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A Model Predictive Control Approach To Blending In Shared Control

Elio Jabbour1, Margot Vulliez1, Celestin Preault2, Vincent Padois1

Abstract— Shared control methods distribute control between
human operators and robots in demanding tasks, enabling
collaboration that leverages their respective strengths and
expertise. Sharing the task typically involves blending algorithms
that combine human control inputs to (pre)planed assistance
trajectories. Conventional blending techniques, such as Linear
Blending, compute a combined output but neither guarantee
feasibility of this shared motion, nor ensure compliance with
safety or task-related constraints.
This paper proposes to tackle feasibility and safety by formu-
lating the blending strategy as the solution of a constrained
optimal control problem, that enforces environment limits, task
requirements, and physical capabilities. A Model Predictive
Control approach is used to solve the optimization problem and
anticipate constraints by predicting the robot motion over a
receding time horizon. We evaluate this approach in simulated
and real-world pick-and-place teleoperation experiments. The
experimental study compares the Model Predictive Control
approach to Linear Blending and full Teleoperation. The results
show that the new framework offers significant improvements,
as it provides a safer, more accurate, and repeatable response.

I. INTRODUCTION

Autonomous robots, although highly effective in speed and
precision, often fall short in handling complex and dynamic
scenarios [1]. In these contexts, teleoperation provides a mean
for human experts to perform tasks remotely in dangerous or
inaccessible environments, such as underwater [2] or in nuclear
decommissioning [3]. Despite its advantages, teleoperation can
be complex and lead to cognitive overload, as the operator
must continuously process and respond to various sensory
inputs - visual, haptic, and auditory [4], [5]. Thus, improving
teleoperation requires a teaming approach that leverages the
strengths of both the human and robot.
Shared control frameworks [6] aim at addressing this challenge
by dynamically allocating the control authority between the
human and the robot, based on the task and environment, so that
they collaborate. Sheridan [7] first conceptualized this dynamic
allocation of authority as a ten-level system, where control shifts
between full human operation to full automation.
Combining control inputs from human operators with those
generated by autonomous systems typically involves blending
algorithms [8]. Blending methods range from applying weighted
combinations of the inputs from each source [9], [10] to
probabilistic distributions [11]. Another commonly used method
is to model shared control as a random process described by a
joint distribution over the operator, the autonomous system, and
the environment [12]. Similar to the game-theoretic approach
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Fig. 1: Overview of a general shared control block diagram
and experimental setup. The diagram represents the interaction
between the human input, intent recognition, and assistance
input modules with control authority. The control input is
blended and sent to the robot controller. Here, the operator
uses a Omega 7 haptic device to remotely control a Panda
Franka 7dof manipulator. Control is shared between the
human and the assistance to complete a pick-and-place
task. The blending effect is visualized through the horizon
of intermediate Cartesian poses. It reflects the predictive
nature of the MPC-B approach (described in section III-B),
continuously guiding the robot toward the target.

in [13], where both agents act independently with their own
objectives and strategies, this blending method dynamically
adapts control inputs based on ongoing interactions, without
prior modeling or training.
One of the main challenges in blending human and autonomous
control signals is to ensure the feasibility of the combined output.
While each input may individually respect constraints related
to the environment and robot capabilities, there is no guarantee
that their combination will. Existing blending methods lack
of a generic solution to this issue. Although robot control
safety mechanisms, such as saturation strategies, can address
this, handling constraints upfront is likely to improve system
performance. This highlights the need for blending approaches
formulated as constrained optimization problems. These ap-
proaches are becoming increasingly standard in robotics control
[14], [15], especially when they are formulated over an horizon
such as in Model Predictive Control (MPC) [16], [17]. MPC
can indeed solve the optimal control problem over a receding
horizon. In addition to enforcing constraints and optimizing
performance, MPC has filtering properties that smooth out
abrupt variations that may be caused by sudden authority shifts,
errors in the human intent detection, or operator tremors. A
shared steering control system for automated driving lane-
keeping has demonstrated that dynamic constraints and stage



