16) applied with 1x that

n—1
Vn>1, P"lx=1x > v(R" '1x) ZP%.
k=0

Since ;20 P*y) = +o00 and v(h) = lim, v(R"1x) from the monotone convergence theorem,
we deduce from the above inequality that v(hy) = 0 which is equivalent to pg(¢) = 1
from (24). Then, the P—invariance of pp follows from Assertion 1. of Theorem 3.5. g

3.4 Further statements

The two first following propositions are used in the bibliographic discussions of Subsection 3.5.
The second one may be relevant to check the condition pz(14) > 0 in the definition (26) of
recurrence. The third proposition is only used in the proof of Propositions 5.12 and 5.13
related to discussion on drift conditions in Section 5.

Proposition 3.14 If P satisfies Condition (M, ) with pr(yp) > 0, then P is irreducible
(see (28)) if, and only if,

+oo
VA€ X: pp(la)>0 = Y P"l4>0 onX. (29)

n=1
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Proof. Equality (27) (i.e. (17)) reads also as >,/% P" = "1 R+ (Z o P") ® pg since
P% = RO, Thus, we have

+oo +oo
VAEX, Ve eX, Y P'(z,A)>pa(la))_ (P"¥)(x),
n=1 n=0

from which we deduce that the irreducibility condition (28) implies Condition (29). Con-
versely assume that Condition (29) holds. Since there exists ¢ > 0 such that pz({1p > €}) >0
from ji5 (1) > 0, it follows from (29) that S/ Py > &> 1 P>y > 0on X, ie. (28)
holds. O

Let us introduce the following Markov resolvent kernel

+oo
Q=) 27 (mpn, (30)
n=0

Proposition 3.15 If P satisfies Condition (M), then the following equivalence holds:

VAe X : pugr(lg) >0 <= v(Qly) > 0.

Proof. Let A € X. From (16) we obtain that

QlA _ 22 (n+1) Rn1A+Z2 (n—l—l)z Rk 11A)Pn kw

k=1
_ 22 n-‘rl Rn1A+ (ZQ Rk 11A ><22_(n+1)in) (31)
n=0

Then composing on the left by v, it follows from the monotone convergence theorem that

+o00
QlA 22 (n+1) Rn (22 Rk 11 )<Z2(n+l)y(in)>
n=0

Next from the definition (20) of uz we have: uzr(la) = 0 < Vk > 0, v(RF14) = 0. It
follows from the above equality that puz(14) = 0 is equivalent v(Q14) = 0 since all the terms
involved in this equality are non-negative. O

Proposition 3.16 If P satisfies Condition (M, ) and is irreducible, then every non-empty
—absorbing set is pr—full.

Proof. Let B € X* be a P—absorbing set, that is satisfying: Vn > 1, Vx € B, P"(z, B¢) = 0.
Let @ be defined in (30). Formula (31) applied to A := B¢ provides

—+00

VoeB, 0=>) 2-™UR"(z,B%)+ (22 v(RF 1ch)>(Q1/J)(x).

n=1

Since P is irreducible (see (28)), we know that (Qv)(x) > 0, so that we have: Vk >
1, v(RF'1ge) = 0. Thus px(1pe) = 0 from the definition (20) of px. O
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3.5 Bibliographic comments

Here we discuss point by point the definitions and results concerning the classical concepts
of this section, i.e. irreducibility, recurrence/transience properties and invariant measures, in
link with the books [ , , ]. A detailed historical background on these
properties can be found in | , pp. 141-144], | , Sec. 4.5, 8.6,10.6] and | ,
Sec. 9.6,10.4,11.6]. In discrete state space, we refer for example to | , , | (see
also | , App. A] for an overview on Markov chains in modern terms).

A) Small-set and small-functions. Let £ > 1. Recall that a set Sy € X* is said to be a
¢—order small-set for P in the standard literature on the topic of Markov chains (e.g. see
[ , , 1), if the following condition holds

e M, P'>1g, @ (e Vo eX, Pz, dy) > 1g,(z) ve(dy)). (32)
The extension to /—order small-functions writes as (see | , Def. 2.3, p. 15])
ve,he) € My x BY o PP >4y @y (e Vo € X, Pz, dy) > vu(z) ve(dy)). (33)

Our minorization condition (M, ) is nothing other than [ , Def. 2.3] with order
one. Finally recall that S € X" is said to be petite (e.g. see [ |) if it is a small-
set of order one for the Markov resolvent kernel 3" a, P" for some (ay)n, € [0, +00)N
such that Z::(’) an = 1. The notion of petite sets is not used in this work. The specific
resolvent kernel > 7% 2=("+1) P in (30) is only used in part D) below to support the
current bibliographic discussion and to provide a sufficient condition for having hy = 0
in Corollary 4.18.

B) Residual kernels and invariant measure. The representation (20) of P—invariant mea-
sure via the residual kernel was introduced in | , Th. 5.2, Cor. 5.2] under the
minorization condition (M, ) and the recurrence assumption, so that the positive mea-
sure pp necessarily satisfies pz()) = 1 there. The P—invariance of py under the sole
Condition (M) was proved in | ] in the specific case when pg(1lx) < oo: This
corresponds to Theorem 3.6. This result is extended to the general case in Theorem 3.5,
that is: under the single minorization Condition (M, ), the P—invariance of p is ac-
tually guaranteed when pg(v) = 1, and is even equivalent to this condition under the
additional strong aperiodicity assumption v(¢)) > 0. Consequently, contrary to the state-
ment | , Th. 5.2, Cor. 5.2, p. 73-74], the P—invariance of py is here related directly
to the condition pz(10) = 1, which makes it possible to carry out this study independently
of the recurrence property, and even independently of any irreducibility condition on P.
Recall that the key point in the proof of Theorem 3.5 is the kernel identity (16).

C) Accessibility and irreducibility conditions. Recall that if P satisfies Condition (M, 1)
then the set S is said to be a first-order small set. Let us comment Condition (28)
in case ¥ := lg. This condition then means that the set S is accessible according to
[ , Def. 3.5.1, Lem. 3.5.2]. On the other hand recall that a Markov kernel P
is said to be irreducible according to | , Def. 9.2.1] if it admits an accessible
small set. Thus our definition (28) of irreducibility for a Markov kernel P satisfying
Condition (M, ;) coincides with that of | ] in case of a first-order small set.
Now, thanks to Proposition 3.14, let us recall the link with the irreducibility notion
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used in | ) ]. First, in connection with the condition pz(lg) = 0 which
is not addressed in Proposition 3.14, observe that this condition implies the transience
of P from Theorem 3.8. Moreover this condition cannot hold under Condition (28)
from Assertion 1. of Lemma 3.10 since uz(1ls) = v(>./ %9 R"1g). Finally, nor can this
condition be satisfied under the strong aperiodicity condition v(1g) > 0 since pp > v.
Thus the discussion may be conducted assuming that P satisfies Condition (M, 1) with
pr(ls) > 0 (ie. 3k >0, v(RF1g) # 0). Then it follows from Proposition 3.14 that our
definition of P irreducible (see (28)) is equivalent to the pz—irreducibility of P as defined
in | , p. 11] and | , p- 82], that is (29).

Mazimal irreducibility measures. Although the notion of maximal irreducibility measures
is not explicitly addressed in this work, it has to be discussed since it plays an important
role in | , , |. First note that, if P satisfies Conditions (M, ;)
and (28), then up is an irreducibility measure using the classical terminology in | ,

| (see Item C)). Actually pg is a maximal irreducibility measure according to
the definition [ , Def. 9.2.2]: Every accessible set A € X is such that pz(14) > 0.
Indeed A is accessible reads as Q14 > 0 on X where @ is defined in (30). Next, if
Q14 > 0 on X then v(Q14) > 0, so that ugr(14) > 0 from Proposition 3.15. Of course
Conditions (M, 1) and (28) also ensure that the minorizing measure v is an irreducibility
measure since v(14) > 0 implies that pz(14) > 0. However v is not maximal a priori. As
is well known, any irreducibility measure 7 is absolutely continuous w.r.t. the maximal
irreducibility measure pp since the condition 7(14) > 0 implies that @14 > 0 on X from
the definition of n—irreducibility, so that pz(14) > 0 due to the above.

Recurrence/transience and uniqueness of invariant measure in recurrence case. Our def-

inition (26) of recurrence corresponds to that in [ , pp. 27-28] and | , p. 180]
with pup as maximal irreducibility measure. From the discussion in Item C), this also
corresponds to the recurrence definition | , Def. 10.1.1]. The transience prop-
erty used in Theorem 3.8 is that provided in [ , p. 171 and 180] and | ,
Def. 10.1.3]. The Recurrence/Transience dichotomy stated in Theorem 3.8 is a well-
known result for irreducible Markov chains, e.g. see [ , Th. 3.2, p. 28], | )
Th. 8.0.1] and | , Th. 10.1.5]. The novelty in Theorem 3.8 is that this dichotomy

can be simply declined according to whether pz(¢) =1 or ug(v) € [0,1).

As indicated in Item B), the existence of P—invariant positive measures, which is obtained
in our work independently of any irreducibility condition on P (Theorem 3.5), is classically
proved under the recurrence assumption. In fact this is usually done together with the
uniqueness issue. Under the recurrence assumption the existence and uniqueness (up
to a positive multiplicative constant) of a P—invariant positive measure is obtained in
[ , Th. 5.2, Cor. 5.2, p. 73-74] using the representation (20). This result is proved
in | , Th. 10.4.9] and | , Th. 11.2.5] via splitting techniques, providing the
classical regeneration-type representation of P—invariant positive measures.

Strong aperiodicity condition v() > 0. This condition is a particular case of the aperi-
odicity condition introduced in Subsection 4.2.

The splitting construction. To conclude this bibliographic discussion, it is worth re-
membering that the concept of small-set has a natural and crucial probabilistic inter-
est in splitting or coupling techniques: This is the thread and backbone of the books
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[ , , |. Here this probabilistic aspect is not addressed. In this work,
the minorization Condition (M, ) allows us to write the Markov kernel P as the sum
of two non-negative kernels: the residual kernel R := P — ¢ ® v and the rank-one kernel
1 ® v. That R is non-negative is the crucial point to define all the quantities related
to R in this section, especially the positive measure iy (see (20)) and the function h%
(see (19)). Actually one of the key points of the present section and of the next ones is
the kernel identity (16). This formula is already present in Nummelin’s book | )
Eq. (4.12)]. It seems that the sole way to obtain a probabilistic sense of this formula is
to use the split Markov chain introduced in | |. The idea is to introduce an appro-
priate enlargement of the state space of the original Markov chain in order to obtain a
new Markov chain - the split chain - which has an atom. Then most of statements on the
original chain are derived from applying results (obtained for example by the regeneration
method) on atomic chains to this split chain. Thus, using the splitting construction re-
quires switching from the original chain to the split chain for assumptions, and vice versa
for results. The enlargement of the state space consists roughly in tagging the transitions
of the original chain according to the occurrence of a 1»—dependent tossing coin in order
to reflect the decomposition R + 1 ® v of P in two submarkovian kernels. We refer to
[ , Sec. 4.4], [ , Sec. 14.2], | , Chap. 5] for details. See also [ ] for
a readable survey on this topic in the case of Markov chain Monte Carlo (MCMC) kernels.
Here, the kernel-based point of view allows us to study the general Markov chains in a
single step. There is no need to resort to an intermediate class of Markov chains, e.g.
atomic chains, before dealing with the general case via what may appear to be a technical
device, e.g. the split chain. To turn back to our key formula (16), [ , Eq. (4.24)]
provides a probabilistic interpretation from the splitting construction. What is new here
is that we are exploiting Formula (16) solely as a kernel identity. The price to pay for this
presentation is that we only consider Markov kernels satisfying a first-order minorization
condition.

Appendix A gives the probabilistic interpretation of the main quantities used in this
document. This should facilitate the comparative reading with the statements in reference
probabilistic works as | , , |. And, as for formula (16), all these
probabilistic formulas are obtained from the split chain.

4 Harris recurrence and convergence of the iterates

Assume that P satisfies the minorization Condition (M, ) and recall that h% := lim, R"1x
(point-wise convergence, see (19)), where R = R, is the residual kernel given in (12).
Condition h3 = 0 is stronger than v(h$) = 0. Under this condition hjy = 0, the results of
the previous section are revisited in the following theorem with an additional result on the
P—harmonic functions. Next, still under Condition hjy = 0, the Markov kernel P is shown
to be Harris-recurrent, and the convergence in total variation norm of the iterates of P to
its unique invariant probability measure is obtained when uy(lx) < oo and P satisfies an
aperiodicity condition. The periodic case is addressed in Subsection 4.3. Finally, introducing
a drift inequality on P, a sufficient condition for the condition hj = 0 to hold is presented
in Subsection 4.4.

Theorem 4.1 Let P satisfy Condition (M, ). If hyy = 0, then the following assertions hold.
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1. The P—harmonic functions are constant on X.
2. P is irreducible and is recurrent.

3. The positive measure [1p == Y jo0 VRF (see (20)) satisfies up(¢)) = 1, and is the unique
P—invariant positive measure 1 (up to a multiplicative constant) such that n(v) < oo.
If pr(lx) < oo, then mg := pr(lx) ‘pr (see (25)) is the unique P—invariant probability
measure on (X, X).

