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ABSTRACT1

Boolean networks provide robust explainable and predictive models of cellular dynamics, especially for cellular differenti-2

ation and fate decision processes. Yet, the construction of such models is extremely challenging, as it requires integrating3

prior knowledge with experimental observation of transcriptome, potentially relating thousands of genes. We present a4

general methodology, implemented in the software tool BoNesis, for the qualitative modeling of gene regulation behind5

the observed state changes from transcriptome data and prior knowledge of the gene regulatory network. BoNesis allows6

computing ensembles of Boolean networks, where each of them is able to reproduce the modeled differentiation process.7

We illustrate the scalability and versatility of BoNesis with two applications: the modeling of hematopoiesis from single-cell8

RNA-Seq data, and modeling the differentiation of bone marrow stromal cells into adipocytes and osteoblasts from bulk9

RNA-seq time series data. For this later case, we took advantage of ensemble modeling to predict combinations of repro-10

gramming factors for trans-differentiation that are robust to model uncertainties due to variations in experimental repli-11

cates and choice of binarization method. Moreover, we performed an in silico assessment of the fidelity and efficiency of12

the reprogramming, and conducted preliminary experimental validation.13

INTRODUCTION14

Mathematical models have demonstrated their utility in elucidating experimental findings that might challenge intuitive compre-15

hension. Through meticulous depiction of interactions within intricate signaling pathways and by contextualizing the dynamics of16

gene expression, these models provide a systematic approach to unveil the regulatory mechanisms that control cellular processes17

and their dysregulation in diseases. Among the various mathematical formalisms, the Boolean network (Boolean network) is a sim-18

ple but expressive formalism that relies on pragmatic rules to qualitatively simulate essential systems’ features. It is notably valuable19

in poorly understood large-scale systems as it can be employed for systems with hundreds of components and as the inference of20

Boolean network models, contrary to quantitative models (typically ordinary differential equation (ODE)-based models), does not21

require kinetic parameters derived from in-depth and often unavailable knowledge.22

Consequently, Boolean networks are increasingly used to capture the interaction dynamics within complex signaling pathways and23

regulatory mechanisms governing cellular behaviors. They have been inferred from high-throughput data for modeling a range24

of biologically meaningful phenomena such as the mammalian cell cycle (19), cell differentiation and specifications (53, 57, 16,25

30, 36), stress/aging-related cell behaviors (55, 75), cell apoptosis (50) and cancer cell functions (91, 15, 87, 58). Recent endeav-26

ors have focused on enhancing the quantitative interpretation of the resulting models, incorporating probabilistic approaches to27

effectively simulate heterogeneous cell populations and dynamical interacting populations (74, 76), and introducing a semantics28

that offers the formal guarantee of completely capturing any behavior achievable by any quantitative model (multilevel or ODE) fol-29

lowing the same logic (69).30
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Figure 1: General principle of the conducted inference of ensembles of Boolean networks. By offering a generic modeling language, BoNesis
enables integrating prior knowledge on regulation mechanisms with different type of experimental data, after qualitative interpretation, which
may depend on biological hypothesis and experimental system. These inputs specify what an admissible model is. Then, employing logic
programming, BoNesis can generate ensembles of Boolean networks that fulfill the structural and dynamical properties and, by combining with
combinatorial optimization technologies, enables to predict important genes and derive predictions for attractor reprogramming.

A Boolean network consists of logical rules that are associated to each variable and that predict how their state evolves with time.31

The regulators of a variable are combined with logical connectors or, and, and not and define conditions for a variable to be at 032

(false/inactive/absent) or (1/true/active/present). Through structural and dynamic analyses along with simulations under perturba-33

tions, Boolean networks provide versatile opportunities for exploring mechanisms underlying biological phenomena. This versatility34

allows them to serve as standalone informative tools but also, for specific modeling contexts and needs such as in systems phar-35

macology, to lay the groundwork for more detailed pharmacokinetic/pharmacodynamic and quantitative systems pharmacology36

(QSP) models using ODEs (38, 13, 6, 70).37

One the prominent challenge for applications of Boolean networks in biology is the design of their logical rules.Indeed, besides the38

inference of the underlying gene regulatory network, the search for logical rules faces a double combinatorial explosion: the num-39

ber of possible logical rules for a single variable is exponential with the number of its regulators, and checking whether a candidate40

Boolean network possesses the desired dynamical features (steady states, trajectories, ...) can involve analysis that take time and41

memory exponential with the number of variables. Thus, in most applications of the literature, the Boolean networks have been42

manually designed from expert knowledge and by re-utilizing previously published models. Nevertheless, there has been recent43

progress on the inference of Boolean models from data (81, 67, 60, 25, 68, 24, 85, 1). These methods address the inference prob-44

lem with different restrictions, either on the type of data and their interpretation in order to obtain simpler dynamical properties, or45

on restricting the set of logical rules to those having a particular structure, in order to reduce the combinatorics of candidate mod-46

els. However, these methods remain difficult to scale above hundreds of variables, and typically enforces rather specific way of inter-47

preting the experimental data in terms of Boolean properties.48

In this paper, we present a general methodology for the inference of Boolean networks from knowledge, data, and expert interpre-49

tation of data, and the computation of prediction from the resulting models. The methodology, summarized in Figure 1, builds on50

the following steps:51

1. The modeling of the knowledge, essentially in terms of admissible structure for the models.52

2. The qualitative modeling of the data in terms of expected dynamical properties of the model. This steps depends on the bio-53

logical expertise of the system, and relies on data analysis, notably to classify gene expression into binary values.54

3. The tool BoNesis (12), which integrates (1) and (2) and, using logic programming and combinatorial optimization algorithms,55



infers ensembles of Boolean networks that are compatible with modeled static and dynamical properties.56

4. The analysis of sampled ensembles of models to perform predictions, including key genes and reprogramming mutations.57

The modeling steps, that define the inference problem, allow a versatile pipeline, that is not tied to specific type of data, or a specific58

interpretation of them. In some sense, our approach aims at moving the modeling effort from the design of Boolean rules to the59

specification of the expected features of the model. Then, we employ symbolic artificial intelligence technologies to automatically60

construct models that satisfy the desired properties.61

We illustrate the applicability of the pipeline on two extensive case studies: the inference of Boolean networks from scRNA-seq data62

of hematopoiesis, with the identification of key genes and the analysis of families of candidate models; and the prediction of repro-63

gramming targets for adipocyte to osteoblast conversion from bulk RNA-seq time series data.64

Importantly, these case studies demonstrate that our approach is scalable to TF-scale networks, by starting from complete TF-TF65

regulatory networks and, through the inference of Boolean networks, are able to automatically identify sub-networks that can ex-66

plain the observed dynamics.67

RESULTS68

Case study 1: Ensemble modeling of hematopoiesis from scRNA-seq data69

We applied our inference pipeline (Figure 2A) to the identification of key genes and Boolean rules that can explain the hematopoiesis70

observed in a mouse sample using scRNA-seq data from Nestorowa et al. (62). Employing trajectory reconstruction and binariza-71

tion methods, we derived a logical specification of the differentiation dynamics. Then, using BoNesis, we considered any Boolean72

network employing TF regulations referenced in the DoRothEA database, and automatically identified the sparsest among them73

that are able to reproduce the differentiation dynamics. We compared the selected genes of importance with an export model of74

the literature, showing a substantial overlap. Finally, we highlighted the advantage of the ensemble modeling by analyzing the vari-75

ability of Boolean models compatible with the input data. We notably performed clustering of sampled models, resulting in clear 376

sub-families of models that can be distinguished on specific features of Boolean rules.77

Biological context and experimental data78

Hematopiesis is a crucial differentiation process of blood cells for immune system regeneration. It has been extensively studied, in-79

cluding with mathematical and logic dynamical models (30, 16, 57, 32).80

We focused on data-driven modeling of the early differentiation of mouse hematopoietic stem cells (HSCs) from scRNA-seq data of81

Nestorowa et al. (62). The data shows heterogenity of cells during HSCs differentiation, including lympho-myeloid primed progen-82

itors (LMPPs) and common myeloid progenitors (CMPs), further differentiated into granulocyte-monocyte progenitors (GMPs) and83

megakaryocyte-erythrocyte progenitors (MEPs). We performed hyper-variable gene selection and trajectory reconstruction using84

Stream (8). The resulting trajectory has the shape of a tree with two bifurcations visible in Figure 2B, having as root the endpoint85

that concentrates the hematopoietic stem cells.86

Qualitative interpretation of the data87

To transform obtained trajectories into properties over Boolean states, we considered six states that must correspond to the start88

and end of branches (named S0 to S5 in Figure 2B). Moreover, in order to reduce the sensitivity bias of single-cell observations, we89

choose to consider observations formed by the union of several cells. This resulted in six clusters of a few tens to hundred of cells,90

corresponding to initiation (root), two bifurcations points, and three leaves, we considered to be steady states of the Boolean model.91

We classified the activity of each gene of each cluster using PROFILE (7) on individual cells and an aggregation by majority of value92

among 0, 1, and ND (not determined).93

Then, we specified the expected dynamical properties of a Boolean network corresponding to the data as follows. There must ex-94

ist trajectories linking with states following the STREAM trajectories: e.g., there must exists a trajectory from a Boolean state cor-95

responding to the root S1 to the Boolean state matching with S0, then from that later Boolean state to a Boolean state matching96



A Illustration of the pipeline employed for the scRNA-seq hematopoeisis case study
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D Histogram of the 20 most enriched similar terms sets from the list of the 39 genes automatically
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E Venn diagram showing the number of genes in common between
our automatic selection with BoNesis and the state-of-the-art models
(30), (16) and (57).

