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Abstract

This paper is devoted to the study of Markov kernels on general measurable space un-
der first-order minorization condition and modulated drift condition. The following issues
can be addressed: Existence and uniqueness of invariant measures, recurrence/transience
properties including Harris-recurrence property, convergence in total variation of iterates,
Poisson’s equation, perturbation schemes and rate of convergence of iterates including the
so-called geometric ergodicity. All theses issues are discussed in the present document
except the perturbation schemes and the non-geometric rate of convergence of iterates,
both which will be included soon to form our final text. All the results reported here focus
on Markov kernels using a residual kernel approach. This turns out to be a very simple
and efficient way to deal with all mentioned issues on Markov kernels. In particular, the
document is essentially self-contained.
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1 Introduction

The purpose of this work is to study Markov kernels on general measurable space under the
so-called Minorization and modulated Drift conditions, generically denoted here by M & D
conditions. The following issues can be addressed: Existence and uniqueness of invariant
measures, recurrence/transience properties including Harris-recurrence property, convergence
in total variation of iterates, Poisson’s equation, perturbation schemes and rate of convergence
of iterates including the so-called geometric ergodicity. All theses issues are discussed in the
present document except the perturbation schemes and the non-geometric rate of convergence
of iterates, both which will be included soon to form our final text on Markov kernels under
M & D. These two issues will be a revisited version of the material to be found in [HL24a,
HL23a]. Let us mention that the convergence of iterates is addressed in this document under
a condition of strong aperiodicity. The specific case of periodic Markov kernels will be added
in the final text. All the results reported here focus on Markov kernels and this document can
be thought of as a tribute to Nummelin’s book [Num84] from which the idea of the treatment
of Markov kernels via a residual kernel approach is borrowed. However, we decide here to
keep a total focus on this kernel framework from the beginning to the end. This turns out to
be a very simple and efficient way to deal with all mentioned issues on Markov kernels.

The M & D conditions are nowadays well known and widely illustrated and used in the
literature on Markov chains via the splitting technique for extending the materials on atomic
Markov chains to the non-atomic case, or via the coupling technique to derive convergence
rates. Both techniques are based on a minorization condition. The main references on this
subject are Nummelin’s book [Num84], Meyn & Tweedie book [MT09], and more recently
[DMPS18, BH22]. Here we use neither the splitting technique, nor the coupling construction.
This also implies that no regeneration type-method is used here. Actually, with the exception
of Section 6 which contains a few (fairly elementary) spectral theory arguments for studying
the geometric ergodicity, the only prerequisite for this work is the handling of non-negative
kernels. Indeed, the choice we have made to consider Markov kernels satisfying a minorization
condition allows us to work immediately with the residual kernel, from which the issues
on invariant measures, recurrence/transience including Harris-recurrence and convergence of
iterates, can be treated simply. Then additional modulated drift conditions enable us to
investigate series of residual kernel iterates, from which solutions to Poisson’s equation and
the perturbation issue as a by-product are easily deduced.

The theory in [Num84, MT09, DMPS18] is developed under general minorization con-
ditions involving, either the so-called definition of small-set (or small-function), or the even
more general definition of petit sets. Both of these definitions are based on some n−th iterate
of the transition kernel. In our work we have chosen to focus on the first order minorization
condition with small-function, which corresponds to the definition [Num84, Def. 2.3] at first
order (n := 1). This choice provides a relatively simple, straightforward, homogeneous and
self-contained presentation, dealing first with the residual kernel, then the Markov kernel.
Note that the choice to deal with small-functions instead of small-sets requires here no addi-
tional effort. The choice of the order one is also motivated by the fact that most of classical
examples of Markov chains verifying a minorization condition satisfy it at the first order.
We therefore found it interesting to emphasise the order one, as long as the results are com-
plete and the first-order minorization condition does not need to be strengthened by artificial
assumptions.
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Although our method differs substantially from the splitting or coupling based methods,
the assumptions we sometimes have to add to the M & D conditions are the classic ones
(e.g. irreducibility, accessibility, strong aperiodicity). However, thanks to our direct approach
based on the residual kernel, these additional assumptions can be directly introduced under
their simplified form, i.e. expressed with the small-function. Such bibliographical comments
are gathered at the end of each section. Note that some additional results are collected in
subsections entitled “Further statements” which can be omitted in a first reading.

All the results in this work apply to any discrete-time homogeneous Markov model sat-
isfying the M & D conditions. For such examples, readers can consult the reference books
[Num84, MT09, DMPS18, BH22], as well as the following more specialized works: [FM00,
FM03, DFM16] in the context of the Metropolis algorithm, [TT94, DFM16] for autoregres-
sive models, [LH07, LH12] for queueing systems, [JT02] for Markov chains associated with
the mean of Dirichlet processes, [Mey08] for Markov models in control. Classical instances of
V−geometrically ergodic Markov chains can be found in e.g [MT09, RR04, DMPS18].

Finally, as previously quoted, the central point is that a non-negative kernel approach
is used for deriving all the proposed material. All the needed prerequisites are recalled
in Subsection 2.1. Of course, most of statements expressed in terms of Markov kernels
in this work can be directly translated into a purely probabilistic form for discrete-time
homogeneous Markov chains with general state space. All you need is to apply well-known
formulas inducing the marginal laws of the Markov chain and the iterates of its transition
kernel (see Subsection 2.2).

2 Main notations and prerequisites

The main notations and definitions used throughout this document are gathered in this
section. Most of them are concerned with non-negative kernel calculus. They are standard
and the material of this section can be omitted in a first reading but can be referred to if
necessary.

Let (X,X ) be a measurable space and X ∗ := X \{∅} be the subset of non-trivial elements
of X .

2.1 Measures and kernels

� We denote by B the sets of bounded measurable functions on (X,X ). The subset of
non-zero and non-negative functions in B is denoted by B∗

+.

� Non-negative measures on (X,X ). We denote by M+ (resp. M∗
+,b) the set of

non-negative (resp. finite positive) measures on (X,X ). For any µ ∈ M+ and any
µ-integrable function g : X→R, µ(g) denotes the integral

∫
X gdµ. Let µ be a positive

measure on (X,X ). A set A ∈ X is said to be µ−full if µ(1Ac) = 0 where Ac = X \A.

� Non-negative kernel on (X,X ). A non-negative kernel K on (X,X ) is a map K :
X×X →[0,+∞] satisfying the two following properties:

(i) For every A ∈ X , the function x 7→ K(x,A) from X into [0,+∞] is a measurable
function on (X,X ),
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(ii) For every x ∈ X, the set function A 7→ K(x,A) from X into [0,+∞] is a non-
negative measure on (X,X ), denoted by K(x, dy) or K(x, ·).

The set of non-negative kernels on (X,X ) is denoted by K+. An element K ∈ K+ is
said to be bounded if the function x 7→ K(x,X) is bounded on X.

� Product of two non-negative kernels. If K1 and K2 are in K+, then K2K1 is the
element of K+ defined by

∀x ∈ X, ∀A ∈ X , (K2K1)(x,A) :=

∫
X
K1(y,A)K2(x, dy). (1)

The above term (K2K1)(x,A) is well-defined in [0,+∞]: indeed y 7→ K1(y,A) is a
measurable function from X into [0,+∞], and its integral is then computed w.r.t. the
non-negative measure K2(x, dy). If K1 and K2 are both bounded, then so is K2K1.

� Product of a non-negative measure by a non-negative measurable function.
For any µ ∈ M+ and any measurable function f : X→[0,+∞], we define the following
non-negative kernel, denoted by f ⊗ µ,

∀x ∈ X, ∀A ∈ X , (f ⊗ µ)(x,A) := f(x)× µ(A). (2)

� Product of a non-negative kernel by a non-negative measure. Any µ ∈ M+

may be obviously considered as a non-negative kernel (i.e. ∀x ∈ X, µ(x,A) := µ(1A)). If
µ ∈ M+ and K ∈ K+, then the product µK is given as a special case of Definition (1),
that is

∀x ∈ X, ∀A ∈ X , (µK)(x,A) :=

∫
X
K(y,A)µ(dy). (3)

Note that µK ∈ M+ since it does not depend on x ∈ X. The measure µ is said to be
K−invariant if µK = µ.

� Iterates of a non-negative kernel. Let K ∈ K+. For every n ≥ 1 the n−th iterate
kernel of K, denoted by Kn, is the element of K+ defined by induction using the above
formula (1). By convention K0 is defined by: ∀x ∈ X, ∀A ∈ X , K0(x,A) = 1A(x)
(i.e. K0(x, ·) is the Dirac measure at x).

� Functional action of a non-negative kernel. Let K ∈ K+. We also denote by K
its functional action defined by

∀x ∈ X, (Kg)(x) :=

∫
X
g(y)K(x, dy), (4)

where g : X→R is any measurable function assumed to be K(x, ·)−integrable for every
x ∈ X. For such a function g, we have

|Kg| ≤ K|g|, (5)

where |g| denotes the absolute value of g (or its modulus if g is C−valued) since

∀x ∈ X, |(Kg)(x)| =
∣∣∣∣ ∫

X
g(y)K(x, dy)

∣∣∣∣ ≤ ∫
X
|g(y)|K(x, dy) = (K|g|)(x).
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Obviously K is a linear action.

If K1,K2 ∈ K+ and if g : X→R is a measurable function such that g1 := K1g is
well-defined as well as K2g1, then

(K2K1)(g) = (K2 ◦K1)(g)

where the first term (K2K1)(g) denotes the functional action on g of the product kernel
K2K1 given in (1), while K2 ◦K1 denotes the usual composition of maps. In particular,
for every n ≥ 1, the functional action of the n−th iterate kernel of Kn of K is the n−th
iterate for composition of the functional action of K. Finally note that the functional
action of the kernel K0 is the identity map I (i.e. (K0g)(x) = g(x)), which corresponds
to the standard convention for linear operators.

Most questions involving a non-negative kernel can be addressed through its functional
action, and this is the choice that will generally be made in this paper. In particular
Property (5) will be used repeatedly in this work.

� Functional action of a non-negative measure. If µ ∈ M+ (thus µ ∈ K+), then
its functional action (see (4)) is given by

∀x ∈ X, (µg)(x) :=
∫
X
g(y)µ(dy), that is µg := µ(g)1X,

provided that g is µ−integrable.

� Order relation for non-negative kernels. If K1 and K2 are in K+, the inequality
K1 ≤ K2 means that

∀x ∈ X, ∀A ∈ X , K1(x, 1A) ≤ K2(x, 1A).

In others words, K1 ≤ K2 if K := K2 − K1 is a non-negative kernel, where K is
defined by K(x, 1A) := K2(x, 1A)−K1(x, 1A) for any x ∈ X and A ∈ X . Thus, for any
K1,K2 ∈ K+, we have K1 ≤ K2 if, and only if, the following property holds

∀g : X→[0,+∞) measurable, 0 ≤ K1g ≤ K2g

provided that K1g and K2g are well-defined (if not, this inequality still holds but in
[0,+∞]). In connection with this order relation, we shall often write K ≥ 0 for recalling
that K ∈ K+. Recall that

K1,K2 ∈ K+ =⇒ K1K2 ∈ K+ and K2K1 ∈ K+

from the definition of the products of two elements ofK+ (see (1)). From this, the follow-
ing expected rules for sum and product can be easily deduced for any K,K1,K2,K

′
1,K

′
2

in K+ (i.e. each element in (6a)-(6c) is a non-negative kernel):

K1 ≤ K2, K
′
1 ≤ K ′

2 =⇒ K1 +K ′
1 ≤ K2 +K ′

2 (6a)

K1 ≤ K2, K ∈ K+ =⇒ KK1 ≤ KK2 and K1K ≤ K2K.. (6b)

K1 ≤ K2, =⇒ ∀n ≥ 0, K n
1 ≤ K n

2 . (6c)

Properties (6a)–(6c) will be used repeatedly hereafter, mainly through the functional
action of the involved non-negative kernels.
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� Series of kernels. For any (Ki)i∈I ∈ K I
+ where I is any countable set I, the element

K :=
∑

i∈I Ki is defined in K+ by

∀x ∈ X, ∀A ∈ X , K(x,A) :=
∑
i∈I

Ki(x,A).

The following formula holds for all sequences (Kn)n≥0 ∈ K N
+ and (K ′

n)n≥0 ∈ K N
+ :

+∞∑
k,n=0

KnK
′
k = KK ′ with K :=

+∞∑
n=0

Kn and K ′ :=
+∞∑
k=0

K ′
k. (7)

Since this formula is repeatedly used in this work, let us give a proof. Let x ∈ X and
A ∈ X . Then (7) is obtained from the following equalities in [0,+∞]:

+∞∑
k,n=0

(KnK
′
k)(x,A) =

+∞∑
k,n=0

∫
X
K ′
k(y,A)Kn(x, dy)

=
+∞∑
n=0

( +∞∑
k=0

∫
X
K ′
k(y,A)Kn(x, dy)

)

=
+∞∑
n=0

∫
X

( +∞∑
k=0

K ′
k(y,A)

)
Kn(x, dy)

=

+∞∑
n=0

∫
X
K ′(y,A)Kn(x, dy) =

∫
X
K ′(y,A)K(x, dy).

Indeed the first equality is just the definition of KnK
′
k, the second one is due to Fubini’s

theorem for double series of non-negative real numbers, the third one follows from the
monotone convergence theorem w.r.t. each non-negative measure Kn(x, dy), and finally
the fourth and fifth ones are due to the definition of K ′(y,A) and K(x, dy) respectively.

� Markov and submarkov kernels. A non-negative kernel K is said to be Markov
(respectively submarkov) if K(x,X) = 1 (respectively K(x,X) ≤ 1) for any x ∈ X. In
the two cases, K is obviously a bounded kernel.

If K is a Markov kernel, then an element A ∈ X is said to be K−absorbing if K(x,A) =
1 for any x ∈ A. An element A ∈ X is said to be an atom forK if the following condition
holds: ∀(x1, x2) ∈ A2, K(x1, dy) = K(x2, dy) (such a set is sometimes called a proper
atom too, e.g. see [Num84]).

IfK is a submarkov kernel, thenK(B) ⊂ B. A function g ∈ B is said to beK−harmonic
if Kg = g on X. When K is Markov, then the function 1X is always K−harmonic.

� V−weighted space and V−weighted total variation norm. Let V : X→(0,+∞)
be any measurable function. For every measurable function g : X→R, we set

∥g∥V := sup
x∈X

|g(x)|
V (x)

∈ [0,+∞],

and we define the V−weighted space

BV :=
{
g : X→R,measurable such that ∥g∥V < ∞

}
.
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Note that B1X = B. The following obvious fact will be repeatedly used hereafter:

∀g ∈ BV , |g| ≤ ∥g∥V V, i.e. ∀x ∈ X, |g(x)| ≤ ∥g∥V V (x).

If (µ1, µ2) ∈ (M∗
+,b)

2 is such that µi(V ) < ∞, i = 1, 2, then the V -weighted total
variation norm ∥µ1 − µ2∥′V is defined by

∥µ1 − µ2∥′V := sup
∥g∥V ≤1

∣∣µ1(g)− µ2(g)
∣∣. (8)

If V = 1X, then ∥ · ∥′1X = ∥ · ∥TV is the standard total variation norm.

2.2 Markov chain

A Markov chain (Xn)n≥0 on the state space X with transition/Markov kernel P is a family
of random variables on a probability space (Ω,F ,P) such that

∀f ∈ B, E[f(Xn+1) | σ(X0, . . . , Xn)] = (Pf)(Xn)

where σ(X0, . . . , Xn) is the sub-σ−algebra of F generated by the r.v’s X0, . . . , Xn. In par-
ticular, for any A ∈ X ,

E[1A(Xn+1) | σ(X0, . . . , Xn)] = (P1A)(Xn) =

∫
A
P (x, dy) = P (x,A).

Assertions a)-b) below are relevant to link iterated kernels and the Markov chain. The
classical statements c)-d) are prerequisites on occupation and hitting times of a set A, which
are only used in Subsection 4.1 to study the Harris-recurrence property.

a) We have for any k ≥ 0, E[f(Xn+k) | σ(X0, . . . , Xn)] = (P kf)(Xn).

b) The probability P when P{X0 = x} = 1, is denoted by Px, and Ex is the expectation
under Px.

c) Let A ∈ X . Then the function defined by

∀x ∈ X, g∞
A (x) := Px

{ +∞∑
n=1

1{Xn∈A} = +∞
}

(9)

is bounded on X and P−harmonic, e.g. see [DMPS18, Prop. 4.2.4], [Num84, Th. 3.4].

d) Let A ∈ X and let gA be the function on X defined by

∀x ∈ X, gA(x) = Px{TA <∞} (10)

where TA := inf{n ≥ 0 : Xn ∈ A} is the hitting time of the set A. Then gA is superhar-
monic, i.e. PgA ≤ gA, and we have (e.g. see [Num84, Th. 3.4], [DMPS18, Th. 4.1.3]):

g∞
A = lim

n→+∞
↘ PngA. (11)
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3 Minorization condition, invariant measure and recurrence

In this section a first-order minorization condition on the Markov kernel P is introduced:
P ≥ ψ ⊗ ν where ν ∈ M∗

+,b and ψ ∈ B∗
+. This allows us to decompose P as the sum of two

submarkovian kernels R := P − ψ ⊗ ν, called the residual kernel, and ψ ⊗ ν. Two quantities
of interest are defined from the residual kernel and its iterates: first the positive measure
µR :=

∑+∞
k=0 νR

k, second the R−harmonic function h∞
R := limnR

n1X. Then the existence of
a P−invariant positive measure and the classical recurrence/transience dichotomy are studied
according that µR(ψ) = 1 or not (equivalently ν(h∞

R ) = 0 or not).