Proof. 1t follows from (23) and h3y = 0 that

+o0
> Ry =w(lx) k. (34)

k=0
Let g € B be such that Pg = g. Recall that, for every n > 0, we have v(g) > p_, Rf =
g— R""lg from (21). Moreover we have lim,, R"g = 0 since |R"g| < R"|g| < ||g]|1, R"1x and
h3 = 0. Thus g = v(g) 228 RFp. We have proved that ¢ is proportional to 1x. This proves
Assertion 1.
For Assertion 2., apply the kernel identity (27) to ¢ to get

+o00 +oo +oo
D P =) R pe(y) Y P
n=0 n=0 n=0

We have pz(1) = 1 since hyy = 0 (see (24)). Then, we deduce from (34) and the previ-
ous equality that Zgj& P*yp = +00. Thus the irreducibility property holds, as well as the
recurrence property from Theorem 3.8.

The first part of Assertion 3. is a direct consequence of Assertion 1. of Theorem 3.8 using
that v(h$y) =0 (i.e. pr(v)) = 1) and that P is recurrent. The second part of Assertion 3. is
Corollary 3.12. The proof of Theorem 4.1 is complete. O

The notations concerning restriction to a set £ € X of functions, measures ans kernels are
provided in Section 2.

Lemma 4.2 Assume that P satisfies Condition (M, ) with pg(¢)) > 0, where R is the
residual kernel given in (12). Let E € X be any pr—full P—absorbing set. Then the Markov
kernel Pg on (E, Xg) satisfies Condition (M, ). Moreover the associated residual kernel
Py — Yp ® vp is the restriction Rg to E of R, and the following equalities hold

Vz € E, hg (z) :=lmRg(z, E) = hy(z) and Vn >0, vp(Rpyr) = v(R"Y).
Proof. Since pg(v) > 0 and F is pur—full, we have ur(1py) = pur(¥) > 0, thus ¢ is
non-zero. Moreover we have v(1g) = v(1x) > 0 since pz(1ge) = 0 implies that v(1gc) = 0
from the definition of piz. Then Condition (M, 4, ) for the Markov kernel Py on (E, X )

is deduced from the minorization condition (M, ) for P since for every A’ € Xg and any
A € X such that A’ = AN E we have

Vz € E, Pgp(x,A)=P(x,ANE)>v(ANE)Y(r) =ve(A) g ().
That P — v g ® vg is the restriction of R to the set E is obvious. It follows that

Vee E, Yn>1, Rg(z,E)=R"(z,FE)=R"(z,X)
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since R"(x, E¢) = 0 from 0 < R"(x, E¢) < P"(x, E°) = 0. Consequently we have for every
x € E: lim, R} (z, E) = hy(x). Finally we have: Vn > 0,Vz € E, (RLyE)(z) = (R™))(x).
Thus vp(REyE) = v(R™) since v(1ge) = 0. O

4.1 Harris-recurrence

Let us present a first application of Theorem 4.1 to the so-called Harris-recurrence property.
Let (X,)n>0 be a Markov chain with transition kernel P. If P satisfies Condition (M, )
and if A%y = 0, we know that P is recurrent from Theorem 4.1, that is (see (26))

—+o0
VAE X : ur(ly) >0=VreX, Ex{zuxkefx}] = +00.
k=0

This recurrence property is proved below to be reinforced in

+oo
VAe X : ur(ly) >0= VzeX Pm{zl{XneA}—+oo}—1- (35)

Such a transition kernel P is said to be Harris-recurrent.

Theorem 4.3 Let P satisfy Conditions (M, ) and hy = 0. Then the Markov chain
(Xn)n>0 with transition kernel P is Harris-recurrent.

First prove the following lemma.

Lemma 4.4 Let P satisfy Conditions (M) and pr(v) = 1. If g € B is such that Pg < g,
then the non-negative function g — Pg is pg-integrable and we have pugr(g — Pg) = 0.

Lemma 4.4, which is used below in the proof of Theorem 4.3, has its own interest. Indeed,
from the P—invariance of pp the conclusion of Lemma 4.4 is straightforward under the
assumption ug(lx) < oo since, for every g € B, the functions g and Pg are pg-integrable
and pr(Pg) = ur(g). However, if up is not finite, the conclusion of Lemma 4.4 is no longer
obvious.

Proof of Lemma 4.4. For every n > 1, it follows from Pg = Rg + v(g) that

n n

S u(RMg - Pg)) = S u(Rrg)— > w(Rg) —u(g) > v(RF)
k=0

k=0 k=0 k=0

— (1 -y u(R’fw) _W(RMy) (36)
k=0
< 2|lglhgv(lx) < oo

using 0 < Y7o v(R*¥Y) < pr(¥) = 1 and |g| < ||gl151x. Thus the series ;20 v(R*(g— Pg))
of non-negative terms converges, that is ¢ — Pg is ug-integrable. Since MR(?,Z)) = 1 we know
that v(h%) = 0 from (24). Thus we have lim,, > p_, v(R*) = 1 from the definition of sz
Moreover we have |v(R""tg)| < ||lg|l1,v(R* ! 1x) with lim, v(R" ! 1x) = v(h$) = 0 from the
definition of h$y and Lebesgue’s theorem. Thus the property puz(g — Pg) = 0 follows from
(36). Lemma is proved. O
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Proof of Theorem 4.3. Let A € X be such that ur(14) > 0. Recall that the function defined
by g% (x) == P {3/ l{x,ea} = +oo} for any 2 € X is a P—harmonic function, see (9).
Thus, under Condition A = 0, we know that g% is constant on X from Theorem 4.1. We
have to prove that g% = 1x, namely that g3 (z) = 1 for at least one z € X.

Let ga be defined by: Vo € X, ga(z) := Py{T4 < oo} where Ty :=inf{n > 0: X,, € A}
is the hitting time of the set A. Recall that g4 is superharmonic, i.e. Pga < g4, and
that g% = lim, N\, P"ga, see (10)-(11). Let n > 0. It follows from P(P"gs) < P"ga
and Lemma 4.4 applies to P"g4 that the non-negative function P"g4 — P"tlg4 is such
that pr(P"ga — P""'ga) = 0. Thus there exists E, € X such that pg(lge) = 0 and
Pga = P""lg4 on E,. Now let E := N,>0E,. Then we have pz(1ge) = 0 and

Vo€ B, Vn>0, ga(z)=(P""ga)(x).

Passing to the limit when n — 400 we obtain that every x € E satisfies g% (z) = ga(x).
Finally we get from pgr(lge) = 0 that pr(lang) = pr(la) > 0, and we know that g4 = 1
on A from the definition of g4. Therefore there exists a « € X such that g% (x) = 1. Thus
g% = 1x since g% is constant on X. The proof of Theorem 4.3 is complete. 0

Corollary 4.5 If P satisfies Condition (M, ), is irreducible and recurrent, then the re-
striction Py of P to the pur—full P—absorbing set H := {h$y = 0} is Harris-recurrent.

The proof of Corollary 4.5 is based on Lemma 4.2 and on the following lemma.

Lemma 4.6 Assume that P satisfies Condition (M, ) and is irreducible. If v(hyy) = 0,
then the set H := {h3 = 0} is P—absorbing and pr—full.

Proof. Since v(h$) = 0 the set H is non-empty. Moreover it follows from v(h3) = 0 and
Rhyy = hiy that Phyy = hyy. Then we have

Ve e H, 0=hy(z)=(Phy)( /h°° P(x,dy)

hence P(x, H¢) = 0, i.e. P(z,H) = 1, for any x € H. Thus H is P—absorbing. That H is
wr—full follows from Proposition 3.16. U
Proof of Corollary 4.5. We have v(h3) = 0 and pg(v)) = 1 from Corollary 3.9. It follows
from Lemma 4.6 that H := {h}y = 0} is P— is absorbing and pugp—full. From Lemma 4.2
applied to the set H, we know that Py satisfies Condition (M, 4, ) and that hE, =0 on

H from the definition of H. Consequently the last assertion of the corollary follows from
Theorem 4.3 applied to the Markov kernel Py on (H, X ). O

4.2 Convergence of iterates: the aperiodic case

Set D :={z € C: |z| < 1}. If P satisfies Condition (M, ), then the following power series

+oo
p(z) =Y v(R"'y)z" (37)
n=1
absolutely converges for every z € D since u(¢) = zj’) v(RF)) < oo from Proposition 3.4.

If moreover P is irreducible, then this power series p is non-zero since > /%% V(R")) =
v(3°72% R™p) > 0 from monotone convergence theorem and Assertion 1. of Lemma 3.10.
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If P satisfies Condition (M, ) and is irreducible, then P is said to be aperiodic if p(z)
defined in (37) is not a power series in z? for any integer ¢ > 2. Using the notation g.c.d. for
greatest common divisor, this aperiodicity condition is then equivalent to

ged {n>1:v(R"1y)>0} =1 (38)

Note that this condition obviously holds when P is strongly aperiodic, i.e. v(¢)) > 0. In
Subsection 4.3, under Conditions (M, ) and hy = 0, various equivalent conditions for
aperiodicity are provided by Theorem 4.14. Actually, Assertion (b) of Theorem 4.14 shows
that the aperiodicity condition does not depend on the choice of the couple (v, ) in Condition
(M, ). Assertion (c) of Theorem 4.14 shows that aperiodicity condition is equivalent to the
non-existence of d-cycle sets for P with d > 2.

When P satisfies Condition (M, ) with puz(1x) < oo, is irreducible and aperiodic, the
convergence of probability distributions (0, P"™),>¢ to mx in total variation norm is shown
to be equivalent to the property hyy = 0 in the following theorem. As a corollary, the
convergence of the probability distributions (0;P™)n>0 to my holds for mz—almost z € X.
Recall that under these assumptions, 7 is the unique P—invariant probability measure from
Assertion 3. of Theorem 4.1.

Theorem 4.7 Let P satisfy Condition (M, ) with pr(1x) < oo. If P is irreducible and
aperiodic, then the following equivalence holds:

Ay =0 <= Vo eX, lim [6,P"—nrg|ry =0.
n — +0o

Corollary 4.8 Let P satisfy Condition (M, ) with pr(1x) < oco. If P is irreducible and
apertodic, then
lim |0,P" — 7g|lrv =0  for mp—almost every x € X.
n — +00

Proof of Corollary 4.8. From Theorem 3.6 we have pg()) = 1, so that v(h3) = 0 from (24).
Then we know from Lemma 4.6 that the set H := {h$y = 0} is P—absorbing and pz—full.
From Lemma 4.2 applied to £ = H, it follows that Py satisfies Condition (M, 4, ) with
hg, = 0 from the definition of H, and that g.c.d.{n > 1: v (R ") > 0} = 1 since
v (R4 Yy) = v(R"'4). Thus Py is irreducible from Theorem 4.1 applied to Py, and
Py is aperiodic too. Finally note that the positive measure Zﬁ;’g VHRI]} is the restriction
g p Of pir to the set H, so that g (h) = 1 since pur(¢0) = 1 and H is pp—full. Moreover
the restriction 7g 7 of 7z to H is a Py—invariant probability measure on (H,X ). Hence
Theorem 4.7 applied to Py shows that, for every x € H, we have lim,, |0, Pf; — 7r g ||7v = 0.
Finally, since we have for every x € H and A € X

P"(w, A) — ma(1a) = P (2, AN H) = 7p(Lang) = Pz, AN H) — 7y (Lanmr)

we obtain that: Vo € H, limy, ||0,P" — mr|/7v = 0. This provides the expected conclusion
since mg(lp) = 1. O
Proof of Theorem 4.7. The proof follows from the two next lemmas. Indeed assume that
hyy = 0. Then lim, P™) = mz(1))1x (point-wise convergence) from Lemma 4.9, thus the
desired convergence in total variation norm holds from Lemma 4.11. Conversely assume
that, for every = € X, we have lim,, , { ||[0;P" — mg|l7y = 0. Then it follows from the
definition of || - ||7y that lim, — 4 (P™)(z) = 7mr(1)) since 9 is bounded. Thus A%y = 0 from
Lemma 4.9. g
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Lemma 4.9 Let P satisfy Condition (M, ) with pr(lx) < co. If P is irreducible and
aperiodic, then

hy =0 < lim (P™)=mr(¢)1lx (point-wise convergence).

n — +0o

Proof. The following power series

+o0 oo
P(z) = Z Z"P")p and R(z):= Z 2"R"
n=0 n=0

are well-defined on D since v is bounded. Note that P(z) and R(z) are function series. From
the kernel identity (16) applied to 1 it follows that

Vze D, Pz ZZNP”¢ — ZananrZ Z (RF=14p) P
n=1

= R( )+ p(2)P(2)-

where p(z) is the power series defined in (37). Using uxr(¢) = 3725 v(RF14) = 1 from
Theorem 3.6, we have: Vz € D, |p(z)| < 1 where D = {z € C: |z| < 1}. Thus

1
1—p(z)
Next, for any k > 1, we have v(R*1x) = v(R"1(Rlx)) = v(RF11x) — v(1x)v(RF1¢) from
RlX = 1X - V(lx)¢. Thus,

VE>1, v(x)r(RFY) = v(RF1x) — v(RF1x)

Vze D, P(z)=R(z)U(z) with U(z):= (39)

and
vn>1, v(lx)) kv(RFly) = k[u(Rkillx) - V(Rklx)]
k=1 k=1
n n+1
= > kv(RFx) =D (k- 1R x)
k=1 k=2

S

= v(RFx) — nv(R"1x).

i
I

Hence m = 32 kv(RF 1) < pur(lx)v(1x) ™' < oco. Now recall that > % v(RF 1) = 1
and that p(z) is not a power series in z9 for any integer ¢ > 2 since P is assumed to
be aperiodic. Consequently the Erdos-Feller-Pollard renewal theorem [ | provides the
following property for the power series U(z) = 125 ug2* in (39):

. 1
lim wup = —.
k — 400 m

Let 2 € X. Identifying the coefficients of the power series in Equation (39) (Cauchy product),
we obtain that for every n > 0

(P™)(x Zun w(R Zvn k)(RF)(z)  with Yk >0, va(k) = wp_glig (k).
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For every k > 1, we have lim,, v, (k) = 1/m, and |v, (k)| < sup; |u;| < co. Moreover recall
that Y ;7 °5(R*)(¥) < oo from Proposition 3.4. Then it follows from Lebesgue theorem
w.I.t. dlscrete measure that

+o00

Vo e X, lim(P")(z) = %Z(Rkw)(:r). (40)

k=0

Now we can prove Lemma 4.9. If h%y = 0, then we have Z 2 (RF)(z) = v(1x) 7! from (34).
Hence (40) provides: Vz € X, lim, (P")(z) = (mv(1x))™? Actually the constant (mv(1x))~*
equals to mx(¢) from Lebesgue theorem w.r.t. the P—invariant probability measure 7. The
direct implication in Lemma 4.9 is proved. Conversely, assume that lim, P") = mz(¢)1x
(point-wise convergence). Then we deduce from (40) that S°/°0 RFi) = clx with ¢ =
mmr(y). Thus by = d1x with d = 1 — cv(1x) from (23). Finally recall that ug(v) = 1, thus
v(hy) =0 from (24). Hence dv(1x) = 0, from which we deduce that hyy = 0. O

Remark 4.10 From the proof of Lemma 4.9 we deduce the following facts. If P satisfies
Condition (M) with ur(1x) < oo, then m = S5 kv(RF 1) < co. If moreover P is
irreducible and aperiodic and if hs = 0, then m = (wx(v)v(1x))~!. Finally mention that, for
the direct implication in the equivalence of Lemma 4.9, the renewal theorem in [ , Th 1,
p330] can be directly applied too.