Figure 2: Overview of the case study on scRNA-seq data driven modeling of hematopoeisis.



with S2, and so forth. Moreover, we requested that the Boolean states corresponding to the leaves (S2, S4, S6) must be steady state97

of the Boolean model, and that any steady state reachable from S3 must match with S5 and S4, and any steady state reachable98

from the root state must match with S2, S4, and S5. Figure 2C summarizes the declared properties.99

Gene selection with BoNesis and DoRothEA100

Besides the expected dynamical properties of the model, BoNesis requires an a priori GRN from which it will reconstruct Boolean101

rules that (1) employ only genes and regulations referenced in the input GRN, and (2) form a Boolean network that possess the ex-102

pressed dynamical properties. Moreover, BoNesis is able to identify the genes that can have a constant binary expression towards103

the whole dynamics, and can thus be ignored in the final model. In the scope of this case study, we took as a priori GRN the full104

DoRothEA TF regulation database (34) with regulation p to confidence level C, comprising 2,777 regulations among 1,001 genes,105

849 of which have an expression measurement in our dataset. We performed a multi-stage combinatorial optimization proce-106

dure to identify the largest number of TF genes that cannot be considered as constant, and for each there exists a Boolean network107

having the desired dynamical properties. It resulted in the selection of 39 TF genes and 137 TF-TF interactions shown in Supple-108

mentary Figure 1. A gene set enrichment analysis is performed with Metascape (92) shows a clear enrichment of terms related to109

hematopoiesis (Figure 2D), with the top term being hematopoiesis, followed by others representing more specific biological pro-110

cesses included in hematopoiesis.111

Moreover, we compared the data-driven selected genes with three expert art logical models of hematopoiesis by Hamey et al. (30),112

Collombet et al. (16) and Moignard et al. (57). These three models, composed of 20 to 31 genes, include a total of 53 genes and113

it is worth noticing that there is no consensus on the interactions implied in the regulation of this process since only 2 genes are114

common to these three models. The Venn diagram of Figure 2E shows the intersection between the components we have auto-115

matically selected thanks to BoNesis and the three state-of-the-art hematopoiesis models. Each of state-of-the-art model shares 6116

genes with our selection (for a total of 10 distinct genes in common):117

• With Hamey et al. (30): FLI1, GATA1, GFI1B, IKZF1, MYB, RUNX1;118

• with Moignard et al. (57): FLI1, GATA1, GFI1B, IKZF1, MYB, SPI1;119

• with Collombet et al. (16): CEBPA, EFB1, IKZF1, MEF2C, RUNX1, SPI1.120

Ensemble analysis of compatible models121

From the TF-TF subnetwork extracted in the previous step (Supplementary Figure 1), we employed BoNesis to sample 1,000 dis-122

tinct Boolean networks that all respect the qualitative dynamical properties described previously. The sampling has been performed123

using heuristics to range over models with diverse logical rules. Each of the sampled Boolean network is able to reproduce the qual-124

itative differentiation dynamics, Moreover, the universal constraints on the reachable steady states, ensure by design, that all trajec-125

tories from the root state end in one of the three observed differentiated type. Furthermore, we verified a posteriori that none of the126

sampled network possess cyclic attractors.127

Variability analysis shows highly preserved logic rules for two thirds of selected genes For each selected gene, we analyzed128

how many Boolean functions has been assigned to it in the sampled ensemble of 1,000 Boolean networks (Supplementary Fig-129

ure 2). It resulted that 12 genes always received the same Boolean function, 12 other genes received only 2 to 3 distinct Boolean130

functions. This suggest that a large part of the logic rules are highly preserved in all compatible models. Most of the diversity in the131

sampled ensembles is essentially focused on gene FOS (682 different Boolean functions) and TRP53 (44 Boolean functions).132

Clustering identifies 3 sub-families of compatible Boolean models Clustering the models according to the similarity of their133

functions can highlight different possible pathways for a process regulation and also point some biologically irrelevant groups. We134

performed a multidimensional scaling clustering (MDS) of sampled Boolean networks, using distance based on the inequality of135

Boolean functions: given two Boolean networks f and g of size n, d(f, g) =
∑n

i=1 1fi ̸=gi . MDS results highlight 3 groups of mod-136

els (Supplementary Figure 3). It should be kept in mind that the number of models in each group does not reflect their biological137
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Figure 3: Illustration of the pipeline employed for case study 2. We combined prior knowledge TF-TF interactions extracted from METACORE(r)
database with variants of Boolean dynamical properties extracted from time series bulk RNA-seq data. We employed BoNesis to sample Boolean
networks fulfilling these properties. Then, we performed prediction of reprogramming determinants using CABEAN on a subset of these
sampled models. The identified reprogramming determinants are combinations of gene knock-outs and constitute activations. The predictions
are then assessed on the other sampled Boolean models using EnsembleMaBoSS simulation, leading to a scoring in terms of fidelity and
efficiency, and thus a ranking of most robust predictions.

relevance, as the group size may result from underlying combinatorial aspects of compatible models, and may also relate to which138

some close solutions may be easier to find. By comparing the complexity of logical functions across the different cluster, we identi-139

fied that one of the cluster (the one in red in Supplementary Figure 3C) encompasses Boolean networks with much simpler rules140

(single activation condition), compared to the two others (Supplementary Figure 4-6).141

Thus, the ability to cluster the models and analyze their variability enable to pinpoint model features that can be challenged with142

expert knowledge are further experimental studies in order to discriminate among sub-families of models.143

Case study 2: Prediction of reprogramming targets for adipocyte to osteoblast conversion from bulk144

RNA-seq time series data145

This case study demonstrates a full pipeline going from experimental bulk RNA-seq time series data and background knowledge146

on TF-TF networks to prediction of genetic mutations for trans-differentiation and preliminary experimental validation. The predic-147

tions have been obtained by combining inference of Boolean networks ensembles with formal methods for control and ensemble148

simulations for scoring (Figure 3).149

Biological context and experimental data150

Bone marrow stromal progenitor cells (MSCs) are multipotent cells capable of differentiating either into osteoblasts to form bone151

tissue or into bone marrow adipocytes, that play an important role in the hormonal homeostasis of the bone marrow (2). These152

cells are reciprocal in their differentiation and correct balance is important for bone health, with increased adipogenesis observed153

in obesity and during aging. Previous studies have sought to understand the gene regulatory networks underlying MSC differenti-154

ation and improved understanding of these networks could allow for identification of efficient reprogramming targets and better155

control of bone marrow cell composition (54). We have previously performed transcriptomic profiling of ST2 cells, a mouse MSC156

cell line, across multiple time points of parallel differentiations into adipocytes and osteoblasts using RNA-seq (23). Both differen-157

tiations were performed for 15 days with RNA samples collected from undifferentiated cells (ST2D0) and at 5 different time points158

(D1, D3, D5, D9, and D15) of each differentiation. Osteoblastogenesis (OD1-OD15) was performed with one composition of differ-159

entiation medium for the entire duration of 15 days while for adipogenesis (AD1-AD15) two different media were used, with media160

composition changed on the third day of differentiation (AD3). In vitro differentiations are known to vary between experiments (26)161



and therefore three independent differentiation experiments were performed to capture the robustly reproducible gene expres-162

sion changes. Please see Materials and Methods for further details. The obtained dataset formed a rich resource of dynamic gene163

expression profiles towards two different trajectories from the same starting point.164