3.1 The minorization condition (M ν,ψ) and the residual kernel

Recall that B∗
+ is the set of non-negative and non-zero measurable bounded functions on X

and that M∗
+,b is the set of finite positive measures on (X,X ). Let P be a Markov kernel on

(X,X ). Let us introduce the minorization condition which is in force throughout this paper:

∃(ν, ψ) ∈ M∗
+,b × B∗

+ : P ≥ ψ ⊗ ν (i.e. ∀x ∈ X, P (x, dy) ≥ ψ(x) ν(dy)). (Mν,ψ)

The function ψ is called a first-order small-function in the literature on the topic of Markov
chains. That the non-negative function ψ in (Mν,ψ) is bounded is required since ψ(x) ν(1X) ≤
P (x,X) = 1 for any x ∈ X and ν(1X) > 0. Moreover for any (ψ, ϕ) ∈ B∗

+ × B∗
+ such that

ψ ≥ ϕ, if (Mν,ψ) is satisfied then so is (Mν,ϕ).

Under (Mν,ψ), we can introduce the following submarkov kernel, called the residual kernel,
which is central in our analysis of the Markov kernel P :

R ≡ Rν,ψ := P − ψ ⊗ ν (i.e. ∀x ∈ X, R(x, dy) := P (x, dy)− ψ(x)ν(dy)). (12)

The most classical instance of minorization condition is when ψ := 1S for some S ∈ X ∗, that
is

∃(ν, S) ∈ M∗
+,b ×X ∗ : P ≥ 1S ⊗ ν (i.e. ∀x ∈ X, P (x, dy) ≥ 1S(x) ν(dy)), (Mν,1S )

in which case the residual kernel is:

R ≡ Rν,1S := P − 1S ⊗ ν.

Such a set S is called a first-order small-set.

The following statement provides a general framework for Condition (Mν,ψ) to hold.
Moreover this proposition shows that, even if the minorizing measure ν is defined from
(Mν,1S ) with some set S, this condition (Mν,1S ) is not the only one possible.

Proposition 3.1 Assume that

∀x ∈ X, P (x, dy) ≥ q(x, y)λ(dy) (13)

where q(·, ·) is a non-negative measurable function on X2 and λ is a positive measure on X.
Let S ∈ X ∗ be such that the measurable non-negative function qS defined by

∀y ∈ X, qS(y) := inf
x∈S

q(x, y)

9



is not λ−null, that is: λ(1A) > 0 where A := {y ∈ X : qS(y) > 0}. Let ν ∈ M∗
+,b and

ψS ≥ 1S be defined by

ν(dy) := qS(y)λ(dy) and ∀x ∈ X, ψS(x) := 1S(x) inf
y∈A

q(x, y)

qS(y)
. (14)

Then P satisfies Condition (Mν,ψS
) and so (Mν,1S ).

Proof. For any fixed x ∈ S, we have ν(1X) ≤
∫
X q(x, y)λ(dy) ≤ P (x,X) = 1 from the

definition of ν, qS and from (13). Thus ν is finite and ν(1A) > 0, so that ν ∈ M∗
+,b. Next, from

the definition of ψS we obtain the following property: ∀(x, y) ∈ S×A, q(x, y) ≥ qS(y)ψS(x).
In fact this inequality holds for every (x, y) ∈ X2 since q(x, y) ≥ 0. Finally it follows from
(13) that, for every x ∈ X, we have P (x, dy) ≥ ψS(x)qS(y)λ(dy), i.e. P satisfies (Mν,ψS

).
Note that ψS ≥ 1S from the definition of the function qS , so that (Mν,1S ) is satisfied. □

The next kernel identity (16) is the first key formula of this work. Recall that the residual
kernel R = P −ψ⊗ ν is a submarkov kernel, so that the n−th iterate kernel Rn of R defined
by induction using Formula (1) is a submarkov kernel too. Also recall that by convention
R0(x, ·) is the Dirac measure at x. Finally note that, for every k ≥ 1, we have ν Rk ∈ M+,b

(see (3)).

Lemma 3.2 Let P satisfy Condition (Mν,ψ). Then we have

∀n ≥ 1, 0 ≤ Rn ≤ Pn, (15)

Pn = Rn +

n∑
k=1

Pn−kψ ⊗ νRk−1. (16)

and
+∞∑
n=0

Pn =
+∞∑
n=0

Rn +

( +∞∑
n=0

Pnψ

)
⊗
( +∞∑
k=0

νRk
)
. (17)

Proof. We have 0 ≤ R ≤ P , thus 0 ≤ Rn ≤ Pn using (6c). Set T0 := 0 and Tn := Pn − Rn

for n ≥ 1. Note that Property (16) is equivalent to

∀n ≥ 1, Tn =
n∑
k=1

Pn−kψ ⊗ νRk−1. (18)

Equality (18) is clear for n = 1 since T1 = P −R = ψ ⊗ ν. Next we have for any n ≥ 2

Pn − Tn = Rn = Rn−1R = (Pn−1 − Tn−1)(P − T1),

so that Tn = Pn−1T1 + Tn−1R. Then (18) holds for n ≥ 2 by an easy induction based on the
previous equality for Tn: For instance use the functional action of kernels to check that, for
every g ∈ B, if Tn−1g =

∑n−1
k=1 ν(R

k−1g)Pn−1−kψ, then Tng =
∑n

k=1 ν(R
k−1g)Pn−kψ.

From (16) and the convention for P 0 = R0 we obtain that (see (7))

+∞∑
n=0

Pn =

+∞∑
n=0

Rn +

+∞∑
n=1

n∑
k=1

Pn−kψ ⊗ νRk−1 =

+∞∑
n=0

Rn +
+∞∑
k=1

+∞∑
n=k

Pn−kψ ⊗ νRk−1

=
+∞∑
n=0

Rn +

( +∞∑
n=0

Pnψ

)
⊗
( +∞∑
k=0

νRk
)

Thus (17) holds and the proof of Lemma 3.2 is complete. □
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Under Condition (Mν,ψ), we have 0 ≤ R1X ≤ 1X. Since R is a non-negative kernel, we
get 0 ≤ Rn+11X ≤ Rn1X for any n ≥ 0. Thus the sequence (Rn1X)n≥0 is non-increasing so
that it converges point-wise. Consequently we can define the following measurable function
h∞

R : X→[0, 1]:
h∞

R := lim
n

↘ Rn1X. (19)

Note that h∞
R is R−harmonic: indeed, for every x ∈ X, we have (Rn+1h∞

R )(x) = (RRnh∞
R )(x),

so that h∞
R (x) = (Rh∞

R )(x) from Lebesgue’s theorem applied to the finite non-negative mea-
sure R(x, dy) observing that Rnh∞

R ≤ Rn1X ≤ 1X.

Recall that, for every k ≥ 0, we have νRk ∈ M+,b (see (3)). Under Condition (Mν,ψ) let
µR denote the positive measure on (X,X ) (not necessarily finite) defined by

µR :=
+∞∑
k=0

νRk. (20)

The measure µR is positive from µR(1X) ≥ ν(1X) > 0. The measure µR as well as the function
h∞

R are used throughout this section.

3.2 P−invariant measure

First prove the following simple lemma.

Lemma 3.3 Assume that P satisfies Conditions (Mν,ψ). Let g be a P−harmonic function.
Then we have

∀n ≥ 0, ν(g)
n∑
k=0

Rkψ = g −Rn+1g. (21)

In particular we have

∀n ≥ 0, 0 ≤ ν(1X)
n∑
k=0

Rkψ = 1X −Rn+11X ≤ 1X. (22)

Proof. Let g ∈ B be such that Pg = g. We have ν(g)ψ = (I − R)g from the definition (12)
of R. Then

∀n ≥ 0, ν(g)
n∑
k=0

Rkψ =

( n∑
k=0

Rk
)
(I −R)g =

n∑
k=0

Rkg −
n+1∑
k=1

Rkg = g −Rn+1g.

Property (21) is proved. Since P1X = 1X, Property (21) with g := 1X is nothing else than (22).
□

Recall that the positive measure ν in (Mν,ψ) is finite (i.e. ν(1X) <∞).

Proposition 3.4 Let P satisfy Condition (Mν,ψ). Then the function series
∑+∞

k=0R
kψ

point-wise converges and is bounded on X. More precisely we obtain that

0 ≤ ν(1X)
+∞∑
k=0

Rkψ = 1X − h∞
R ≤ 1X. (23)

Moreover we have µR(ψ) =
∑+∞

k=0 ν(R
kψ) ∈ [0, 1], and the following equivalences hold

µR(ψ) = 1 ⇐⇒ ν(h∞
R ) = 0 ⇐⇒ µR(h

∞
R ) = 0. (24)

11



The property µR(ψ) ≤ 1 proved above implies that there existsA ∈ X ∗ such that µR(1A) <∞.

Proof. It follows from (22) that the series of non-negative functions
∑+∞

k=0R
kψ point-wise

converges. When n growths to +∞ in (22), we get the equality in (23) from the definition
(19) of h∞

R .

Next integrate w.r.t. the measure ν in (23) and apply the monotone convergence theorem to
get 0 ≤ ν(1X)µR(ψ) = ν(1X)− ν(h∞

R ) ≤ ν(1X). Since ν(1X) > 0, it follows that µR(ψ) ∈ [0, 1]
and the first equivalence in (24) holds. Since Rh∞

R = h∞
R , we have from (20) that ν(h∞

R ) = 0
implies that µR(h

∞
R ) = 0. Finally, we have µR(h

∞
R ) ≥ ν(h∞

R ) ≥ 0 from the definition (20) of
µR so that µR(h

∞
R ) = 0 implies that ν(h∞

R ) = 0. The proof of the second equivalence in (24)
is complete. □

Theorem 3.5 (P−invariant positive measure) Assume that P satisfies Condition (Mν,ψ).
Then the following assertions hold.

1. If µR(ψ) = 1 (or equivalently ν(h∞
R ) = 0), then µR is a P−invariant positive measure.

2. If there exists ζ ∈ B∗
+ such that ν(ζ) > 0 and µR(Pζ) = µR(ζ) < ∞, then we have

µR(ψ) = 1.

In particular, if ν(ψ) > 0, then

µR is P−invariant ⇐⇒ µR(ψ) = 1 ⇐⇒ ν(h∞
R ) = 0 ⇐⇒ µR(h

∞
R ) = 0.

Recall that the condition ν(ψ) > 0 is the so-called strong aperiodicity property.

Proof. From the definitions (12) of R and (20) of µR, the following equalities hold in [0,+∞]:

∀A ∈ X , µR(P1A) = µR(R1A) + ν(1A)µR(ψ) = µR(1A) + ν(1A)
(
µR(ψ)− 1

)
since we have µR(R1A) = µR(1A) − ν(1A) in [0,+∞]. Consequently, if µR(ψ) = 1, then µR

is a P−invariant positive measure and Assertion 1. is proved. Next, if ζ ∈ B∗
+ satisfies the

assumptions in Assertion 2., then we deduce from µR(ζ) = µR(Pζ) = µR(ζ)+ν(ζ)
(
µR(ψ)−1

)
that µR(ψ) = 1. In the last assertion, that µR(ψ) = 1 implies the P−invariance of µR is just
Assertion 1. Next, if ν(ψ) > 0 and µR is P−invariant, then Assertion 2. can be applied to
ζ := ψ since we know that µR(ψ) <∞ from Proposition 3.4, so that we have µR(ψ) = 1. The
two last equivalences are (24). □

Theorem 3.6 (P−invariant probability measure) If P satisfies Condition (Mν,ψ), then
the following assertions are equivalent.

1. There exists a P−invariant probability measure η on (X,X ) such that η(ψ) > 0.

2. µR(1X) =
∑+∞

k=0 ν(R
k1X) <∞.

Under any of these two conditions, the following probability measure on (X,X )

πR := µR(1X)
−1 µR with µR :=

+∞∑
k=0

νRk ∈ M+
∗,b (25)

is P−invariant with µR(ψ) = 1 and πR(ψ) = µR(1X)
−1 > 0.

12



Proof. Assume that Assertion 1. holds. Then apply Formula (16) to 1X and compose on the
left by η to get 1 = η(Rn1X) + η(ψ)

∑n
k=1 ν(R

k−11X). It follows that

0 ≤ η
(
Rn1X

)
= 1− η(ψ)

n∑
k=1

ν(Rk−11X)

from which we deduce that µR(1X) =
∑+∞

k=1 ν(R
k−11X) ≤ η(ψ)−1 < ∞ since η(ψ) > 0 by

hypothesis. This proves that Assertion 1. implies Assertion 2.

Conversely, if Assertion 2. holds, then Assertion 2. of Theorem 3.5 can be applied with
ζ := 1X. Indeed, ν(1X) > 0 and µR(P1X) = µR(1X) < ∞ since P is Markov. Hence
we have µR(ψ) = 1, so that µR is P−invariant from Assertion 1. of Theorem 3.5. Thus
πR := µR(1X)

−1 µR is a P−invariant probability measure such that πR(ψ) = µR(1X)
−1 > 0.

□

The following standard example of uniform ergodicity illustrates Theorem 3.6. Moreover,
the well-known rate of convergence of ∥Pn(x, ·)− πR(·)∥TV is obtained from Formula (16).

Example 3.7 (Uniform ergodicity) Let P satisfy Condition (Mν,1X), that is there exists
ν ∈ M∗

+,b such that P ≥ 1X ⊗ ν. In other words the whole state space X is a first-order
small-set for P . Then Condition 2. of Theorem 3.6 holds and we have

∀n ≥ 1, ∀x ∈ X, ∥Pn(x, ·)− πR(·)∥TV ≤ 2(1− ν(1X))
n

where πR is the P−invariant probability measure given by (25). Indeed the residual kernel
R ≡ Rν,1X is here R = P − 1X ⊗ ν so that we have R1X = (1 − ν(1X))1X. Consequently we
obtain that

∀n ≥ 1, Rn1X = (1− ν(1X))
n1X.

Thus µR(1X) =
∑+∞

k=1 ν(R
k−11X) = 1, and it follows from Theorem 3.6 that the probability

measure πR given in (25) is P−invariant (πR = µR here). Moreover Formula (16) gives

∀n ≥ 1, Pn = Rn + 1X ⊗ µn with µn :=
n∑
k=1

νRk−1.

Consequently we have

∀n ≥ 1, Pn − 1X ⊗ πR = Rn − 1X ⊗
+∞∑

k=n+1

νRk−1,

from which we derive that

∀n ≥ 1, ∀x ∈ X, ∥Pn(x, ·)− πR∥TV ≤ ∥Rn(x, ·)∥TV +

∥∥∥∥ +∞∑
k=n+1

νRk−1

∥∥∥∥
TV

= Rn(x, 1X) +

+∞∑
k=n+1

ν(Rk−11X)

= 2(1− ν(1X))
n.
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3.3 Recurrence/Transience

If P satisfies Condition (Mν,ψ), then P is said to be recurrent if the following condition
holds:

∀A ∈ X : µR(1A) > 0 =⇒
+∞∑
k=0

P k1A = +∞ on X (i.e. ∀x ∈ X,
+∞∑
k=0

P k(x,A) = +∞), (26)

where µR is the positive measure on (X,X ) defined in (20). Note that if A ∈ X is such that
ν(1A) > 0 then µR(1A) > 0. Observe that Equality (17) reads as

+∞∑
n=0

Pn =

+∞∑
n=0

Rn +

( +∞∑
n=0

Pnψ

)
⊗ µR (27)

and is relevant in this section. To get a complete picture of recurrence/transience property for
P satisfying Condition (Mν,ψ) in the next statement, let us introduce the following definition.
The Markov kernel P is said to be irreducible if

+∞∑
n=1

Pnψ > 0 on X, i.e. ∀x ∈ X, ∃q ≡ q(x) ≥ 1, (P qψ)(x) > 0. (28)

Recall that under (Mν,ψ), we have µR(ψ) ∈ [0, 1] from Proposition 3.4, and that µR is a
P−invariant positive measure when µR(ψ) = 1, or equivalently ν(h∞

R ) = 0 (see (24)), from
Theorem 3.5. Finally, recall that ∥ · ∥1X denotes the supremum norm on B (i.e. ∥g∥1X :=
supx∈X |g(x)|).

Theorem 3.8 Let P satisfy Condition (Mν,ψ). Then the following assertions hold.

1. Case µR(ψ) = 1 (or equivalently ν(h∞
R ) = 0). The Markov kernel P is recurrent if and

only if P is irreducible (see (28)). When P is recurrent, µR is the unique P−invariant
positive measure η (up to a multiplicative positive constant) such that η(ψ) <∞.

2. Case µR(ψ) < 1 (or equivalently ν(h∞
R ) > 0). The function series

∑+∞
k=0 P

kψ is bounded
on X. If P is irreducible, then P is not recurrent, more precisely P is transient in the
following sense: Defining for every k ≥ 1 the set Ak := {x ∈ X :

∑k
j=0(R

jψ)(x) ≥ 1/k}
we have

X = ∪+∞
k=1Ak and ∀k ≥ 1, ck := ∥

+∞∑
n=0

Pn1Ak
∥1X <∞.

Actually we have: ∀k ≥ 1, ck ≤ k(k + 1)(ν(1X)
−1 +M) with M := ∥

∑+∞
k=0 P

kψ∥1X.