Lemma 4.11 Assume that P satisfies Condition (M, ) and pr(1x) < oo. If hyy =0 and
lim,, P = mx(¢)1x (point-wise convergence), then lim, |0 P —7g||7yv = 0 for every z € X.

Proof. Using (16) and mp = mx(¢0) S5 vRF™! (see (25)), we have for every n > 1 and g € B

n “+o00
P"g —mr(g)lx = R'g+ > v(R"g)(P" " — ma(¢h)1x) — ma(t) < > u(R’Hg>) Lx.
k=1 k=n+1
Thus
n “+o00
162 P" =7y < (R™M1x)(@)+ Y w(RM M x) (P F) () = ma (@) |[+7a() D (R 'x).
k=1 k=n+1

We have lim,,(R"1x)(x) = 0 from Ay = 0. The last term in the right hand side of the previous
inequality also converges to zero when n — +o00 since /%0 v(RF1x) = pr(lx) < oo. Next
note that

n

ST U(RF 1) | (PR () — \_Z (R '1x) (k)

k=1 k=1

with f,,(k) := |(P" ) (z) — Tr(Y)|1[1,n) (k). Then, using S v(RF1x) < oo, the above
sum converges to zero when n — +oo from Lebesgue’s theorem w.r.t. discrete measure since,
for every k > 1, we have f,(k) < 2||¢||1, and lim,, f,(k) = 0 by hypothesis. Lemma 4.11 is
proved. U

27



4.3 Convergence of iterates: the periodic case

Assume that P satisfies Condition (M, ) and is irreducible. Recall that the power series
p(z) given in (37), namely
+oo

p(z) =Y v(R" )"

n=1

is defined on D = {z € C: |z| < 1} and is non-zero. Define
d:=gcd {n>1:v(R"1) >0} (41)

where g.c.d. stands for greatest common divisor computed on a non-empty set. If d = 1,
then P is aperiodic according to the definition of Subsection 4.2. If d > 2, then P is said
to be periodic: In this case p(z) is a power series in 2?. Under Conditions (M, ) and
h3 = 0, Integer d in (41) can be called the period of P without any ambiguity. Indeed under
these two conditions, various equivalent characterizations of Integer d in (41) are presented
in Theorem 4.14 below. Actually, from Assertion (b) of Theorem 4.14, the value of d does
not depend on the choice of the couple (v, 1) in the minorization condition (M, ).

Recall that Conditions (M, ), hy = 0 implies that P is irreducible and if moreover
tr(lx) < oo then 7 is the unique P—invariant probability measure from Theorem 4.1. Under
these three conditions, the convergence in total variation norm of the probability measures
Zf;(l) 6, P™F" to 7, is obtained in the next theorem. In fact the two next statements are
the natural extensions to the periodic case of Theorem 4.7 and Corollary 4.8.

Theorem 4.12 Let P satisfy Condition (M, ;) with pr(lx) < oo and hy = 0. If P is
periodic with period d > 2 (see (41)), then the following convergence holds:

d—1
VeeX, lim ||mg— éZamP"d”HTV =0.
r=0

n — 400

The proof of Theorem 4.12 is similar to that of the direct implication of Theorem 4.7 (where
d =1). When d > 2, the proof is just a little more technical, since we have to work with the
sums éZf;é 8, P™7 This proof is postponed in Appendix B.

Corollary 4.13 Let P satisfy Condition (M, ) with pr(lx) < oo. If P is irreducible and
periodic with d > 2 in (41), then the following convergence holds :

d—1
lim HWR — 7 Z(SxP”d”HTV =0 for mp—almost every x € X.
r=0

n — 400

Proof. Using the restriction Py of P to the pz—full P—absorbing set H := {hy = 0} from
Lemma 4.6, Corollary 4.13 is deduced from Theorem 4.12 proceeding as for Corollary 4.8:
Use g.ed. {n > 1 : vg(Ry "g) > 0} = d from vg(RY  y) = v(R" '), and apply
Theorem 4.12 to the sums éEf;é 8- P to conclude. O

In the next statement the space B = By, is extended to complex-valued functions, i.e.:

B(C) := {g : X— C, measurable such that ||g||1, := sup|g(z)| < oo}
zeX
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where | -| stands here for the modulus in C. Recall that z € C is said to be an eigenvalue of P
on B(C) if there exists a non-zero function g € B(C) such that Pg = zg. Finally recall that
P is irreducible under Conditions (M, ) and hjy = 0 from Theorem 4.1, so that the positive
integer d = g.c.d. {n > 1: v(R" 1)) > 0} in (41) is well-defined in the next statement.

Theorem 4.14 Assume that P satisfies Condition (M, ) and hy = 0. Let p(z) be the
power series given in (37), and let d := g.c.d.{n > 1 : v(R" ') > 0}. Then the following
assertions holds and are equivalent:

(a) The complex numbers z of modulus one satisfying p(z) = 1 are the d—th roots of unity.
(b) The eigenvalues of modulus one of P on B(C) are the d—th roots of unity.

(¢) There exist a pr—full P—absorbing set E € X and sets Cy,...,Cq_1 in X such that

d—1
E=||Cy with ¥£=0,....,d=1, Yz €Cy Plx,Cryy) =1
=0

using the convention Cyq = Cj.

Under Condition (M, ) and hjy = 0, that any of the three equivalent conditions (a)-(c)
characterizes the period of P, is obvious. Indeed, assume that P satisfies Assertion (a) for
some d > 1, and set d' := g.c.d. {n > 1: v(R" 14) > 0}. Then the complex numbers z of
modulus one satisfying p(z) = 1 are the d'—th roots of unity from Theorem 4.14, thus d’ = d.

The proof of Theorem 4.14 is based on the following two lemmas.

Lemma 4.15 Let P satisfy Condition (M, ) and hyy = 0. Let z € C be such that |z| = 1.
Then z is an eigenvalue of P on B(C) if, and only if, we have p(z) = 1. Moreover, if any of
these two conditions holds, then

+oo
E.:={g€B(C): Pg=2g} =C-vp. with t.:=» 2z *VRky,
k=0

Proof. First note that, for any z € C such that |z| = 1, the above function QZZ is well-defined
and belongs to B(C) from Proposition 3.4. Moreover observe that

—+00

v(:) = 3 e (R = p(= ), (42)

k=0

the exchange between series and v—integral being valid since 22:08 v(R*) < oo from Propo-
sition 3.4. Now, let z € C, |z| = 1, and let g € B(C), g # 0, be such that Pg = zg. Thus we
have v(g)y = (21 — R)g from P = R+ 1 ® v. Then we have for every n > 0

V(g) Z Z*(kJrl)Rkw _ (Z Z(/CJrl)Rk) (ZI _ R)g _ Z Z*kng _ Z Z*(kJrl)RkJrlg
k=0 k=0 k=0

k=0
= g—z (M Rntly (43)
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Moreover we have |R"g| < ||g||14,R"1x, so lim, R"g = 0 (point-wise convergence) from Con-
dition h$ = 0. Hence g = V(g){/;z, with v(g) # 0 since g # 0 by hypothesis. From (42)
it follows that v(g) = v(g)p(z~1), thus p(z~!) = 1, or equivalently p(z) = 1 from 27! =z
(the conjugate of z) since |z| = 1 and the coefficients of the power series p(-) are real (even
non-negative).

Conversely let z € C, |z| = 1, be such that p(z) = 1, thus p(z~') = 1. From (42) we have
v(1,) = 1. Using P = R+ ¢ ® v and Lebesgue’s theorem w.r.t. R(x,dy) for each z € X we
obtain that

+oo
P?Zz =z Z 2~ (RF2) Rh+1y, 4 V(?Zz)w = Z(QZZ — z_lw)iﬁ +1 = 21;2.

k=0

Thus z is an eigenvalue of P on B(C) since 1, # 0 from v(1,) = 1. The claimed equivalence
in Lemma 4.15 is proved. The last assertion follows from the first part of the proof, where
we obtained that any g € B(C) such that Pg = zg with |z| = 1 satisfies g = v(g),. O

Lemma 4.16 Let P satisfy Condition (M, ) and hyy = 0. Let z € C be such that |z| = 1.
Then we have p(z) = 1 if, and only if, z is a d—th root of unity with d given in (41).

Proof. Recall that pg(¢) = St v(R"1¢) = 1 from Theorem 4.1. Assume that p(z) = 1.
Then

+oo +oo
S uR) A =1=> v(R" ).
n=1 n=1

Writing 2z = ¢ with 6 € [0,27) we obtain that >/ (1 — cos(nb))v(R" ') = 0. Define
the set N := {n > 1: v(R"19) > 0}. Then n € N implies that cos(nf) = 1. Equivalently
we have: Vn € N,2" = 1. Next from the definition of d, for p large enough there exists
{n;};—; € N? such that d = >°%_, kjn; for some {k;}’_, € ZP (Bézout identity). Thus we
have z¢ = 521 2k =1 since 2™ = 1. Hence z is a d—th root of unity.

Conversely, let z be a d—th root of unity, i.e. 22 = 1. From the definition of d it then
follows that p(z) = S0 v(RFI14) 244 = 1y (y) = 1.

O
Now we prove Theorem 4.14.

Proof of Theorem 4.14. Assertion (a) is proved in Lemma 4.16, and the equivalence (a) < (b)

follows from Lemma 4.15. Now let us assume that P satisfies Assertion (b). Let z4 = e2im/d,
Vg = 305 zg (kH)Rk@Z), and let ¥ (resp. ¥q,1) denote the real (resp. imaginary) part of

the function 4. Then it follows from (34) that
Va0 < [Ya] < ZRk¢ = v(lx) '1x.
k=0

Since z, is an eigenvalue of P on B(C) we have p(z;') = 1 from Lemma 4.15, thus v(hg) =1
from (42). Then we have v(g0) = 1 = v(v(1x) 1x), so that the following equalities hold
v—a.e. on X: g9 = v(1x) 'x and ¢g; = 0. Now define g4 := v(1x)14. From the above
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we know that |g4| < 1x and that the set Cp := {gq = 1} is non-empty. Moreover we have
Pgq = z4394 from Lemma 4.15. Let z € Cy. Then

1= ga(a) = ) [0 iy, gy

with |ga(y)/z4] < 1 for every y € X since |z4| = 1. It follows that P(x,C;) = 1 where
Cy = {z € X : gq(z) = z3}. Replacing the set Cy with C1, we can similarly prove that,
for every x € Cy, we have P(x,C) = 1 where Cy := {z € X : gq(z) = 23}. Repeating

this arguments provides the existence of sets Cy,...,Cy_1 in X satisfying the desired cycle
property: V¢ = 0,...,d — 1, Vo € Cy, P(xz,Cpy1) = 1. These sets are obviously disjoint.
Finally define £ := zl;é Cy. This set is P—absorbing since, for every x € F, there exists

a (unique) ¢ € {0,...,d — 1} such that x € Cy, so that 1 = P(z,Cyp41) < P(z,E) < 1,
thus P(z,E) = 1. Since P is irreducible from Theorem 4.1, the set E is puzp—full from
Proposition 3.16. We have proved that (b) implies (c).

It remains to prove that (c) implies (a). Assume that P satisfies Assertion (c) and let Pg
be the restriction of P to the uz—full P—absorbing set E = LI?;&Cg. Let z be any d—th root
of unity and define gg : £ — C by

V0=0,...,d—1, Vo € Cy, gE(:z:):zé.