costs can ensure smooth control allocation [18]. Another recent
MPC-based haptic shared steering controller has shown the
benefit of the prediction model in optimal control by accounting
for the cognitive behavior and neuromuscular dynamics of the
driver and the vehicle-steering dynamics [19].
This work investigates the formulation of the blending problem
using a MPC approach. To demonstrate its effectiveness, the
proposed method is compared to standard teleoperation and
linear blending shared control in a remote pick-and-place
scenario. Through experiments and simulations, this proof-
of-concept shows that the MPC-based approach outperforms
traditional methods in terms of safety, feasibility, repeatability,
and human effort reduction.
The paper is organized as follows: an overview of shared
control architecture is presented in section II, the formulation
of the proposed MPC-based blending controller is introduced
in section III, the experimental set-up for our evaluation is
described in section IV, the results and their analysis are then
given in section V. Conclusions and future works directions end
the paper in section VI.

II. SHARED CONTROL ARCHITECTURE

Shared control in teleoperation consists of several key compo-
nents as illustrated in figure 1: human input, intent recognition,
authority level distribution, and blending controller. These
components are briefly described in this section. Their specific
implementation for the experiments is described in section IV-
C. This section also describes performance metrics generally
considered to qualify a shared controller.

A. Main components

In teleoperation, the user interacts with a joystick which captures
the human position Hxh ∈ R3 for the robot to track, which is
measured in the device base frame {H}. The transformation of
the user input position to the robot frame is given by:

Rxh = sRRH(Hxh −H xhi) +
R xri (1)

Here, H and R denote the teleoperation device and robot frames,
respectively. Hxhi and Rxri ∈ R3 are the positions of the device
and robot workspace centers. The scalar s ∈ R+ is a scaling
factor, and RRH ∈ R3×3 is the rotation matrix expressing the
orientation of the haptic frame in the robot frame. The same
transformation can be applied to the human velocity Hẋh ∈ R3.
The position and velocity are the human inputs used in the shared
controller. The following control models are all expressed in
robot space. For reasons of readability, we do not indicate the
R-frame upper index in the equations for the rest of the section.
The authority level, defined as a scalar β ∈ [0, 1], allocates
the control between the operator (β = 1) and the assistance
system (β = 0). It can be modulated by specific factors
such as the operator fatigue [20] or the robot fidelity [21].
The expertise level of the operator can be learned, to provide
less assistance as expertise grows [22]. Trust in the system’s
performance, especially in safety-critical tasks, can also be used
to determine the authority distribution [23]. Task proximity is
another metric that can be used to shift the authority when
precision is demanded [24].

The assistance trajectory [xa, ẋa] ∈ R3 is often learned by
demonstrations [25] or preplaned [26]. It reflects the motion the
robot would do if performing the task fully autonomously.
Detecting the human’s intention to align the assistance with
the operator’s goals is crucial, to avoid conflicting behaviors.
Among others, techniques such as neural networks or Hidden
Markov Models (HMMs) can be used to predict human intention
from their motion [27], [28]. A review on intent detection in
shared control is given in [29].
The objective in the subsequent sections is to compute the
blending position and velocity, denoted as [xb, ẋb], using the
function f(xa,xh, ẋa, ẋh, β). This combined output will then
be used as the input to the robot.

B. Evaluation metrics
The impact of a shared control system can be evaluated
using various objective metrics. Common ones, like execution
time and Cartesian position error, though not specific to
shared control, remain relevant [30]. However, shared control-
specific performance metrics offer deeper insights. The level
of assistance, sometimes called interference, quantifies how
much the assistive system intervenes, indirectly indicating the
user’s expertise [31]. Another key metric is the agreement,
measuring the alignment between human input and system
autonomy, providing a clearer sense of assistance quality [32].
Human comfort metrics include motion (dis)continuity, eval-
uated through jerk, as motion discontinuity can undermine
perceived safety [33]. Human effort, reflecting the physical
demand, can be measured by the power exerted on the teleop-
eration device, with shared control systems often reducing this
burden [34].
Lastly, system safety is assessed by monitoring violations
of workspace boundaries, control limits, or task-specific con-
straints.