When P is irreducible, we have the following characterization of recurrence.

Corollary 3.9 Assume that P satisfies Conditions (Mν,ψ) and is irreducible. Then

P is recurrent ⇐⇒ µR(ψ) = 1 ⇐⇒ ν(h∞
R ) = 0 ⇐⇒ µR(h

∞
R ) = 0.

Proof. Assume that µR(ψ) ∈ [0, 1). Then P is not recurrent from the second assertion of
Theorem 3.8. This proves the first direct implication. The converse one follows from the first
assertion of Theorem 3.8. The two last equivalences are (24). □
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The proof of Theorem 3.8 is based on the the two following lemmas.

Lemma 3.10 Let P satisfy Condition (Mν,ψ). If P is irreducible then the following state-
ments hold:

1.
∑+∞

n=0R
nψ > 0 on X.

2. If µR(ψ) = 1 (or equivalently ν(h∞
R ) = 0) then

∑+∞
n=0 P

nψ = +∞ on X.

Proof. We prove Assertion 1. by contradiction. Assume that there exists x ∈ X such that∑+∞
n=0(R

nψ)(x) = 0. Then we have h∞
R (x) = 1 from (23). From the definition of h∞

R (x) and
Rn1X ≤ 1, it then follows that: ∀n ≥ 1, (Rn1X)(x) = 1. Hence we deduce from Formula (16)
and (Pn1X)(x) = 1 that

∀n ≥ 1,
n∑
k=1

(Pn−kψ)(x) ν(Rk−11X) = 0.

In particular the first term of this sum of non-negative real numbers is zero, that is we have:
∀n ≥ 1, (Pn−1ψ)(x) ν(1X) = 0. Since P is irreducible (see (28)), we know that there exists
q ≡ q(x) ≥ 1 such that (P qψ)(x) > 0. Then the previous equality with n = q+1 implies that
ν(1X) = 0: Contradiction. Assertion 1. is proved. Next, if µR(ψ) = 1, then Equality (27)
applied to ψ and Assertion 1. imply that

∑+∞
n=0 P

nψ = +∞ on X. □

Lemma 3.11 Let P satisfy Condition (Mν,ψ) with µR(ψ) > 0. If P is recurrent, then∑+∞
k=0 P

kψ = +∞ on X.

Proof. Since µR(ψ) > 0, there exists ε > 0 such that the set Fε := {x ∈ X : ψ(x) ≥ ε}
satisfies µR(1Fε) > 0 (otherwise we would have µR({x ∈ X : ψ(x) > 0}) = 0, thus µR(ψ) = 0).
From recurrence and 1Fε ≤ ψ/ε, we obtain that

∑+∞
n=0 P

nψ = +∞ on X. □

Now, let us provide a proof of Theorem 3.8.

Proof of Theorem 3.8. Assume that µR(ψ) = 1. If P is irreducible, then
∑+∞

k=0 P
kψ = +∞ on

X from Assertion 2. of Lemma 3.10. It follows from (27) applied to 1A that
∑+∞

k=0 P
k1A = +∞

for every A ∈ X such that µR(1A) > 0, i.e. P is recurrent. Conversely, if P is recurrent, then
it follows from µR(ψ) = 1 and Lemma 3.11 that

∑+∞
n=0 P

nψ = +∞ on X. Thus P satisfies
(28) (i.e. P is irreducible). Now let η be a P−invariant positive measure on (X,X ) such that
η(ψ) <∞. From (16) we have

∀n ≥ 1, η ≥ η(ψ)

n∑
k=1

νRk−1.

We deduce from the definition (20) of µR that η ≥ η(ψ)µR. Hence λ := η − η(ψ)µR is a
non-negative measure, which is P−invariant since µR and η are. We have λ(ψ) = 0 since
µR(ψ) = 1. Thus we have λ(P kψ) = 0 for every k ∈ N. From the monotone convergence
theorem, it follows that

λ
( +∞∑
k=0

P kψ
)
=

+∞∑
k=0

λ(P kψ) = 0.

Moreover we know from the irreducibility definition (28) that
∑+∞

k=0 P
kψ > 0 on X. It follows

that λ = 0, i.e. η = η(ψ)µR. Thus any P−invariant positive measure η such that η(ψ) <∞ is
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such that η = η(ψ)µR (which implies that η(ψ) > 0). The second statement of Assertion 1. is
proved.

Now assume that µR(ψ) < 1. We have ν(h∞
R ) > 0 from (24) since µR(ψ) < 1. Recall that

Rh∞
R = h∞

R . Then, Formula (16) applied to h∞
R and Rh∞

R = h∞
R give

∀n ≥ 1, Pnh∞
R = h∞

R + ν(h∞
R )

n−1∑
k=0

P kψ,

from which we deduce that: ∀n ≥ 1,
∑n−1

k=0 P
kψ ≤ ν(h∞

R )−11X since h∞
R ≥ 0 and Pnh∞

R ≤ 1X
from h∞

R ≤ 1X. Consequently the function
∑+∞

k=0 P
kψ is bounded on X. Now assume that P is

irreducible. Note that µR(ψ) = ν(
∑+∞

n=0R
nψ) from the monotone convergence theorem. Since

ν is a positive measure, it follows from Lemma 3.10 that µR(ψ) > 0. Thus, as in the proof of
Lemma 3.11, there exists ε > 0 and a set Fε such that µR(1Fε) > 0 and 1Fε ≤ ψ/ε. We deduce
that

∑+∞
n=0 P

n1Fε is bounded on X. Consequently P is not recurrent. Next let us prove that
P is transient as defined in Theorem 3.8. We have X = ∪+∞

k=1Ak. Indeed, otherwise there

would exist x ∈ X such that: ∀k ≥ 1,
∑k

j=0(R
jψ)(x) < 1/k, so that

∑+∞
j=0(R

jψ)(x) = 0:

This contradicts Lemma 3.10. Finally let k ≥ 1. Observing that 1Ak
≤ k

∑k
j=0R

jψ, we
obtain that (see (7))

+∞∑
n=0

Rn1Ak
≤ k

+∞∑
n=0

Rn
( k∑
j=0

Rjψ

)
= k

k∑
j=0

Rj
( +∞∑
n=0

Rnψ

)

≤ k ν(1X)
−1

k∑
j=0

Rj1X ≤ k(k + 1)ν(1X)
−11X (using (23) and R1X ≤ 1X).

Moreover, composing on the left the previous inequality by ν, it follows from the monotone
convergence theorem that µR(1Ak

) ≤ k(k + 1). Then the last inequalities combined with
Formula (27) applied to 1Ak

provide

+∞∑
n=0

Pn1Ak
≤ k(k + 1)

[
ν(1X)

−1 +M
]
1X with M := ∥

+∞∑
k=0

P kψ∥1X .

The proof of Theorem 3.8 is complete. □

When the positive measure µR is finite (i.e. µR(1X) < ∞), then we have µR(ψ) = 1 from
Theorem 3.6. Moreover any P−invariant probability measure π is such that π(ψ) <∞ since
ψ is bounded. Therefore, the following statement is a direct consequence of Assertion 1. of
Theorem 3.8.

Corollary 3.12 Assume that P satisfies Condition (Mν,ψ) with µR(1X) < ∞ and is irre-
ducible. Then P is recurrent, and the probability measure πR given in (25) is the unique
P−invariant probability measure.

If Condition (Mν,ψ) holds with µR(ψ) > 0, then the following statement shows that
the recurrence property actually implies that µR(ψ) = 1, so that µR is P−invariant. Note
that the condition µR(ψ) > 0 is satisfied, either when P is irreducible from Lemma 3.10
since µR(ψ) = ν(

∑+∞
k=0R

kψ), or when the strong aperiodicity property ν(ψ) > 0 holds since
µR(ψ) ≥ ν(ψ).
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Proposition 3.13 Let P satisfy Condition (Mν,ψ) with µR(ψ) > 0. If P is recurrent, then
µR is P−invariant.

Proof. Since µR(ψ) > 0 and P is assumed to be recurrent, we deduce from Lemma 3.11 that∑+∞
k=0 P

kψ = +∞ everywhere. Moreover, the sequence (ν(Rn1X))n≥0 is non-increasing since
(Rn1X))n≥0 is. Then, it follows from the kernel equality (16) applied with 1X that

∀n ≥ 1, Pn1X = 1X ≥ ν(Rn−11X)
n−1∑
k=0

P kψ.

Since
∑+∞

k=0 P
kψ = +∞ and ν(h∞

R ) = limn ν(R
n1X) from the monotone convergence theorem,

we deduce from the above inequality that ν(h∞
R ) = 0 which is equivalent to µR(ψ) = 1

from (24). Then, the P−invariance of µR follows from Assertion 1. of Theorem 3.5. □

3.4 Further statements

The two first following propositions are used in the bibliographic discussions of Subsection 3.5.
The second one may be relevant to check the condition µR(1A) > 0 in the definition (26) of
recurrence. The third proposition is only used in the proof of Propositions 5.12 and 5.13
related to discussion on drift conditions in Section 5.

Proposition 3.14 If P satisfies Condition (Mν,ψ) with µR(ψ) > 0, then P is irreducible
(see (28)) if, and only if,

∀A ∈ X : µR(1A) > 0 =⇒
+∞∑
n=1

Pn1A > 0 on X. (29)

Proof. Equality (27) (i.e. (17)) reads also as
∑+∞

n=1 P
n =

∑+∞
n=1R

n+
(∑+∞

n=0 P
nψ

)
⊗µR since

P 0 = R0. Thus, we have

∀A ∈ X , ∀x ∈ X,
+∞∑
n=1

Pn(x,A) ≥ µR(1A)

+∞∑
n=0

(Pnψ)(x),

from which we deduce that the irreducibility condition (28) implies Condition (29). Con-
versely assume that Condition (29) holds. Since there exists ε > 0 such that µR({ψ ≥ ε}) > 0
from µR(ψ) > 0, it follows from (29) that

∑+∞
n=1 P

nψ ≥ ε
∑+∞

n=1 P
n1{ψ≥ε} > 0 on X, i.e. (28)

holds. □

Let us introduce the following Markov resolvent kernel

Q :=

+∞∑
n=0

2−(n+1)Pn. (30)

Proposition 3.15 If P satisfies Condition (Mν,ψ), then the following equivalence holds:

∀A ∈ X : µR(1A) > 0 ⇐⇒ ν(Q1A) > 0.
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Proof. Let A ∈ X . From (16) we obtain that

Q1A =

+∞∑
n=0

2−(n+1)Rn1A +

+∞∑
n=1

2−(n+1)
n∑
k=1

ν(Rk−11A)P
n−kψ

=
+∞∑
n=0

2−(n+1)Rn1A +

( +∞∑
k=1

2−kν(Rk−11A)

)( +∞∑
n=0

2−(n+1)Pnψ

)
. (31)

Then composing on the left by ν, it follows from the monotone convergence theorem that

ν(Q1A) =
+∞∑
n=0

2−(n+1)ν(Rn1A) +

( +∞∑
k=1

2−kν(Rk−11A)

)( +∞∑
n=0

2−(n+1)ν(Pnψ)

)
.

Next from the definition (20) of µR we have: µR(1A) = 0 ⇔ ∀k ≥ 0, ν(Rk1A) = 0. It
follows from the above equality that µR(1A) = 0 is equivalent ν(Q1A) = 0 since all the terms
involved in this equality are non-negative. □

Proposition 3.16 If P satisfies Condition (Mν,ψ) and is irreducible, then every non-empty
P−absorbing set is µR−full.

Proof. Let B ∈ X ∗ be a P−absorbing set, that is satisfying: ∀n ≥ 1, ∀x ∈ B, Pn(x,Bc) = 0.
Let Q be defined in (30). Formula (31) applied to A := Bc provides

∀x ∈ B, 0 =

+∞∑
n=1

2−(n+1)Rn(x,Bc) +

( +∞∑
k=1

2−kν(Rk−11Bc)

)
(Qψ)(x).

Since P is irreducible (see (28)), we know that (Qψ)(x) > 0, so that we have: ∀k ≥
1, ν(Rk−11Bc) = 0. Thus µR(1Bc) = 0 from the definition (20) of µR. □

3.5 Bibliographic comments

Here we discuss point by point the definitions and results concerning the classical concepts
of this section, i.e. irreducibility, recurrence/transience properties and invariant measures, in
link with the books [Num84, MT09, DMPS18]. A detailed historical background on these
properties can be found in [Num84, pp. 141-144], [MT09, Sec. 4.5, 8.6,10.6] and [DMPS18,
Sec. 9.6,10.4,11.6]. In discrete state space, we refer for example to [Nor97, Bré99, Gra14] (see
also [Mey08, App. A] for an overview on Markov chains in modern terms).

A) Small-set and small-functions. Let ℓ ≥ 1. Recall that a set Sℓ ∈ X ∗ is said to be a
ℓ−order small-set for P in the standard literature on the topic of Markov chains (e.g. see
[Num84, MT09, DMPS18]), if the following condition holds

∃νℓ ∈ M∗
+,b : P ℓ ≥ 1Sℓ

⊗ νℓ (i.e. ∀x ∈ X, P ℓ(x, dy) ≥ 1Sℓ
(x) νℓ(dy)). (32)

The extension to ℓ−order small-functions writes as (see [Num84, Def. 2.3, p. 15])

∃(νℓ, ψℓ) ∈ M∗
+,b × B+

∗ : P ℓ ≥ ψℓ ⊗ νℓ (i.e. ∀x ∈ X, P ℓ(x, dy) ≥ ψℓ(x) νℓ(dy)). (33)
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Our minorization condition (Mν,ψ) is nothing other than [Num84, Def. 2.3] with order
one. Finally recall that S ∈ X ∗ is said to be petite (e.g. see [MT92]) if it is a small-
set of order one for the Markov resolvent kernel

∑+∞
n=0 anP

n for some (an)n ∈ [0,+∞)N

such that
∑+∞

n=0 an = 1. The notion of petite sets is not used in this work. The specific
resolvent kernel

∑+∞
n=0 2

−(n+1)Pn in (30) is only used in part D) below to support the
current bibliographic discussion and to provide a sufficient condition for having h∞

R = 0
in Corollary 4.11.

B) Residual kernels and invariant measure. The representation (20) of P−invariant mea-
sure via the residual kernel was introduced in [Num84, Th. 5.2, Cor. 5.2] under the
minorization condition (Mν,ψ) and the recurrence assumption, so that the positive mea-
sure µR necessarily satisfies µR(ψ) = 1 there. The P−invariance of µR under the sole
Condition (Mν,ψ) was proved in [HL23b] in the specific case when µR(1X) < ∞: This
corresponds to Theorem 3.6. This result is extended to the general case in Theorem 3.5,
that is: under the single minorization Condition (Mν,ψ), the P−invariance of µR is ac-
tually guaranteed when µR(ψ) = 1, and is even equivalent to this condition under the
additional strong aperiodicity assumption ν(ψ) > 0. Consequently, contrary to the state-
ment [Num84, Th. 5.2, Cor. 5.2, p. 73-74], the P−invariance of µR is here related directly
to the condition µR(ψ) = 1, which makes it possible to carry out this study independently
of the recurrence property, and even independently of any irreducibility condition on P .
Recall that the key point in the proof of Theorem 3.5 is the kernel identity (16).

C) Accessibility and irreducibility conditions. Recall that if P satisfies Condition (Mν,1S )
then the set S is said to be a first-order small set. Let us comment Condition (28)
in case ψ := 1S . This condition then means that the set S is accessible according to
[DMPS18, Def. 3.5.1, Lem. 3.5.2]. On the other hand recall that a Markov kernel P
is said to be irreducible according to [DMPS18, Def. 9.2.1] if it admits an accessible
small set. Thus our definition (28) of irreducibility for a Markov kernel P satisfying
Condition (Mν,1S ) coincides with that of [DMPS18] in case of a first-order small set.
Now, thanks to Proposition 3.14, let us recall the link with the irreducibility notion
used in [Num84, MT09]. First, in connection with the condition µR(1S) = 0 which
is not addressed in Proposition 3.14, observe that this condition implies the transience
of P from Theorem 3.8. Moreover this condition cannot hold under Condition (28)
from Assertion 1. of Lemma 3.10 since µR(1S) = ν(

∑+∞
n=0R

n1S). Finally, nor can this
condition be satisfied under the strong aperiodicity condition ν(1S) > 0 since µR ≥ ν.
Thus the discussion may be conducted assuming that P satisfies Condition (Mν,1S ) with
µR(1S) > 0 (i.e. ∃k ≥ 0, ν(Rk1S) ̸= 0). Then it follows from Proposition 3.14 that our
definition of P irreducible (see (28)) is equivalent to the µR−irreducibility of P as defined
in [Num84, p. 11] and [MT09, p. 82], that is (29).

D) Maximal irreducibility measures. Although the notion of maximal irreducibility measures
is not explicitly addressed in this work, it has to be discussed since it plays an important
role in [Num84, MT09, DMPS18]. First note that, if P satisfies Conditions (Mν,1S )
and (28), then µR is an irreducibility measure using the classical terminology in [MT09,
DMPS18] (see Item C)). Actually µR is a maximal irreducibility measure according to
the definition [DMPS18, Def. 9.2.2]: Every accessible set A ∈ X is such that µR(1A) > 0.
Indeed A is accessible reads as Q1A > 0 on X where Q is defined in (30). Next, if
Q1A > 0 on X then ν(Q1A) > 0, so that µR(1A) > 0 from Proposition 3.15. Of course
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Conditions (Mν,1S ) and (28) also ensure that the minorizing measure ν is an irreducibility
measure since ν(1A) > 0 implies that µR(1A) > 0. However ν is not maximal a priori. As
is well known, any irreducibility measure η is absolutely continuous w.r.t. the maximal
irreducibility measure µR since the condition η(1A) > 0 implies that Q1A > 0 on X from
the definition of η−irreducibility, so that µR(1A) > 0 due to the above.

