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Chapter 1
Exploring instabilities of inverse problem solvers
with low-dimensional manifolds

Nathanaël Munier, Emmanuel Soubies & Pierre Weiss

Abstract Inverse problem solvers are mappings S : Y → X , where Y is the space
of measurements and X the space of signals we wish to recover. We propose a
simple algorithm to visualize the main instability of a solver implemented within
an automatic differentiation framework. We justify it through simple considerations
and illustrate its behavior on a deconvolution problem solved with a neural network
based reconstruction method. The proposed algorithm can be used to provide addi-
tional insights on the properties of inverse problem solvers, and can be viewed as a
simple uncertainty quantification technique.

1.1 Introduction

Consider a forward model of the form y = P (A(x)), where X and Y are two
vector spaces with dim(X ) = N, dim(Y ) = M, the map A : X → Y is a sensing
mapping and P : Y →Y is a deterministic or random perturbation (e.g., quantiza-
tion, additive noise). An inverse problem solver S : Y →X takes the measurements
y as an input and returns an estimate S(y) of the underlying vector x. We design a
numerical algorithm to characterize the main directions of instability of the solver.
It leverages the power of automatic differentiation and enables visualizing the insta-
bilities as a low-dimensional manifold. This is a follow-up work of a recent method
called Jackpot [9], that we are developing in parallel of this paper in a more intricate
setting where the solver is not available explicitly.
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The problem

Solving ill-posed inverse problems requires introducing explicit or implicit regu-
larization terms. These terms improve the stability of the inversion to noise on the
data. However, strong regularizers may also hinder the recovery of accurate solu-
tions. Hence, there is a balance to be found between stability and accuracy [4]. The
solvers’ accuracy has improved considerably with the advent of deep learning, and
we can expect less stability. While the estimated signals/images typically look sharp
with details we would not have dreamt of recovering a few years ago, to what extent
can we trust them? Two popular approaches are often used to answer this critical
question.

Sampling methods

To simplify the discussion, we assume that the perturbation P is an additive white
Gaussian noise, that is y = A(x)+b with b ∼ N (0,σ2IdM). Hence, if the recovery
mapping S is unstable, the noise b may result in unfaithful reconstructions. Sam-
pling methods [8, 5, 1] consist in constructing a set of measurements yk = y+ bk,
for k = 1, . . . ,K, where bk ∼ N (0,ε2IdM) and recover the corresponding estimates
xk = S(yk). The samples (x1, . . . ,xK) provide a snapshot of how the solver S reacts
to perturbations and can be analyzed through statistical techniques such as Principal
Component Analyses (PCA) or bootstrapping methods [2]. For instance, by setting
ε = σ and letting K → ∞, this approach provides a complete description of the
pushforward distribution S(N (y,2σ2IdM)). It yields a good overview of the aver-
age uncertainty lying in the estimation, however it can suffer from low convergence
rates due to the curse of dimensionality and fails to identify the worst case attacks.

Adversarial attacks

An alternative strategy consists in searching for worst case perturbations [6]. They
can be obtained by solving optimization problems of the form:

b⋆ = argmax
b∈Y ,∥b∥2≤ε

∥S(y+b)−S(y)∥2
2, (1.1)

that is, we look for the perturbation of amplitude ε that most alters the reconstruc-
tion. This problem can be solved with projected gradient descent for instance. This
type of approaches is very handy to illustrate that some solvers can create dangerous
hallucinations in medical applications [4, 3]. However, it is highly nonconvex so that
solvers can easily get trapped in shallow local minimizers. In addition, it requires
adding some extra noise to the already noisy data, therefore yielding pessimistic
stability results.
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Our contribution

In this paper, we propose an alternative to these popular techniques, which lies in be-
tween worst case and average attacks. We are looking for a D-dimensional subman-
ifold in X that best captures the uncertainty/unstability set Uy = S(y+B(0,ε)).
Here D is a user defined parameter, and B(0,ε) denotes a ball centered at 0 of ra-
dius ε . This algorithm is rather straightforward to implement, given that the solver
is implemented in an automatic differentiation framework such as PyTorch, Tensor-
flow or Jax. The article will be organized as follows: in Section 1.2 we introduce our
proposed algorithm and some approximation properties about the computed adver-
sarial manifold. In Section 1.3, we illustrate its behavior on physics informed deep
learning solvers.