Then we have for every £ =0,...,d—1 and z € Cy
(Pegs)(e) = [ ap)Plady) = [ g6 PGa.dy) = 21 = 2g5(a)
2+1

since P(z,Cpy1) = 1 and gg(z) = 2¢, recalling moreover for the case £ = d — 1 that Cy = C
by convention and that 1 = 2%, Thus Prgr = zgp. Next recall that pg(y) = 1 from
Theorem 4.1. It then follows from Lemma 4.2 that Pg satisfies Condition (M, ,,) on
(E,XE), that =0 on E from the assumption hj = 0, and finally that

+oo
VzeD, pp(z)=> ve(RE 'Yg) "= p(2).
n=1

We can now conclude. Since z is an eigenvalue of Pg, Lemma 4.15 applied to Pg ensures that
pE(z) =1, so p(z) = 1. We have proved that, under Condition (c), any d—th root of unity
satisfies Equation p(z) = 1. Moreover we know from Lemma 4.16 that any z € C satisfying
|z| =1 and p(z) =1 is a d—th root of unity. Thus (c) implies (a). O

4.4 Drift condition to obtain Ay =0

Now, we introduce a drift condition to have the property h := lim, R"1x = 0, the relevance
of which has been highlighted in Theorems 4.1, 4.3, 4.7, 4.12. Actually, under a drift inequality
w.r.t. some measurable function W : X—|0, +00), the property hy = 0 is characterized in
Proposition 4.17 by a control of A% or 370 RF1) on any level set W, := {z € X: W(z) <r}
of W. Finally, a condition ensuring this control is provided by Corollary 4.18.

Proposition 4.17 Let P satisfy Condition (M) and the following drift condition for some
measurable function W : X —[0, +00):

3 >0, PW<W +by. (44)
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For any r > 0 let W, denote the level set of order r defined by: W, == {x € X: W(x) <r}.
Then we have the following equivalences

—+00

hiy =0 <= Vr>0, sup hif(z) <1 <= Vr>0, inf Y (RF¢)(z) > 0. (45)
zeEW; €W =0

Proof. The second equivalence in (45) follows from (23). That hy = 0 implies the sec-
ond condition in (45) is obvious. It remains to prove that the second condition in (45), or
equivalently the third one, implies that hy = 0.

In the sequel, the third condition in (45) is assumed to hold. First prove that we have the
following point-wise convergence on X

Vp >0, limR"ly, =0. (46)

Let p > 0 and define a = a, := inf,ep, 720 (REp) (). By hypothesis we have a > 0 and
Iy, <a™? S 720 REap, from which we deduce that

+oo
Vn>1, 0<R'y, <a'> R

k=n
from the monotone convergence theorem w.r.t. R"(z,dy) for each x € X. Property (46) then
holds since the series Z;ﬁg RF1) converges point-wise from Proposition 3.4.

Next note that v(IW )y < PW everywhere on X from (M, ), so that v(W) < oo and RW
is well-defined. Let d := max(0, (b —v(W))/v(1x)) and prove that

RW,; < Wy where Wy := W + dlx. (47)

Note that v(Wy) = v(W) + dv(lx) < oo and that PW; = PW + dlx. It then follows from
RWy = PWy —v(Wy)y and from the drift inequality (44) that

RWy < W +bip+ dlx — (v(W) + dv(1x)) < Wa+ (b— v(W) — dv(1x))¥

so that RW,; < Wy from the definition of d.
Now let us deduce from (46) and (47) that hyy = 0. Let r > d with d given by (47). We
have

Wy
Ix = Lzexwy(a)>ry + Hzexwy@)<ry < -t Iw,_4-

Thus we get

n

Wq

W,
Vn>1, R'x< + Ry, , < Td + Ry,

from the non-negativity of R and from R"W,; < W; using (47) and an immediate induction.
Let z € X, ¢ > 0, and fix r > d large enough so that Wy(x)/r < £/2. From (46) applied to
p =1 —d, there exists N > 1 such that, for every n > N, we have 0 < (R"1yy, _,)(x) < e/2.
Thus: Vn > N, 0 < (R"1x)(x) < e. This proves that h$y = 0.

U

We conclude this section providing an alternative sufficient condition for A}y = 0. Let us
consider the Markov resolvent kernel @ defined in (30), i.e. Q := > 2=(n+1) pn,
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Corollary 4.18 Let P satisfy Condition (M, ) and the drift condition (44) for some mea-
surable function W : X —[0, +00). If the following condition holds

vr> 0, inf (Qu)(@) > 0. (48)

then hy = 0.

Proof. Below we prove that the third condition in (45) is fulfilled. The claimed conclu-
sion then follows from Proposition 4.17. Recall that ¢ € B’ , so that Qi and the series
Z:{i% 2=+ Ry are well-defined. Using (31) with ¢ in place of 14,we obtain that

“+o0o
Qv =" 2" "R+ aQy

n=0

where o := 320 27Fy(RF~14)). Note that, either a = 0, or a < pgr(1)) < 1 from Proposi-
tion 3.4, so that

“+o00
D 2R = (1-a) QY with 1 —a > 0.

n=0

Now let r > 0 and a = a, := inf ey, (Q)(x). We have a > 0 from (48), and

+00 +o00
YreWs, D (RM)(@) 2 27 ®HI(RM)(2) = (1 - a) (QY)(@) = (1 —a)a>0.
k=0 k=0
The third condition in (45) is proved. O
Condition (48) on @ is obviously satisfied under the following stronger condition
Vr >0, 3g=q(r) > 1, g}/{'} (P%))(z) > 0. (49)

Note that requiring Condition (49) means requiring that the irreducibility property for P (see
(28)) holds uniformly on each level set W,. This condition is relevant only for unbounded
function W. Indeed, otherwise, the set W, is the whole space X for r large enough, and in this
case Condition (49) is restrictive since it requires that inf,ex(P%)(x) > 0 for some g > 1.
If X is discrete (say X = N) and W = (W(n))nen is an unbounded increasing sequence, then
the sets W, are finite: In this case, Condition (49) holds if, and only if,

VseN, dg=q(s) > 1, Vie {0,...,s}, (P%)(i)>0.

If X is a non-discrete topological space, then a natural assumption for Condition (49) to be
fulfilled is that, for every r > 0, the set W, is compact. However this is not sufficient. An
additional natural assumption is that P is weakly Feller (i.e. if g € B is continuous on X,
then so is Pg). Under these two assumptions, Condition (49) actually holds provided that
there exists a bounded and continuous function g such that 0 < ¢y <1 and

Vr >0, dg=q(r) > 1, Ve e W,, (Ply)(x) > 0.

Indeed the continuous function P%)g then reaches its lower bound on the compact set W,.,
and this lower bound is thus positive under the previous condition.
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4.5 Bibliographic comments

In the present bibliographic discussion we assume that P is irreducible. The uniqueness of 1x
(up to a multiplicative constant) as P—harmonic functions is classically studied in link with
the Harris-recurrence assumption. This is done in | , Th. 3.8, p. 44], | , Th. 17.1.5]
and [ , Th. 10.2.11], essentially using the fact that, for a Markov chain (X, ),>0 on
X and for every A € X, the function g% : z — P,{X} € A io0.} is a P—harmonic function,
where i.0. stands for infinitely often. Similarly, under the aperiodicity condition, the Harris-
recurrence assumption is classically used to prove the convergence in total variation of the
iterates of P to its (unique) invariant probability measure 7 (i.e. Vz € X, lim,, |0, P"—7||rv =
0). This is proved in [ , Ths. 13.0.1, 13.3.5] and | , Th. 11.3.1] via renewal theory
and splitting construction, also see | , Th. 4] for a proof based on coupling method.

In this section we choose a different approach, first focusing on function hg := lim, R"1x
introduced in the previous section. Indeed the condition A%y = 0 enables us to prove the
above conclusion on P—harmonic functions (Theorem 4.1), from which the Harris-recurrent
property can be derived in Theorem 4.3 using the fact that for every A € X the function
x — Py{X}; € A io.} is P—harmonic (no surprise there). In the case when measure pp
is finite and P is aperiodic, the condition A% = 0 is proved to be equivalent to the above
mentioned iterate convergence in total variation (Theorem 4.7). So, to put it simply, the
presentation in this section and the resulting statements focus on the condition hy = 0
depending on the residual kernel R, rather than on the Harris-recurrence property. However
note that the proof of Theorem 4.7 is original: Actually Property (23) and the power series
formula (39) simply derived from the key equality (16) allow us to directly apply the renewal
theorem proved in the seminal paper | | by Erdos, Feller and Pollard, to the power
series p(z) in (37) used to define the aperiodicity condition.

If P is recurrent, then the P—harmonic functions are still constant, but up to a negligible
set w.r.t. to some maximal irreducibility measure, e.g. see [ , Prop. 3.13, p. 44]. In
the same way, if P admits an invariant probability measure 7, so that P is recurrent from a
classical result (e.g. see | , Th. 10.1.6]), then the property lim,, ||0;P" — mg|7v = 0 is
known to hold for 7—almost every = € X, e.g. see | , Th. 11.3.1] and | , Pp- 32-
33]. This is here highlighted using the explicit set H = {h}y = 0} which is P—absorbing and
pr—full under the recurrence condition (see Corollary 4.5 and the proof of Corollary 4.8).
Complements using splitting construction can be found in | , Cor. 5.1, p. 71].

Under the irreducibility condition the d-cycle property for P stated in Assertion (c¢) of
Theorem 4.14 is the standard definition of the period of P, see [ , p. 114] and | ,
Def. 9.3.5]. In our work, under Condition (M, ) and irreducibility condition, Integer d is
defined by d := g.c.d. {n > 1: v(R" 14) > 0}. Then the alternative characterizations of this
integer d, in particular the d-cycle property for P, are proved under the condition A%y = 0 in
Theorem 4.14. The convergence in total variation norm stated in Theorem 4.12 corresponds
to the standard statements | , Th. 13.3.4] and | , Cor. 11.3.2], except that the
condition h = 0 is used here in Theorem 4.12 instead of the Harris-recurrence condition in
[ , ]. In the same way the mz—a.e. convergence in total variation norm obtained

in Corollary 4.13 corresponds to the standard results in | , Th. 13.3.4] and | ,
Cor. 11.3.2]. Again the direct use of the up—full P—absorbing set H = {h$; = 0} provides a
short proof of Corollary 4.13. The proofs in | , Th. 13.3.4] and | , Cor. 11.3.2]

are based on the d—cycles property given in Assertion (c) of Theorem 4.14. However, since
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the set E of Theorem 4.14 is not the whole set X a priori (F is only pz—full), additional work
is then required to obtain the conclusion of Theorem 4.14 (i.e. convergence for all x € X). The
proof given in Appendix B does not rely on the d—cycles property: it adapts the arguments of
the direct implication of Theorem 4.7 to the periodic case, thus directly giving the conclusion
of Theorem 4.14.

The sufficient condition provided in Proposition 4.17 for the condition A} = 0 to hold is the
analogue of the standard statements ensuring that P is recurrent or Harris-recurrent under
drift condition, e.g. see | , Prop. 5.10, p. 77], | , Th. 8.4.3] | , Th. 10.2.13].
More precisely the drift inequality (44) in Proposition 4.17 is the same as in the previously
cited works. Moreover Condition (45) in Proposition 4.17 replaces the classical assumption
that W is unbounded off petite set (i.e. each level set W, := {WW < r} is a petite set). This
last condition means that, for every r > 0, there exists a := (an), € [0, 1]N with Y- % a, =1
and a positive measure v, , such that Q, > 1w, ® v, where Q, := :Lri% an P™. Expressed
with a, = 2~(™1 this assumption is clearly stronger than Condition (48) in Corollary 4.18,
which only focusses on the lower bound of the function Qv on W, (no minorizing measure
is involved in (48)).

Before diving into the details of the modulated drift condition used in the next sections, let
us present some comment on the probabilistic meaning of the simpler drift condition (44). Let
(Xn)n>0 be a Markov chain with state space X and transition kernel P. Let W : X —[0, +00)
be measurable. For any r > 0 the set W, = {x € X : W(x) < r} must be thought of as the
level set of order r in X w.r.t. the function W. Since (PW)(z) = E,[W(X;)] for any z € X,
the Markov kernel P satisfies Condition (44) with ¢ = 1y, for some s > 0 if, and only if,

sup Ex[W(X1)] <oo and VoeX\W,, E[W(X1)]<W(a). (50)

The second condition in (50) means that, for any r > s, each point « € X such that W (z) =r

transits in mean in W,. If X = R is equipped with some norm | - ||, then W may be of the
form W = v(|| - ||) with unbounded increasing function v : [0, +00) —[0, +00). In particular,
if W = || -], then the second condition in (50) means that, starting from = € R far enough

from the origin, the state visited after a first transition of the Markov chain admits in mean
a norm less than ||z||, namely is closer to the origin. For a random walk on N, it means
that, for 7 large enough, the steps of the walker starting from ¢ are in mean more to the left
than to the right, namely it tends to go back towards 0. In case X = Z and W (z) = |z, a
typical illustration of the explicit computations needed for obtaining the drift inequality (44)
can be found in [ , Sect. 8.4.3 ] for random walks with bounded range and zero mean
increment. If (X, d) is a metric space and W (z) = d(z, xo), level sets are the balls centred at
xo. However the possibility of considering other level functions more suited to the transition
kernel (i.e. possibly considering level sets other than balls) offers flexibility for the validity of
Conditions (50) or of the modulated drift condition involved in the next sections.

5 Modulated drift condition and Poisson’s equation

Throughout this section, the Markov kernel P is assumed to satisfy the minorization Con-
dition (M, ). Then, the following V;—modulated drift condition is introduced: PV, <
Vo — Vi + by with some measurable function Vp : X —[1,+00) and the so-called modulated
measurable function V; : X —[1,+00). The minorization condition is the first pillar in this
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work, this modulated drift condition is the second one. Note that the modulated drift con-
dition is a re-enforcement of the drift inequality (44) of Proposition 4.17.