E) Recurrence/transience and uniqueness of invariant measure in recurrence case. Our def-
inition (26) of recurrence corresponds to that in [Num84, pp. 27-28] and [MT09, p. 180]
with µR as maximal irreducibility measure. From the discussion in Item C), this also
corresponds to the recurrence definition [DMPS18, Def. 10.1.1]. The transience prop-
erty used in Theorem 3.8 is that provided in [MT09, p. 171 and 180] and [DMPS18,
Def. 10.1.3]. The Recurrence/Transience dichotomy stated in Theorem 3.8 is a well-
known result for irreducible Markov chains, e.g. see [Num84, Th. 3.2, p. 28], [MT09,
Th. 8.0.1] and [DMPS18, Th. 10.1.5]. The novelty in Theorem 3.8 is that this dichotomy
can be simply declined according to whether µR(ψ) = 1 or µR(ψ) ∈ [0, 1).

As indicated in Item B), the existence of P−invariant positive measures, which is obtained
in our work independently of any irreducibility condition on P (Theorem 3.5), is classically
proved under the recurrence assumption. In fact this is usually done together with the
uniqueness issue. Under the recurrence assumption the existence and uniqueness (up
to a positive multiplicative constant) of a P−invariant positive measure is obtained in
[Num84, Th. 5.2, Cor. 5.2, p. 73-74] using the representation (20). This result is proved
in [MT09, Th. 10.4.9] and [DMPS18, Th. 11.2.5] via splitting techniques, providing the
classical regeneration-type representation of P−invariant positive measures.

F) Strong aperiodicity condition ν(ψ) > 0. This condition is a particular case of the general
aperiodicity condition stated in [MT09, p. 114] and [DMPS18, Def. 9.3.5]. In this work
we only use this strong aperiodicity condition.

G) Small functions and the splitting construction. To conclude this bibliographic discussion,
it is worth remembering that the concept of small-set has a natural and crucial proba-
bilistic interest in splitting or coupling techniques: This is the thread and backbone of
the books [Num84, MT09, DMPS18]. Here this probabilistic aspect is not addressed. In
this work, the minorization Condition (Mν,ψ) allows us to write the Markov kernel P as
the sum of two non-negative kernels: the residual kernel R := P −ψ⊗ν and the rank-one
kernel ψ ⊗ ν. That R is non-negative is the crucial point to define all the quantities
related to R in this section, especially the positive positive µR (see (20)) and the function
h∞R (see (19)). Actually one of the key points of the present section and of the next ones
is the kernel identity (16). This formula is already present in Nummelin’s book [Num84,
Eq. (4.12)]. It seems that the sole way to obtain a probabilistic sense of this formula is
to use the split Markov chain introduced in [Num78]. The idea is to use an appropriate
enlargement of the state space of the original Markov chain in order to artificially obtain a
new Markov chain - the split chain - which has an atom and whose properties are directly
related to those of the original chain. Then most of statements on the original chain
are derived from applying results (obtained for example by the regeneration method) on
atomic chains to this split chain. This enlargement consists roughly in tagging the tran-
sitions of the original chain according to the occurrence of a ψ−dependent tossing coin in
order to reflect the decomposition R+ψ⊗ ν of P in two submarkovian kernels. We refer
to [Num84, Sec. 4.4], [CMR05, Sec. 14.2], [MT09, Chap. 5] for details. See also [Num02]
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for a readable survey on this topic in the case of Markov chain Monte Carlo (MCMC)
kernels. To turn back to our key formula (16), [Num84, Eq. (4.24)] provides a proba-
bilistic interpretation from the splitting construction. What is new here is that we are
exploiting Formula (16) solely as a kernel identity. The price to pay for this presentation
is that we only consider Markov kernels satisfying a first-order minorization condition.

4 Harris recurrence and convergence of the iterates

Assume that P satisfies the minorization Condition (Mν,ψ) and recall that h∞
R := limnR

n1X
(point-wise convergence, see (19)), where R ≡ Rν,ψ is the residual kernel given in (12).
Condition h∞

R = 0 is stronger than ν(h∞
R ) = 0. Under this condition h∞

R = 0, the results of
the previous section are revisited in the following theorem with an additional result on the
P−harmonic functions. Next, still under Condition h∞

R = 0, the Markov kernel P is shown
to be Harris-recurrent, and the convergence in total variation norm of the iterates of P to its
unique invariant probability measure is obtained when µR(1X) < ∞, provided further that
the strong aperiodicity condition ν(ψ) > 0 is satisfied. Finally, introducing a drift inequality
on P , a sufficient condition for the condition h∞

R = 0 to hold is presented in Subsection 4.3.

Theorem 4.1 Let P satisfy Condition (Mν,ψ). If h∞
R = 0, then the following assertions

hold.

1. The P−harmonic functions are constant on X.

2. P is irreducible and is recurrent.

3. The positive measure µR :=
∑+∞

k=0 νR
k (see (20)) satisfies µR(ψ) = 1, and is the unique

P−invariant positive measure η (up to a multiplicative constant) such that η(ψ) < ∞.
If µR(1X) < ∞, then πR := µR(1X)

−1µR (see (25)) is the unique P−invariant probability
measure on (X,X ).

Proof. It follows from (23) and h∞
R = 0 that

+∞∑
k=0

Rkψ = ν(1X)
−11X. (34)

Let g ∈ B be such that Pg = g. Recall that, for every n ≥ 0, we have ν(g)
∑n

k=0R
kψ =

g−Rn+1g from (21). Moreover we have limnR
ng = 0 since |Rng| ≤ Rn|g| ≤ ∥g∥1XRn1X and

h∞
R = 0. Thus g = ν(g)

∑+∞
k=0R

kψ. We have proved that g is proportional to 1X. This proves
Assertion 1.

For Assertion 2., apply the kernel identity (27) to ψ to get

+∞∑
n=0

Pnψ =
+∞∑
n=0

Rnψ + µR(ψ)
+∞∑
n=0

Pnψ.

We have µR(ψ) = 1 since h∞
R = 0 (see (24)). Then, we deduce from (34) and the previ-

ous equality that
∑+∞

k=0 P
kψ = +∞. Thus the irreducibility property holds, as well as the

recurrence property from Theorem 3.8.

The first part of Assertion 3. is a direct consequence of Assertion 1. of Theorem 3.8 using
that ν(h∞

R ) = 0 (i.e. µR(ψ) = 1) and that P is recurrent. The second part of Assertion 3. is
Corollary 3.12. The proof of Theorem 4.1 is complete. □
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4.1 Harris-recurrence

Let us present a first application of Theorem 4.1 to the so-called Harris-recurrence property.
Let (Xn)n≥0 be a Markov chain with transition kernel P . If P satisfies Condition (Mν,ψ)
and if h∞

R = 0, we know that P is recurrent from Theorem 4.1, that is (see (26))

∀A ∈ X : µR(1A) > 0 =⇒ ∀x ∈ X, Ex
[ +∞∑
k=0

1{Xk∈A}

]
= +∞.

This recurrence property is proved below to be reinforced in

∀A ∈ X : µR(1A) > 0 =⇒ ∀x ∈ X, Px
{ +∞∑
n=1

1{Xn∈A} = +∞
}

= 1. (35)

Such a transition kernel P is said to be Harris-recurrent.

Theorem 4.2 Let P satisfy Conditions (Mν,ψ) and h∞
R = 0. Then the Markov chain

(Xn)n≥0 with transition kernel P is Harris-recurrent.

First prove the following lemma.

Lemma 4.3 Let P satisfy Conditions (Mν,ψ) and µR(ψ) = 1. If g ∈ B is such that Pg ≤ g,
then the non-negative function g − Pg is µR-integrable and we have µR(g − Pg) = 0.

Lemma 4.3, which is used below in the proof of Theorem 4.2, has its own interest. Indeed,
from the P−invariance of µR the conclusion of Lemma 4.3 is straightforward under the
assumption µR(1X) < ∞ since, for every g ∈ B, the functions g and Pg are µR-integrable
and µR(Pg) = µR(g). However, if µR is not finite, the conclusion of Lemma 4.3 is no longer
obvious.

Proof of Lemma 4.3. For every n ≥ 1, it follows from Pg = Rg + ν(g)ψ that

n∑
k=0

ν
(
Rk(g − Pg)

)
=

n∑
k=0

ν(Rkg)−
n∑
k=0

ν(Rk+1g)− ν(g)

n∑
k=0

ν(Rkψ)

= ν(g)

(
1−

n∑
k=0

ν(Rkψ)

)
− ν(Rn+1g) (36)

≤ 2∥g∥1Xν(1X) <∞

using 0 ≤
∑n

k=0 ν(R
kψ) ≤ µR(ψ) = 1 and |g| ≤ ∥g∥1X1X. Thus the series

∑+∞
k=0 ν(R

k(g−Pg))
of non-negative terms converges, that is g − Pg is µR-integrable. Since µR(ψ) = 1 we know
that ν(h∞

R ) = 0 from (24). Thus we have limn
∑n

k=0 ν(R
kψ) = 1 from the definition of µR.

Moreover we have |ν(Rn+1g)| ≤ ∥g∥1Xν(Rn+11X) with limn ν(R
n+11X) = ν(h∞

R ) = 0 from the
definition of h∞

R and Lebesgue’s theorem. Thus the property µR(g − Pg) = 0 follows from
(36). Lemma is proved. □

Proof of Theorem 4.2. Let A ∈ X be such that µR(1A) > 0. Recall that the function defined
by g∞

A (x) := Px
{∑+∞

n=1 1{Xn∈A} = +∞
}
for any x ∈ X is a P−harmonic function, see (9).

Thus, under Condition h∞
R = 0, we know that g∞

A is constant on X from Theorem 4.1. We
have to prove that g∞

A = 1X, namely that g∞
A (x) = 1 for at least one x ∈ X.

22



Let gA be defined by: ∀x ∈ X, gA(x) := Px{TA < ∞} where TA := inf{n ≥ 0 : Xn ∈ A}
is the hitting time of the set A. Recall that gA is superharmonic, i.e. PgA ≤ gA, and
that g∞

A = limn ↘ PngA, see (10)-(11). Let n ≥ 0. It follows from P (PngA) ≤ PngA
and Lemma 4.3 applies to PngA that the non-negative function PngA − Pn+1gA is such
that µR(P

ngA − Pn+1gA) = 0. Thus there exists En ∈ X such that µR(1Ec
n
) = 0 and

PngA = Pn+1gA on En. Now let E := ∩n≥0En. Then we have µR(1Ec) = 0 and

∀x ∈ E, ∀n ≥ 0, gA(x) = (Pn+1gA)(x).

Passing to the limit when n→+∞ we obtain that every x ∈ E satisfies g∞
A (x) = gA(x).

Finally we get from µR(1Ec) = 0 that µR(1A∩E) = µR(1A) > 0, and we know that gA = 1
on A from the definition of gA. Therefore there exists a x ∈ X such that g∞

A (x) = 1. Thus
g∞
A = 1X since g∞

A is constant on X. The proof of Theorem 4.2 is complete. □

Corollary 4.4 If P satisfies Condition (Mν,ψ), is irreducible and recurrent, then the re-
striction PH of P to the µR−full P−absorbing set H := {h∞

R = 0} is Harris-recurrent.

Proof. We have µR(h
∞
R ) = 0 from the assumptions and Corollary 3.9. Since h∞

R ≥ 0, we
then have µR(1Hc) = 0 with H := {x ∈ X : h∞

R (x) = 0}, i.e. the set H is µR−full. Moreover
this set H is P−absorbing. Indeed we have ν(h∞

R ) = 0 from Corollary 3.9 and recall that
Rh∞

R = h∞
R . It follows that Ph∞

R = h∞
R . Then we have

∀x ∈ H, 0 = h∞
R (x) = (Ph∞

R )(x) =

∫
X
h∞

R (y)P (x, dy)

hence P (x,Hc) = 0, i.e. P (x,H) = 1.

Let XH be the σ−algebra induced by X on H. Let PH be the Markov kernel on (H,XH)
defined as the restriction of P to H. Check that all the assumptions of Theorem 4.2 are
satisfied for PH . Since µR(h

∞
R ) = 0, we have µR(ψ) = 1 from Corollary 3.9. Then µR(1Hψ) =

µR(ψ) = 1 since H is µR−full. Thus the restriction ψH of ψ to H is a non-zero and non-
negative function on H. Moreover, since µR(1Hc) = 0 implies that ν(1Hc) = 0, we have
ν(1H) = ν(1X) > 0. Then it is easily checked that PH satisfies Condition (MνH ,ψH

) with
respect to the restriction νH to H of ν. Finally note that the associated residual kernel RH is
the restriction of R to H. Thus Rn

H1H = 1H ·Rn1X, so that h∞RH
:= limnR

n
H1H = 1H ·h∞

R = 0
on H from the definition of H. Consequently the last assertion of the corollary follows from
Theorem 4.2 applied to the Markov kernel PH on (H,XH). □

4.2 Convergence of iterates

When P satisfies Condition (Mν,ψ) with µR(1X) < ∞ and the strong aperiodicity condi-
tion ν(ψ) > 0 holds, the convergence of probability distributions (δxP

n)n≥0 to πR in total
variation norm is shown to be equivalent to the property h∞

R = 0 in the following theorem.
As a corollary, under the above conditions, the convergence of the probability distributions
(δxP

n)n≥0 to πR holds for πR−almost x ∈ X. Recall that under these assumptions, πR is the
unique P−invariant probability measure from Assertion 3. of Theorem 4.1.

Theorem 4.5 Assume that P satisfies Condition (Mν,ψ) with µR(1X) < ∞ and ν(ψ) > 0.
Then the following equivalence holds:

h∞
R = 0 ⇐⇒ ∀x ∈ X, lim

n→+∞
∥δxPn − πR∥TV = 0.
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Corollary 4.6 Let P satisfy Condition (Mν,ψ) with µR(1X) <∞ and ν(ψ) > 0. Then

lim
n→+∞

∥δxPn − πR∥TV = 0 for πR−almost every x ∈ X.

Proof of Corollary 4.6. We know from Theorem 3.6 that µR(ψ) = 1, so that µR(h
∞
R ) = 0

from (24). Thus πR(h
∞
R ) = 0 from the definition (25) of πR and the set H := {x ∈ X :

h∞
R (x) = 0} is thus πR−full. Following the same lines as in the proof of Corollary 4.4, the

set H can be shown to be P−absorbing. Let XH be the σ−algebra induced by X on H.
It can be easily seen that the Markov kernel PH on (H,XH) defined as the restriction of
P to H satisfies the assumptions of Theorem 4.5 with respect to the restriction νH and
ψH to H of ν and ψ respectively. In particular note that the associated residual kernel
RH is the restriction of R to H. As in the proof of Corollary 4.4, it can be shown that
h∞RH

:= limnR
n
H1H = 0. Moreover note that the restriction πR|H of πR toH is a PH−invariant

probability measure on (H,XH). Then Theorem 4.5 applied to PH shows that, for every
x ∈ H, we have limn ∥δxPnH − πR|H∥TV = 0. Finally, since we have for every x ∈ H and
A ∈ X

Pn(x,A)− πR(1A) = Pn(x,A ∩H)− πR(1A∩H) = P n
H (x,A ∩H)− πR|H(1A∩H)

we obtain that: ∀x ∈ H, limn ∥δxPn − πR∥TV = 0. This provides the expected conclusion
since πR(1H) = 1. □

Proof of Theorem 4.5. The proof follows from the two next lemmas. Indeed assume that
h∞

R = 0. Then limn P
nψ = πR(ψ)1X (point-wise convergence) from Lemma 4.7, thus the

desired convergence in total variation norm holds from Lemma 4.9. Conversely assume that,
for every x ∈ X, we have limn→+∞ ∥δxPn−πR∥TV = 0. Then it follows from the definition of
∥ · ∥TV that limn→+∞(Pnψ)(x) = πR(ψ) since ψ is bounded. Thus h∞

R = 0 from Lemma 4.7.
□

Lemma 4.7 Let P satisfy Condition (Mν,ψ) with µR(1X) <∞ and ν(ψ) > 0. Then

h∞
R = 0 ⇐⇒ lim

n→+∞
(Pnψ) = πR(ψ)1X (point-wise convergence).

Proof. The following power series are well-defined on D = {z ∈ C : |z| < 1}:

P(z) :=

+∞∑
n=0

znPnψ, R(z) :=

+∞∑
n=0

znRnψ, ρ(z) :=

+∞∑
k=1

ν(Rk−1ψ) zk

since ψ is bounded. Note that P(z) and R(z) are function series, while ρ(z) is a numerical
series. From the kernel identity (16) applied to ψ it follows that

P(z) =
+∞∑
n=0

znPnψ =
+∞∑
n=0

znRnψ +
+∞∑
n=1

zn
n∑
k=1

ν(Rk−1ψ)Pn−kψ

= R(z) + ρ(z)P(z).