Qualitative modeling of bulk RNA-seq time courses triplicates165

Bulk RNA-seq binarization We employed two different binarization methods by classifying gene activity with respect to back-166

ground RNA-seq data on a range of tissues, either by bootstrapping parametric distributions (RefBool), or by a simpler statistical167

procedure applying gene-specific cutoffs, referred to as MUQ in the following. Each gene of each time point is thus assigned to a168

Boolean or undefined value for each binarization method and each replicate. In total, 1560 genes received a binary value in at least169

one binarization method and one replicate. For a fixed binarization method, we observed opposite classifications between repli-170

cates for up to 29 genes, while up to only 2 genes when comparing across binarization methods. This can be explained by the fact171

that, in general, RefBool classifies less genes than MUQ, and genes classified by RefBool are classified by MUQ similarly. In order to172

account for this variance in binarizations, we considered each of the 6 profiles (2 binarization methods times 3 replicates) as alter-173

nate model specifications. Our rational was to constitute ensembles of models for each of these profiles, and study the robustness174

of reprogramming prediction across them.175

Dynamical properties Our main modeling hypothesis was that the Boolean model must be able to reproduce the observed mat-176

uration trajectories from fixed cellular environments. For instance, due to the change of treatment between days 1 and 3 of adipocyte177

culture, we did not required the existence of a trajectory from AD1 to AD3. From the experimental protocol, this resulted in the speci-178

fication of two trajectories: the maturation of adipocytes, modeled as the existence of a Boolean trajectory going through AD3→ AD5179

→ AD9→ AD15; and the maturation of osteoblasts, modeled as the existence of a Boolean trajectory going though OD1→ OD3→ OD5→180

OD9→ OD15.181

Moreover, we assumed that ST2D0, AD15, and OD15 are observations of cells in steady states. At last, we modeled the observed cellular182

differentiation process by denying the existence of trajectories across the two branches, nor reverting to the precursor state: there183

must not exist a trajectory from AD3 to OD15, from AD3 to ST2D0, from OD1 to AD15, nor from OD1 to ST2D0.184

Gene selection and sampling of ensemble of diverse Boolean models185

We performed selection of genes and sampling of diverse ensembles of Boolean networks from the qualitative modeling of RNA-186

seq data. We followed a workflow similar to use case 1, that we repeated for each replicate and for each binarization method. Then,187

as the gene selection resulted in several optimal solutions, the sampling of Boolean networks has been repeated on each of them.188

The prior GRN was consisting of TF-TF interactions extracted from METACORE database from all the TFs of the RNA-seq dataset. It189

resulted in a signed digraph comprising 1,027 genes with 11,159 regulations, 169 of which were with an undetermined sign. This190

prior GRN served to define the set of candidate Boolean networks. Because several genes have more than one hundred referenced191

regulators, we restricted to the Boolean networks whose activation functions can be expressed with at most 32 disjunctive clauses,192

without any limit on the size of the clauses. Thus, while we permit a gene to depend on all of its potential regulators, we limited the193

number of activation contexts.194

On the 1,027 genes of the prior GRN, one can expect that only a fraction of them are involved in the observed differentiation pro-195

cess. As in case study 1, we employed BoNesis to perform gene selection by identifying Boolean networks reproducing the dynam-196

ics of as much as varying gene as possible, while assigning as much as activation function as possible to a constant value. Depend-197

ing on the replicate and binarization method, the optimization results in different optimal sets of genes to preserve, ranging from198

49 to 79 genes. Finally, we performed the diverse sampling of 264 distinct Boolean networks for each of the six profiles, resulting in199

1,584 Boolean networks verifying the qualitative dynamical properties corresponding to at least one replicate and one binarization200

method, and using one of the optimal set of genes.201



Prediction of reprogramming targets with high fidelity and efficiency202

Our objective was to predict combinations of perturbations of gene expression to trigger a transdifferentiation of adiocytes into203

osteoblasts. In terms of Boolean network, this corresponded to identifying control strategies to enforce the reachability of the OD15204

state from the AD15 state. In order to account for candidate model heterogenity, our approach was to compute reprogramming tar-205

gets on individual Boolean networks from a subset of the sampled ensemble, and evaluate them on the full ensemble. In the end,206

we aimed at selecting the perturbations predicted to be most effective on a range of models reconstructed from different binariza-207

tion and replicates.208

Reprogramming computation from subsampled individual models with CABEAN We selected the CABEAN tool (77) to com-209

pute combinations of temporary gene knock-out and constitutive activations enforcing the convergence to OD15 state from AD15210

state for a given individual Boolean network. For each of the 6 qualitative profiles, we applied CABEAN on 24 of the 264 Boolean211

networks sampled in the inference part. CABEAN failed on 15 of these 144 Boolean networks due to memory issue. On the re-212

maining 129 models, CABEAN identified combinations of up to 5 simultaneous perturbations leading to a reprogramming from213

AD15 to OD15. Because we are interested in perturbations that can be effective on as many models as possible, we kept combinations214

of perturbations that have been identified in at least 10% of the individual models given to CABEAN. This short list of candidates215

contained 34 different combinations of 2 to 4 simultaneous perturbations.216

Simulation of reprogramming with EnsembleMaBoSS The reprogramming perturbations computed by CABEAN are guaran-217

teed to be effective on their input individual Boolean network. Our objective was to assess the robustness of these (combination of)218

perturbations the Boolean network ensembles inferred from different qualitative interpretation of the data. To do so, we extended219

the MaBoSS stochastic Boolean network simulator to sample trajectories from the Boolean network ensembles: each Boolean net-220

work of the ensemble is simulated k times from the corresponding the state corresponding to AD15 while enforcing the given re-221

programming perturbation. For each candidate combination of perturbations, we obtain an estimation of the distribution of the222

steady states of Boolean networks of the ensembles after enforcing the perturbation from the AD15 state.223

Evaluation of reprogramming efficiency and fidelity We defined scores to evaluate reprogramming candidates from their sim-224

ulation on Boolean network ensembles for their ability to reprogram to the osteoblast phenotype, as observed at OD15. Inspired by225

usual cellular reprogramming assessments, we considered two measures: the efficiency relates to the proportion of cells (models)226

that show all the prior knowledge adipocyte gene markers (ADIPOQ, FABP4, CEBPA, LPL) and none of the osteoblast prior knowl-227

edge marker gene (ALPL, HEY1, SP7). Then, the fidelity relates to the similarity of those cells to the full OD15 state.228

For a given reprogramming perturbation, we write S the set of states resulting from the EnsembleMaBoSS simulation, and for each229

state s ∈ S, we denote by ps its estimated steady state probability. Moreover, we define 1Ost(s) as being equal to 1 whenever each230

osteoblast marker gene is active in s and each adipocyte marker gene is inactive is s, otherwise, 1Ost(s) is equal to 0.231

The reprogramming efficiency is computed from the estimated steady state distribution after perturbation of Boolean network en-232

sembles as the fraction of simulations ending in a state having all the osteoblast marker genes active and all the adipocyte marker233

genes inactive:234

efficiency(S) =
∑
s∈S

ps · 1Ost(s) (1)

The repgrogramming fidelity employs a similarity measure between a full Boolean state s ∈ S and the binarized state βOD15 of the235

corresponding qualitative interpretation. Because the binary sate of some genes of βOD15 can be non-determined, the similarity is236

defined as the proportion of binarized genes in βOD15 that have the same value in s. In the end, the fidelity is the expected similarity237

of the Osteoblast steady states of Boolean networks in the ensemble after reprogramming from AD15:238

fidelity(S) =

∑
s∈S

ps · 1Ost(s) · similarity(s, βOD15)

 / efficiency(S) (2)



Figure 4: Specific TFs occur more often and with higher efficiency in the predicted reprogramming determinants. Frequency (y-axis) and
maximal efficiency (x-axis) of the TFs included in the predicted reprogramming determinants applying permanent stimulation are reported.
Names of most promising TFs are given.