Under the minorization Condition (M) and the Vi—modulated drift condition, the
convergence of the series Z;ﬁ% RFV; is proved in Theorem 5.4 thanks to an auxiliary V-
modulated residual drift inequality following the same lines as for (47). Then the series

Zi?) RF1x converges point-wise since 1x < Vi, so that the function A% := lim, R"1x (see
(19)) is zero on X. Under the same assumptions it is also shown in Theorem 5.4 that the
positive measure up given in (20) is finite (i.e. pr(lx) < 00). Accordingly, when Condi-
tion (M, ) and the Vi-modulated drift condition are assumed to hold, all the conclusions
of Theorems 4.1, 4.3, and Theorem 4.7 or 4.12 hold true, that is:

(i) The P—harmonic functions are constant on X.
(ii) P is irreducible (see (28)) and recurrent (see (26)).

(iii) The positive measure py (see (20)) satisfies pg(1)) = 1, and is the unique P—invariant
positive measure 7 such that 7(¢) < oo.

(iv) 7r = pr(1x) g (see (25)) is the unique P—invariant probability measure on (X, X),
we have mp(10) > 0, and P is Harris-recurrent (see (35)).

(v) The convergence in total variation of Theorem 4.7 or Theorem 4.12, depending on
whether P is aperiodic or periodic, holds.

However the convergence of the series Z;ﬁ? RFV; actually gives more, in particular it natu-
rally provides solutions to the so-called Poisson’s equation (Theorem 5.6). This is the main
motivation of this section.

5.1 Modulated drift condition D (V;, V1)

Let us introduce the following condition for any couple (Vp, V1) of measurable functions from
X to [1, 400):

dp € Bj_, dby = bo(V(), Vl,w) >0: PV <Vy—Vi+ byt (D¢(Vg, Vl))

This condition is said to be a Vi —modulated drift condition for P, and Vy and V; in D¢(1/(), V1)
are called Lyapunov functions for P. The functions V{, V1,% are assumed to be everywhere
finite, so the function PV} is too. It is worth noticing that the modulated function Vj
must be larger than one for the results of this section to hold. In fact, it is only required
that V4 is non-negative and V; is uniformly bounded from below by a positive constant.
Indeed, if PV < Vj — V{ + /4 for some positive constant ' and some measurable functions
Vo > 0 and V| > clx with ¢ > 0, then Condition Dy (Vp, V1) holds with Vi := V{/c > 1x,
Vo = 1x+ Vj/c > 1x and by := V' /¢ > 0. Moreover observe that if Conditions Dy(Vj, V1) for
some ¢ € B is satisfied then Dy (Vp, V1) holds for any ¢» € B} such that ¢ > ¢ (using any
constant by (Vp, V1,v) larger than by(Vo, V1, ¢)).

In the special case ¢ := 1g for some S € X'*, the above condition writes as

38 € X%, dbg = bo(Vo, V1,15) >0:  PVo < Vo — V1 + bols. (D14(Vo, V1))
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Note that Condition D1 (Vp, V1) implies that V > V; on S¢. In fact Condition D¢ (Vp, Vi) is
equivalent to : There exists S € X such that sup,cge I'(x) < 0 and sup,cg'(x) < oo with the
measurable finite function I'(z) := (PVy)(z) — Vo(x) + Vi(z). Thus if Condition D14 (Vo, V1)
holds, then any constant bg(Vp, V1,1g) > sup,cgI'(z) may be chosen. Finally recall that
Conditions (M, 14) and D14(Vp, V1) are the most classical minorization/drift assumptions
in the literature.

Let us return to Markov kernel P satisfying the assumptions of Proposition 3.1. Then both
Conditions (M ,14 ) and (M, y4) hold with v € M7 , and 1s > 1g given in (14). Moreover, if
P satisfies D 4(Vp, V1), then Condition Dy, (Vp, V1) holds since ¢g > 1g. The next statement
ensures that the constant by(Vp, Vi,1s) may be chosen smaller than by(Vp, Vi, 1g).

Proposition 5.1 Let P satisfy the assumptions of Proposition 3.1 and Condition D14 (Vop, V1)
for some couple (Vy, V1) of Lyapunov functions on X. Then P satisfies Condition D, (Vy, V1)
with ¥g > 1g given in (14), and we can choose

b()(V(thﬂPS) S bO(Vbu‘/l)]-S)‘ (51)

Proof. Since ¥g defined in (14) is such that ¥g > 1g we already quoted that P also satisfies
Condition Dy (Vp, V1). Next, set

r .
bo(V, Vi s) 1= sup L with D(z) := (PVo)(z) — Vi(x) + Vi(a).
zes Vs(x)
Since ¢S Z 157 we have bO(va VI)¢S) S Supxesr('r) S bO(‘/Oa V17 15) U

Example 5.2 (Geometric drift condition) Let us introduce the following so-called V —geo-
metric drift condition (to be discussed in Section 6)

3 e B, 36 € (0,1), I e (0,+00): PV <6V +bap (Gy(5,V))

where V : X—[1,+00) is a measurable function. Again recall that the most classical case is
when Y := 1g for some S € X*, that is

A8 € x*, 35 € (0,1), I € (0,400): PV <5V +blg. (G145, V)

Observe that Gy(0,V) implies that PV < V — (1 — 6)V + by, so that P satisfies the
Vi—modulated drift Condition Dy,(Vo, V1) with Vo :=V/(1=6), V1 :=V and by := b/(1—6).

5.2 Residual-type modulated drift condition

Under Conditions (M, ) and for any couple (V,W) of measurable functions from X to
[1,4+00) such that v(V) < oo, let us introduce the following residual-type modulated drift
condition involving the residual kernel R = R, given in (12):

RV <V -W (R, (V, W)

Note that Condition R, ,;(V, W) rewrites as PV < V—W +v(V)1, which is a specific instance
of Condition D (V,W) with by = v(V). The next simple lemma shows that D (Vp, V1)
generates a residual-type modulated drift condition up to slightly modify Vj. Recall that
the kernel identity (15) used throughout Sections 3-4 and only based on the minorization
condition (M, ) is the first key point of this work. Lemma 5.3 based on the modulated drift
condition Dy, (Vp, V1) is the second key point (already used in the proof of Proposition 4.17
under the weaker drift condition (44)).
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Lemma 5.3 If P satisfies Conditions (M, ) and Dy(Vo, V1), then v(Vh) < oo and for
any constant ¢ satisfying ¢ > (bg — v(Vo))/v(1x) the residual kernel R = R,y given in (12)
satisfies Condition R, (Vo a, V1) with V4 := Vo + dlx > Vo where d = max(0, c).

Proof. We already quoted that PV is everywhere finite under Condition Dy, (Vg, V1), so that
0 < v(Vo)Y(x) < (PVy)(x) for every = € X from (M, ). Then it follows that the function
RV is well-defined and is everywhere finite. Note that v(Vp ) = v(Vp) + dv(1x) < oo and
that PVyq = PVy + dlx. We get from the definitions of R and Vj 4

RVog = PVoua—v(Voa)p = PVo+dlx — (v(Vo) +dv(lx))v

< Vo—Vi+boyp +dlx — (V(Vo) + du(lx))z/) (from Assumption Dy (Vp, V1))

= Vo= Vi+ (bo — v(Vo) — dv(lx))
Vo.i — Vi (from the definitions of ¢ and d).

IN

Hence the proof is complete. O

Under Conditions (M, )-D(Vo, V1) the following theorem provides relevant properties
on the non-negative kernel Z;ﬁ% RF involving the residual kernel R, from which further
statements on P and 7w are obtained. Moreover the bounds (52a)-(52b) below are crucial
for the study of Poisson’s equation in the next subsection.

Theorem 5.4 Assume that P satisfies Conditions (M, )-Dy(Vo, V1). Then

—+o0 —+o0
: bo — (Vo))
< Flx < i< = ———2) (52
0 < kZ_OR x < kZ_OR Vi < (1+do)Vp with dy:= max <O, () (52a)
“+oco —+o00
0 < ) v(RMx) < > v(RW) < (1+do)v(Vh) < 0. (52b)
k=0 k=0

Moreover the conclusions (1)-(v) provided at the beginning of this section hold true, as well
as the following additional assertions:

(vi) The unique P—invariant probability measure g is such that mz(V1) < 0.
(vil) If mr(Vo) < oo, then mr(Vi) < by mr(1)) < by where by is the constant in D (Vo, V7).

(viii) if PVi/Vi is bounded on X, i.e. PBy, C By,, then the P—harmonic functions in By,
(i.e. g € By, such that Pg = g) are constant on X.

Inequalities (52a)-(52b), thus the constant dy, will play a crucial role for the bounds of
solutions to Poisson equation in Subsection 5.3 and for the rates of convergence in Section 6.
Recall that the constant dy depends on the minorizing measure v in (M, ) and on the
constant bo(Vo, Vi, ) in Dy (Vo, V). First prove the following.

Lemma 5.5 Assume that P satisfies Condition (M, ) and that the associated residual ker-
nel R = R,y given in (12) satisfies Condition R, ,(V,W) for some couple of Lyapunov
functions (V,W) such that v(V') < co. Then we have

+oo —+o00

0< ) RMx < Y RW<v (53a)
k=0 k=0
—+o00 “+o00

0< ) v(Rx) < Y v(RW) <w(V) < oo (53b)
k=0 k=0
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Proof. From R, ,(V,W), we derive that 0 < W <V — RV, so that

n n n+1
Vn>1, 0< > R'W <Y RV-> RV<V (54)
k=0 k=0 k=1

since RV > 0. This proves (53a). Next (53b) is obtained using Lebesgue’s theorem. [
Proof of Theorem 5.4. Inequalities (52a)-(52b) directly follow from Lemma 5.3 and from
Lemma 5.5 applied to W =V} and V = V) + dplx with dy = max(0, (bp — v(Vp))/v(1x))
observing that V' < (1 + dp)Vy. Next, the point-wise convergence of the first series in (52a)
proves that Ay := lim,, R"1x = 0 (see (19)), while the convergence of the first series in (52b)
reads as 15 (1x) = 720 v(RF1x) < oo (see (20)). Recall that the conclusions (i)-(v) provided
at the beginning of this section then follows from Theorems 4.1, 4.3 and 4.7. Now prove the
additional assertions (vi)-(viii). That 7(V1) < oo follows from the definition of 7 and from
the second inequality in (52b) which provides (V1) < co. To prove (vii), note that

WR(PVO) = 7TR(VO) < 7TR(VO) - 7TR(V1) + bOTFR(¢)

from the P—invariance of m; and D (Vp,V1). Finally the proof of (viii) follows the same
lines as for Assertion 1. of Theorem 4.1, replacing the function 1x with V; and observing
that P(By,) C By, thus R(By,) C By;, when PV;/V; is bounded on X. Indeed, first

recall that ¥ := 720 REp = v(1x) !y from (34) since by = 0. Now let g € By, be
such that Pg = ¢g. Using R(By,) C By, and proceeding as in Lemma 3.3, we obtained
that v(g) > 1_, RFyp = g — R"tlg for every n > 1. Moreover we have lim,, R"g = 0 since
|R"g| < R"g| < |lgllv, R*Vi and lim,, R"V; = 0 from (52a). Thus g = v(g)¢, from which it
follows that g is constant. O

5.3 Poisson’s equation

When P satisfies Conditions (M, ) and Dy, (Vy, V1), recall that 75 given in (25) is the unique
P—invariant probability measure on (X, X).

Theorem 5.6 Assume that P satisfies Conditions (M, y)-Dy(Vo, V1). Let R = R,y be the
associated residual kernel given in (12). Then the following assertions hold.

1. For any g € By,, the function series g := ;:Of] RFg absolutely converges on X (point-wise
convergence). Moreover we have g € By, and

(55)

- . bo — v(V,
Vg € Bv,, gllv, < (1 +do)llgllv, with dp:= max <O, 0(0))

v(1x)
where by is the positive constant given in Dy (Vo, V).

2. For any g € By, such that mr(g) = 0, the function g satisfies Poisson’s equation
(I—-Plg=y. (56)

Proof. Let g € By,. Using |g| < |lgll,Vai and |RFg| < RF|g| < ||gllv, R*VA4, Assertion
1. follows from (52a). Next, note that 7x(|g|) < oo since mx(V1) < oo from Assertion (vi) of
Theorem 5.4. Now define

n
Vn>1, g.:=Y Ry
k=0
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Then, using P = R + ¢ ® v we have

9n — Pgn = gn — Rgn — V(gn)¢ =9 - Rn+19 - V@nW (57)

We know that lim, R"t!'g = 0 (pointwise convergence) from the convergence of the se-
ries 720 R*g. Moreover, using v(g,) = Yop_ov(RFg) and pr(Vi) < oo, we obtain that
limy, 100 ¥(gn) = pr(g) from Lebesgue’s theorem w.r.t. the measure v. Finally, for every
z € X, we have lim,(Pgy,)(x) = (P9g)(x) from Lebesgue’s theorem applied to the sequence
(gn)n w.r.t. the probability measure P(z,dy) since lim, g, = ¢, |gn| < |lgllv, Vo (from As-
sertion 1.) and (PVp)(x) < oo. Taking the limit when n goes to infinity in (57), we obtain
that

(I —P)g=g— pnr(9)¥. (58)
Next, if we assume that 7z(g) = 0, then Equality (58) rewrites as (I — P)g = g since
wr(g) = mr(g9)/mr(1)) = 0 from (25). Theorem 5.6 is proved. O

For g € By, such that mz(g) = 0, the solution g := ZZ:O?) R¥g in By, to Poisson’s equation
(I — P)g = g in Theorem 5.6 is not mz—centred a priori, i.e. mz(g) # 0. The natural way to
get a mp—centred solution is to define g = g — m5(g)1x, but we then need to assume that g is
mr—integrable. Accordingly, to obtain such a mz—centred solution to Poisson’s equation in
general terms, the assumption 7(Vy) < oo must be made.