Using µR(ψ) =
∑+∞

k=1 ν(R
k−1ψ) = 1 from Theorem 3.6, we have: ∀z ∈ D, |ρ(z)| < 1. Thus

∀z ∈ D, P(z) = R(z)U(z) with U(z) :=
1

1− ρ(z)
. (37)
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Next, for any k ≥ 1, we have ν(Rk1X) = ν
(
Rk−1(R1X)

)
= ν(Rk−11X)− ν(1X)ν(R

k−1ψ) from
R1X = 1X − ν(1X)ψ. Thus,

∀k ≥ 1, ν(1X)ν(R
k−1ψ) = ν(Rk−11X)− ν(Rk1X)

and

∀n ≥ 1, ν(1X)
n∑
k=1

k ν(Rk−1ψ) =
n∑
k=1

k
[
ν(Rk−11X)− ν(Rk1X)

]
=

n∑
k=1

k ν(Rk−11X)−
n+1∑
k=2

(k − 1) ν(Rk−11X)

=

n∑
k=1

ν(Rk−11X)− n ν(Rn1X).

Hence m :=
∑+∞

k=1 k ν(R
k−1ψ) ≤ µR(1X)ν(1X)

−1 < ∞. Now recall that
∑+∞

k=1 ν(R
k−1ψ) = 1

and note that ρ(z) is not a power series in zq with q ≥ 2 since the first term in ρ(z) is
ν(ψ)z with ν(ψ) > 0 by hypothesis. Consequently the Erdös-Feller-Pollard renewal theorem
[EFP49] provides the following property for the power series U(z) =

∑+∞
k=0 ukz

k in (37):

lim
k→+∞

uk =
1

m
.

Let x ∈ X. Identifying the coefficients of the power series in Equation (37) (Cauchy product),
we obtain that for every n ≥ 0

(Pnψ)(x) =

n∑
k=0

un−k(R
kψ)(x) =

+∞∑
k=0

vn(k)(R
kψ)(x) with ∀k ≥ 0, vn(k) = un−k1[0,n](k).

For every k ≥ 1, we have limn vn(k) = 1/m, and |vn(k)| ≤ supj |uj | < ∞. Moreover recall

that
∑+∞

k=0(R
kψ)(x) < ∞ from Proposition 3.4. Then it follows from Lebesgue theorem

w.r.t. discrete measure that

∀x ∈ X, lim
n
(Pnψ)(x) =

1

m

+∞∑
k=0

(Rkψ)(x). (38)

Now we can prove Lemma 4.7. If h∞
R = 0, then we have

∑+∞
k=0(R

kψ)(x) = ν(1X)
−1 from (34).

Hence (38) provides: ∀x ∈ X, limn(P
nψ)(x) = (mν(1X))

−1. Actually the constant (mν(1X))
−1

equals to πR(ψ) from Lebesgue theorem w.r.t. the P−invariant probability measure πR. The
direct implication in Lemma 4.7 is proved. Conversely, assume that limn P

nψ = πR(ψ)1X
(point-wise convergence). Then we deduce from (38) that

∑+∞
k=0R

kψ = c 1X with c :=
mπR(ψ). Thus h

∞
R = d 1X with d = 1− cν(1X) from (23). Finally recall that µR(ψ) = 1, thus

ν(h∞
R ) = 0 from (24). Hence d ν(1X) = 0, from which we deduce that h∞

R = 0. □

Remark 4.8 From the proof of Lemma 4.7 we deduce the following facts. If P satisfies
Condition (Mν,ψ) with µR(1X) <∞, then m :=

∑+∞
k=1 k ν(R

k−1ψ) <∞. If moreover ν(ψ) >
0 and h∞

R = 0, then m = (πR(ψ)ν(1X))
−1. Finally mention that, for the direct implication

in the equivalence of Lemma 4.7, the renewal theorem in [Fel67, Th 1, p330] can be directly
applied too.
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Lemma 4.9 Assume that P satisfies Condition (Mν,ψ) and µR(1X) < ∞. If h∞
R = 0 and

limn P
nψ = πR(ψ)1X (point-wise convergence), then limn ∥δxPn−πR∥TV = 0 for every x ∈ X.

Proof. Using (16) and πR = πR(ψ)
∑+∞

k=1 νR
k−1 (see (25)), we have for every n ≥ 1 and g ∈ B

Png − πR(g)1X = Rng +
n∑
k=1

ν(Rk−1g)
(
Pn−kψ − πR(ψ)1X

)
− πR(ψ)

( +∞∑
k=n+1

ν(Rk−1g)

)
1X.

Thus

∥δxPn−πR∥TV ≤ (Rn1X)(x)+
n∑
k=1

ν(Rk−11X)
∣∣(Pn−kψ)(x)−πR(ψ)

∣∣+πR(ψ)
+∞∑

k=n+1

ν(Rk−11X).

We have limn(R
n1X)(x) = 0 from h∞

R = 0. The last term in the right hand side of the previous
inequality also converges to zero when n→+∞ since

∑+∞
k=0 ν(R

k1X) = µR(1X) < ∞. Next
note that

n∑
k=1

ν(Rk−11X)
∣∣(Pn−kψ)(x)− πR(ψ)

∣∣ = +∞∑
k=1

ν(Rk−11X)fn(k)

with fn(k) := |(Pn−kψ)(x) − πR(ψ)|1[1,n](k). Then, using
∑+∞

k=1 ν(R
k−11X) < ∞, the above

sum converges to zero when n→+∞ from Lebesgue’s theorem w.r.t. discrete measure since,
for every k ≥ 1, we have fn(k) ≤ 2∥ψ∥1X and limn fn(k) = 0 by hypothesis. Lemma 4.9 is
proved. □

4.3 Drift condition for having h∞
R = 0

Now, we introduce a drift condition to have the property h∞
R := limnR

n1X = 0, the relevance
of which has been highlighted in Theorems 4.1, 4.2, 4.5. Actually, under a drift inequality
w.r.t. some measurable function W : X→[0,+∞), the property h∞

R = 0 is characterized in
Proposition 4.10 by a control of h∞

R or
∑+∞

k=0R
kψ on any level set Wr := {x ∈ X :W (x) ≤ r}

of W . Finally, a condition ensuring this control is provided by Corollary 4.11.

Proposition 4.10 Let P satisfy Condition (Mν,ψ) and the following drift condition for some
measurable function W : X→[0,+∞):

∃b > 0, PW ≤W + b ψ. (39)

For any r > 0 let Wr denote the level set of order r defined by: Wr := {x ∈ X : W (x) ≤ r}.
Then we have the following equivalences

h∞
R = 0 ⇐⇒ ∀r > 0, sup

x∈Wr

h∞
R (x) < 1 ⇐⇒ ∀r > 0, inf

x∈Wr

+∞∑
k=0

(Rkψ)(x) > 0. (40)

Proof. The second equivalence in (40) follows from (23). That h∞
R = 0 implies the sec-

ond condition in (40) is obvious. It remains to prove that the second condition in (40), or
equivalently the third one, implies that h∞

R = 0.

26



In the sequel, the third condition in (40) is assumed to hold. First prove that we have the
following point-wise convergence on X

∀ρ > 0, lim
n
Rn1Wρ = 0. (41)

Let ρ > 0 and define a ≡ aρ := infx∈Wρ

∑+∞
k=0(R

kψ)(x). By hypothesis we have a > 0 and

1Wρ ≤ a−1
∑+∞

k=0R
kψ, from which we deduce that

∀n ≥ 1, 0 ≤ Rn1Wρ ≤ a−1
+∞∑
k=n

Rkψ

from the monotone convergence theorem w.r.t. Rn(x, dy) for each x ∈ X. Property (41) then
holds since the series

∑+∞
k=0R

kψ converges point-wise from Proposition 3.4.

Next note that ν(W )ψ ≤ PW everywhere on X from (Mν,ψ), so that ν(W ) <∞ and RW
is well-defined. Let d := max(0 , (b− ν(W ))/ν(1X)) and prove that

RWd ≤Wd where Wd :=W + d1X. (42)

Note that ν(Wd) = ν(W ) + dν(1X) < ∞ and that PWd = PW + d1X. It then follows from
RWd = PWd − ν(Wd)ψ and from the drift inequality (39) that

RWd ≤W + bψ + d1X −
(
ν(W ) + d ν(1X)

)
ψ ≤Wd +

(
b− ν(W )− d ν(1X)

)
ψ

so that RWd ≤Wd from the definition of d.

Now let us deduce from (41) and (42) that h∞
R = 0. Let r > d with d given by (42). We

have

1X = 1{x∈X:Wd(x)>r} + 1{x∈X:Wd(x)≤r} ≤
Wd

r
+ 1Wr−d

.

Thus we get

∀n ≥ 1, Rn1X ≤ RnWd

r
+Rn1Wr−d

≤ Wd

r
+Rn1Wr−d

from the non-negativity of R and from RnWd ≤Wd using (42) and an immediate induction.
Let x ∈ X, ε > 0, and fix r > d large enough so that Wd(x)/r < ε/2. From (41) applied to
ρ = r − d, there exists N ≥ 1 such that, for every n ≥ N , we have 0 ≤ (Rn1Wr−d

)(x) < ε/2.
Thus: ∀n ≥ N, 0 ≤ (Rn1X)(x) < ε. This proves that h∞

R = 0.

□

We conclude this section providing an alternative sufficient condition for h∞
R = 0. Let us

consider the Markov resolvent kernel Q defined in (30), i.e. Q :=
∑+∞

n=0 2
−(n+1)Pn.

Corollary 4.11 Let P satisfy Condition (Mν,ψ) and the drift condition (39) for some mea-
surable function W : X→[0,+∞). If the following condition holds

∀r > 0, inf
x∈Wr

(Qψ)(x) > 0, (43)

then h∞
R = 0.
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Proof. Below we prove that the third condition in (40) is fulfilled. The claimed conclu-
sion then follows from Proposition 4.10. Recall that ψ ∈ B∗

+, so that Qψ and the series∑+∞
n=0 2

−(n+1)Rnψ are well-defined. Using (31) with ψ in place of 1A,we obtain that

Qψ =
+∞∑
n=0

2−(n+1)Rnψ + αQψ

where α :=
∑+∞

k=1 2
−kν(Rk−1ψ). Note that, either α = 0, or α < µR(ψ) ≤ 1 from Proposi-

tion 3.4, so that
+∞∑
n=0

2−(n+1)Rnψ = (1− α)Qψ with 1− α > 0.

Now let r > 0 and a ≡ ar := infx∈Wr(Qψ)(x). We have a > 0 from (43), and

∀x ∈ Wr,

+∞∑
k=0

(Rkψ)(x) ≥
+∞∑
k=0

2−(k+1)(Rkψ)(x) = (1− α) (Qψ)(x) ≥ (1− α)a > 0.

The third condition in (40) is proved. □

Condition (43) on Q is obviously satisfied under the following stronger condition

∀r > 0, ∃q ≡ q(r) ≥ 1, inf
x∈Wr

(P qψ)(x) > 0. (44)

Note that requiring Condition (44) means requiring that the irreducibility property for P (see
(28)) holds uniformly on each level set Wr. This condition is relevant only for unbounded
functionW . Indeed, otherwise, the set Wr is the whole space X for r large enough, and in this
case Condition (44) is restrictive since it requires that infx∈X(P

qψ)(x) > 0 for some q ≥ 1.
If X is discrete (say X = N) and W = (W (n))n∈N is an unbounded increasing sequence, then
the sets Wr are finite: In this case, Condition (44) holds if, and only if,

∀s ∈ N, ∃q ≡ q(s) ≥ 1, ∀i ∈ {0, . . . , s}, (P qψ)(i) > 0.

If X is a non-discrete topological space, then a natural assumption for Condition (44) to be
fulfilled is that, for every r > 0, the set Wr is compact. However this is not sufficient. An
additional natural assumption is that P is weakly Feller (i.e. if g ∈ B is continuous on X,
then so is Pg). Under these two assumptions, Condition (44) actually holds provided that
there exists a bounded and continuous function ψ0 such that 0 ≤ ψ0 ≤ ψ and

∀r > 0, ∃q ≡ q(r) ≥ 1, ∀x ∈ Wr, (P qψ0)(x) > 0.

Indeed the continuous function P qψ0 then reaches its lower bound on the compact set Wr,
and this lower bound is thus positive under the previous condition.

4.4 Bibliographic comments

In the present bibliographic discussion we assume that P is irreducible, and that it is also
aperiodic when dealing with the convergence of its iterates. The uniqueness of 1X (up to
a multiplicative constant) as P−harmonic functions is classically studied in link with the
Harris-recurrence assumption. This is done in [Num84, Th. 3.8, p. 44], [MT09, Th. 17.1.5]
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and [DMPS18, Th. 10.2.11], essentially using the fact that, for a Markov chain (Xn)n≥0 on
X and for every A ∈ X , the function g∞

A : x 7→ Px{Xk ∈ A i.o.} is a P−harmonic function,
where i.o. stands for infinitely often. Similarly the Harris-recurrence assumption is classically
used to prove the convergence in total variation of the iterates of P to its (unique) invariant
probability measure π (i.e. ∀x ∈ X, limn ∥δxPn − π∥TV = 0). This is proved in [MT09,
Ths. 13.0.1, 13.3.5] and [DMPS18, Th. 11.3.1] via renewal theory and splitting construction,
also see [RR04, Th. 4] for a proof based on coupling method.

In this section we choose a different approach, first focusing on function h∞
R := limnR

n1X
introduced in the previous section. Indeed the condition h∞

R = 0 enables us to prove the
above conclusion on P−harmonic functions (Theorem 4.1), from which the Harris-recurrent
property can be derived in Theorem 4.2 using the fact that for every A ∈ X the function
x 7→ Px{Xk ∈ A i.o.} is P−harmonic (no surprise there). In the case when measure µR

is finite, the condition h∞
R = 0 is proved to be equivalent to the above mentioned iterate

convergence in total variation (Theorem 4.5). So, to put it simply, the presentation in this
section and the resulting statements focus on the condition h∞

R = 0 depending on the residual
kernel R, rather than on the Harris-recurrence property. However note that the proof of
Theorem 4.5 is original: Actually Equality (23) and the power series formula (37) simply
derived from the key equality (16) allow us to directly apply the renewal theorem proved in
the seminal paper [EFP49] by Erdös, Feller and Pollard. Note that our material is obtained
under the strong aperiodicity condition.

If P is recurrent, then the P−harmonic functions are still constant, but up to a negligible
set w.r.t. to some maximal irreducibility measure, e.g. see [Num84, Prop. 3.13, p. 44]. In
the same way, if P admits an invariant probability measure π, so that P is recurrent from a
classical result (e.g. see [DMPS18, Th. 10.1.6]), then the property limn ∥δxPn−πR∥TV = 0 is
known to hold for π−almost every x ∈ X, e.g. see [DMPS18, Th. 11.3.1] and [RR04, pp. 32-
33]. This is here highlighted using the explicit set H = {h∞

R = 0} which is P−absorbing and
µR−full under the recurrence condition (see Corollary 4.4 and the proof of Corollary 4.6).
Complements using splitting construction can be found in [Num84, Cor. 5.1, p. 71].

The sufficient condition provided in Proposition 4.10 for the condition h∞
R = 0 to hold is the

analogue of the standard statements ensuring that P is recurrent or Harris-recurrent under
drift condition, e.g. see [Num84, Prop. 5.10, p. 77], [MT09, Th. 8.4.3] [DMPS18, Th. 10.2.13].
More precisely the drift inequality (39) in Proposition 4.10 is the same as in the previously
cited works. Moreover Condition (40) in Proposition 4.10 replaces the classical assumption
that W is unbounded off petite set (i.e. each level set Wr := {W ≤ r} is a petite set). This
last condition means that, for every r > 0, there exists a := (an)n ∈ [0, 1]N with

∑+∞
n=0 an = 1

and a positive measure νr,a such that Qa ≥ 1Wr ⊗ νr,a where Qa :=
∑+∞

n=0 anP
n. Expressed

with an = 2−(n+1), this assumption is clearly stronger than Condition (43) in Corollary 4.11,
which only focusses on the lower bound of the function Qψ on Wr (no minorizing measure
is involved in (43)).

Before diving into the details of the modulated drift condition used in the next sections, let
us present some comment on the probabilistic meaning of the simpler drift condition (39). Let
(Xn)n≥0 be a Markov chain with state space X and transition kernel P . Let W : X→[0,+∞)
be measurable. For any r > 0 the set Wr = {x ∈ X : W (x) ≤ r} must be thought of as the
level set of order r in X w.r.t. the function W . Since (PW )(x) = Ex

[
W (X1)

]
for any x ∈ X,
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the Markov kernel P satisfies Condition (39) with ψ = 1Ws for some s > 0 if, and only if,

sup
x∈Ws

Ex
[
W (X1)

]
<∞ and ∀x ∈ X \Ws, Ex

[
W (X1)

]
≤W (x). (45)

The second condition in (45) means that, for any r > s, each point x ∈ X such thatW (x) = r
transits in mean in Wr. If X = Rd is equipped with some norm ∥ · ∥, then W may be of the
form W = v(∥ · ∥) with unbounded increasing function v : [0,+∞)→[0,+∞). In particular,
if W = ∥ · ∥, then the second condition in (45) means that, starting from x ∈ Rd far enough
from the origin, the state visited after a first transition of the Markov chain admits in mean
a norm less than ∥x∥, namely is closer to the origin. For a random walk on N, it means
that, for i large enough, the steps of the walker starting from i are in mean more to the left
than to the right, namely it tends to go back towards 0. In case X = Z and W (x) = |x|, a
typical illustration of the explicit computations needed for obtaining the drift inequality (39)
can be found in [MT09, Sect. 8.4.3 ] for random walks with bounded range and zero mean
increment. If (X, d) is a metric space and W (x) = d(x, x0), level sets are the balls centred at
x0. However the possibility of considering other level functions more suited to the transition
kernel (i.e. possibly considering level sets other than balls) offers flexibility for the validity of
Conditions (45) or of the modulated drift condition involved in the next sections.

