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I. STABILITY ANALYSIS OF THE MAXWELL-BLOCH EQUATIONS

The dynamics of the magnetization is examined by first determining the fixed points (the stationary solution
of dm

dt = 0) and then analyzing the stability of the linearized system in their vicinity.[1] These fixed points have
been found in the case where ω1 = 0, and it was shown that for certain values of the relaxation and feedback field
parameters, the (m2,mz) system admits an out of thermal equilibrium stable fixed point.[2, 3] that can be a stable
focus, meaning that the trajectory of (m2(t),mz(t)) spirals inwards towards its asymptotic value (see Eqs SM-2-SM-7
in the SI). This motion exactly represents a series of maser pulses with a monotonous decrease of their intensities.
This discussion[2, 4] is summarized below.

Denoting mt = mx + imy =
√
ueiϕ(t), the MB equations become:

u̇(t) = 2(λmz(t) sinψ − γ2)u(t)
ṁz(t) = −λ sinψu(t)− γ1(mz(t)−m0)

ϕ̇(t) = −δ + λ cosψ z
(SM-1)

The fixed points are thus F1 = (0,m0)
t and F2 = (− γ1

λ sinψ

[
γ2

λ sinψ −m0

]
, γ2
λ sinψ )

t, and their stability dictates the
dynamics of the system. An analysis shows that, depending on the parameters, one of F1 and F2 is stable and the
other is unstable. Thus, when the product m0 × sinψ < 0, F2 is unstable and F1 is stable. This corresponds to the
usual radiation damping case, where the radiation feedback field from the probe drives the magnetization towards
+z. In contrast, for m0 × sinψ > 0, two situations occur and F2 is stable if the condition λ sinψm0 − γ2 > 0 is
fulfilled. When in addition ∆ = γz(γz + 8γ2 − 8λm0 sinψ), then F2 is a focus. This describes the evolution of a
sustained maser towards a stationary magnetization that precesses about the z axis on a cone of semi-angle α such
that tanα = λ sinψ

√
u

γ2
. The physical interpretation of the necessary condition m0 × sinψ > 0 for such dynamics to

occur is the existence of two competing processes originating from the feedback field and longitudinal relaxation.

A. Fixed points of the linearized Maxwell-Bloch equations

Linearization at:

F2 = (− γz
λ sinψ

[
γ2

λ sinψ
−m0

]
,

γ2
λ sinψ

,m0) (SM-2)

 U̇

Ż

Ẇ

 =

 0 2λ sinψ ust 0
−λ sinψ −γz γz

0 0 −γst

 U
Z
W


+

 −2λ sinψZU
0
0

 (SM-3)

∗ vineeth.thalakottoor@ens.psl.eu
† alain.louis-joseph@polytechnique.edu
‡ daniel.abergel@ens.psl.eu



2

The eigenvalues are:

x0 = −γst

x± =
−γz ±

√
∆

2
, ∆ = γz(γz + 8γ2 − 8λm0 sinψ) (SM-4)

Now, if the condition m0 × sinψ < 0 then one has: ∆ > and x+ > 0, x− < 0
Linearization at:

F1 = (0,m0,m0) (SM-5)

 U̇

Ż

Ẇ

 =

 2(λ sinψ − γ2) 0 0
−λ sinψ −γz γz

0 0 −γst

 U
Z
W


+

 −2λ sinψZU
0
0

 (SM-6)

x0 = −γst
x1 = −γz
x2 = 2(λ sinψm0 − γ2) (SM-7)

B. Fixed point stability

• Fixed point stability in the case m0 × sinψ < 0. This corresponds to the radiation damping case. In this case,
one has:

– If ∆ > and x+ > 0, x− < 0

• Fixed point stability in the case m0 × sinψ > 0

– if λ sinψm0 − γ2 > 0 then x2 > 0 and F1 is unstable, and F2 is stable.
∗ If in addition ∆ < 0, then F2 is a stable focus.

– If 0 < λ sinψm0 < γ2, then x2 < 0 and F1 is stable, and F2 is unstable.

II. LIMIT CASES OF EQ.??

The nonlinear dynamical system of Equations ?? can essentially be investigated by numerical simulations. To
this aim equations can be reformulated, as proposed in ref.[5] (or in Equation SM-1 above[2]), by introducing the
amplitudes and phases ak(t) and ϕk(t) of each moment mk(t): mk(t) = ak(t)e

iϕk(t). The evolution of one of the
moments mi due to the effect of the feedback field is thus:

ṁi = −(iδωi + γ2i)mi − iω1mzie
iψ1 + iγGmzie

−iψ
∑
k

ake
iϕk

ṁzi = −ω1Re(ie−iψ1mi)− γ1i(mzi −mz0i)− γGai
∑
k

ak sin(ϕi − ϕk + ψ) (SM-8)

and the differential equations for the amplitudes and phases are thus:

ȧi = −γ2iai + ω1mzi sin(ϕi + ψ1) + γGmzi

∑
k

ak sin(ϕi − ϕk + ψ)