III. BLENDING STRATEGIES

This section describes the MPC-based blending strategy pro-
posed in this work with a prior description of the standard linear
blending approach.

A. Linear Blending (LB)
In the literature, a conventional approach to blend both human
operator and autonomous agents control inputs is linear blend-
ing, here illustrated at the position level:

xb = βxh + (1− β)xa (2)

Linear blending presents significant safety challenges, particu-
larly when the human and assistance inputs diverge while they
have a similar authority weight, as highlighted by [9]. In such
scenarios, LB is unable to effectively resolve conflicts, leading
to meaningless median trajectory that can be unsafe, which is
especially concerning in critical environments. Indeed, LB is
not designed to consider a priori constraints on the task or robot
workspace, or physical capabilities.
Moreover, LB lacks a built-in mechanism to ensure smooth tran-
sitions between control inputs. This is particularly problematic
when the authority weighting is poorly tuned or when the human
operator’s movements are erratic, as can be the case with less
experienced users.



B. Predictive Blending (MPC-B)

These limitations can be addressed by employing control
approaches that explicitly account for system constraints. One
such method is Model Predictive Control (MPC), which solves
an optimal control problem over a receding horizon while
adhering to predefined constraints. By utilizing a model of
the system’s dynamics, MPC is able to predict the effects
of control actions over multiple future time steps, enabling
the computation of a locally optimal control strategy at each
step. This predictive capability allows MPC to make informed
and constraint-compliant decisions that improve system perfor-
mance and safety.
Let Xb = {xb, ẋb} ∈ R6 be the desired robot end-effector
state resulting from blending. And let the current state Xr =
{xr, ẋr} ∈ R6 be the current position and velocity of the
robot1.
Extending equation (2), blending can be formulated as a
minimization problem over an horizon with two, potentially
conflicting, objectives related to the human operator input Xh

and autonomous agent input Xa. Considering a control variable
u expressed at the acceleration level, the MPC cost function can
be formulated as:

J =
H∑

k=1

[∥(Xbk −Xh)∥Qh

+ ∥(Xbk −Xa)∥Qa
+ ∥uk∥R (3)

where Qh and Qa ∈ R6×6 are symmetric positive-definite
diagonal matrices defined as

Qh =

[
βI3×3 03×3

03×3 kvhβI3×3

]
and

Qa =

[
(1− β)I3×3 03×3

03×3 kva(1− β)I3×3

]
These weights reflect the distribution of the control authority
as well as the priority given to tracking the reference velocity
with respect to the reference position through the kvh and kva
weighting factors. A higher value for these parameters prioritizes
faster responses to trajectory changes, enabling the system to
quickly adapt to deviations in either the human or assistance
velocities. However, increasing these weights may also lead
to higher tracking errors at the position level, as the system
could become overly sensitive to minor fluctuations, potentially
compromising stability and precision in favor of responsiveness.
R = diag(γ) ∈ R3×3 with γ ≥ 0 is a symmetric positive
definite diagonal matrix weighting the cost associated to the
control input u.
The relationship between the current state and the control input
at time step k, is described by the discrete-time linear system:

Xbk+1 = AXbk +Buk (4)
where A and B are the state space and input matrices.
For a receding time horizon of H steps and a time step δt, the
total horizon time is T = Hδt. Defining state and input vectors
over the horizon, with k = 0, 1, ...,H , we have:

1Without loss of generality and considering the pick-and-place scenario
retained for this work, the controller derivation is formulated at the translation
level. Extension to SE(3) is possible [35] but out of scope for this paper.