Corollary 5.7 Let P satisfy Conditions (M, )-Dy(Vo, Vi) with mx(Vy) < oo. For any
g € By, such that Tr(g) = 0, let g := > 725 R¥g. Then the function § = § — mr(d)1x is a
mr—centered solution on By, to Poisson’s equation (I — P)g = g. Moreover we have

Gllve < (1 + do) (1 + 72(V0)) llgllva (59)

where the positive constant dy is given in (55).

Proof. Let g € By, be such that mz(g) = 0. Obviously we have g € By, and 7z(g) = 0.
Moreover we obtain that (I — P)g = (I — P)g = ¢ from Theorem 5.6 and (I — P)lx = 0.
Finally we have

13lve < (1 + 7= (Vo) [11xllve ) 19llve < (1 + do) (1 + 7=(Vo)) lgllva (60)

using the definition of g, the triangular inequality and [g] < ||g||v, Vb for the first inequality,
and the bound (55) applied to g for the second one. O

Let g € By, be such that mz(g) = 0. Under the assumptions of Corollary 5.7, when a
mr—centred solution g € By, to Poisson’s equation (I — P)g = ¢ is known, and when two
solutions to Poisson’s equation in By, differ from an additive constant, then we have g = g, so
that the bound (59) applies to g. Of course such a solution g may be obtained independently
of the function ¢g. For instance it can be given by g = Zﬁ?) P%g provided that this series
point-wise converges and defines a function of By,. Note that the choice of the minorizing
measure v and of the function ¢ used in Conditions (M, ) and Dy (Vp, V1) of Corollary 5.7
naturally has an impact on the constant dy in (59).

Remark 5.8 Recall that, under Conditions (M, )-Dy,(Vo, V1), the function h3y = lim,, R"1x

(see (19)) is zero from the convergence of the first series in (52a), so that ¢ := S 20 RFqp =
v(1x) "k from (34). So the presence of the term v(1x)~! in the general bound (55) is quite
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natural (it is not due to the proof of Theorem 5.6). This does not mean that the bound of
the Vo— norm of solutions to Poisson’s equation could not be improved. But in fact this last
question is not well formulated since solutions to Poisson’s equation are not unique, and the
solutions given in Theorem 5.6 are very specific: they are defined from the residual kernel R,
in particular they are not wgp—centred (see Corollary 5.7).

Remark 5.9 Assume that P satisfies Conditions (M, 14)-D14(Vo, V1) with Vo > Vi and
inf Vo = 1. Then we have dy = 0 in the bound (55) of Theorem 5.6 if, and only if, S is an
atom, i.e. Ya € S, v(dy) = P(a,dy). Indeed, if S is an atom, then P satisfies D14(Vo, V1)
with by = v(Vp) since Vo > V1. Thus dyg = 0. To prove the converse implication, note that

v(1x) ™' = v(1x) Hixllv, < 1+ do)llLsllv; < (1 + do)

from (55) applied to g :== 1g and (34) with here ¢ = 1g. Hence, if dy = 0, then v(1x) > 1.
Thus S is an atom since, for every a € S, the non-negative measure n,(dy) = P(a,dy)—v(dy)
satisfies nq(1x) < 0, so that n, = 0.

5.4 Further statements

Under Conditions (M, )-Dy(Vo, V1) and the additional condition 7x(Vp) < oo, the sequence
(P"Vp)y, is shown to be bounded in (By, || - ||v;) in the following lemma.

Lemma 5.10 Let P satisfy Conditions (M, )—Dy(Vo, Vi) with mx(Vy) < 0o. Then we have
for everyn > 1:

1911, (7 (Vo) + do)
WR(@ZJ)

Proof. 1t follows from (M, ) and Lemma 5.3 that RVj g, < Vo g, with Vo 4, := Vo + dolx
and R = R, in (12). Using the non-negativity of R and iterating this inequality gives:
Vn > 1, R"Wyq < Voq. From Formula (16) and 0 < P*y < [|9)14 1x, we obtain that

Ix  with ||¢||1; :=sup¥(x), dp := max (0,
zeX v(lx)

Vn>1, P"Voqa=R"Voq+ Z V(RF"Wo 4) PR < Voa + [[9]]15 pir (Vo) 1xc.
=1

with pr = mr/mr(1) given in (25). This provides the desired inequality using the definition
of V.4, Plx = 1x and mx(V)) < oo. O

Now, given any measurable function V; : X —[1, 400), we present a necessary and sufficient
condition for P to satisfy a V;—modulated drift condition.

Proposition 5.11 Assume that P satisfies Condition (M,,;). Let Vi : X—[1,+00) be any
measurable function. Then there exists a measurable function Vy : X —[1,+00) such that P

sastifies Dy, (Vo, Vi) if and only if

+00
Vx € X, /VI(:I:) = Z(Rle)(a:) < oo and I/(/‘}I) < 0 (61)
k=0

where R = R, is the residual kernel in (12).
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Proof. If P satisfies Condition D (Vp, V1) for some Lyapunov function Vj, then (61) holds
true from Theorem 5.4 (in fact we know that val < ¢V for some positive constant ¢). Con-
versely, if V| satisfies (61) with R = R, in (12), then we have (Rval)( ) = va1( ) — Vi(z)
for every x € X from the monotone convergence theorem w.r.t. the measure R(:B dy). Hence
Condition RV¢(V1, V1) holds. Then Condition D¢(V1, V1) holds with by = v(V7).

O

The next statement completes Theorem 3.6.

Proposition 5.12 Assume that P satisfies Condition (M, ;) and is irreducible. Then the
two equivalent conditions 1. and 2. of Theorem 8.6 are also equivalent to the following one:
There exists a P—absorbing and pgr—full set A € X such that the restriction of P to A satisfies
the modulated drift condition Dy, ,(Va,14) for some measurable function V4 : A—[1,400),
where 4 is the restriction of Y to A.

Using Conditions 1. of Theorem 3.6 it follows from Proposition 5.12 that a Markov kernel P
satisfying the minorization condition (M, ), irreducible and admitting an invariant proba-
bility measure 7 such that w(1)) > 0 actually satisfies all the conclusions of Theorem 5.4 on
some P—absorbing and m—full set. Note that the irreducibility assumption on P is only used
to obtain that the P—absorbing set A of Proposition 5.12 is m—full.

Proof. Under Condition M, , let R = R, p be the residual kernel defined in (12). Assume
that Condition 2. of Theorem 3.6 holds, i.e. pg(lx) < oco. Define on X the function V' :=
120 RF1x taking its value in [0, +oc] a priori. Since v(V) = ugr(lx) < 0o, the set

A:={zeX:V(z) <oo}

is non-empty. Moreover, if x € A, then we have (RV)(z) < oo since (RV)(z) = V(x) — 1
from the monotone convergence theorem w.r.t. the measure R(z,dy). We then obtain that
(PV)(z) = (RV)(z) + v(V)Y(z) = V(z) — 1+ v(V)y(x) < oco. This proves that A is
P—absorbing. Since P is irreducible, A is pzr—full from Proposition 3.16. Furthermore,
the previous equality proves that the restriction of P to A satisfies the modulated drift
condition Dy, (V4,14) where V4 is the restriction of V' to the set A.

Conversely assume that the condition provided in Proposition 5.12 holds. Using the fact
that A is P—absorbing and proceeding as in the proof of Corollary 4.5, it can be proved that
the restriction P4 of P to A satisfies on A the minorization condition (M, ,) with small-
function ¥4 and minorizing measure v4 defined as the restriction of v to A. Then it follows
from Theorem 5.4 applied to the Markov kernel P4 that there exists a unique Pa-invariant
probability measure 14 on A and that n4(¢4) > 0 (apply Assertion (iv) to P4). Next let
us define the following positive measure on (X, X): VB € X, n(1p) := na(lanp). Since A
is P—absorbing, 7 is a P-invariant probability measure, and we have n(¢) = na(4) > 0
Consequently Condition 1. of Theorem 3.6 holds for P and Proposition 5.12 is proved.

O

Finally, under Conditions (M, )-Dy(Vo, Vi), the next statement provides a necessary
and sufficient condition for the (unique) P—invariant probability measure 75 given in (25)
to satisfy mx(Vp) < oo.

Proposition 5.13 Let P satisfy Conditions (M, )-Dy(Vo,V1). Then the two following
conditions are equivalent:
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1. mx(Vp) < 0.

2. There exists a P—absorbing and mr—full set A € X and a measurable function L > Vy on A
such that the restriction Pa of P to A satisfies the modulated drift condition Dy, (L, V(')lA),
where Vo, (resp. Ya) is the restriction of Vo (resp. of ¢) to A.

Proof. The proof follows the same limes as for Proposition 5.12. Let R = R, g be the
residual kernel given in (12). Assume that 7z(Vy) < oo and define on X the function % =
RkVO taking its value in [0, 4o00] a priori. Then VO > Vo, and the followmg equality
holds in [0, 4+00]: RVy = Vo — Vo. Note that there ex1sts z € X such that Vo(z) < oo since
v(Vo) = pr(Vo) < oo from mr(Vo) < oo, where pip := TS URF (see (25)). Now define the
non-empty set A := {z € X: Vo(z) < oo} € X. Let z € A. Then we have (RVp)(z) < oo from
(RVD)(w) = Vo(x) — Vo (x), so that (PVp)(z) = (RVo)(x)+v(Vo)¢h(z) < co. Thus P(x, A) = 1.
This proves that A is P—absorbing. Since P is irreducible from Theorem 5.4, A is mr—full
from Proposition 3.16. Moreover the restriction L := %| 4 of /\}6 to A is a measurable function
on A satisfying RL = L—Vj on A, so that the restriction P4 of P to A satisfies the modulated
drift condition Dy, (L, Vp,,) as stated in Assertion 2 of Proposition 5.13.

Conversely assume that P satisfies Assertion 2. Then, proceeding as in the proof of
Corollary 4.5, we know that P4 satisfies on A the minorization condition (M, ,,) where
v4 is the restriction of the minorizing measure v to A. Thus it follows from Assertion (vi)
of Theorem 5.4 applied to P4 under Condition (M, y,) and Dy, (L, Vp,,) that the unique
P4—invariant probability measure, say w4, is such that 7rA(V0‘A) < 00. Using the fact that 7y
is the unique P— invariant probability measure, we then obtained that w4 is the restriction
of 7 to A and that m;(Vp) = 77,4(V0|A) < oo since A is P—absorbing and 7r—{full. O

5.5 Bibliographic comments

Condition Dy (Vy, Vi) (or D14(Vp, V1)) is the so-called Vi-modulated drift condition, e.g. see
Condition (V3) in | , p- 343]. Although the functions Vp, Vi in Dy, (Vp, V1) satisty Vo > V3
in general, this condition is not useful in this section. Such drift conditions was first introduced
for infinite stochastic matrices in [ | to study the return times to a set, see | , p. 198]
and [ , p- 96, 164, 337] for an historical background on this subject. Lemma 5.3 and
its direct use to obtain Theorem 5.4 (via Lemme 5.5) were presented in | ]. Again note
that the non-negativity of the residual kernel R plays a crucial role in Theorem 5.4 since the
point-wise convergence of the series in (52a) is simply obtained bounding the partial sums
(see (54)).

Under the Vj—modulated drift condition D14 (Vp, V1) w.r.t. some petite set S € X, the
existence of a solution £ € By, to Poisson’s equation (I — P)§ = g was proved in | )
Th. 2.3] for every mz—centred function g € By, , together with the bound ||£]|v;, < co ||g]|v; for
some positive constant ¢y (independent of g). When S is an atom, the solution £ in | ,
Th. 2.3] can be expressed in terms of the first hitting time in S, and the non-atomic case is
solved via the splitting method. Under the irreducibility and aperiodicity conditions, Glynn-
Meyn’s theorem is related to point-wise convergence of the series Z+°° Pkg, see | ,
Th. 14.0.1]. With regard to the above two representations of solutions to Poisson’s equation,
the reader may consult the recent article | ]. We point out that the constant ¢g in | )
Th. 2.3] is unknown in general, excepted in atomic case: see [ , Prop. 1] for a discrete
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state-space X. Thus, the novelty of Theorem 5.6 and Corollary 5.7 already proved in | ]
is to provide a simple and explicit bound in Poisson’s equation in the non-atomic case.

Let us briefly discuss the Central Limit Theorem (C.L.T.), which is a standard topic where
Poisson’s equation is useful. If (X,,),en is a Markov chain with state space X and invariant
distribution 7, then a measurable m—centred real-valued function g on X is said to satisfy the
C.L.T. under I, for some initial probability measure 7 (i.e. 7 is the probablhty distribution
of Xo) when the asymptotic distribution of n=25,,(g) Wlth Sn(g) = >z Og( i) is the
Gaussian distribution N (0, 03) for some positive constant ag, called the asymptotic variance
of g. We refer to | , Chap. 21] for a nice and comprehensive account on the Markovian
C.L.T. and the classical approach via Poisson’s equation. Here, in link with Corollary 5.7,
we just recall the following classical C.L.T. proved in | | for Markov chains satisfying a
modulated drift condition:

Glynn-Meyn’s C.L.T. | |- If the transition kernel P of the Markov chain
(Xn)nen satisfies Conditions (M, )-Dy(Vo, Vi) with Vi < Vo, mr(VE) < oo, and
if n 15 any initial probability measure, then every mr— centred function g € By, satisfies
the C.L.T. under P, with asymptotic variance given by 03 = 271r(g9) — 7r(g?), where
g € By, is the solution to Poisson’s equation (I — P)g = g provided by Corollary 5.7.