ϕ̇i = δωi +
ω1

ai
mzi cos(ϕi + ψ1)−

γGmzi

ai

∑
k

ak cos(ϕi − ϕk + ψ) (SM-9)

ṁzi = ω1ai sin(ϕi + ψ1)− γ1i(mzi −mz0i)− γGai
∑
k

ak sin(ϕi − ϕk + ψ)
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In general, equations SM-9 can only be studied by numerical simulations. Nevertheless, qualitative results can be
obtained in two limiting cases, when ω1 = 0. First, assume that all the moments mk(t) have nearly identical Larmor
frequencies δωk = δω̃, and relaxation rates γ1,2. Then, from Equation SM-8, one has:

ṁ(t) = −iδω̃
∑
i

mi(t)− γ2
∑
i

mi(t) + iγGeiψ
∑
i

mzi(t)
∑
k

mk(t) (SM-10)

= −(iδω̃ + γ2)m(t) + iγGeiψmz(t)m(t) (SM-11)

In the case where all pairwise resonance frequency differences |δωi− δωk| are large, and so are the differences |ϕi(t)−
ϕk(t)|, then the functions sin(ϕi(t) − ϕk(t) − ψ) and cos(ϕi(t) − ϕk(t) − ψ) are fast varying functions of the time
as compared to the amplitudes ak(t)and mzk(t) components of the moments, for all k ̸= i. Therefore, the average

āi =
1

∆t

∫ t0+∆t

t0

A(τ)dτ obeys the following relations:

∆tāi =

∫ t

t0

−γ2iai − γGmzi

∑
k

ak cos(ϕi − ϕk − ψ)dτ

≈ −
∫ t

t0

[γ2iai + γG cosψmzi(τ)ai(τ)] dτ − γG
∑
k ̸=i

mzi(t)ak(t)

∫ t

t0

cos(ϕi − ϕk − ψ)dτ (SM-12)

≈ −
∫ t

t0

[γ2iai + γGmzi(τ)ai(τ)] dτ

Similarly, one obtains for the moving averages ϕ̄i and m̄zi the following equations:

∆tϕ̄i(t) ≈
∫ t

t0

[δωi + γGmzi(t) sinψ] dτ (SM-13)

∆tm̄zi(t) ≈
∫ t

t0

[
−γ1i(mzi −mz0i) + γGa2i (τ) cos(ψ)

]
dτ (SM-14)

Thus, the dynamics of the component mi(t) obeys the approximate evolution equations:

˙̄ai(t) = −γ2iāi − γGmzi(t)āi(t) (SM-15)
˙̄mzi(t) = −γ1i(m̄zi −mz0i) + γGā2i (t) cos(ψ) (SM-16)
˙̄ϕi(t) = δωi + γGm̄zi(t) sinψ (SM-17)

This therefore shows that in this case of large offset separations, the moving average for the magnetization mi(t)
again obeys Maxwell-Bloch equations, and each mi(t) is decoupled from all other mk(t).
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III. REFERENCE SPECTRA OF METHANOL AND ETHANOL (FIGURE SM-1)

300 200 100 0 100 200 300 400
Frequency (Hz)

(a)

500 0 500 1000 1500
Frequency (Hz)

(b)

FIG. SM-1. Reference Spectra of Methanol (a) and Ethanol (b). Frequencies are labelled with the LO as the reference. Spectra
were acquired at 9.4 T. For the methanol, the lines are unresolved due to the addition of CuSO4 in the solution.
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IV. INSTRUMENTATION: THE ELECTRONIC FEEDBACK CONTROL UNIT (EFCU)

Probe
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FIG. SM-2. Electronic Feedback Control Unit (eFCU)- The signal from the probe is picked up at the output of the preamplifier
through the directional coupler "2" and amplified by a low-noise amplifier (+20 dB gain). Demodulation at 400 MHz (local
oscillator - LO) was used for sake of filtering, and picked up from the 1H power amplifier of the spectrometer. Its power set to
a 14.7 dBm. The re-modulated signal is then adjusted in phase and gain before being re-injected into the probe through the
rf coupler 1. Gain adjustment was performed by a +20 dB low noise amplifier and a set of variable attenuators in the range 0
to 111 dB.

A fraction of the induction signal is picked up at the output of the preamplifier through a directional coupler
and amplified through a low-noise amplifier. This signal is then demodulated using a 400 MHz local oscillator
(LO) reference generated from the 1H power amplifier of the spectrometer. The resulting in-phase and quadrature
demodulated signals are fed into a low-pass filter of bandwidth 100 kHz and re-modulated at the proton Larmor
frequency. The filter bandwidth can be adjusted between 100 Hz and 100 kHz, depending on the application. After
re-modulation the radiofrequency signal is phase adjusted by a voltage-controlled phase modulator, and the gain of
the eFCU output signal was controlled using a second LNA (+20 dB) and a set of variable attenuators in the range
0 to 111 dB (with a minimum attenuation step of 0.1 dB). The LO was switched on throughout acquisition. Finally,
the phase- and gain-adjusted signal is fed back into the probe via an additional directional coupler. The rf leakage of
the LO from the mixers of the eFCU is first minimized (≲ 2 mV) by adjusting the offset voltage at the input of the
low-pass filter.