Ū =


uk

uk+1

...
uk+H−1

 ∈ R3×(H−1) X̄ =


Xk

Xk+1

...
Xk+H

 ∈ R6×H

Propagating equation (4) over the horizon yields:

X̄ = ĀX0 + B̄Ū (5)

where Ā and B̄ are the propagated state and input matrices.
Reformulating equation (3) using equation (5), we obtain the
state vector X̄b which expresses the target state over the
horizon. Constraints from the environment (workspace limits),
robot capabilities (Cartesian velocity and acceleration), human
motion (motor capabilities in terms of Cartesian velocity and
acceleration) can be thus considered and written over the horizon
under the generic form:

X̄min ≤ X̄b ≤ X̄max Ūmin ≤ Ū ≤ Ūmax (6)
This leads to the constrained quadratic program:

Ū⋆ = argmin
Ū

1

2
ŪTHŪ+ FT Ū (7)

subject to equation (6). The first term of the optimal receding
control horizon Ū⋆ is the blended acceleration command to
which a blended velocity and position [xb, ẋb] is associated
through equation (4).
To ensure proper convergence towards the target position, the
terminal cost, i.e. the cost of the last step of the horizon in
the cost function, can be modulated by tuning kvh and kva
differently for that terminal step. The same applies to the action
cost which can be modulated by tuning γ differently for the
terminal step of the horizon.

IV. EXPERIMENTAL SET-UP

To objectively assess the performance of the proposed blending
approach, we propose a series of simulations and a real-world
shared-controlled teleoperation experiment where Teleoperation,
Linear Blending (LB) and MPC-based blending (MPC-B) are
compared. The evaluation task is a pick-and-place scenario, in
the teleoperation of a Franka Emika Panda robot.

A. Simulation

The simulation scenario is divided into three distinct phases to
compare MPC-B and LB. To ensure repeatability and eliminate
variability of human teleoperation, the human input xh is
automatically generated as an oscillating position given by:

xh = xr +K(xt − xr) + c sin(2πft+ P ) (8)

xt is the target position, K is a proportional gain, c is the
amplitude, f is the frequency, and P is the phase shift of the
sinusoidal component. The human velocity ẋh is derived from
equation (8). The assistance input xa is predefined as a step
response to the target position. The simulation is constrained to
motion along a single axis for simplicity.
Phase 1: The robot starts in full assistance mode (β = 0). xa

is instantaneously set to the target position. This step tests the
controller’s ability to accurately track sudden changes in the
target position.



(a) (b)

Fig. 2: (a) The authority level β shifts from full assistance β = 0 to full human control β = 1 with respect to the distance to the target
||xt − xr||. (b) Control architecture for MPC-based blending.

Phase 2: The authority level is shifted to full human control
(β = 1). xh goes toward a new target position following
equation (8) with the oscillation parameters c = 10.0, f =
1.2, P = 1.6. This phase evaluates the controllers’ ability to
cope with fluctuations in the human input and a discontinuous
change in the authority level.
Phase 3: The authority is equally distributed (β = 0.5). xa is set
to a new target position, that lies outside the defined workspace.
xh goes toward this target position without oscillation (c = 0.0).
This phase tests the controller’s capability to predict and prevent
violations of workspace boundaries while maintaining smooth
control response.

B. Real-World Teleoperation Scenario
The pick-and-place scenario is performed on a real robot, where
Lego pieces must be moved from some fixed areas to delimited
zones, as shown in figure 1. The workspace has predefined
safety limits, from which the placement zones are close to test
the controller’s ability to handle constraints.
In this experimental study, a pure teleoperation mode serves as
a baseline for comparison to LB and MPC-B shared control
modalities. The human operator provides its motion input
through a Force Dimension Omega.7 haptic device.
The user must pick-and-place four different-colored objects in
a specific order. The displacement phases, toward the object to
pick or the area where to drop it, are controlled by the human,
either in full teleoperation or assisted through shared control.
When at the correct pick/place position, with a maximum error
of e = 0.02m, the user presses the device switch and the
robot maintains its current position while grabbing/releasing
the object. These grab/release steps are completed after a given
time delay t = 1.5s and, then, an automatic vertical motion of
the robot and the haptic device is performed. This timed strategy
is designed to avoid collisions in the critical release and grab
phases.
This task is performed 6 times for each control mode. The
individual who conducted the experiment is an expert in teleop-
eration with a background in robotics, but is not a contributor to
this work.