The condition 74(VZ) < oo is required for the function g to be square 7,—integrable in
order to apply the Markovian C.L.T. | , Th. 21.2.5] under P, where 7 is the
unique P—invariant probability measure from Theorem 5.4. The extension to any initial
probability measure follows from | , Cor. 21.1.6] since P is Harris recurrent under
the assumptions of Corollary 5.7 from Theorem 5.4. Note that the asymptotic variance 03
can be upper bounded using the bound (59) (see [ D).

To conclude this section let us make a few additional comments on the modulated drift
condition, which is the main assumption of this work together with the minorization condition.
If (X})n>0 is @ Markov chain with state space X and transition kernel P, then the modulated
drift condition has the following form when the modulated function V; is constant and ¢ = 1y,
for some s > 0 where V, = {z € X: Vj(z) < s} is the level set of order s w.r.t. the function Vj:

sup B, [Vo(X1)] <oo and Ja >0, Vo € X\ V,, E;[Vo(X1)] < Vo(z) —a. (62)
xEVs

The second condition in (62) means that, for any r > s, each point € X such that Vy(z) =r
transits in mean to a point of the level set V,._,. For a random walk on N, it means that, for
i large enough, the steps of the walker starting from ¢ are in mean strictly more to the left
than to the right, the gap being controlled by a fixed additive constant a > 0. Recall that
the weaker drift condition (50) was introduced in Proposition 4.17 to obtain limy R*1x = 0.
The additive reduction by the positive constant a in (62) is the sole difference with (50),
but it is crucial for obtaining the convergence of the series Zz:“é RF1x in Theorem 5.4. The
general modulated drift condition D, (Vp, V1) corresponds to (62) with a positive term Vi (z)
depending on z instead of the positive constant a.

Proposition 5.12 shows that, in the context of Theorem 3.6, an irreducible Markov kernel
P always satisfies a modulated drift condition with Vi (xz) = 1, up to restrict P to some ab-
sorbing and mwr—full set. Hence modulated drift condition is a perfectly natural assumption.
This explains why the minorization and drift conditions are so popular for studying Markov
models. In particular, it follows from Proposition 5.12 that an irreducible discrete Markov
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kernel P admitting an invariant probability measure 7w actually satisfies all the conclusions
of Theorem 5.4 on a P—absorbing and w—full set: Indeed S = {z} for some state  may
be chosen such that 7(1(,) > 0, and S = {z} is obviously a first order small-set. In the
same way, for the Markov chain Monte Carlo (MCMC) algorithms on any state space X, the
so-called target probability measure 7 is a data. Moreover, by construction, the associated
MCMC kernel satisfies Assumptions (13), is irreducible and it admits 7 as invariant probabil-
ity measure. Then, choosing the small-set .S in Proposition 3.1 such that 7(1g) > 0, it follows
from Proposition 5.12 that the MCMC kernel satisfies all the conclusions of Theorem 5.4 on
some P—absorbing and w—full set. Note, however, that Proposition 5.12, as well as Proposi-
tion 5.11, are only of theoretical interest. In practice the form of the Markov kernel P is di-
rectly taken into account to find explicit functions Vj and V; satisfying Condition Dy, (Vp, V1).
Finally, as shown for instance for random walks on the half line in | |, recall that the
condition mx(Vp) < oo is not automatically fulfilled under Condition Dy (Vp, V7). In fact,
as proved in Proposition 5.13, this additional condition 7z(Vp) < oo is closely related to an
extra Vp—modulated drift condition.

6 V —geometric ergodicity
Let V : X —[1, +00) be measurable. Recall that the V —geometric drift condition is
Fpe B, 36€(0,1), b€ (0,+00): PV <6V +by (Gy(0,V))
and that this condition provides the modulated drift Condition Dy (Vp, V1) with
V:=V/(1-9¢), Vi:=V and by:=0b/(1—-9) (63)

(see Example 5.2). Consequently, when P satisfies Conditions (M, )-Gy(6,V), it follows
from Theorem 5.4 and Condition D, (Vp, V1) with Vj, Vi and by given in (63) that the residual
kernel R = R, given in (12) fulfils the following properties

+o00 +o0
1+d b—v(V
0< ERklx < ZRng + OV with dp := max <O M) (64a)
k=0

k=0 1-9 "v(lx)(1 - 9)
0 < ffy(Rh ) < ff (R*V) < Ut dou(V) (64b)
>~ X = v = 1-¢ o0,
k=0 k=0
and that 7z := pr(1x) 'pr (see (25)) is the unique P—invariant probability measure on

(X, X). Moreover, again from Theorem 5.4 (Conclusions (ii7) and (vi)), we have
pr() =1 and 7wx(V)=mx(V1) < 0. (65)

Corollary 6.1 is the direct application of Theorem 5.6 and Corollary 5.7 for Poisson’s equation
under Conditions (M, ;)-Gy(0, V). Then the so-called V —geometric ergodicity is obtained
in Subsection 6.2 using elementary spectral theory under Conditions (M, )-G (5, V) and
the aperiodicity condition (38).
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6.1 Poisson’s equation under the geometric drift condition

Corollary 6.1 Assume that P satisfies Conditions (M, 4)-Gy(6,V). Let R = R, be the
associated residual kernel given in (12). Then

1. For any g € By, the function series g := zi?) RFg absolutely converges on X (point-wise
convergence). Moreover we have g € By and

1+do

qllyv <
Vg e By, Gl Ty

llgllvy  with dy := max <0, y(b1;)(y1(‘i)5)> (66)

where §,b are the constants given in Gy (5,V).

2. For every g € By such that wr(g) = 0, the function g = g — mr(g)1x is the unique
mr—centered function in By solution to Poisson’s equation (I — P)g = g, and we have

(1+do) (1 +7r(V))

T gl (67)

lgllv <

For the sake of simplicity this statement is directly deduced below from Theorem 5.6 and
Corollary 5.7. A self-contained proof of Corollary 6.1 could be also developed starting from
(64a) and mimicking the proofs of Theorem 5.6 and Corollary 5.7.

Proof. Using the modulated drift condition D (Vy, V1) with Vo, Vi, bg given in (63), it follows
from Assertion 1. of Theorem 5.6 that

Vg € By, |dllvy < (1+do)llglly with do:= max <O

b—v(V)) )
"v(1x)(1 - 9)

from which we deduce (66) since || - ||y, = (1 — )| - [[v- To prove Assertion 2., we apply
Corollary 5.7. First note that m5(V)) < oo since Vp = V/(1 — 6) and wx(V) < oo (see (65)).
Next we know from Corollary 5.7 that g = g — mz(9)1x is a mz—centered function in By
solution to Poisson’s equation (I — P)g = g. Moreover observe that m(Vp) [|1x|lv, < m&(V).
From the first inequality in (60) and again || - ||y, = (1 —6)|| - ||V, we obtained that

131y < (1+7(V) v 1dlv

from which we deduce (67) using (66).

Finally it follows from Condition G (5, V) that PV/V is bounded on X, i.e. PBy C By,
since the small-function ¢ is bounded and 1x < V. Then Assertion (viii) of Theorem 5.4
ensures that By := {g € By : Pg =g} = R 1x. Hence two solutions to Poisson’s equation in
By differ from an additive constant. Consequently g is the unique m;—centered function in
By solution to Poisson’s equation (I — P)g = g. O

6.2 V—geometric ergodicity

Note that, under Conditions (M, )-Gy(6,V), we have hyy = 0 from (64a), so that the
aperiodicity condition (38) corresponds to the case d = 1 in Theorem 4.14. Now, under
Conditions (M, )-G(5,V) and (38), we prove the so-called V —geometric ergodicity of P.
The proof is based on Inequalities (64a)-(64b), Corollary 6.1 and elementary spectral theory.
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Theorem 6.2 Assume that P satisfies Conditions (M, )-Gy(6,V) and is aperiodic (see
(38)). Then P is V —geometrically ergodic, that is

Je>0, Ip € (0,1), Vge By, Yn>1, |P'g—mr(g)lxllv <cp"llgllv. (68)
Let g € By be such that mz(g) = 0. It follows from Property (68) that
+oo
D IIP gl < et = p)glly < oo
k=0

Consequently the function series g := >} °0 P*g absolutely converges in (By, || - |v/) and

lallv < et =) lgllv-

Note that g is mz—centred and satisfies Poisson’s equation (I — P)g = g, so that g equals to
the function g of Corollary 6.1. Inequality (67) then provides the following alternative bound:

(1+do) (1 +7r(V))
1-96

lallv < lgllv-

Finally note that the geometric rate of convergence in the case of uniform ergodicity (see
Example 3.7) corresponds to the V —geometric ergodicity property (68) in the special case
V =1x.

Let V : X—[1,+00) be measurable. In the next lemmas using the spectral theory, the
definition of By is extended to complex-valued functions, that is: For every measurable
function g : X— C, we set ||g|ly := sup,ex |9(z)|/V(z) € [0,+00] where | - | stands here for
the modulus in C, and we define

By (C) := {g : X— C, measurable such that ||g|ly < oo}.

Recall that PV/V is bounded on X from Condition G (9, V') since ¥ < clx < ¢V for some
¢ > 0. Thus P defines a bounded linear operator on the Banach space (By (C), || -||v). Below
the only prerequisites in spectral theory are the following points. Let L be a bounded linear
operator on a Banach space (L, || - ||):

e The spectrum o (L) of L: the subset of C composed of all the complex numbers z such
that zI — L is not invertible, where I denotes the identity map on £. Recall that o(L)
is a compact subset of C.

e The operator-norm of L, still denoted by ||L||: ||L|| :=sup{||Lf]| : f € L,||f] <1}.

e The spectral radius r(L) of L: r(L) := max{|z| : z € o(L)}, and Gelfand’s formula:
r(L) = lim, | L]/

Lemmas 6.3-6.4 below show that, for every z € C such that |z| = 1 and z # 1, the bounded
linear operator zI — P on By (C) is invertible under the assumptions of Theorem 6.2.

Lemma 6.3 If P satisfies Conditions (M, ,)-G(9,V) and is aperiodic (see (38)), then for

every z € C such that |z| = 1 and z # 1 the bounded linear operator zI — P on By (C) is
one-to-one.
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Proof. Let z € C be such that |z| = 1 and assume that zI — P on By (C) is not one-to-one,
that is: there exists g € By (C), g # 0, such that (2 — P)g = 0. Below we prove that this
is only possible for z = 1, which provides the desired result. Let g € By (C), g # 0, be such
that (21 — P)g = 0. Since P, thus R, defines a bounded linear operator on the Banach space
(Bv(C),| - lv), Equality (43) of Lemma 4.15 can be proved similarly, that is we have:
n
Vn > O, V(g) Z Z_(k+1)Rk7,Z) =g— Z_(n+1)Rn+1g.
k=0
+
wo B

Moreover we know from Assertion 1. of Corollary 6.1 that the series g := g point-wise

converges on X, thus: limg RFg =0 (point-wise convergence). Hence we have g = v(g)v:,
with v, = ZJFOO —(k+1) Rky)). Recall that wz is bounded on X from Proposition 3.4. Thus
g is bounded on X, so that z is an eigenvalue of P on B(C) and p(z) = 1 from Lemma 4.15,
where p(-) is defined (37). Since the aperiodicity condition corresponds to the case d = 1 in
Theorem 4.14, it follows that z = 1 from Assertion (a) of Theorem 4.14. O

Lemma 6.4 If P satisfies Conditions (M, ,)-Gy(9,V) and is aperiodic (see (38)), then for
every z € C such that |z| = 1 and z # 1 the bounded linear operator zI — P on By (C) is
surjective.

Proof. Let z € C be such that |z| =1 and g € By . Define

n
n>1, gn.:= sz(kH)ng.
k=0

Using P = R+ ¢ ® v we obtain that
Zgn,z - Pgn,z = zﬁn,z - Rgn,z - V(gn,z)w =g - Z_(n+1)Rn+lg - V(gn,z)w' (69)

Moreover we have

lim gp.=0,:= Zz (k+1) REg  (point-wise convergence) with g, € By (C)
n — +0o0o =0

since

+o0 +oo

> 1z FHIRR < lgllv Y RFV <V with e= (1+do)(1—6)"

k=0 k=0
from the second inequality in (64a). Also note that, for any x € X, we have (PV)(z) < o0
from Condition D (Vp, V1), and that |g, .| < c¢V. It then follows from Lebesgue’s theorem
w.r.t. the probability measure P(z,dy) that lim,(Pg, .)(z) = (Pg;)(x). Finally we have

n
= 1 —(k+1) k (k=+1) k
Jim v(gnz) = lim k_oz v(R%g ZZ v(R%g)
since the last series converges from |2~ *+Dy(RFg)| < ||g||yv(R*V) and (64b). Then, passing
to the limit (point-wise convergence on X) when n — +oo in Equality (69), we obtain that

(zI — P)g, = g — p:(g)y. With g = 9 this provides (zI — P)JZ = (1 — ,uz(z/)))w with

+00 +oo
o=y 2 FTURRY € By(C) and po() = 2 FTVu(RFp) = p(=7)
k=0 k=0
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where p(-) is defined (37). Since z # 1 and d = 1 (aperiodicity condition), we know from
Assertion (a) of Theorem 4.14 that p(z~!) # 1. Thus

(s - P) (az n %J) —y

from which we deduce that zI — P is surjective. O

Proof of Theorem 6.2. Recall that mz(V) < oo under the assumptions of Theorem 6.2 (see
(65)). Thus 7 defines a bounded linear form on By (C), so that By := {g € By (C) : mz(g) =
0} is a closed subspace of By (C). Note that By is P—stable (i.e. P(By) C Bp) from the
P—invariance of w. Let Py be the restriction of P to By. Assertion 2. of Corollary 6.1 shows
that I — Py is invertible on Bp. Next let z € C be such that |z| = 1, z # 1. It follows
from Lemma 6.3 that zI — Py is one-to-one. Now, let g € By. From Lemma 6.4 there exists
h € By (C) such that (2 — P)h = g. We have (z — 1)mz(h) = mr(g) = 0, thus mz(h) = 0
(i.e. h € Bp) since z # 1. Hence zI — Py is surjective.