Validation of node selection and reprogramming targets with literature239

The TFs included in the predicted reprogramming determinants were ranked by frequency and maximal predicted efficiency (Fig-240

ure 4). Analysis of the literature related to the predicted top TFs revealed their existing association with regulation of osteoblasto-241

genesis, thereby providing indirect validation for our approach. For example, HEY1, a well-known target of Notch signaling(83) and242

a regulator of osteogenesis(72) was among the factors with highest predicted efficiency score. Similarly, CEBPA, SP1, and TRP63243

have been associated with adipogenesis, osteogenesis, and bone formation (45, 63, 27), respectively. With repression of CEBPA244

likely to act to reverse adipogenic gene expression program. Likewise, the repression of NR2F2 or GATA3 were predicted to lead to245

high efficiency of conversion, something that is also supported by literature (88, 40, 42, 86). One of the top TFs included TCF7L2, a246

mediator of WNT signaling (Figure 4). Consistently, WNT signaling is known to positively regulate osteoblastogenesis (17, 3), with247

the effect mediated by TCF7L2 (90). Finally, also MYC genes have been previously shown to contribute to reprogramming of fibrob-248

lasts towards osteoblasts (89, 56). However, some of the well established regulators of osteoblastogenesis, such as SP7 (also known249

as Osterix) or RUNX2 (89, 56), were not included among the predicted reprogramming determinants. This could be related to, at250

least in case of RUNX2, its already abundant expression in undifferentiated ST2 cells (23).251

Based on the predicted combinatorial efficiences, and the existing literature evidence, three combinations of three determinants252

each were selected for experimental validation. Reprogramming experiment 1 (RE1) involved up-regulation of TRP63 and down-253

regulation of CEBPA and SP1. RE2 involved up-regulation of TCF7L2 and TRP63 and down-regulation of SP1. And RE3 involved254

up-regulation of TCF7L2 and down-regulation of CEBPA and SP1.255

Preliminary experimental validation256

In order to experimentally test the different combinations of reprogramming determinants selected for RE1, RE2 and RE3, we took257

advantage of lentiviral overexpression in combination with siRNA-mediated gene repression. Overexpression constructs were syn-258

thesized at Sirion Biotech and were designed to coexpress either green fluorescent protein (GFP) and red fluorescent protein (RFP)259

to confirm a successful lentiviral transduction and to allow to separate between different constructs (specifically co-transduction260

of TCF7L2 and TRP63). Day 9 adipocytes were transduced with lentivirus of interest and 24 h later transfected with the relevant261

siRNAs to achieve the respective combinations for each RE. In parallel control cells were transduced with a negative control virus262

overexpressing only GFP and subsequently transfected with a scrambled control siRNA (please see Materials and Methods for ad-263

ditional details). Using reverse transcription real-time quantitative PCR (RT-qPCR) TCF7L2 and TRP63 were confirmed to be 8- and264

15-fold overexpressed in undifferentiated cells, respectively, while siRNAs against SP1 and CEBPA led to 35-68% decrease in their265

mRNA expression (Supplementary Figure 7). Following transfections, the adipocytes were cultured in osteoblast medium for 9 days266

before collection of the cells for single cell RNA-sequencing (scRNA-seq). After the sequencing and data processing, transduced267

cells were identified based on the presence of the mRNA sequence encoding for GFP and/or RFP and the relative changes in the268



transcriptomes were analysed. Differentially expressed genes (DEGs) were obtained in the single-cell expression data based on the269

Wilcoxon rank-sum test with FDR<0.05. Directionality of the observed change was determined with the common language effect270

size, with a >0.5 indicating up-regulation (see Supplementary Table 1). The precision for the upregulated single-cell DEGs com-271

pared against the bulk DEGs (Day 15: Adipocyte vs Osteoblast, adjusted p-value<0.05) is 0.57, 0.51, and 0.33 for the three different272

reprogramming experiments RE1-RE3. This means that for RE1 57% of the genes which were called up-regulated in the single-cell273

experiment were also up-regulated in osteoblasts compared to adipocytes in the bulk data (23), indicating an initial consistent ef-274

fect of the applied reprogramming determinant. The respective hypergeometric p-values for enrichment of the true positives in the275

single-cell DEGs are 4.4e−14, 1.1e−12, and 0.057, respectively. This promising tendency is also confirmed by visual inspection of the276

bulk RNA-seq data of DEGs obtained in the single-cell experiment (for RE1 see Supplementary Figures 8 and 9). The very low re-277

call (< 0.02)in all experiments however indicates that only few of the relevant genes responded to this perturbation in the relatively278

short time frame of the experiment.279

DISCUSSION280

Overview on the methodology281

We demonstrated our methodology on two complementary case studies for a combination of data-driven and expert-driven in-282

ference of Boolean models from scRNA-seq and bulk RNA-seq data. The essence of our approach is the explicit modeling of the283

inference problem, with the specification of the prior knowledge, typically extracted from databases of TF-TF interactions, and the284

specification of the expected properties of the model. These latter must reflect the expert and qualitative interpretation of the ex-285

perimental data. We relied on the BoNesis engine which enables to specify and combine a broad range of dynamical properties,286

notably related to trajectories and steady states. Then, ensembles of compatible models can be sampled and further analyzed. We287

took advantage of ensemble modeling to analyze candidate model variability with model clustering (case study 1), as well as to pro-288

vide robust reprogramming predictions (case study 2).289

The flexibility of the workflow facilitates the comparison of different modeling choices and hypotheses. For instance, in case study 2,290

we considered different binarization methods and different replicates. We took advantage of the variability to generate ensemble291

of models spanning the different hypotheses and identify consensus predictions. The choice of the input GRN can also impact the292

results, and it could be assessed in a similar fashion. Such an analysis is out of the scope of this paper, as our objective was not in the293

benchmark of prior knowledge data nor binarization methods.294

Remarkably, the inference pipeline was tractable on TF-scale networks. By employing logic programming and relying on recent295

complexity breakthrough in Boolean network analysis (69), we have been able to fully account for thousands of transcription fac-296

tors. Then, we took advantage of combinatorial optimization technologies to automatically prune non-necessary variables and iden-297

tify sub-networks that drive the observed dynamics.298

Case study 1299

With this case study, we leveraged ensemble modeling to analyze diversity of models that can explain the observed differentiation300

process. The experimental scRNA-seq data has been processed with trajectory inference methods from which we extracted both301

clusters of cells corresponding to initiation, bifurcation, and differentiated states, and dynamical properties related to existence of302

trajectories linking those states.303

From a full TF-TF interaction database, we have been able to identify a subset of core TFs from which can be drawn Boolean net-304

works reproducing the qualitative differentiation, that present some intersection with expert models from the literature. By analyz-305

ing the ensemble of sampled models, we identified three families of models that diverge by the complexity of their logical rules The306

variability analysis also emphasized model patterns that are preserved across the ensemble.307

As we performed a partial enumeration, we are not assured not to miss models with characteristics different from those of the three308

highlighted groups. However, partial enumerations of 250 and 500 models already highlight the three groups and suggest that in-309

creasing the number of models only leads to an increase of the size of the 3 groups, without highlighting any new type of models.310



This motivates the chosen number of 1000 models. MDS done with 250 and 500 models are presented in Supplementary Fig-311

ure 3A and Figure 3B.312

This modeling of hematopoiesis from a causal network automatically inferred from the dynamics of the data already provides av-313

enues for further exploration of the mechanisms of its regulation, with the possibility of ensemble simulation of models with Ma-314

BoSS (76).315

Case study 2316

The applied pipeline yielded promising predictions for the reprogramming of adipocytes to osteoblasts, as confirmed by our litera-317

ture validation, highlighting its utility in identifying novel targets from time-series RNA-seq data. Notably, transcription factors such318

as SP1, HEY1, and TRP63 frequently appeared in both temporary and permanent perturbation lists, suggesting central roles for319

them in adipocyte-to-osteoblast conversion. The successful prediction included factors like CEBPA and SP1, known to be crucial320

for adipocyte and osteoblast functions as modulators of the activity of the respective master regulators of these lineages, PPARG321

and SP7 (also known as Osterix) (49, 64). These TFs’ selection as reprogramming targets is consistent with their involvement in322

these regulatory networks, supported by their high occurrence in prediction lists and established biological roles in these processes323

(46, 5).324

The reliability of the predictive model is evidenced by its consistency with existing literature on differentiation of mesenchymal cells.325

Factors such as ATF4 and NR2F2, previously implicated in positive and negative control of osteoblast differentiation, respectively,326

are found among our predictions (51, 41). Similarly, the positive effect of HEY1 and TRP63 on bone formation in the literature (73,327

28) highlights the utility of our approach. The predictions also drew attention to the role of less commonly studied factors like AHR328

and RARA, which are implicated in sensing the cellular microenvironment crucial for differentiation. AHR, predicted for upregula-329

tion in two combinations, is known to shift the gene regulatory network towards a less specialized cell state, potentially facilitating330

the reprogramming process (29). Similarly, RARA, noted for its negative regulatory role in adipogenesis, is part of the reprogram-331

ming predictions (59), suggesting that its modulation could inhibit adipocyte traits while promoting osteoblast characteristics.332