1.2 Main idea

The main idea is rather simple. If the perturbation b is of small amplitude ε and the
mapping S is of class C1 we can linearize it:

S(y+b) = S(y)+ JS(y) ·b+o(v∥b∥2), (1.2)

where v ∈ X is a unit vector and JS(y) ∈ RN×M denotes the Jacobian matrix of the
solver S evaluated at point y.

For additive white Gaussian noise b ∼ N (0,ε2IdM) and small ε , the lineariza-
tion (1.2) informs us that the uncertainty around the estimate S(y) is approximately

distributed as N
(
0,ε2Cy

)
, where Cy

def
= JS(y)T JS(y). Hence, the main directions of

uncertainty are given by the eigenvectors associated to the dominant eigenvalues of
this symmetric positive semi-definite matrix.

Given an integer D ∈N, we can define the subspace Ty = span(v1, . . . ,vD) gener-
ated by the eigenvectors of Cy associated to the D largest eigenvectors λ1 ≥ ·· · ≥ λD.
Then we design two approximations of the uncertainty set Uy = S(y+B(0,ε)):

• Ly = S(y)+ JS(y) ·Ty : the linearized D-dimensional space,
• My = S(y+Ty ∩B(0,ε)) : the D-dimensional manifold.

Let d(A|B) def
= max

x∈A
d(x,B) denote the maximum distance from A to B.

Proposition 1 The sets Ly and My admit the following properties.

• If S is a quadratic function, the space Ly minimizes d(Uy|L) among affine
spaces L. It is the optimal D-dimensional affine space to approximate the un-
certainty set Uy.

• If S is of class C1, the linearized space Ly is asymptotically the best D-
dimensional affine approximation space of the uncertainty set Uy as it mini-

mizes L 7→ limε→0
d(Uy|L)

ε
. Moreover limε→0

d(Uy|Ly)
ε

=
√

λD+1 where λD+1 is
the (D+1)th eigenvalue of Cy.
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• If D ≤ rank(JS(y)), the set My is locally a submanifold of Uy near S(y). It has

the same property as Ly: limε→0
d(Uy|My)

ε
=
√

λD+1.

Numerical computation

Algorithm 1 shows how to compute a discretized subset of the manifold My. Com-
puting matrix-vector products with the Jacobian can be achieved through automatic
differentiation. Depending on the size of Y , one can either store the matrix Cy or
use iterative methods derived from the power method. In what follows, we compute
the dominant eigenpairs using the LOBPCG algorithm [7]. It can be seen as a Stiefel
manifold gradient descent with a random initialization.

Algorithm 1 Our proposed method
Require: y ∈ Y , ε > 0, D ≤ M and G a set of points in the ball BD(0,ε)

Compute V = [v1, . . . ,vD] the D dominant eigenvectors of Cy
Evaluate S(y+V g) for each g ∈ G
return My(G ) = S(y+VG ) a discretized version of My.

Discussion

While sampling methods provide a picture of the average sensitivity, adversarial
attacks give the worst case S(y+b⋆) of sensitivity as defined in (1.1). In comparison,
our approach can be seen as an intermediate between these two classes of methods.
For D = 1, it provides an approximation S(y± εv1) of the worst case perturbation,
with an error of order o(∥ε∥2). Moreover, it provides information beyond this worst
case analysis by taking D > 1. In this case, the main directions of uncertainty are
identified and a discretization of the sub-manifold My is computed.

Compared to conventional sampling scheme, our method captures more extreme
cases. Indeed, the mean sampling distance to the center S(y) for the sets Uy and My
can be approximated by (1.3) and (1.4) below:

Eb∼N (0,ε2IdM)

[
∥S(y+b)−S(y)∥2

2
ε2

]
−→
ε→0

1
M

M

∑
m=1

λi (1.3)

Eg∼N (0,ε2IdD)

[
∥S(y+V g)−S(y)∥2

2
ε2

]
−→
ε→0

1
D

D

∑
d=1

λd . (1.4)

Assume that D is selected in such a way that the sums of eigenvalues are close
∑

M
m=1 λm ≈ ∑

D
d=1 λd . Then notice that our method captures points that are in average
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M/D times larger than with conventional sampling methods. This is a dramatic

difference for fast decaying spectra in large dimensions.