Mirror images that are symmetric with respect to the demodulation frequency are caused by the low pass filtering
of the signal that requires a demodulation/remodulation stage of the audio signal in the eFCU. Demodulation of the
input signal ν0+ ν, where ν0 is the LO radiofrequency and ν = δω/2π is the audiofrequency of the spin, yields signals
at 2ν0 + ν and ν. The former is filtered out by the eFCU low-pass filter, and the latter gives signals at ν0 ± ν after
re-modulation with the same LO frequency ν0. The small and constant rf leakage yields a spike in the spectrum at
the LO frequency. These features are illustrated in Fig. SM-3.
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FIG. SM-3. Effect of modifications of the modulation/demodulation reference frequency (LO) on the methanol resonance line
in maser experiments - Spectra of a methanol maser from CH3 for different LO positions. In (a): a maser spectrum (blue) is
superimposed with a reference FID (orange); the zero frequency corresponds to he LO position for the spectrum on the left.
In (b): Changing the LO frequency only changes the image location whilst the CH3 resonance line remains fixed. The carrier
frequency is the same for all experiments.

V. MEASUREMENT OF THE RF LEAKAGE (FIGURE SM-4)
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FIG. SM-4. Measurement of the rf leakage from the eFCU by a nutation experiment. Figure (a) and (c) are the magnitude
spectra corresponding to methanol and ethanol when the LO was set on the CH3 resonance whilst the input of eRFCU was
disconnected from the probe during acquisition. Two peaks corresponding to the nutation of the spins and caused by the
constant rf leakage were respectively observed at ν1 = 4 Hz and ν1 = 1.4 Hz away from the Larmor frequency of CH3 in
methanol and ethanol. A simulation was performed using rf leakage amplitude of 4 Hz and 1.4 Hz with frequency 10 Hz with
out radiation damping are shown in figures (b) and (d).



7

VI. SPECTRAL CLUSTERING IN THE THREE-MODE ETHANOL MASER (FIG. SM-5)
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FIG. SM-5. Spectral clustering in the three-mode ethanol maser. The time envelopes shows a succession of pairs of maser
pulses in a narrow frequency band for OH (5(a)), and several maser components shifted in time for CH2 (5(b)).
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VII. SPECTRAL CLUSTERING IN ETHANOL: A TOY MODEL VERSUS EXPERIMENT (FIG. SM-6)
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FIG. SM-6. Maser spectral clustering in ethanol: a toy model simulation versus experiment. Left column - Figure (a)corresponds
to the spectrum of the OH multiplet acquired after a 90o pulse in the absence of eFBU. In (c): single burst from the experimental
maser signal shown in figure ?? of the article. In (e), the spectrum in (a) and the Fourier transforms of (c) show the spectral
clustering. Right column - A simulation was performed with five sets of 420 spins separated by 0.01 Hz centered at 10 Hz, 14
Hz, 15.5 Hz, 19.5 Hz and 25 Hz with mo = 0.002, 0.0014, 0.0014, 0.004, 0.003 to simulate a mock OH multiplet. The associated
spectrum and a single burst of the simulated maser signal are shown in (b) and (d), respectively. In (f) the spectral clustering
from the simulation is shown.
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VIII. STRUCTURE OF THE METHANOL SPECTRUM (FIG.??)

The XT function, defined as:

XT =

∞∑
n=−∞

δ(t− nT ) (SM-18)

has the Fourier transform:

X1/T =
1

T

∞∑
n=−∞

δ(ν − n

T
) (SM-19)

The induction signal of Fig.?? can be approximately represented as the sum of two periodic signals of the same period
T . Suppose f and g denote the shape of the signal over one period T and zero elsewhere. If in addition g is shifted
in time, then the signal can be represented as:

S(t) = (f(t) + g(t+∆)) ∗XT (t) (SM-20)

with ∆ < T . The Fourier transform of this signal is thus:

S(f) =
1

T

[
f̂(ν) + e−2iπ∆ν ĝ(ν)

]
X1/T (ν) (SM-21)

Now suppose that g(t) = Af(t), A > 0, and ∆ = T/2. The spectrum becomes:

S(f) =
1

T
f̂(ν)

[
1 +Ae−2iπνT/2

]
X1/T (ν)

=
1

T

∞∑
n=−∞

f̂(n/T )
[
1 +Ae−iπn

]
(SM-22)

This shows that the coefficient of f̂(n/T ) is equal to 1 ± A, depending whether n is even or odd. Therefore, the
spectral lines are alternatively larger or smaller than the spectrum f . This phenomenon explains the kind of spectrum
with alternating intensities observed in Fig.?? of the article.
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