Follow-up studies of our findings could benefit the understanding of bone-related diseases like osteoporosis. By utilizing knowl-333

edge of specific gene targets that promote osteoblast differentiation, new therapeutic avenues may be explored that enhance bone334

regeneration and repair (66, 14). Additionally, manipulating adipocyte-to-osteoblast conversion could benefit obesity-related dis-335

eases where abnormal adipogenesis is prevalent (9).336

Nevertheless, for now our validation experiments do face limitations. While gene expression changes upon reprogramming per-337

turbations were enriched for genes involved in osteoblastogenesis, as observed by scRNA-seq, the overall efficiency of gene deliv-338

ery and knockdown would need to be improved to be able to better address the quality of our predictions. Usage of stable and in-339

ducible systems that would be independent of chemicals such as doxycycline, that might perturb cellular systems beyond intended340

effects, should optimally be used. Additionally, the complexity of gene and protein interactions, including the necessity of consid-341

ering interaction partners like beta-catenin with TCF7L2 or post-translational modifications like phosphorylation of factors like JUN342

and FOS, suggests a greater number of (also non-genetic) perturbations may be required for effective reprogramming than initially343

predicted. Integrating multi-omics data with transcriptomic profiles could provide a more comprehensive understanding of the re-344

programming processes, allowing for the examination of post-translational modifications and protein activity states crucial in the345

transcriptional state changes.346

MATERIALS AND METHODS347

Boolean network inference methods348

Knowledge-based (bottom-up), data-based (top-down), and combinations The manual approach is a bottom-up modeling349

(also called forward modeling) that designs a model through expert and literature-based knowledge to determine the Boolean350

functions from known and suspected interactions (19, 82, 91, 50, 53, 15, 16, 55, 75, 36, 87). The resulting model is validated or re-351

fined in an iterative process according to the fitting between its dynamics features and observations of the biological phenomenon352



(for example its attractors correspond to known phenotypes). This time-consuming approach requires a deep understanding of353

the biological system and does not ensure that all possible regulations leading to the observed behavior are explored. In contrast,354

methods have been developed to propose a top-down (reverse) modeling approach that derives from experimental data both the355

topology of the network, namely the causalities between the biological components, and the logical rules of nodes activation, con-356

stituting the Boolean network (18, 57, 84, 30, 47, 35, 71, 20, 33). This purely data-based inference approach can suffer from over-357

fitting to a dataset and circular reasoning: a dataset generates a network, which then predicts the dataset. It also confronts the vast-358

ness of the solution space without considering prior knowledge about the phenomena. Consequently, other methods have been359

developed midway between these previously mentioned top-down and bottom-up modeling approaches (81, 67, 60, 25, 68, 10,360

24, 85, 1), which encompasses the method presented here. The purpose is to leverage both experimental observations and prior361

knowledge on interactions related to the biological phenomenon to model. Each tool combining data- and knowledge-based mod-362

eling considers as input both experimental data, typically expression profiles, and a gene regulatory network (GRN) potentially ex-363

tended with some features. The GRN, also named influence graph or regulation graph, structures the prior knowledge about inter-364

acting components according to the following definition: a directed graph that represents regulatory interactions between biologi-365

cal components, interactions categorized in the simplest case as activations and inhibitions (52). A high number of tools have been366

developed to address these issues because they perform the Boolean network inference through different algorithms and are de-367

signed for different types of experimental data and different biological interpretations of it.368

Partial vs exhaustive exploration of the space of solutions Exploring the space of possible Boolean networks and their dynam-369

ics is a challenge because there can be millions of combinations of logical rules that can be formulated. This is why, depending on370

the algorithm implemented by the tool, the output models can be either Boolean networks that exactly reproduce the desired371

properties, or Boolean networks optimized to best match these properties with no guarantee of optimality. In the first case, the372

exploration of solutions can be exhaustive. It should also be taken into account that this search for models (exact or by optimiza-373

tion) can be limited to a subspace of solutions if Boolean function patterns are imposed. Optimization problems vs satisfiabil-374

ity problems. If we focus on the way solutions are explored, we can distinguish between optimization-based methods (44, 68, 47,375

81, 1, 35, 20) (heuristic, identify a Boolean network that best aligns with the observations and prior knowledge, based on a defined376

set of criteria or objective functions) and decision-based methods on satisfiability problems (67, 30, 10, 1, 85) (exact, determine377

whether there exists a Boolean network consistent with the observations and prior knowledge – based on constraints on its topol-378

ogy and dynamics – and find such network if it exists). The methodology we present in this paper, based on previously published379

works (10, 11), belongs to this latter category. According to the chosen approach, some methods output (near-)optimal solutions380

with no guarantee of reaching a global optimum, while others can theoretically explore the solution space exhaustively to output381

the whole set of Boolean networks that comply exactly with the biological constraints (in practice often limited to a subset of these382

Boolean networks as the network size increases and the number of solutions becomes tremendous). This latter ability of inferring383

an ensemble of models is highly informative. It enables variability analysis across the models to identify common patterns of in-384

teractions, supporting the formulation of hypotheses that benefit both the modeling process and the biological exploration of key385

components. Patterns of Boolean functions. Beyond this distinction between categories of algorithms, limitations on the formu-386

lation of the Boolean rules that are considered by the methods also impact which solutions are explored. It can be a fixed limit on387

the number of regulators (e.g., a maximum of 6 regulators including 4 activators and 2 inhibitors (30, 33)) or a certain pattern of388

rules (e.g., a component is expressed if all its activators are expressed and none of its inhibitors, i.e., and logic gate between activa-389

tors and or between inhibitors (18, 33)). Because of the combinatorial explosion, methods designed to consider all possible Boolean390

functions can also offer a limit on the size of the Boolean function to enable dealing with dozens of components and complex reg-391

ulations. This limit can be on the number of regulators or, like the choice we made, on the number of different combinations of reg-392

ulators (i.e. a limit on the number of clauses that can compose the Boolean functions). This latter choice seems to be biologically393

consistent: the number of direct regulators for a gene or protein can vary significantly, often being numerous. Whereas the number394

of functional states, reflected by specific combinations of these regulators, is typically more constrained, ensuring system resilience395



and controlled responses to a manageable range of conditions.396

Different qualitative interpretation of experimental data Regardless the implemented algorithm, the Boolean network in-397

ference tools can also be judiciously compared by focusing on the types of data that they can consider for the modeling: bulk or398

single-cell expression profiles, at cellular steady states or covering cellular evolutions, linear evolutions, or with bifurcations (e.g., lin-399

eage differentiation), observed with time series limited to two time points or longer, with/out perturbations on components, etc.400

This is directly linked to the dynamical features they are able to model. Steady-state data. Measurements acquired at assumed401

stable cellular states are commonly interpreted as attractors in the Boolean network dynamics. On this basis, some inference tools402

such as CellNOptR (81), Griffin (60) and BONITA-RD (68) are specifically designed for inferring Boolean networks that respect con-403

straints on their attractors (focusing mostly on fixed points), constraints that are derived from a set of steady-states data. Time se-404

ries data. A range of tools extends the modeling scope by addressing time series of expression measurements, representing a405

succession of cellular states ensuing one after the other. Among them is CellNOptR-dt (81) which can fit time course data using406

a synchronous updating scheme. The modeling of this data is widened to asynchronous semantics with ASKEed (85) and IQCELL407

(33) that model time series as trajectories in which the succession of measurements constitutes a succession of transitions (reacha-408

bility in a single dynamic step). Caspo-TS (67), also asynchronous, relaxes the constraint of observing each transition as it considers409

the reachability property between the observed cellular states. It is worth noting that none of these methods takes into account410

the modeling of bifurcations/branching in the trajectories. Single-cell data. Among the methods specially designed for inferring411

Boolean networks from single-cell expression data, we can distinguish different interpretations of their dynamical features. SCNS412