5 Modulated drift condition and Poisson’s equation

Throughout this section, the Markov kernel P is assumed to satisfy the minorization Con-
dition (Mν,ψ). Then, the following V1−modulated drift condition is introduced: PV0 ≤
V0 − V1 + bψ with some measurable function V0 : X→[1,+∞) and the so-called modulated
measurable function V1 : X→[1,+∞). The minorization condition is the first pillar in this
work, this modulated drift condition is the second one. Note that the modulated drift con-
dition is a re-enforcement of the drift inequality (39) of Proposition 4.10.

Under the minorization Condition (Mν,ψ) and the V1−modulated drift condition, the
convergence of the series

∑+∞
k=0R

kV1 is proved in Theorem 5.4 thanks to an auxiliary V1-
modulated residual drift inequality following the same lines as for (42). Then the series∑+∞

k=0R
k1X converges point-wise since 1X ≤ V1, so that the function h∞

R := limnR
n1X (see

(19)) is zero on X. Under the same assumptions it is also shown in Theorem 5.4 that the
positive measure µR given in (20) is finite (i.e. µR(1X) < ∞). Accordingly, when Condi-
tion (Mν,ψ) and the V1-modulated drift condition are assumed to hold, all the conclusions
of Theorems 4.1, 4.2 and 4.5 hold true, that is:

(i) The P−harmonic functions are constant on X.

(ii) P is irreducible (see (28)) and recurrent (see (26)).

(iii) The positive measure µR (see (20)) satisfies µR(ψ) = 1, and is the unique P−invariant
positive measure η such that η(ψ) <∞.

(iv) πR := µR(1X)
−1µR (see (25)) is the unique P−invariant probability measure on (X,X ),

we have πR(ψ) > 0, and P is Harris-recurrent (see (35)).

(v) If ν(ψ) > 0 then limn→+∞ ∥δxPn − πR∥TV = 0 for every x ∈ X.
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However the convergence of the series
∑+∞

k=1R
kV1 actually gives more, in particular it natu-

rally provides solutions to the so-called Poisson’s equation (Theorem 5.6). This is the main
motivation of this section.

5.1 Modulated drift condition Dψ(V0, V1)

Let us introduce the following condition for any couple (V0, V1) of measurable functions from
X to [1,+∞):

∃ψ ∈ B∗
+, ∃b0 ≡ b0(V0, V1, ψ) > 0 : PV0 ≤ V0 − V1 + b0ψ. (Dψ(V0, V1))

This condition is said to be a V1−modulated drift condition for P , and V0 and V1 inDψ(V0, V1)
are called Lyapunov functions for P . The functions V0, V1, ψ are assumed to be everywhere
finite, so the function PV0 is too. It is worth noticing that the modulated function V1
must be larger than one for the results of this section to hold. In fact, it is only required
that V0 is non-negative and V1 is uniformly bounded from below by a positive constant.
Indeed, if PV ′

0 ≤ V ′
0 − V ′

1 + b′ψ for some positive constant b′ and some measurable functions
V ′
0 ≥ 0 and V ′

1 ≥ c1X with c > 0, then Condition Dψ(V0, V1) holds with V1 := V ′
1/c ≥ 1X,

V0 := 1X+V ′
0/c ≥ 1X and b0 := b′/c > 0. Moreover observe that if Conditions Dϕ(V0, V1) for

some ϕ ∈ B∗
+ is satisfied then Dψ(V0, V1) holds for any ψ ∈ B∗

+ such that ψ ≥ ϕ (using any
constant b0(V0, V1, ψ) larger than b0(V0, V1, ϕ)).

In the special case ψ := 1S for some S ∈ X ∗, the above condition writes as

∃S ∈ X ∗, ∃b0 ≡ b0(V0, V1, 1S) > 0 : PV0 ≤ V0 − V1 + b01S . (D1S (V0, V1))

Note that Condition D1S (V0, V1) implies that V0 ≥ V1 on S
c. In fact Condition D1S (V0, V1) is

equivalent to : There exists S ∈ X ∗ such that supx∈Sc Γ(x) ≤ 0 and supx∈S Γ(x) <∞ with the
measurable finite function Γ(x) := (PV0)(x)− V0(x) + V1(x). Thus if Condition D1S (V0, V1)
holds, then any constant b0(V0, V1, 1S) ≥ supx∈S Γ(x) may be chosen. Finally recall that
Conditions (Mν,1S ) and D1S (V0, V1) are the most classical minorization/drift assumptions
in the literature.

Let us return to Markov kernel P satisfying the assumptions of Proposition 3.1. Then both
Conditions (Mν,1S ) and (Mν,ψS

) hold with ν ∈ M∗
+,b and ψS ≥ 1S given in (14). Moreover, if

P satisfies D1S (V0, V1), then Condition DψS
(V0, V1) holds since ψS ≥ 1S . The next statement

ensures that the constant b0(V0, V1, ψS) may be chosen smaller than b0(V0, V1, 1S).

Proposition 5.1 Let P satisfy the assumptions of Proposition 3.1 and Condition D1S (V0, V1)
for some couple (V0, V1) of Lyapunov functions on X. Then P satisfies Condition DψS

(V0, V1)
with ψS ≥ 1S given in (14), and we can choose

b0(V0, V1, ψS) ≤ b0(V0, V1, 1S). (46)

Proof. Since ψS defined in (14) is such that ψS ≥ 1S we already quoted that P also satisfies
Condition DψS

(V0, V1). Next, set

b0(V0, V1, ψS) := sup
x∈S

Γ(x)

ψS(x)
with Γ(x) := (PV0)(x)− V0(x) + V1(x).

Since ψS ≥ 1S , we have b0(V0, V1, ψS) ≤ supx∈S Γ(x) ≤ b0(V0, V1, 1S). □
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Example 5.2 (Geometric drift condition) Let us introduce the following so-called V−geo-
metric drift condition (to be discussed in Section 6)

∃ψ ∈ B∗
+, ∃δ ∈ (0, 1), ∃b ∈ (0,+∞) : PV ≤ δV + b ψ (Gψ(δ, V ))

where V : X→[1,+∞) is a measurable function. Again recall that the most classical case is
when ψ := 1S for some S ∈ X ∗, that is

∃S ∈ X ∗, ∃δ ∈ (0, 1), ∃b ∈ (0,+∞) : PV ≤ δV + b 1S . (G1S (δ, V ))

Observe that Gψ(δ, V ) implies that PV ≤ V − (1 − δ)V + b ψ, so that P satisfies the
V1−modulated drift Condition Dψ(V0, V1) with V0 := V/(1− δ), V1 := V and b0 := b/(1− δ).

5.2 Residual-type modulated drift condition

Under Conditions (Mν,ψ) and for any couple (V,W ) of measurable functions from X to
[1,+∞) such that ν(V ) < ∞, let us introduce the following residual-type modulated drift
condition involving the residual kernel R ≡ Rν,ψ given in (12):

RV ≤ V −W. (Rν,ψ(V,W ))

Note that ConditionRν,ψ(V,W ) rewrites as PV ≤ V −W+ν(V )ψ, which is a specific instance
of Condition Dψ(V,W ) with b0 = ν(V ). The next simple lemma shows that Dψ(V0, V1)
generates a residual-type modulated drift condition up to slightly modify V0. Recall that
the kernel identity (15) used throughout Sections 3-4 and only based on the minorization
condition (Mν,ψ) is the first key point of this work. Lemma 5.3 based on the modulated drift
condition Dψ(V0, V1) is the second key point (already used in the proof of Proposition 4.10
under the weaker drift condition (39)).

Lemma 5.3 If P satisfies Conditions (Mν,ψ) and Dψ(V0, V1), then ν(V0) < ∞ and for
any constant c satisfying c ≥ (b0 − ν(V0))/ν(1X) the residual kernel R ≡ Rν,ψ given in (12)
satisfies Condition Rν,ψ(V0,d, V1) with V0,d := V0 + d1X ≥ V0 where d = max(0, c).

Proof. We already quoted that PV0 is everywhere finite under Condition Dψ(V0, V1), so that
0 ≤ ν(V0)ψ(x) ≤ (PV0)(x) for every x ∈ X from (Mν,ψ). Then it follows that the function
RV0 is well-defined and is everywhere finite. Note that ν(V0,d) = ν(V0) + dν(1X) < ∞ and
that PV0,d = PV0 + d1X. We get from the definitions of R and V0,d

RV0,d = PV0,d − ν(V0,d)ψ = PV0 + d1X −
(
ν(V0) + d ν(1X)

)
ψ

≤ V0 − V1 + b0ψ + d1X −
(
ν(V0) + d ν(1X)

)
ψ (from Assumption Dψ(V0, V1))

= V0,d − V1 +
(
b0 − ν(V0)− d ν(1X)

)
ψ

≤ V0,d − V1 (from the definitions of c and d).

Hence the proof is complete. □

Under Conditions (Mν,ψ)–Dψ(V0, V1) the following theorem provides relevant properties
on the non-negative kernel

∑+∞
k=0R

k involving the residual kernel R, from which further
statements on P and πR are obtained. Moreover the bounds (47a)-(47b) below are crucial
for the study of Poisson’s equation in the next subsection.
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Theorem 5.4 Assume that P satisfies Conditions (Mν,ψ)–Dψ(V0, V1). Then

0 ≤
+∞∑
k=0

Rk1X ≤
+∞∑
k=0

RkV1 ≤ (1 + d0)V0 with d0 := max

(
0,
b0 − ν(V0))

ν(1X)

)
(47a)

0 ≤
+∞∑
k=0

ν
(
Rk1X

)
≤

+∞∑
k=0

ν
(
RkV1

)
≤ (1 + d0) ν(V0) <∞. (47b)

Moreover the conclusions (i)-(v) provided at the beginning of this section hold true, as well
as the following additional assertions:

(vi) The unique P−invariant probability measure πR is such that πR(V1) <∞.

(vii) If πR(V0) <∞, then πR(V1) ≤ b0 πR(ψ) ≤ b0 where b0 is the constant in Dψ(V0, V1).

(viii) if PV1/V1 is bounded on X, i.e. PBV1 ⊂ BV1, then the P−harmonic functions in BV1
(i.e. g ∈ BV1 such that Pg = g) are constant on X.

Inequalities (47a)-(47b), thus the constant d0, will play a crucial role for the bounds of
solutions to Poisson equation in Subsection 5.3 and for the rates of convergence in Section 6.
Recall that the constant d0 depends on the minorizing measure ν in (Mν,ψ) and on the
constant b0(V0, V1, ψ) in Dψ(V0, V1). First prove the following.

Lemma 5.5 Assume that P satisfies Condition (Mν,ψ) and that the associated residual ker-
nel R ≡ Rν,ψ given in (12) satisfies Condition Rν,ψ(V,W ) for some couple of Lyapunov
functions (V,W ) such that ν(V ) <∞. Then we have

0 ≤
+∞∑
k=0

Rk1X ≤
+∞∑
k=0

RkW ≤ V (48a)

0 ≤
+∞∑
k=0

ν
(
Rk1X

)
≤

+∞∑
k=0

ν
(
RkW

)
≤ ν(V ) <∞. (48b)

Proof. From Rν,ψ(V,W ), we derive that 0 ≤W ≤ V −RV , so that

∀n ≥ 1, 0 ≤
n∑
k=0

RkW ≤
n∑
k=0

RkV −
n+1∑
k=1

RkV ≤ V (49)

since Rn+1V ≥ 0. This proves (48a). Next (48b) is obtained using Lebesgue’s theorem.

□

Proof of Theorem 5.4. Inequalities (47a)-(47b) directly follow from Lemma 5.3 and from
Lemma 5.5 applied to W = V1 and V := V0 + d01X with d0 = max(0, (b0 − ν(V0))/ν(1X))
observing that V ≤ (1 + d0)V0. Next, the point-wise convergence of the first series in (47a)
proves that h∞

R := limnR
n1X = 0 (see (19)), while the convergence of the first series in (47b)

reads as µR(1X) =
∑+∞

k=0 ν(R
k1X) <∞ (see (20)). Recall that the conclusions (i)-(v) provided

at the beginning of this section then follows from Theorems 4.1, 4.2 and 4.5. Now prove the
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additional assertions (vi)-(viii). That πR(V1) <∞ follows from the definition of πR and from
the second inequality in (47b) which provides µR(V1) <∞. To prove (vii), note that

πR(PV0) = πR(V0) ≤ πR(V0)− πR(V1) + b0πR(ψ)

from the P−invariance of πR and Dψ(V0, V1). Finally the proof of (viii) follows the same
lines as for Assertion 1. of Theorem 4.1, replacing the function 1X with V1 and observing
that P (BV1) ⊂ BV1 , thus R(BV1) ⊂ BV1 , when PV1/V1 is bounded on X. Indeed, first

recall that ψ̃ :=
∑+∞

k=0R
kψ = ν(1X)

−11X from (34) since h∞
R = 0. Now let g ∈ BV1 be

such that Pg = g. Using R(BV1) ⊂ BV1 and proceeding as in Lemma 3.3, we obtained
that ν(g)

∑n
k=0R

kψ = g − Rn+1g for every n ≥ 1. Moreover we have limnR
ng = 0 since

|Rng| ≤ Rn|g| ≤ ∥g∥V1RnV1 and limnR
nV1 = 0 from (47a). Thus g = ν(g)ψ̃, from which it

follows that g is constant. □

5.3 Poisson’s equation

When P satisfies Conditions (Mν,ψ) andDψ(V0, V1), recall that πR given in (25) is the unique
P−invariant probability measure on (X,X ).

Theorem 5.6 Assume that P satisfies Conditions (Mν,ψ)–Dψ(V0, V1). Let R ≡ Rν,ψ be the
associated residual kernel given in (12). Then the following assertions hold.

1. For any g ∈ BV1, the function series g̃ :=
∑+∞

k=0R
kg absolutely converges on X (point-wise

convergence). Moreover we have g̃ ∈ BV0 and

∀g ∈ BV1 , ∥g̃∥V0 ≤ (1 + d0)∥g∥V1 with d0 := max

(
0 ,

b0 − ν(V0)

ν(1X)

)
(50)

where b0 is the positive constant given in Dψ(V0, V1).

2. For any g ∈ BV1 such that πR(g) = 0, the function g̃ satisfies Poisson’s equation

(I − P )g̃ = g. (51)

Proof. Let g ∈ BV1 . Using |g| ≤ ∥g∥V1V1 and |Rkg| ≤ Rk|g| ≤ ∥g∥V1RkV1, Assertion
1. follows from (47a). Next, note that πR(|g|) < ∞ since πR(V1) < ∞ from Assertion (vi) of
Theorem 5.4. Now define

∀n ≥ 1, g̃n :=

n∑
k=0

Rkg.

Then, using P = R+ ψ ⊗ ν we have

g̃n − P g̃n = g̃n −Rg̃n − ν(g̃n)ψ = g −Rn+1g − ν(g̃n)ψ. (52)

We know that limnR
n+1g = 0 (pointwise convergence) from the convergence of the se-

ries
∑+∞

k=0R
kg. Moreover, using ν(g̃n) =

∑n
k=0 ν(R

kg) and µR(V1) < ∞, we obtain that
limn→+∞ ν(g̃n) = µR(g) from Lebesgue’s theorem w.r.t. the measure ν. Finally, for every
x ∈ X, we have limn(P g̃n)(x) = (P g̃)(x) from Lebesgue’s theorem applied to the sequence
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(g̃n)n w.r.t. the probability measure P (x, dy) since limn g̃n = g̃, |g̃n| ≤ ∥g∥V1V0 (from As-
sertion 1.) and (PV0)(x) < ∞. Taking the limit when n goes to infinity in (52), we obtain
that

(I − P )g̃ = g − µR(g)ψ. (53)

Next, if we assume that πR(g) = 0, then Equality (53) rewrites as (I − P )g̃ = g since
µR(g) = πR(g)/πR(ψ) = 0 from (25). Theorem 5.6 is proved. □

For g ∈ BV1 such that πR(g) = 0, the solution g̃ :=
∑+∞

k=0R
kg in BV0 to Poisson’s equation

(I − P )g̃ = g in Theorem 5.6 is not πR−centred a priori, i.e. πR(g̃) ̸= 0. The natural way to
get a πR−centred solution is to define ĝ = g̃−πR(g̃)1X, but we then need to assume that g̃ is
πR−integrable. Accordingly, to obtain such a πR−centred solution to Poisson’s equation in
general terms, the assumption πR(V0) <∞ must be made.

Corollary 5.7 Let P satisfy Conditions (Mν,ψ)–Dψ(V0, V1) with πR(V0) < ∞. For any
g ∈ BV1 such that πR(g) = 0, let g̃ :=

∑+∞
k=0R

kg. Then the function ĝ = g̃ − πR(g̃)1X is a
πR−centered solution on BV0 to Poisson’s equation (I − P )ĝ = g. Moreover we have

∥ĝ∥V0 ≤ (1 + d0)
(
1 + πR(V0)

)
∥g∥V1 (54)

where the positive constant d0 is given in (50).