1.3 Experiments

To illustrate the method, we consider an image deblurring problem. We set a con-
volution operator A with a motion Point Spread Function (PSF) and P an additive
white Gaussian noise. The clean image, the motion point spread function, and the
degraded image are depicted in Figure 1.1 (a)–(c). Plug-and-play (PnP) methods
with deep-learning based denoisers yield accurate reconstruction results for such
problems. For this experiment, we used a half-quadratic splitting solver S where
the proximal step is replaced by a DRUNet denoiser [10]. A reconstruction result is
presented in Figure 1.1 (d).

(a) Clean image (b) Degraded image (c) Restored image

Fig. 1.1: Deconvolution problem. From left to right: clean image with point spread function on top
left corner, degraded (blurry and noisy) image, restored image using the PnP method (see text for
details). At the right side of each image, two zoomed-in sections are plotted.

Algorithm 1 results

We use Algorithm 1 to analyze the stability of the considered PnP method. The
outputs of Algorithm 1 are presented in Figure 1.2. We observe that Cy admits two
dominant eigenvalues. As such, we set the dimension of the computed manifold My
to D= 2. In Figure 1.2 (b) we present the output SNR on My, that is SNR(S(ỹ),S(y))
for points ỹ ∈ My. We observe that the decrease of output SNR is similar in both
directions which is in agreement with the fact that the first two eigenvalues are of
the same order of magnitude. The two stars represent the worst output SNR for the
inputs perturbation levels ε50dB and ε70dB; that is perturbations y+ b of y such that
SNR(y+b,y) equals 50dB and 70dB. The corresponding restored images S(y+b)
are displayed in Figures 1.3 (b) and 1.4 (b). We observe that some structures of the
initial image are hallucinated when restoring a slightly perturbed input y. This shows
that the considered PnP algorithm presents some instabilities which are identified by
our method.
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(a) Eigenvalues of Cy

0.75 0.50 0.25 0.00 0.25 0.50 0.75
v1

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

v 2

50dB

70dB

40

45

50

55

60

(b) Output SNR in dB

Fig. 1.2: Stability analysis using Algorithm 1. The output SNR in (b) corresponds to
SNR(S(y+V g),S(y)) where V contains the eigenvectors associated to the two largest eigenval-
ues (D = 2) and G is a Cartesian grid. The two dashed circles represent the input perturbation
levels (on y) of 50dB and 70dB. The green stars denote the worst output SNR for the input pertur-
bation levels 50dB and 70dB.

Comparison with sampling methods and adversarial attacks

For both levels ε ∈ {ε50dB,ε70dB}, we applied the sampling and adversarial attack
methods described in the introduction. For the sampling method, we considered
K = 200 points yk = y+bk, k ∈ {1, . . . ,K}, where the bk are uniformly sampled on
SM(0,ε), the M-dimensional centered sphere of radius ε . Note that we restricted
the generation to the sphere rather than the ball as we are interested in finding the
worst perturbation. Regarding the adversarial attack, we solved Problem (1.1) using
a projected gradient ascent from 20 random initial points in SM(0,ε), and kept the
best local maximum.

We report on Figures 1.3 and 1.4 the deconvolved images with the worst case
perturbation (i.e., the one leading to the lower output SNR) found by each method.
We observe that the sampling method is unable to detect the instabilities of the
solver, as opposed to the proposed method and the adversarial attack. Moreover, as
expected, the proposed method reaches the performance of the adversarial attack
asymptotically when ε → 0 (Figure 1.4). For larger levels, we observe that the ad-
versarial attack lead to hallucinations not captured by Algorithm 1 with D = 2. Yet,
the proposed method is not restricted to the computation of a single attack and pro-
vides a whole manifold of adversarial perturbations. Overall, it yields a compromise
between sampling methods and adversarial attacks.
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CE48-0008 and from the HPC resources from GENCI-IDRIS (Grant 2021-AD011012210R3).
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(a) Sampling (57.2 dB) (b) Our method (38.8 dB) (c) Adversarial (29.8 dB)

Fig. 1.3: Comparison of computed worst perturbations for ε = ε50dB.

(a) Sampling (77.6 dB) (b) Our method (51.4 dB) (c) Adversarial (48.6 dB)

Fig. 1.4: Comparison of computed worst perturbations for ε = ε70dB
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