(57), BTR (44) and SgpNet (20) interpret the set of single-cell measurements as a state space reached from an initial state in an413

asynchronous Boolean network. These tools seek, through optimization, a Boolean network for which the set of states contained414

in its transition graph (the "model state space") is close to the set of binarized expression data (the "data state space"). However, the415

strategy presented in (71) is based on another interpretation: the state of each single-cell measurement is assumed to be a po-416

tential predecessor or successor of the state of any other single-cell measurement coming from the same sample. Consequently,417

a solution is here a synchronous Boolean network whose dynamics matches a random set of two-time-points time series, namely418

couples of single-cell measurements. The previously mentioned IQCELL (33) proposes a third interpretation of this data, consider-419

ing a pseudo-time ordering of the cells seen as a time series and searching for an asynchronous Boolean network whose dynamics420

includes a sequence of states compatible with the cell ordering. Complex dynamics. A tool that can consider a diversity of dynam-421

ical features can exploit different types of data and address the modeling of varied and complex cellular behaviors. Three methods422

stand out for the complexity of the behaviors that can be modeled. The tool BRE:IN (25) allows for more nuanced and complex dy-423

namic behaviors than the previously mentioned tools as it supports complex temporal logic specifications (CTL and LTL), both in424

synchronous and asynchronous semantics. However, the high computational cost of checking these traces prevents scaling to net-425

works of biological interactions of dozens of components: the larger networks for benchmarks (25) had 16 nodes with synchronous426

semantics and 11 with asynchronous. Similarly, Boolean network sketches (4) also performs the inference with the help of model-427

checking methods, in asynchronous semantics, but with the richer logic HCTL (hybrid extension of the branching-time temporal428

logic CTL) allowing more expressive specifications. Unlike BRE:IN, the exploration of the Boolean functions is not limited by patterns,429

and this method was tested in a network with more than 321 nodes.430

Binarization of transcriptome data431

Case study 1432

From the full scRNA-seq dataset, we employed PROFILE (7) to classify in each cell each gene to either 0, 1, or undetermined, by433

comparing its expression to the distribution in all cells. Then, each cluster identified using STREAM (see main text) has been bina-434

rized using a majority rule: a gene is classified following the majority of values the gene has been classified to in the individual cells435

of the cluster. Among the 4 768 hyper-variable genes selected by STREAM, 1 519 have been classified with different binary values436

in at least two different clusters, and 1 369 are classified as binary value in all clusters.437



Case study 2438

We previously performed experiments for acquiring RNA sequencing data in populations of ST2 cells at different stages of differ-439

entiation towards adipocytes and osteoblasts (23). Adipocyte differentiation was induced using a medium of isobutylmethylxan-440

thine, dexamethasone, and insulin for 2 days, followed by a change of medium with rosiglitazone insulin (Sigma-Aldrich, I9278) un-441

til 9 days. Differentiation towards osteoblasts was induced using bone morphogenetic protein-4 until 15 days. Each experiment442

has been replicated 3 times. At days 0, 1, 3, 5, 9, 15, a subpopulation of the cells has been sequenced genome-wide. In the scope443

of this project, we focused on the activity of transcription factors (TFs) in the different stages of the ST2 differentiation. To enable444

building of qualitative models for the differentiation process, an automated method was applied for transforming the quantitative445

RNA-seq measurements of TF activities into qualitative assessment of their activity: active (1), inactive (0), or undetermined (inter-446

mediate). Two different methods of binarization were employed and compared: RefBool (37) for binarization with respect to back-447

ground RNA-seq data collected in a range of different cell types; and a statistical analysis developed in the scope of the project, for448

binarization with respect to the collected RNA-seq data. For this statistical analysis, representative background distributions of gene449

expressions in 63 mouse tissues were generated from ArchS4 (39) data [https://maayanlab.cloud/archs4/, Kallisto raw read counts,450

retrieved 2019]. Independent vertex sampling was performed per tissue to remove correlated samples. Samples were further fil-451

tered for overall read counts between 10 and 100 Mio and a median>=1 to remove unusual distributions and outliers. This back-452

ground data was merged with our own data (after Kallisto alignment) and then quantile normalized and converted to TPM (gene453

length normalization and TPM scaling). The gene-specific background distributions were then applied for discretization of the own454

data as follows: Gene expressed in own data below median of background was discretized to 0 and above upper quartile to 1. In455

addition, genes with TPM<1 are discretized to 0. Furthermore, genes with large expression differences over all samples and time-456

points were identified via k-means-clustering (2 clusters), with a minimum three-fold-change of centroid locations, at least three457

data points per cluster, and full-filling a ttest2 (MATLAB©) between the two clusters. 36 genes were found accordingly. The upper458

cluster was discretized to 1 and the lower cluster to 0.459

Prior knowledge on gene regulation460

Case study 1461

We extracted TF-TF and TF-gene interactions referenced in the DoRothEA database (21) with confidence levels A to C. It resulted462

in a signed directed graph with 5 186 components and 12 895 regulations. We filtered the components to keep only genes with463

classified binary values, reducing to 1 001 components and 2 777 regulations.464

Case study 2465

We extracted from the METACORE© database (in 2019) all known interactions (Transcription regulation, Influence on expression,466

and Binding) between TFs (31) and seven known marker genes which show clear expression changes from adipocytes to osteoblasts467

in our own expression data: Four high in adipocytes (ADIPOQ, FABP4, CEBPA, LPL) and three high in osteoblasts (ALPL, HEY1, SP7).468

Only measured nodes and their interactions were kept. This resulted in a network of 1,027 nodes (almost only TFs) with 11,000469

pairwise interactions.470

Boolean networks471

Inference of Boolean networks from structural and dynamical properties472

The strategy behind BoNesis is to describe, in the form of a logical problem to be solved, the search for a Boolean network compat-473

ible with a network architecture and with given dynamic properties. To do so, BoNesis integrates prior knowledge influence graph474

and observations within the same logic program, so that any solution of this program is a Boolean network made up of possible in-475

teractions given the PKN whose dynamic properties are compatible with the behavior of the observations.476

The logic program is written in Answer-Set Programming. It describes the biological data (the prior influence graph as well as the477

observations and the dynamical properties linking them) and the modeling formalism (the Boolean network and the computation478

of its dynamics in Most Permissive Semantics) via predicates and constraints. The constraints are necessary and sufficient condi-479

https://maayanlab.cloud/archs4/


tions that guarantee that any solution of the problem is a Boolean network compatible with the biological data, i.e., a Boolean net-480

work included in the architecture of the prior influence graph and whose dynamic properties are compatible with the behavior of481

the observations. Solutions are obtained using an answer-set solver, clasp (22): the models are the answer-sets satisfying the logic482

program.483

Component selection484

Building a prior knowledge influence graph specific to a biological process is a complex and delicate expert task. Yet, determining485

which interactions are to be considered when building a model is an essential step in the preparation of data before synthesizing486

models. It is important not to miss components that are essential to the regulation mechanism in order to be able to explain the487

observations, but also not to consider components that do not play any role and hence penalize the construction and understand-488

ing of the system. If the interaction graph contains components that are not involved in the regulation of the observed biological489

behavior, many different functions can be attributed to these components without impacting the compatibility of the Boolean net-490

work with the observations. These components without importance for the behavior then strongly increase the number of solu-491

tions without bringing any information. Conversely, if no combination of functions can reproduce the data because key compo-492

nents and interactions of the process are missing, no model can be found. The complexity of this task currently limits the use of493

modeling.494

With BoNesis, we propose a way to assist in the design of a relevant interaction graph with regard to observations. It offers to select,495

among a large interaction graph (as it can be extracted from a public interaction database such as DoRothEA (34) or Signor (43)),496

the components that can be included in a model to explain the observations.497

To this end, we set two optimization criteria. Firstly, we want the solver to search for a compatible boolean network that maximizes498

the number of components in the models. An optimal solution is then a biggest boolean network, composed of components com-499

ing from the large original interaction graph, that can reproduce the observations. Yet, we also want the solution to maximize the500

number of components of a particular type, called strong constants. A strong constant is a component to which a constant func-501

tion is assigned, and whose value remains constant to reproduce the observations within the dynamics of the Boolean network.502

Thus, within a Boolean network compatible with biological data, a node A is a strong constant if and only if f(A) = v with v ∈ {−1, 1}503

and that within the dynamics of the Boolean network it is possible to reproduce the data with the node A always equal to v (all the504

configurations x associated with the observations have xA = v). In other words, it is a component having neither activator nor in-505

hibitor and whose value can remain unchanged without preventing the Boolean network from being compatible with the obser-506

vations. The particularity of these strong constants is that they can be removed from the domain without impacting compatibility507

with data behavior. Once the domain of interactions has been reduced to components that can explain the dynamics of the ob-508

servations and that are not strong constants, we can limit ourselves to the maximum strongly connected component of this graph,509

which is particularly interesting to focus on the interactions that regulate the observed process.510

Model synthesis511

Exhaustive enumeration BoNesis searches for all the Boolean networks of the same size than the input interaction network and512

whose dynamics exactly reproduce those of the data (via the defined dynamical constraints). Hence, when BoNesis is used for model513

synthesis without optimisation criteria, all the Boolean networks output from BoNesis are models of the same relevance with re-514

spect to the dynamics to be modeled.515

Partial enumeration with diversity For biological applications, it is frequent that an exhaustive enumeration of models is not ju-516

dicious given that biological observations are rarely constraining enough considering a large size interaction network. Indeed, it is517

sufficient that a few components have few dynamic information for having an explosion of the number of models.518