C. Implementation
The detailed shared control architecture is given on figure 2b. It
implements the MPC-B controller that combines the human and

assistance inputs, while considering several constraints related
to the human, robot, and task.
For this comparison study, and to not rely on the accuracy of an
intent detection, the assistance reference is successively set to
the ordered four target objects’ positions.
In this experiment, the control authority distribution is based on
the distance to the target, which is a well-established method
from the literature [36]. As shown in figure 2a and equation (9),
it computes β from a distance function f(x) where xt is the
target position. dthr = 0.2m is the distance threshold at which
the human has full remote control. s = 0.6 is a scalar that shifts
the authority curve to be equal to zero when the distance to the
target is zero. z = 0.1 is a parameters that tunes the slope of the
authority curve.

β =
1

1 + e−
f(x)−s

z

and f(x) =
||xt − xr||

dthr
(9)

The MPC-B controller is implemented according to the equa-
tions written in section III-B. The MPC-B parameters for this
study are given in table I and the position limits enforced for
the MPC can be seen in figure 4. A systematic study of the
influence of the main MPC parameters was initially performed in
simulation using the NSGA-3 multi-objective genetic algorithm
implemented in pymoo2. All parameters were then fine-tuned
empirically using the real robot. The tuning process aimed
to balance controller responsiveness with motion accuracy.
Likewise, the step length and number of steps in the MPC
were selected to ensure that the associated QP could be solved
at 1 kHz, striking an optimal balance between computational
efficiency and control performance.
The MPC-B control input u is computed at the time step
δt = 40ms, while the robot’s control loop operates at 1ms.
Interpolation is applied to the calculated acceleration input to get
the desired trajectory at the faster control rate. This is achieved
through the control-to-state linear equation (4), with matrices A
and B set to the control step time.
The robot local controller implemented in our experiments is
depicted in figure 2b. The control input to the low-level task-
space inverse dynamics of the robot control architecture is
expressed at the acceleration level. Thus the output acceleration

2https://pymoo.org/

https://pymoo.org/


TABLE I: Control Parameters for the System
Parameter Value Parameter Value
Kp/(s−2) 250 Kd/(s

−1) 30
H (–) 10 δ/ms 40
Kva (–) 1× 10−2 Kvh (–) 1× 10−3

Kva (Terminal Cost) (–) 1000 Kvh (Terminal Cost) (–) 1000
γ (–) 1× 10−5 γ (Terminal Cost) (–) 1× 10−9

{ẋbmin, ẋbmax}/(m/s) {−0.3, 0.3} {ẍbmin, ẍbmax}/(m/s2) {−7.0, 7.0}

u = ẍb of the MPC-B controller is fed to a PD + feedforward
local controller, together with the corresponding desired position
xdes and velocity ẋdes, computed from the MPC-B acceleration
output with equation equation (5):

ẍdes = Kp(xdes − xr) +Kd(ẋdes − ẋr) + u (10)

with Kp and Kd the proportional and damping gain matrices.
This allows to close the loop at the Cartesian level and reject, to
some extent, modelling errors to ensure correct tracking of the
desired trajectory.
Unlike MPC, the teleoperation and linear blending modes
cannot compute a reference acceleration. Therefore, in these
two cases, the local robot controller is restricted to a PD without
feedforward.
Task-space inverse dynamics is implemented as a constrained
Quadratric Program [37], [38] and computes joint torques
references τ ∈ R7×1 at 1 kHz, given the desired Cartesian
acceleration ẍdes. Constraints provide both safety guarantees on
the joint position, velocity and torque limits of the robot, as well
as guarantees on the Cartesian level velocities and acceleration
(generally prescribed by the task and user requirements as safety
measures).
All the control parameters for this implementation are summa-
rized in table I for replicability.