Proof. Let g ∈ BV1 be such that πR(g) = 0. Obviously we have ĝ ∈ BV0 and πR(ĝ) = 0.
Moreover we obtain that (I − P )ĝ = (I − P )g̃ = g from Theorem 5.6 and (I − P )1X = 0.
Finally we have

∥ĝ∥V0 ≤
(
1 + πR(V0) ∥1X∥V0

)
∥g̃∥V0 ≤ (1 + d0)

(
1 + πR(V0)

)
∥g∥V1 (55)

using the definition of ĝ, the triangular inequality and |g̃| ≤ ∥g̃∥V0V0 for the first inequality,
and the bound (50) applied to g̃ for the second one. □

Let g ∈ BV1 be such that πR(g) = 0. Under the assumptions of Corollary 5.7, when a
πR−centred solution g ∈ BV0 to Poisson’s equation (I − P )g = g is known, and when two
solutions to Poisson’s equation in BV0 differ from an additive constant, then we have g = ĝ, so
that the bound (54) applies to g. Of course such a solution g may be obtained independently
of the function g̃. For instance it can be given by g =

∑+∞
k=0 P

kg provided that this series
point-wise converges and defines a function of BV0 . Note that the choice of the minorizing
measure ν and of the function ψ used in Conditions (Mν,ψ) and Dψ(V0, V1) of Corollary 5.7
naturally has an impact on the constant d0 in (54).

Remark 5.8 Recall that, under Conditions (Mν,ψ)–Dψ(V0, V1), the function h
∞
R := limnR

n1X
(see (19)) is zero from the convergence of the first series in (47a), so that ψ̃ :=

∑+∞
k=0R

kψ =
ν(1X)

−11X from (34). So the presence of the term ν(1X)
−1 in the general bound (50) is quite

natural (it is not due to the proof of Theorem 5.6). This does not mean that the bound of
the V0− norm of solutions to Poisson’s equation could not be improved. But in fact this last
question is not well formulated since solutions to Poisson’s equation are not unique, and the
solutions given in Theorem 5.6 are very specific: they are defined from the residual kernel R,
in particular they are not πR−centred (see Corollary 5.7).

Remark 5.9 Assume that P satisfies Conditions (Mν,1S )–D1S (V0, V1) with V0 ≥ V1 and
inf V0 = 1. Then we have d0 = 0 in the bound (50) of Theorem 5.6 if, and only if, S is an
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atom, i.e. ∀a ∈ S, ν(dy) = P (a, dy). Indeed, if S is an atom, then P satisfies D1S (V0, V1)
with b0 = ν(V0) since V0 ≥ V1. Thus d0 = 0. To prove the converse implication, note that

ν(1X)
−1 = ν(1X)

−1∥1X∥V0 ≤ (1 + d0)∥1S∥V1 ≤ (1 + d0)

from (50) applied to g := 1S and (34) with here ψ = 1S. Hence, if d0 = 0, then ν(1X) ≥ 1.
Thus S is an atom since, for every a ∈ S, the non-negative measure ηa(dy) = P (a, dy)−ν(dy)
satisfies ηa(1X) ≤ 0, so that ηa = 0.

5.4 Further statements

Under Conditions (Mν,ψ)-Dψ(V0, V1) and the additional condition πR(V0) <∞, the sequence
(PnV0)n is shown to be bounded in (BV0 , ∥ · ∥V0) in the following lemma.

Lemma 5.10 Let P satisfy Conditions (Mν,ψ)–Dψ(V0, V1) with πR(V0) <∞. Then we have
for every n ≥ 1:

PnV0 ≤ V0+
∥ψ∥1X

(
πR(V0) + d0

)
πR(ψ)

1X with ∥ψ∥1X := sup
x∈X

ψ(x), d0 := max

(
0,
b0 − ν(V0))

ν(1X)

)
.

Proof. It follows from (Mν,ψ) and Lemma 5.3 that RV0,d0 ≤ V0,d0 with V0,d0 := V0 + d01X
and R ≡ Rν,ψ in (12). Using the non-negativity of R and iterating this inequality gives:
∀n ≥ 1, RnV0,d ≤ V0,d. From Formula (16) and 0 ≤ P kψ ≤ ∥ψ∥1X 1X, we obtain that

∀n ≥ 1, PnV0,d = RnV0,d +
n∑
k=1

ν(Rk−1V0,d)P
n−kψ ≤ V0,d + ∥ψ∥1X µR(V0,d)1X.

with µR = πR/πR(ψ) given in (25). This provides the desired inequality using the definition
of V0,d, P1X = 1X and πR(V0) <∞. □

Now, given any measurable function V1 : X→[1,+∞), we present a necessary and sufficient
condition for P to satisfy a V1−modulated drift condition.

Proposition 5.11 Assume that P satisfies Condition (Mν,ψ). Let V1 : X→[1,+∞) be any
measurable function. Then there exists a measurable function V0 : X→[1,+∞) such that P
sastifies Dψ(V0, V1) if and only if

∀x ∈ X, Ṽ1(x) :=

+∞∑
k=0

(RkV1)(x) <∞ and ν(Ṽ1) <∞ (56)

where R ≡ Rν,ψ is the residual kernel in (12).

Proof. If P satisfies Condition Dψ(V0, V1) for some Lyapunov function V0, then (56) holds

true from Theorem 5.4 (in fact we know that Ṽ1 ≤ c V0 for some positive constant c). Con-

versely, if V1 satisfies (56) with R ≡ Rν,ψ in (12), then we have (RṼ1)(x) = Ṽ1(x) − V1(x)
for every x ∈ X from the monotone convergence theorem w.r.t. the measure R(x, dy). Hence

Condition Rν,ψ(Ṽ1, V1) holds. Then Condition Dψ(Ṽ1, V1) holds with b0 = ν(Ṽ1).

□
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The next statement completes Theorem 3.6.

Proposition 5.12 Assume that P satisfies Condition (Mν,ψ) and is irreducible. Then the
two equivalent conditions 1. and 2. of Theorem 3.6 are also equivalent to the following one:
There exists a P−absorbing and µR−full set A ∈ X such that the restriction of P to A satisfies
the modulated drift condition DψA

(VA, 1A) for some measurable function VA : A→[1,+∞),
where ψA is the restriction of ψ to A.

Using Conditions 1. of Theorem 3.6 it follows from Proposition 5.12 that a Markov kernel P
satisfying the minorization condition (Mν,ψ), irreducible and admitting an invariant proba-
bility measure π such that π(ψ) > 0 actually satisfies all the conclusions of Theorem 5.4 on
some P−absorbing and π−full set. Note that the irreducibility assumption on P is only used
to obtain that the P−absorbing set A of Proposition 5.12 is π−full.

Proof. Under Condition Mν,ψ, let R ≡ Rν,R be the residual kernel defined in (12). Assume
that Condition 2. of Theorem 3.6 holds, i.e. µR(1X) < ∞. Define on X the function V :=∑+∞

k=0R
k1X taking its value in [0,+∞] a priori. Since ν(V ) = µR(1X) <∞, the set

A :=
{
x ∈ X : V (x) <∞

}
is non-empty. Moreover, if x ∈ A, then we have (RV )(x) < ∞ since (RV )(x) = V (x) − 1
from the monotone convergence theorem w.r.t. the measure R(x, dy). We then obtain that
(PV )(x) = (RV )(x) + ν(V )ψ(x) = V (x) − 1 + ν(V )ψ(x) < ∞. This proves that A is
P−absorbing. Since P is irreducible, A is µR−full from Proposition 3.16. Furthermore,
the previous equality proves that the restriction of P to A satisfies the modulated drift
condition DψA

(VA, 1A) where VA is the restriction of V to the set A.

Conversely assume that the condition provided in Proposition 5.12 holds. Using the fact
that A is P−absorbing and proceeding as in the proof of Corollary 4.4, it can be proved that
the restriction PA of P to A satisfies on A the minorization condition (MνA,ψA

) with small-
function ψA and minorizing measure νA defined as the restriction of ν to A. Then it follows
from Theorem 5.4 applied to the Markov kernel PA that there exists a unique PA-invariant
probability measure ηA on A and that ηA(ψA) > 0 (apply Assertion (iv) to PA). Next let
us define the following positive measure on (X,X ): ∀B ∈ X , η(1B) := ηA(1A∩B). Since A
is P−absorbing, η is a P -invariant probability measure, and we have η(ψ) = ηA(ψA) > 0.
Consequently Condition 1. of Theorem 3.6 holds for P and Proposition 5.12 is proved.

□

Finally, under Conditions (Mν,ψ)–Dψ(V0, V1), the next statement provides a necessary
and sufficient condition for the (unique) P−invariant probability measure πR given in (25)
to satisfy πR(V0) <∞.

Proposition 5.13 Let P satisfy Conditions (Mν,ψ)–Dψ(V0, V1). Then the two following
conditions are equivalent:

1. πR(V0) <∞.

2. There exists a P−absorbing and πR−full set A ∈ X and a measurable function L ≥ V0 on A
such that the restriction PA of P to A satisfies the modulated drift condition DψA

(L, V0|A),
where V0|A (resp. ψA) is the restriction of V0 (resp. of ψ) to A.
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Proof. The proof follows the same limes as for Proposition 5.12. Let R ≡ Rν,R be the

residual kernel given in (12). Assume that πR(V0) < ∞ and define on X the function Ṽ0 =∑+∞
k=0R

kV0 taking its value in [0,+∞] a priori. Then Ṽ0 ≥ V0, and the following equality

holds in [0,+∞]: RṼ0 = Ṽ0 − V0. Note that there exists x ∈ X such that Ṽ0(x) < ∞ since

ν(Ṽ0) = µR(V0) < ∞ from πR(V0) < ∞, where µR :=
∑+∞

k=0 νR
k (see (25)). Now define the

non-empty set A := {x ∈ X : Ṽ0(x) <∞} ∈ X . Let x ∈ A. Then we have (RṼ0)(x) <∞ from

(RṼ0)(x) = Ṽ0(x)−V0(x), so that (PṼ0)(x) = (RṼ0)(x)+ν(Ṽ0)ψ(x) <∞. Thus P (x,A) = 1.
This proves that A is P−absorbing. Since P is irreducible from Theorem 5.4, A is πR−full
from Proposition 3.16. Moreover the restriction L := Ṽ0|A of Ṽ0 to A is a measurable function
on A satisfying RL = L−V0 on A, so that the restriction PA of P to A satisfies the modulated
drift condition DψA

(L, V0|A) as stated in Assertion 2 of Proposition 5.13.

Conversely assume that P satisfies Assertion 2. Then, proceeding as in the proof of
Corollary 4.4, we know that PA satisfies on A the minorization condition (MνA,ψA

) where
νA is the restriction of the minorizing measure ν to A. Thus it follows from Assertion (vi)
of Theorem 5.4 applied to PA under Condition (MνA,ψA

) and DψA
(L, V0|A) that the unique

PA−invariant probability measure, say πA, is such that πA(V0|A) <∞. Using the fact that πR

is the unique P− invariant probability measure, we then obtained that πA is the restriction
of πR to A and that πR(V0) = πA(V0|A) <∞ since A is P−absorbing and πR−full. □

5.5 Bibliographic comments

Condition Dψ(V0, V1) (or D1S (V0, V1)) is the so-called V1-modulated drift condition, e.g. see
Condition (V3) in [MT09, p. 343]. Although the functions V0, V1 inDψ(V0, V1) satisfy V0 ≥ V1
in general, this condition is not useful in this section. Such drift conditions was first introduced
for infinite stochastic matrices in [Fos53] to study the return times to a set, see [MT09, p. 198]
and [DMPS18, p. 96, 164, 337] for an historical background on this subject. Lemma 5.3 and
its direct use to obtain Theorem 5.4 (via Lemme 5.5) were presented in [HL24a]. Again note
that the non-negativity of the residual kernel R plays a crucial role in Theorem 5.4 since the
point-wise convergence of the series in (47a) is simply obtained bounding the partial sums
(see (49)).

Under the V1−modulated drift condition D1S (V0, V1) w.r.t. some petite set S ∈ X , the
existence of a solution ξ ∈ BV0 to Poisson’s equation (I − P )ξ = g was proved in [GM96,
Th. 2.3] for every πR−centred function g ∈ BV1 , together with the bound ∥ξ∥V0 ≤ c0 ∥g∥V1
for some positive constant c0 (independent of g). When S is an atom, the solution ξ in
[GM96, Th. 2.3] can be expressed in terms of the first hitting time in S, and the non-atomic
case is solved via the splitting method. Under the standard aperiodicity condition (see
[MT09, p. 114] and [DMPS18, Def. 9.3.5]) for µR−irreducible or irreducible P (see (29) and
(28)), Glynn-Meyn’s theorem is related to point-wise convergence of the series

∑+∞
k=0 P

kg, see
[MT09, Th. 14.0.1]. With regard to the above two representations of solutions to Poisson’s
equation, the reader may consult the recent article [GI24]. We point out that the constant
c0 in [GM96, Th. 2.3] is unknown in general, excepted in atomic case: see [LL18, Prop. 1] for
a discrete state-space X. Thus, the novelty of Theorem 5.6 and Corollary 5.7 already proved
in [HL24a] is to provide a simple and explicit bound in Poisson’s equation in the non-atomic
case.

To conclude this section let us make a few additional comments on the modulated drift
condition, which is the main assumption of this work together with the minorization condition.
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If (Xn)n≥0 is a Markov chain with state space X and transition kernel P , then the modulated
drift condition has the following form when the modulated function V1 is constant and ψ = 1Vs

for some s > 0 where Vs = {x ∈ X : V0(x) ≤ s} is the level set of order s w.r.t. the function V0:

sup
x∈Vs

Ex
[
V0(X1)

]
<∞ and ∃a > 0, ∀x ∈ X \ Vs, Ex

[
V0(X1)

]
≤ V0(x)− a. (57)

The second condition in (57) means that, for any r > s, each point x ∈ X such that V0(x) = r
transits in mean to a point of the level set Vr−a. For a random walk on N, it means that, for
i large enough, the steps of the walker starting from i are in mean strictly more to the left
than to the right, the gap being controlled by a fixed additive constant a > 0. Recall that
the weaker drift condition (45) was introduced in Proposition 4.10 to obtain limk R

k1X = 0.
The additive reduction by the positive constant a in (57) is the sole difference with (45),
but it is crucial for obtaining the convergence of the series

∑+∞
k=0R

k1X in Theorem 5.4. The
general modulated drift condition Dψ(V0, V1) corresponds to (57) with a positive term V1(x)
depending on x instead of the positive constant a.

Proposition 5.12 shows that, in the context of Theorem 3.6, an irreducible Markov kernel
P always satisfies a modulated drift condition with V1(x) = 1, up to restrict P to some ab-
sorbing and πR−full set. Hence modulated drift condition is a perfectly natural assumption.
This explains why the minorization and drift conditions are so popular for studying Markov
models. In particular, it follows from Proposition 5.12 that an irreducible discrete Markov
kernel P admitting an invariant probability measure π actually satisfies all the conclusions
of Theorem 5.4 on a P−absorbing and π−full set: Indeed S = {x} for some state x may
be chosen such that π(1{x}) > 0, and S = {x} is obviously a first order small-set. In the
same way, for the Markov chain Monte Carlo (MCMC) algorithms on any state space X, the
so-called target probability measure π is a data. Moreover, by construction, the associated
MCMC kernel satisfies Assumptions (13), is irreducible and it admits π as invariant probabil-
ity measure. Then, choosing the small-set S in Proposition 3.1 such that π(1S) > 0, it follows
from Proposition 5.12 that the MCMC kernel satisfies all the conclusions of Theorem 5.4 on
some P−absorbing and π−full set. Note, however, that Proposition 5.12, as well as Proposi-
tion 5.11, are only of theoretical interest. In practice the form of the Markov kernel P is di-
rectly taken into account to find explicit functions V0 and V1 satisfying Condition Dψ(V0, V1).
Finally, as shown for instance for random walks on the half line in [JT03], recall that the
condition πR(V0) < ∞ is not automatically fulfilled under Condition Dψ(V0, V1). In fact,
as proved in Proposition 5.13, this additional condition πR(V0) < ∞ is closely related to an
extra V0−modulated drift condition.

6 V−geometric ergodicity

Let V : X→[1,+∞) be measurable. Recall that the V−geometric drift condition is

∃ψ ∈ B∗
+, ∃δ ∈ (0, 1), ∃b ∈ (0,+∞) : PV ≤ δV + b ψ (Gψ(δ, V ))

and that this condition provides the modulated drift Condition Dψ(V0, V1) with

V0 := V/(1− δ), V1 := V and b0 := b/(1− δ) (58)

(see Example 5.2). Consequently, when P satisfies Conditions (Mν,ψ)-Gψ(δ, V ), it follows
from Theorem 5.4 and Condition Dψ(V0, V1) with V0, V1 and b0 given in (58) that the residual
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kernel R ≡ Rν,ψ given in (12) fulfils the following properties

0 ≤
+∞∑
k=0

Rk1X ≤
+∞∑
k=0

RkV ≤ 1 + d0
1− δ

V with d0 := max

(
0,

b− ν(V ))

ν(1X)(1− δ)

)
(59a)

0 ≤
+∞∑
k=0

ν
(
Rk1X

)
≤

+∞∑
k=0

ν
(
RkV

)
≤ (1 + d0)ν(V )

1− δ
<∞, (59b)

and that πR := µR(1X)
−1µR (see (25)) is the unique P−invariant probability measure on

(X,X ). Moreover, again from Theorem 5.4 (Conclusions (iii) and (vi)), we have

µR(ψ) = 1 and πR(V ) = πR(V1) <∞. (60)

Corollary 6.1 is the direct application of Theorem 5.6 and Corollary 5.7 for Poisson’s equation
under Conditions (Mν,ψ)–Gψ(δ, V ). Then the so-called V−geometric ergodicity is obtained
in Subsection 6.2 using elementary spectral theory under Conditions (Mν,ψ)-Gψ(δ, V ) and
the strong aperiodicity condition ν(ψ) > 0.