Specifics for case study 1519

We first performed component selection (see previous section) from the 1 001 genes prior knowledge influence graph and the520

dynamical constraints of Figure 2C. We extracted the largest strongly connected component of the resulting graph, leading to se-521



lecting 39 genes and 137 regulations. Then, from this 39 genes influence graph, we performed diverse sampling of 1 000 Boolean522

networks fulfilling the dynamical properties of Figure 2C.523

Specifics for case study 2524

As described in the main text, the dynamical properties consisted of (1) existence of trajectories, (2) stability properties, and (3) ab-525

sence of trajectories. Moreover, we add prior knowledge markers of the two differentiated cellular types: ADIPOQ, FABP4, CEBPA, LPL for526

adipocytes, and ALPL, HEY1, SP7 for osteoblasts.527

In a first stage, we performed gene selection on the METACORE(r) prior knowledge influence graph by identifying Boolean net-528

works that maximize, by decreasing priority, the inclusion of a prior knowledge markers, the number of genes whose dynamics can529

be explained, and the number of strong constants, that will be removed (see previous section). For this first staged, we ignored con-530

straints on the absence of trajectory for complexity reasons. We performed this gene selection for each replicate and each binariza-531

tion method.532

We then analyzed the binary valued inferred by BoNesis for the selected genes that have not been classified by binarization meth-533

ods in the stable phenotypes. We identified 19 genes (ATF2, CLOCK, CTCF, CUX1, GATA6, NFYB, REL, RELA, SMAD1, SMAD2, SMAD4, STAT3, TGIF1,534

TRP53, TTF1, USF1, USF2, YY1, ZFP148) that have been inferred to have different binary states, while the data show no clear statistical535

ground for supporting these different qualitative states. We performed again the gene selection stage with the additional con-536

straint that the binary value of these 19 genes must be equal in all phenotypes. Depending on the binarization method and repli-537

cates, different sets of genes have been selected, with, in some cases, multiple optimal solutions. Then, for each optimal solution,538

we extracted the sub-GRN consisting of the identified non-constant genes, and performed diverse sampling of Boolean networks539

taking into account the whole dynamical constraints, including on the absence of trajectories.540

Boolean network clustering and complexity analysis (Case study 1)541

Complexity of the models per clusters To explore the three highlighted groups, we study if the complexity of the functions of542

a model is characteristic of the group to which the model belongs (Supplementary Figures 4 and 5). Specifically, Supplementary543

Figure 4 shows, for each group, the percentage of the functions of its models according to the number of clauses constituting the544

functions. Supplementary Figure 5 shows, for each group, the percentage of clauses constituting its model functions according to545

the number of components in the clauses. We observe that red models are significantly less complex than those of the other two546

groups, with functions composed of a smaller number of clauses, themselves composed of a smaller number of components com-547

pared to the orange and green group models.548

Complexity of the invariable functions of the models per clusters Among the functions constituting the models, some are549

invariable between models of the same group beyond the 12 invariable functions which are common to all groups. We therefore550

have three sets of invariable functions that seem to indicate three key patterns of interactions to reproduce the data dynamics. Sup-551

plementary Figure 6 shows, for each group, the percentage of its invariable functions according to their number of clauses. Again, a552

clear difference in complexity between the red group and the others is highlighted. All the functions shared by the red models have553

a single clause, whereas it represents for green and orange models respectively less than half and one third of the functions (some554

of their invariable functions having even respectively up to 7 and 8 clauses). Hence, the red group models appear to be more parsi-555

monious explanations of the regulation mechanism of hematopoiesis than the two other groups.556

Computational prediction of reprogramming determinants (case study 2)557

The prediction of the combinations of perturbations for the case study 2 has been performed via the software CABEAN (77). CABEAN558

implements several methods for the source-target control of asynchronous Boolean networks, and these methods can be used559

to identify the minimal and exact control sets of perturbations that ensure the inevitable reachability of the target attractor from560

a given source attractor. Based on the application time of the perturbations, CABEAN supports several types of controls: instanta-561

neous control applies perturbations instantaneously; temporary control applies perturbations for sufficient time and then releases562

them to retrieve the original dynamics; and permanent control applies the control for all the following time steps. All these control563



methods (80) are based on the computation of strong and weak basins of attractors, which explores both the structure and dynam-564

ical properties of asynchronous Boolean networks. More specifically, an instantaneous control drives the network dynamics from565

the source attractor to a state in the strong basin of the target attractor, from which there only exist paths to the target attractor.566

On the other hand, temporary control and permanent control can make use of the spontaneous evolutions of the network dynam-567

ics by moving into first the weak basin of the target attractor, from which there exist paths to the target attractor. To ensure the in-568

evitable reachability of the target attractor, a temporary control should drive the network dynamics to a state in the strong basin of569

the target attractor at the end of control, while a permanent control stirs the network from the source state to a state in the strong570

basin of the target attractor in the resulting transition system under control. More recently, CABEAN (78) has been extended with571

target control methods for asynchronous Boolean networks (79), which can be used to identify perturbations that can drive the dy-572

namics of a Boolean network from any initial state to the desired target attractor.573

In this way, CABEAN fits well with the objective for case study 2, i.e., enforcing the convergence to OD15 state from AD15 state. CABEAN574

was applied to each inferred Boolean networks from BoNesis to compute combinations of temporary perturbations (gene knock-575

out), and it identified combinations of up to 5 simultaneous perturbations leading to a reprogramming from AD15 to OD15. We kept576

combinations of perturbations that have been identified in at least 10% of the individual models given to CABEAN. In the end, we577

have obtained 34 different combinations of 2 to 4 simultaneous perturbations, which are given as input for the next analysis steps.578

Stochastic simulations of ensembles of Boolean networks (case study 2)579

To perform simulations on our ensembles of models, we developed a new version of MaBoSS, the stochastic Boolean simulator(76),580

called Ensemble-MaBoSS(11). MaBoSS usually takes a single Boolean model and performs a large number of simulations to obtain581

many stochastic trajectories. It later uses this set of trajectories to compute time-dependent probabilities for every visited Boolean582

state. During these simulations, it also stores every fixed point observed and produces the set of fixed points observed in all these583

simulations. To perform the simulation of an ensemble of models, we need to compute an equal set of trajectories for every model584

of the ensemble. We can then use the consolidated set of trajectories from all the models, and compute the time-dependent prob-585

abilities specific to the whole ensemble of models. We can also produce the same list To analyze the composition of the ensemble,586

we also compute the time-dependent probabilities for each model. This way, we get individual results, that can then be used for en-587

semble analysis such as model clustering.588

Wetlab experiments (case study 2)589

Cell culture590

The mouse bone marrow-derived stroma cell line ST2 was established from Whitlock-Witte type long-term bone marrow culture591

of BC8 mice (65). The ST2 cells were cultured in growth medium: Roswell Park Memorial Institute (RPMI) 1640 medium (Gibco,592

32404-014) supplemented with 10% fetal bovine serum (FBS) (Gibco, 10270-106) and 1% L-Glutamine (Lonza, BE17-605E) at593

37°C, 5% CO2. All experiments were carried out with cells less than 10 passages. For differentiation of adipocytes, ST2 cells were594

seeded 2 days before differentiation. The cells reached 100% confluency after 24 hours of culture, and were further maintained595

in growth medium for 24 hours (Day 0). Adipogenic differentiation was initiated on Day 0 by culturing in adipogenic differentia-596

tion medium I consisting of growth medium, 0.5 mM isobutylmethylxanthine (IBMX) (Sigma-Aldrich, I5879), 0.25 µM dexametha-597

sone (DEXA) (Sigma-Aldrich, D4902) and 5 µg/mL insulin (Sigma-Aldrich, I9278). From Day 2, the cells were cultured in adipogenic598

differentiation medium II consisting of growth medium, 500 nM rosiglitazone (RGZ) (Sigma-Aldrich, R2408) and 5 µg/mL insulin599

(Sigma-Aldrich, I9278). The adipogenic differentiation medium II was replaced every second day.600

For differentiation of osteoblasts, ST2 cells were seeded 2 days before differentiation, and reached 100% confluency after 24 hours601

of culture, and were further maintained in growth medium for 24 hours (Day 0). Osteogenic differentiation was initiated on Day 0602

by culturing in osteogenic differentiation medium consisting of growth medium and 100 ng/mL bone morphogenetic protein-4603

(BMP4) (PeproTech, 315-27). The osteogenic differentiation medium was replaced every second day.604



RNA extraction and cDNA synthesis605

Total RNA was extracted from cells using Quick-RNATM MiniPrep (Zymo Research, R1055). RNA concentration was measured by606