D. Evaluation Metrics in practice

The evaluation metrics described in section II-B are evaluated
through different physical quantities described in table II. In
this table, tf and t0 are the ending and starting time of the
experiments respectively. N is the number of time samples over
the duration of an experiment. nt is the number of place targets
in the experiment, xti the position of each target and xr,Ni

the
position reached by the operator when releasing the part at target
i. Fk is the force exerted by the human on the haptic device
(here estimated through the dynamics model of the device).
A constraints violation metric is computed independently for
position, velocity and acceleration and tp,v,a/∈F is the time dur-
ing which a constraint was violated (with F the corresponding
feasible interval for the considered quantity).

V. RESULTS

This section provides both the results and their analysis for the
simulation and experimental study.

A. Simulation Results

Figure 3 presents a comparison of the trajectories resulting
from MPC-based Blending (MPC-B) and Linear Blending (LB),
across the three phases of the simulation study (see section IV-
A).

Fig. 3: Comparison of the simulated trajectories for the MPC-
B (left) and LB (right), across the three phases (β = 0, β = 1,
β = 0.5). The top, middle, and bottom rows respectively show
the position, velocity, and acceleration responses. The red
curves are the MPC-B and LB trajectories, the blue curves
are the human input motion, and the green curves are the
assistance input. Horizontal black dashed lines show the pose,
velocity, and acceleration limits. Overall, MPC-B maintains
smoother responses and respects constraints in all conditions,
whereas LB results in high acceleration spikes above the limit
and does not filter the human input oscillations.

In Phase 1, where the authority is to full assistance, MPC-B
outputs a smooth motion toward the assistance step input, while
LB exhibits abrupt transitions and violates the acceleration
constraint. It shows the MPC-B ability to predict and locally plan
a motion that respect given physical limits. Phase 2 simulates the
controllers’ responses when tracking an oscillating human input
trajectory without assistance. By enforcing dynamic constraints
on the motion, MPC-B filters the input fluctuations, while LB
results in an oscillating robot motion that, again, violates the
acceleration constraint. In Phase 3, the assistance and human
inputs together try to reach a position outside the workspace.
MPC-B tracks the inputs until it predicts the proximity of the
position limit and smoothly decelerates to stop before it, whereas
LB continues its movement and breaches both position and
acceleration constraints.
This simulation study demonstrates the MPC-B ability to

TABLE II: Specific formulation retained for the evaluation
metrics

Metric / unit Symbol Formula
Execution time /s T tf − t0
Position error /mm P 1

nt

∑nt
i=1 ||xti − xr,Ni

||
Motion continuity /(m/s3) M 1

N

∑N
k=0

∣∣ ...
x r,k

∣∣
Human effort /W E 1

N

∑N
k=0 F

T
k ẋh,k

Agreement /(m2/s2) A 1
N

∑N
k=0 ẋ

T
a,kẋh,k

Level of Assistance % L 100
N

∑N
k=0 1− βk

Constraints Violation % Vp,v,a 100
tp,v,a/∈F

tf



TABLE III: Evaluation metrics for the three shared control modalities
Control Modality T/s P/mm A/(m2/s2) E/W M/(m/s3) L% Vp% Vv% Va%
Teleoperation 45.02± 0.85 15.2± 6.2 0.1508± 0.0128 3.773± 0.699 212.767± 15.817 Not applicable 16.58± 3.96 16.72± 2.71 15.85± 4.10
Linear Blending 37.20± 0.88 8.2± 0.8 0.2606± 0.0444 1.586± 0.465 306.425± 39.249 40.92± 1.76 12.53± 3.45 36.76± 3.59 31.54± 6.08
MPC-B 35.97± 0.65 3.8± 2.4 0.3056± 0.0248 0.990± 0.136 181.926± 7.340 45.95± 0.84 1.25± 1.07 4.29± 2.19 0.00± 0.00