6.1 Poisson’s equation under the geometric drift condition

Corollary 6.1 Assume that P satisfies Conditions (Mν,ψ)–Gψ(δ, V ). Let R ≡ Rν,ψ be the
associated residual kernel given in (12). Then

1. For any g ∈ BV , the function series g̃ :=
∑+∞

k=0R
kg absolutely converges on X (point-wise

convergence). Moreover we have g̃ ∈ BV and

∀g ∈ BV , ∥g̃∥V ≤ 1 + d0
1− δ

∥g∥V with d0 := max

(
0 ,

b− ν(V )

ν(1X)(1− δ)

)
(61)

where δ, b are the constants given in Gψ(δ, V ).

2. For every g ∈ BV such that πR(g) = 0, the function ĝ = g̃ − πR(g̃)1X is the unique
πR−centered function in BV solution to Poisson’s equation (I − P )ĝ = g, and we have

∥ĝ∥V ≤ (1 + d0) (1 + πR(V ))

1− δ
∥g∥V . (62)

For the sake of simplicity this statement is directly deduced below from Theorem 5.6 and
Corollary 5.7. A self-contained proof of Corollary 6.1 could be also developed starting from
(59a) and mimicking the proofs of Theorem 5.6 and Corollary 5.7.

Proof. Using the modulated drift condition Dψ(V0, V1) with V0, V1, b0 given in (58), it follows
from Assertion 1. of Theorem 5.6 that

∀g ∈ BV , ∥g̃∥V0 ≤ (1 + d0)∥g∥V with d0 := max

(
0,

b− ν(V ))

ν(1X)(1− δ)

)
from which we deduce (61) since ∥ · ∥V0 = (1 − δ)∥ · ∥V . To prove Assertion 2., we apply
Corollary 5.7. First note that πR(V0) < ∞ since V0 = V/(1− δ) and πR(V ) < ∞ (see (60)).
Next we know from Corollary 5.7 that ĝ = g̃ − πR(g̃)1X is a πR−centered function in BV
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solution to Poisson’s equation (I − P )ĝ = g. Moreover observe that πR(V0) ∥1X∥V0 ≤ πR(V ).
From the first inequality in (55) and again ∥ · ∥V0 = (1− δ)∥ · ∥V , we obtained that

∥ĝ∥V ≤
(
1 + πR(V )∥V0

)
∥g̃∥V

from which we deduce (62) using (61).

Finally it follows from Condition Gψ(δ, V ) that PV/V is bounded on X, i.e. PBV ⊂ BV ,
since the small-function ψ is bounded and 1X ≤ V . Then Assertion (viii) of Theorem 5.4
ensures that E1 := {g ∈ BV : Pg = g} = R · 1X. Hence two solutions to Poisson’s equation in
BV differ from an additive constant. Consequently ĝ is the unique πR−centered function in
BV solution to Poisson’s equation (I − P )ĝ = g. □

6.2 V−geometric ergodicity

Now, under Conditions (Mν,ψ)-Gψ(δ, V ) and the strong aperiodicity condition ν(ψ) > 0, we
prove the so-called V−geometric ergodicity of P . The proof is based on Inequalities (59a)-
(59b), Corollary 6.1 and elementary spectral theory.

Theorem 6.2 Assume that P satisfies Conditions (Mν,ψ)-Gψ(δ, V ) and ν(ψ) > 0. Then P
is V−geometrically ergodic, that is

∃c > 0, ∃ρ ∈ (0, 1), ∀g ∈ BV , ∀n ≥ 1, ∥Png − πR(g)1X∥V ≤ cρn∥g∥V . (63)

Let g ∈ BV be such that πR(g) = 0. It follows from Property (63) that

+∞∑
k=0

∥P kg∥V ≤ c(1− ρ)−1∥g∥V <∞.

Consequently the function series g :=
∑+∞

k=0 P
kg absolutely converges in (BV , ∥ · ∥V ) and

∥g∥V ≤ c(1− ρ)−1∥g∥V .

Note that g is πR−centred and satisfies Poisson’s equation (I − P )g = g, so that g equals to
the function ĝ of Corollary 6.1. Inequality (62) then provides the following alternative bound:

∥g∥V ≤ (1 + d0) (1 + πR(V ))

1− δ
∥g∥V .

Finally note that the geometric rate of convergence in the case of uniform ergodicity (see
Example 3.7) corresponds to the V−geometric ergodicity property (63) in the special case
V = 1X.

Let V : X→[1,+∞) be measurable. In the next lemmas using the spectral theory, the
definition of BV is extended to complex-valued functions, that is: For every measurable
function g : X→C, we set ∥g∥V := supx∈X |g(x)|/V (x) ∈ [0,+∞] where | · | stands here for
the modulus in C, and we define

BV,C :=
{
g : X→C,measurable such that ∥g∥V < ∞

}
.

Recall that PV/V is bounded on X from Condition Gψ(δ, V ) since ψ ≤ c1X ≤ cV for some
c > 0. Thus P defines a bounded linear operator on the Banach space (BV,C, ∥ · ∥V ). Below
the only prerequisites in spectral theory are the following points. Let L be a bounded linear
operator on a Banach space (L, ∥ · ∥):
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� The spectrum σ(L) of L: the subset of C composed of all the complex numbers z such
that zI −L is not invertible, where I denotes the identity map on L. Recall that σ(L)
is a compact subset of C.

� The operator-norm of L, still denoted by ∥L∥: ∥L∥ := sup{∥Lf∥ : f ∈ L, ∥f∥ ≤ 1}.

� The spectral radius r(L) of L: r(L) := max{|z| : z ∈ σ(L)}, and Gelfand’s formula:
r(L) = limn ∥Ln∥1/n.

Lemmas 6.4–6.5 below show that, for every z ∈ C such that |z| = 1 and z ̸= 1, the bounded
linear operator zI − P on BV,C is invertible under the assumptions of Theorem 6.2. First we
prove the following lemma, in which the strong aperiodicity condition ν(ψ) > 0 is crucial.
Note that, under Conditions (Mν,ψ)-Gψ(δ, V ), the series involved in Lemma 6.3 absolutely
converges since ψ is bounded and

∑+∞
k=0 ν(R

k1X) <∞ from (59b).

Lemma 6.3 If P satisfies Conditions (Mν,ψ)-Gψ(δ, V ) and ν(ψ) > 0, then

∀z ∈ C, |z| = 1, z ̸= 1,
+∞∑
k=0

z−(k+1)ν(Rkψ) ̸= 1.

Proof. Let us proceed by contradiction. Assume that
∑+∞

k=0 z
−(k+1)ν(Rkψ) = 1 for some

z ∈ C such that |z| = 1, z ̸= 1. Then

+∞∑
k=0

z−(k+1)ν(Rkψ) =
+∞∑
k=0

ν(Rkψ)

since
∑+∞

k=0 ν(R
kψ) = µR(ψ) = 1 (see (60)). Then writing z−1 = eiθ with θ ∈ (0, 2π) we

obtain that
+∞∑
k=0

(
1− cos[(k + 1)θ]

)
ν(Rkψ) = 0,

from which we deduce that (1− cos(θ))ν(ψ) = 0, thus cos(θ) = 1 since ν(ψ) > 0: Contradic-
tion since θ ∈ (0, 2π) (i.e. z ̸= 1). □

Lemma 6.4 If P satisfies Conditions (Mν,ψ)-Gψ(δ, V ) and ν(ψ) > 0, then for every z ∈ C
such that |z| = 1 and z ̸= 1 the bounded linear operator zI − P on BV,C is one-to-one.

Proof. Let z ∈ C be such that |z| = 1, z ̸= 1, and let g ∈ BV,C be such that (zI − P )g = 0.
Thus we have ν(g)ψ = (zI −R)g from P = R+ ψ ⊗ ν. Then

∀n ≥ 0, ν(g)

n∑
k=0

z−(k+1)Rkψ =

( n∑
k=0

z−(k+1)Rk
)
(zI −R)g

=

n∑
k=0

z−kRkg −
n∑
k=0

z−(k+1)Rk+1g

= g − z−(n+1)Rn+1g.
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Moreover we know from Assertion 1. of Corollary 6.1 that the series g̃ :=
∑+∞

k=0R
kg point-wise

converges on X, thus: limk R
kg = 0 (point-wise convergence). Hence we have

g = ν(g)ψ̃z with ψ̃z :=

+∞∑
k=0

z−(k+1)Rkψ.

Now, recalling that ψ is bounded and that
∑+∞

k=0 ν(R
k1X) <∞ from (59b), we obtain that

ν(g) = ν(g)ν(ψ̃z) with ν(ψ̃z) =
+∞∑
k=0

z−(k+1)ν(Rkψ)

interchanging series and integral. But we know from Lemma 6.3 that ν(ψ̃z) ̸= 1, so that we
necessarily have ν(g) = 0, thus g = 0. This shows that zI − P is one-to-one. □

Lemma 6.5 If P satisfies Conditions (Mν,ψ)-Gψ(δ, V ) and ν(ψ) > 0, then for every z ∈ C
such that |z| = 1 and z ̸= 1 the bounded linear operator zI − P on BV,C is surjective.

Proof. Let g ∈ BV and define

∀n ≥ 1, g̃n,z :=

n∑
k=0

z−(k+1)Rkg.

Using P = R+ ψ ⊗ ν we obtain that

zg̃n,z − P g̃n,z = z g̃n,z −Rg̃n,z − ν(g̃n,z)ψ = g − z−(n+1)Rn+1g − ν(g̃n,z)ψ. (64)

Moreover we have

lim
n→+∞

g̃n,z = g̃z :=
+∞∑
k=0

z−(k+1)Rkg (point-wise convergence) with g̃z ∈ BV,C

since
+∞∑
k=0

|z−(k+1)Rkg| ≤ ∥g∥V
+∞∑
k=0

RkV ≤ c V with c = (1 + d0)(1− δ)−1

from the second inequality in (59a). Also note that, for any x ∈ X, we have (PV )(x) < ∞
from Condition Dψ(V0, V1), and that |g̃n,z| ≤ c V . It then follows from Lebesgue’s theorem
w.r.t. the probability measure P (x, dy) that limn(P g̃n,z)(x) = (P g̃z)(x). Finally we have

lim
n→+∞

ν(g̃n,z) = lim
n→+∞

n∑
k=0

z−(k+1)ν(Rkg) = µz(g) :=
+∞∑
k=0

z−(k+1)ν(Rkg)

since the last series converges from |z−(k+1)ν(Rkg)| ≤ ∥g∥V ν(RkV ) and (59b). Then, passing
to the limit (point-wise convergence on X) when n→+∞ in Equality (64), we obtain that
(zI − P )g̃z = g − µz(g)ψ. With g = ψ this provides (zI − P )ψ̃z =

(
1− µz(ψ)

)
ψ with

ψ̃z :=

+∞∑
k=0

z−(k+1)Rkψ ∈ BV,C and µz(ψ) =
+∞∑
k=0

z−(k+1)ν(Rkψ) ̸= 1

from Lemma 6.3. Thus

(zI − P )

(
g̃z +

µz(g)

1− µz(ψ)
ψ̃z

)
= g,

from which we deduce that zI − P is surjective. □
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Proof of Theorem 6.2. Recall that πR(V ) < ∞ under the assumptions of Theorem 6.2 (see
(60)). Thus πR defines a bounded linear form on BV,C, so that B0 := {g ∈ BV,C : πR(g) = 0} is
a closed subspace of BV,C. Note that B0 is P−stable (i.e. P (B0) ⊂ B0) from the P−invariance
of πR. Let P0 be the restriction of P to B0. Assertion 2. of Corollary 6.1 shows that I − P0

is invertible on B0. Next let z ∈ C be such that |z| = 1, z ̸= 1. It follows from Lemma 6.4
that zI − P0 is one-to-one. Now, let g ∈ B0. From Lemma 6.5 there exists h ∈ BV,C such
that (zI − P )h = g. We have (z − 1)πR(h) = πR(g) = 0, thus πR(h) = 0 (i.e. h ∈ B0) since
z ̸= 1. Hence zI − P0 is surjective.

We have proved that, for every z ∈ C such that |z| = 1, the bounded linear operator
zI − P0 is invertible on B0. Let r denote the spectral radius of P on BV,C. Recall that
r = limn(∥Pn∥V )1/n from Gelfand’s formula, where ∥ · ∥V denotes here the operator norm
on BV,C. We know that r ≤ 1 from Lemma 5.10 (in fact we have r = 1 since P1X = 1X).
Hence the spectral radius r0 of P0 on B0 is less than one too. In fact we have r0 < 1 since the
spectrum σ(P0) of P0 is a compact subset of C which, according to the above, is contained
in the unit disk of C and does not contain any complex number of modulus one.

Let ρ ∈ (r0, 1). Since r0 = limn(∥Pn0 ∥0)1/n from Gelfand’s formula where ∥ · ∥0 denotes
the operator norm on B0, there exists a positive constant cρ such that: ∥Pn0 ∥0 ≤ cρρ

n. Thus

∀n ≥ 1, ∀g ∈ BV,C, ∥Png − πR(g)1X∥V = ∥Pn(g − πR(g)1X)∥V (from Pn1X = 1X)

= ∥Pn0 (g − πR(g)1X)∥V (since g − πR(g)1X ∈ B0)

≤ cρρ
n∥g − πR(g)1X∥V

≤ cρ(1 + πR(V ))ρn∥g∥V
from triangular inequality and πR(|g|) ≤ πR(V )∥g∥V . This proves (63). □

6.3 Bibliographic comments

A detailed and comprehensive history of geometric ergodicity, from the pioneering papers
[Mar06, Doe37] to modern works, can be found in [MT09, Sec. 15.6, 16.6], see also [DMPS18,
Sec. 15.5]. Theorem 6.2 corresponds to the statement [Bax05, Th. 1.1], except that it is stated
here with a first-order small-function instead of a first-order small-set. The classical version
with general minorization and aperiodicity conditions is presented in [MT09, DMPS18] with
a proof based on renewal theory and Nummelin’s splitting construction. Alternative proofs
of V−geometric ergodicity can be found in [RR04] based on coupling arguments, in [Bax05]
based on renewal theory, in [HM11] based on an elegant idea using Wasserstein distance, and
finally in [Hen06, HL14a, Del17, HL20] based on spectral theory (quasi-compactness) whose
first founding ideas are already present in [DF37].

Since the pioneer work [MT94] much effort has been made to find explicit constant c
and rate of convergence ρ in Inequality (63). Under Assumptions (Mν,ψ)-Gψ(δ, V ) and
the strong aperiodicity condition, such an issue is fully addressed in [Bax05] via renewal
theory. Alternative computable upper bounds of the rate of convergence ρ can be found
in [LT96, RT99, RT00, Ros02] using splitting or coupling methods, and in [HL14b, HL24b]
using spectral theory. Recall that the L2(π)−rate of convergence can be also addressed for
reversible Markov kernels satisfying Conditions (Mν,ψ)-Gψ(δ, V ), see [RR97, RT01, Bax05].
These issues are not addressed in our work.

Poisson’s equation for V -geometrically ergodic Markov models is classically studied start-
ing from Inequality (63), which ensures that, for every g ∈ BV such that πR(g) = 0, the
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function g :=
∑+∞

k=0 P
kg in BV is the unique πR−centred solution to Poisson’s equation

(I − P )g = g. A quite different development is proposed in this section: Indeed Pois-
son’s equation is first solved in Corollary 6.1 as a by-product of the modulated drift Condi-
tion Dψ(V0, V1) (see (58)). Next this study is used for proving the V−geometric ergodicity:
Indeed note that this prior study of Poisson’s equation plays a crucial role at the beginning
of the proof of Theorem 6.2 and that the convergent series in (59a)-(59b) are repeatedly used
in the proof of Lemmas 6.3-6.5. Mention that the residual kernel R and its iterates have been
considered in [KM03] to investigate the eigenvectors belonging to the dominated eigenvalue
of the Laplace kernels associated with V−geometrically ergodic Markov kernel P . This issue
called ”multiplicative Poisson equation” in [KM03] is used to prove limit theorems for the
underlying Markov chain (also see [KM05]). This question is not addressed in our work.

The key idea in this section is thus to apply Theorem 5.4 under the modulated drift Con-
dition Dψ(V0, V1) provided by the geometric drift condition Gψ(δ, V ). Recall that the main
argument for Theorem 5.4 is the residual-type drift inequality introduced in Subsection 5.2
An alternative residual-type drift inequality is proposed under Conditions (Mν,1S )-Gψ(δ, V )
in [HL24b], showing that there exists α0 ∈ (0, 1] such that PV α0 ≤ δα0 V α0 + ν(V α0)1S .
Hence the residual kernel R satisfies the drift inequality RV α0 ≤ δα0 V α0 , from which bounds
for the V α0−weighted norm of solutions to Poisson’s equation are provided, as well as bounds
in the V α0−geometric ergodicity. The bounds in [HL24b] involve the constant (1 − δα0)−1,
which is large when α0 is close to zero. In such a case, the bounds (61) and (62) for the
V−weighted norm of solutions to Poisson’s equation may be more relevant.
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