We have proved that, for every z € C such that |z| = 1, the bounded linear operator
zI — Py is invertible on By. Let r denote the spectral radius of P on By (C). Recall that
r = lim, (|| P"||y)"/" from Gelfand’s formula, where || - ||y denotes here the operator norm
on By (C). We know that » < 1 from Lemma 5.10 (in fact we have r = 1 since Plx = 1x).
Hence the spectral radius rg of Py on By is less than one too. In fact we have rg < 1 since the
spectrum o(FPp) of Py is a compact subset of C which, according to the above, is contained
in the unit disk of C and does not contain any complex number of modulus one.

Let p € (ro,1). Since 1o = lim,(]|[P¢]lo)"/™ from Gelfand’s formula where || - [|o denotes
the operator norm on By, there exists a positive constant ¢, such that: || Fg|lo < cpp™. Thus

Vn =1, vg € Bv(C), [P"g—ma(9)lxllv = [[P"(9—7ma(9)lx)llv (from P"1x = 1x)
= 55'(9 = ma(9)1x)llv (since g — mr(g)1x € Bo)

< cpp"llg — mr(9)1x]|lv
< ep(L+7mr(V))p"lgllv

~—_ —

~—

from triangular inequality and 7z(|g|) < 7z(V)]|g|lv. This proves (68). O

6.3 Bibliographic comments

A detailed and comprehensive history of geometric ergodicity, from the pioneering papers
[ , , | to modern works, can be found in [ , Sec. 15.6, 16.6], see also
[ , Sec. 15.5]. Theorem 6.2 corresponds to the statement | , Th. 16.1.2] and
[ , Th. 15.2.4], except that it is stated here with a first-order small-function instead
of a petite set. The proof in | , ] is based on renewal theory and Nummelin’s
splitting construction. Alternative proofs of V' —geometric ergodicity can be found in [ ]
based on coupling arguments, in [ | based on renewal theory, in | | based on an
elegant idea using Wasserstein distance, and finally in | , , , | based on
spectral theory (quasi-compactness) whose first founding ideas are already present in | ]
We refer to the recent paper | ] where 27 conditions for geometric ergodicity are
discussed.

Since the pioneer work [ ] much effort has been made to find explicit constant ¢
and rate of convergence p in Inequality (68). Under Assumptions (M, )-Gy(5,V) and
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the strong aperiodicity condition, such an issue is fully addressed in | | via renewal
theory. Alternative computable upper bounds of the rate of convergence p can be found
in | , , , ] using splitting or coupling methods, and in | , ]
using spectral theory. Recall that the L?(7)—rate of convergence can be also addressed for
reversible Markov kernels satisfying Conditions (M, )-Gy(0,V), see | , , ]
These issues are not addressed in our work.

Poisson’s equation for V-geometrically ergodic Markov models is classically studied start-
ing from Inequality (68), which ensures that, for every g € By such that mz(g) = 0, the
function g = ZX;’B Pkg in By is the unique mz—centred solution to Poisson’s equation
(I — P)g = g. A quite different development is proposed in this section: Indeed Pois-
son’s equation is first solved in Corollary 6.1 as a by-product of the modulated drift Condi-
tion D (Vp, V1) (see (63)). Next this study is used for proving the V —geometric ergodicity:
Indeed note that this prior study of Poisson’s equation plays a crucial role at the beginning
of the proof of Theorem 6.2 and that the convergent series in (64a)-(64b) are repeatedly used
in the proof of Lemmas 6.3-6.4. A standard use of Poisson’s equation is to prove a central
limit theorem (C.L.T.). Let P be a Markov kernel satisfying Conditions (M, ;) and the
V —geometric drift condition G (9, V). Then P satisfies Condition D, (Vp, V1) with Vo, Vi, bo
given in (63). Consequently, if 7(V?2) < oo, then the conclusions of Glynn-Meyn’s C.L.T.,
recalled page 44, hold true (note that By, = By here). Mention that the residual kernel
R and its iterates have been considered in | ] to investigate the eigenvectors belonging
to the dominated eigenvalue of the Laplace kernels associated with V —geometrically ergodic
Markov kernel P. This issue called ”multiplicative Poisson equation” in [ ] is used to
prove limit theorems for the underlying Markov chain (also see [ |). This question is
not addressed in our work.

The key idea in this section is thus to apply Theorem 5.4 under the modulated drift Con-
dition Dy (Vp, V1) provided by the geometric drift condition G (0, V). Recall that the main
argument for Theorem 5.4 is the residual-type drift inequality introduced in Subsection 5.2.
An alternative residual-type drift inequality is proposed under Conditions (M, 14)-Gy(0,V)
in [ ], showing that there exists ap € (0,1] such that PV < ¢ V@0 4 p(V@0)lg.
Hence the residual kernel R satisfies the drift inequality RV < §* V0 from which bounds
for the V¥ —weighted norm of solutions to Poisson’s equation are provided, as well as bounds
in the V* —geometric ergodicity. The bounds in | ] involve the constant (1 — §%0)~1,
which is large when «q is close to zero. In such a case, the bounds (66) and (67) for the
V —weighted norm of solutions to Poisson’s equation may be more relevant.
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A Probabilistic terminology

The split chain (e.g. see | , ). Let (X,)n>0 be a Markov chain on the
space (X, X) with kernel transition P satisfying condition (M, ) with v € M3 ;¢ € B,
that is

R=P—-y®v>0.

Let us introduce the bivariate Markov chain ((X,,Y:))n>0 with the state space X x {0,1}
and the following transition kernel P: for every bounded measurable function f on X x {0,1}

E[f(XnJrlenJrl) | O'(Xk,Yk, k< n)] = E[f(XnJrlenJrl) | U(Xn)] = (Pf)(Xn)
with
VAe X, P(z,Ax{0})=R(z,A) Pz, Ax{1})=1(x)v(la).

((Xn, Yn))n>o is called the split chain associated with (X, ),>0. Note that, for any A € X,
P(z, A x {0,1}) = P(z, A x {0}) + P(z,A x {1}) = P(z, A) so that the marginal process
(Xn)n>0 is indeed the original Markov with transition kernel P. Next, for any f € B and
v €X, E[f(Xns1) | Xn = 2, Vi1 = 1] = v(1x) " tv(f) for every n > 1. It follows that the
set X x {1} is an atom for the split chain. Let oy := inf{n > 1,Y,, = 1} be the return
time to the atom X x {1} of the split chain or the return time of (Y,)n>0 to state 1. It is a
regeneration times of the split chain. Such a material leads to using the so-called regeneration

method to analyze the split chain and to deduce, when possible, the properties of the original
Markov chain.

Probabilistic counterparts of various quantities in this document.

Let us introduce the probability measure 7 = v(1x) '~ on X. The probability P when Xg
has probability distribution 7, is denoted by PP;, and E, is the expectation under IP;,.

VA e X and Vo € X:
o (R"14)(w) = R"(z,A) =P{X,, € A, 001} > n};
(Rnlx)(:ﬂ) = Rn($aX) = Px{a{l} > TL};
T2 (RMx) () = Eofoy;
e hiy(r) = lim,(R"1x)(z) = Py{ogy = +oo};
o (R '9)(x) = Po{opy = n}/v(lx), Ypoy (RF ') (2) = Po{opy < n}/v(lx);
TR (2) = Pp{ogy < oo} /v(1x);
o ur(1a) =v(1x) S Po{ Xy € A, oq1y > n}, pr(lx) = v(1x)Eslo(]
1r(¥) = Py{ogy < oo}

e Formula (16). For any n > 1, let L, := min{k = 0,...,n — 1 : Y,,_p = 1}, be the
time elapsed since the last visit of (Y;,)n>0 to 1 before time n. Then {0y < n} =
L —3{Ly, = k} and Formula (16) has the following probabilistic meaning

Po{X, € A} = Po{Xp€Ao0y>nt+ S g Pe{Xn €A L, =k} .
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B Proof of Theorem 4.12

From the definition of d in (41), there exists an integer £y > 1 such that the power series
p(2) =32 V(R 1) 2™ writes as

+oo
VzeD, p(z):= Z v(RFI 1) 2k, (70)
k=/{g

The proof of Theorem 4.12 is based on the two following lemmas.

Lemma B.1 Let P satisfy Condition (M, ;) with uz(1x) < co. Then

lim Py = ¢, = 723’% with  my —Zkude L) < 0. (71)

n — —+o0o
k={o

Proof. Using the definition of the integer d, the arguments here are close to those used in the
proof of the direct implication in Lemma 4.9. Note that Z del/) is a bounded function
on X from Proposition 3.4, and that mg < co from Remark 4. 10 Now define

+oo
VzeD, Palz Zz"Pd"w, Ra(z Zz“Rdw, pa(z) =Y (R ) 2~
n=0 k={g

Note that the power series p in (70) satisfies p(z) = pa(2%). Thus pg(z) is not a power series
in 27 for any integer ¢ > 2: Indeed, otherwise we would have pg(z) := >, " v(RIA=1qp) zat

for some integers ¢, > 1 and ¢ > 2, thus

—+00

ple) = 3 w(RI L) 20,

=t

which contradicts the definition (41) of d. Moreover observe that |pg(z)| < 1 for every
z€D={z¢€C: |z <1} since pup(¥)) = 359 0wV v(R*=14) = 1 from Theorem 3.6. Now
using (16) applied to ¢ and the definition of d (see (70)) it follows that P%) = R for
every n € {0,...,¢y — 1} and that

Vn >y, P =R"p+ > v(RF ) PARy,
k=£

Considering the associated power series and interchanging sums for the last term, we easily
obtain that

_ 1
Vze D, Pyz) =Ra(z)Ui(z) with Uy(z):= ——. (72)
1 — pa(2)
Next, we deduce from the Erdos-Feller-Pollard renewal theorem | | that the coefficients
uq of the power series Ug(z) = ljof) ugrz® in (72) satisfy: limgugr = 1/mg. Then,

identifying the coefficients in Equation (72) (Cauchy product), we obtain that P%) =
S o Udn_kR™1p for every n > 0. Since 370 R%y < oo from Proposition 3.4, Prop-
erty (71) follows from Lebesgue theorem w.r.t. discrete measure. O
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Lemma B.2 Let P satisfy Condition (M, ) with pr(1lx) < oo and hyy = 0. Then there
exists a sequence (e4)n € BY such that lim, €, = 0 (point-wise convergence) and

VheB, ||hlly, <1, 3¢n € B, |P"h—&| <ep.

Proof. Here, using the definition of the integer d, the arguments are close to those used in the
proof of Lemma 4.11. For r =0,...,d — 1 set (. := P"(y with {y given in (71). Note that
Grp € B, and that lim, pintry, = Gy (point-wise convergence) from Lebesgue’s theorem
w.r.t. P"(x,dy) for each € X. Now for every h € B define &, € B by

d—1 ,+oo .
&= ( > y(RdJ“h)> Crap- (73)

r=0 j=1

Then using again (16) and observing that every integer k = 1,...,dn writes as k = dj —r for
r=0,...,d—1and j=1,...,n, we obtain that for every n > 1

d—1 n d—1 400
Pdnh _ gh — Rdnh + Z Z V(Rdj—’r‘—lh) (Pd(N—j)'i‘Tw _ Cr,lb) _ Z < Z V(Rd]—r—lh)> an'
r=0 j=1 r=0 *j=n+l

Thus, if ||A[j1, <1 (ie. |h| < 1x), then we have |P¥"h — &,| < e, with &, € B defined by

d—-1 n +o00
en = Ry + 3 y(RUT 1) | Pty — cmmz Gyl Y (R ).
r=0 j=1 j=n+1

We have lim,, €, = 0 (point-wise convergence). Indeed, the last term converges to zero when
n— o0 since 20 v(R¥1x) = pr(lx) < 0o; The second sum above converges to zero when
n — +oo from Lebesgue’s theorem w.r.t. discrete measure recalling that lim,, P4 +7) = Craps
Finally lim,, R¥1x = 0 from hy = 0.

O

Proof of Theorem 4.12. Let g € B be such that |g| < 1x. Note that for r =0,...,d — 1 we
have |P"g| < P"|g| < P"1x = 1x. Thus for r = 0,...,d — 1 we can Consider frg = Epryg,
where {pr, is the function of Lemma B.2 associated to h = P"g. Let v, = 3 ZT o &rg- Then

d 1
_,ZPnd-i-r :g ‘é-rg_Pnd(Pr )} <en (74)
r=0
from Lemma B.2. Thus we have v, = lim,, J Zd L P g (point-wise convergence). From

Lebesgue’s theorem w.r.t. P(x,dy) for each z € X, we then obtain that

d

Pryg=_lm % Zl Py =, (75)
the last equality being obviously deduced from lim,, _ 1o P g = lim,, , 100 P"%g. Thus
g is a P—harmonic function, so that v, = ¢(g)1x for some constant ¢, from Theorem 4.1.
Moreover, using the second equality of (75) and applying Lebesgue’s theorem w.r.t. the
P—invariant probability measure 7, we obtain that mz(g9) = 7&(7v), s0 74 = mr(9)1x.
Finally, applying the function inequality (74) to any fixed z € X and taking the supremum
on all the functions g € B such that |g| < 1x, we obtain the desired total variation convergence

of Theorem 4.12 since lim,, &, () = 0 from Lemma B.2. O
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