Fig. 4: This figure presents a comparative analysis of three
control modalities in the case of one of the four placing
motions of the retained scenario: Teleoperation (blue), LB
(green) and MPC-B (red). The plots depict the real robot’s
position and the desired robot’s velocity, and acceleration fed
to the low level robot controller in the X, Y, and Z directions
over a normalized time. Shaded regions around each line
show the standard deviation across 6 trials. Dashed black
lines indicate the respective constraints on position, velocity,
and acceleration. The yellow line represent the center of the
target zone where the brick should be placed.

enforce position, velocity, and acceleration constraints by
modeling and planing the robot motion in a near future. The
MPC-B trajectory is, therefore, smoother than the one produced
by LB, even in the presence of sudden changes or oscillations
in the input human-assistance motion.

B. User Experiment Results

The results for the user experiment are exemplified in figure 4
which exhibits the average robot’s end-effector trajectory for one
placing motion among the four induced by the scenario. This
graph provides an interesting exemplification of the repeatability
of the produced motion as well as of the constrains violations of
all three modes. These observations are generalized by table III
which gathers the evaluation metrics for all three modes over the
whole scenario. In these results, the real robot position xr is used
while the velocity and acceleration signal are respectively the
desired velocity ẋdes (coming from the device for teleoperation
and blended for the other two modes) and the acceleration signal
ẍdes sent to the low-level controller. The low-level controller
saturates the velocity and the acceleration to the prescribed
constraints in a strictly reactive way so that the robot only
performs feasible motions. Accounting for these constraints

at the lowest level only is sub-optimal and it is thus interesting
to show the unconstrained signals coming from the teleoperation
and linear blending modes.
Constraints violation and motion properties: As expected,
the consideration of constraints a priori in MPC-B leads to
minor violations (≤ 5% for Vp,v,a). This is a major feature
of MPC-B with respect to teleoperation and linear blending.
Also, the standard deviations both on the evaluation metrics
and on the trajectories are illustrative of the repeatability of the
task induced by MPC-B with respect to teleoperation and linear
blending. Finally, the average jerk metric (M ) indicates that the
resulting motion is more continuous which is a desired property
in critical tasks.
Performance: Both linear blending and MPC-B lead to im-
proved performance in terms accuracy (P ) and execution time
(T ) with respect to teleoperation. This is also supported by the
agreement metric (A) which illustrates the quality of the human
control input towards the different target zones.
Assistance: The effect of assistance on the effort (E) put
by the human in achieving the task advocates for the use of
shared control rather than pure teleoperation. Here again MPC-
B outperforms linear blending which can be explained by the
optimality of the produced blended control when considering
the control problem over an horizon rather than reactively. As a
consequence, the user resort more to assistance (L) with MPC-B
than with linear blending. This provides some insight on the
increased trust MPC-B might induce.

VI. CONCLUSION

In this paper, we proposed a model predictive control-based
blending (MPC-B) approach for shared control, comparing it to
standard teleoperation and linear blending in both simulations
and a proof-of-concept experimental study using a pick-and-
place task as a general application scenario. To enable objective
evaluation, a set of quantitative metrics are developed, building
on existing literature.
The results demonstrate that MPC-B outperforms both teleoper-
ation and linear blending, offering a safer, more efficient, and
repeatable solution for shared control. The findings also suggest
an improvement in user trust and comfort.
Future work will focus on developing adaptive models that
dynamically adjust the authority level based on contextual
factors. Additional experiments with a larger and more diverse
user population will be conducted to further validate the
controller’s effectiveness, particularly regarding user trust and
comfort. Finally, while the assistance system operates with
reliable knowledge of the environment in this study, future
research will explore scenarios with higher levels of uncertainty,
where degraded assistance may require the user to assume
greater control.
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