Nanodrop 2000c (Thermo Fisher Scientific, E597). cDNA was synthesized with the following cocktail: 1 µg total RNA, 0.5 mM dNTPs607

(Thermo Fisher Scientific, R0181), 2.5 µM oligo dT-primer (Eurofins GmbH), 1 U/µL Ribolock RNase inhibitor (Thermo Fisher Scien-608

tific, EO0381), and 1 U/µL RevertAid Reverse transcriptase (Thermo Fisher Scientific, EP0352). The cocktail was maintained at 42◦C609

for 1 hour, following 70◦C for 10 min to stop the reaction.610

Reverse transcription real-time quantitative PCR (RT-qPCR)611

RT-qPCR was performed to measure the RNA expression using the Applied Biosystems 7500 Fast Real-Time PCR System. Each re-612

action contained the following cocktail: 5 µL of cDNA, 5 µL of primer mix (forward and reverse primers, both in 2µM concentration),613

and 10 µL of Absolute Blue qPCR SYBR Green Low ROX Mix (Thermo Fisher Scientific, AB4322B). The PCR reaction were the fol-614

lowing: 95◦C for 15 min and repeating 40 cycles of 95◦C for 15 s, 55◦C for 15 s, following 72◦C for 30 s. The gene expression level615

was calculated using the 2-(∆∆Ct) method (48). The ∆∆Ct refers to (∆Ct(target gene) – ∆Ct(housekeeping gene)) from the treat-616

ment - (∆Ct(target gene) – ∆Ct(housekeeping gene)) from the control. Rpl13a was used as the housekeeping gene and the primer617

sequences can be found in the Supplementary Table 2.618

Viral transduction619

Day 9 adipocytes were transduced with lentivirus (Sirion Biotech Gmbh; details can be found in the Supplementary Table 2). For a620

well of 48-well plate, the estimated cell number was 200 000. The amount of lentivirus was calculated to achieve expected mul-621

tiplicity of infection (MOI). The transduction cocktail was as followed: lentivirus stock diluted with RPKM and 8 µg/mL polybrene622

transfection reagent (EMD Millipore, TR-1003-G) to achieve a final volume of 100 µL. The culture medium was removed, and the623

cells were washed once with 1xDPBS (Gibco, 14190-094), then supplemented with the transduction cocktail. The cells were kept624

in the transduction cocktail for 6 hours. After the 6-hour transduction, the transduction cocktail was removed, and the cells were625

supplemented with the growth medium. The transduction efficiency was controlled by observed GFP and RFP levels by microscopy.626

RNA interference627

On Day 1 post-transduction (Day 1 PT), the cells were transfected with siRNA according to manufacturer’s recommendation (Hori-628

zon Discovery; details can be found in the Supplementary Table 2). In brief, siRNA was diluted to 5 µM solution in DNase/RNase free629

water (Invitrogen, 10977-035). In separate tubes, siRNA and DharmaFECT 1 transfection reagent (Horizon Discovery, T-2001-03)630

were diluted with RPMI. To prepare the transfection cocktail for 1 well of 48-well plate, in Tube 1, 25 µL of the siRNA in serum-free631

medium was prepared by adding 1.25 µL of 5 µM siRNA to 23.75 µL of RPMI. In Tube 2, 1 µL of the DharmaFECT 1 in serum-free632

medium was prepared by adding 1 µL of DharmaFECT 1 to 24 µL of RPMI. The mixture was incubated for 5 min, then two tubes633

were mixed following incubation of 20 min. After incubation, 200 µL of growth medium was added to achieve a final volume of634

250 µL. The culture medium was removed, and the cells were supplemented with the transfection medium for 24 hours. For sin-635

gle and double siRNA transfection, the final concentration was maintained at 100 nM.636

Single cell RNA-seq637

The single cell RNA-seq (scRNA-seq) was performed according to Chrominum Next GEM Single Cell 3’ Reagent Kits v3.1 Review D638

(CG000204). The ChromiumTM Next GEM Single Cell 3’ GEM, Library Gel Bead Kit 3.1 (1000128) consisted the following: Chrominum639

Next GEM Single Cell 3’ Gel Bead Kit v3.1, 4 (1000129), Chromium Next GEM Single Cell 3’ GEM Kit v3.1 (1000130), Chromium640

Next GEM Single Cell 3’ Library Kit v3.1 (1000158), Single Index Kit T SetA (1000213), DynabeadsTM MyOneTM SILANE (2000048).641

To achieve single cell suspension, the cells were first treated with 1 mg/mL Collagenase A (Roche, 10103586001) for 15 min. After642

Collagenase A treatment, the cells were trypsinised with 150 µL Trypsin (Lonza, BE17-161E) for 5 min. The trypsin was quenched643

with 500 µL growth medium. Wide-bore tips (Thermo Scientific ART 1000G Self-Sealing Barrier Pipet Tips, 2079G) were used to644

pipet up and down. The suspension was centrifuged for 1000 rpm for 5 min, and the supernatant was removed. Single cell suspen-645

sion was achieved by adding 400 µL growth medium and pipetted up and down with wide-bore tips. The cell number was deter-646

mined with C-CHIP (NanoEntek, DHC-N01). The suspension was centrifuged again for 1000 rpm for 5 min, and the supernatant647



was removed and replaced with 1xDPBS + 0.04% BSA to achieve the target cell number. The suspension was filtered through 40648

µM Flowmi Cell strainer (Merck, BAH136800040-50EA). The cell number was determined again with C-CHIP, which would be used649

to determine the input for scRNA-seq. In brief, cells was loaded with a targeted recovery rate of 10 000 cells per sample. scRNA-seq650

library quality were assessed by Agilent DNA High sensitivity Bioanalyzer chip (Agilent, 5067-4626) and further sequenced on a651

150 cycles High Output Kit using Illumina NextSeqTM 500 with targeted sequencing depth of 20 000 read pairs per cell.652

Data and code availability653

The software BoNesis, employed for Boolean network inference, is available at https://bnediction.github.io/bonesis under the654

GPLv3-compatible free software license CeCiLL. The software Cabean, employed for reprogramming prediction, is available at https:655

//satoss.uni.lu/software/CABEAN. Both tool are available through the CoLoMoTo Docker distribution (61) at https://colomoto.github.656

io/colomoto-docker/ with persistently archived Docker images. Case study 1: data and scripts are available at https://github.com/657

StephanieChevalier/notebooks_for_bonesis/tree/main/applications/hematopoiesis. Case study 2: Matlab code for statistical analy-658

sis and binarization of bulk RNA-seq data is available at https://github.com/sysbiolux/algorecell; data and scripts for Boolean net-659

work inference and control predictions are are available at at https://sdrive.cnrs.fr/s/nrB72LpBspeKHEp.660
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SUPPLEMENTARY FILES
• Supplementary Table 1 (SupplTable1.xlsx). Differential gene expression analysis from scRNA-seq RE1 experiment.

• Supplementary Table 2 (SupplTable2.xlsx). Primer sequences, siRNAs, and viral constructs used in the study. The primers, siR-
NAs, and lentiviral constructs are detailed in the indicated work sheets, respectively.
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Supplementary Figure 1: Network of 39 components and 137 arcs obtained by component selection using BoNesis.
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Supplementary Figure 2: Variability analysis Boolean functions in sampled ensemble of models. The label of each node includes the number of
different local Boolean functions in the sampled Boolean network set. Orange indicates a unique shared function, yellow only 2 different
functions. Edge edge is labeled with the number of Boolean networks that utilizes the influence (over the 1 000 sampled), with its thickness
scaled accordingly.



A MDS with 250 models. B MDS with 500 models.

C MDS with 1000 models.

Supplementary Figure 3: MDS highlights 3 groups of models.



Supplementary Figure 4: Distribution of the functions of the
models according to the number of clauses they are made up, by
group.

Supplementary Figure 5: Distribution of the clauses of the models
according to the number of components they are made up, by
group.

Supplementary Figure 6: Distribution of the invariable functions of the models according to the number of clauses they are made up, by group.



Supplementary Figure 7: Experimental validation of case study 2: siRNA and viral transfection test



Supplementary Figure 8: Differentially expressed upregulated genes in the RE1 single cell experiment are also upregulated in the bulk
RNA-seq data of osteoblasts vs adipocytes. Bulk RNA-seq data (TPM) of osteoblasts (green) and adipocytes (red) are plotted for upregulated sc
DEGs (x-axis). Boxplots indicate the gene specific backgrounds from 63 mouse tissues (see methods)



Supplementary Figure 9: Differentially expressed downregulated genes in the RE1 single cell experiment are partially also downregulated in
the bulk RNA-seq data of osteoblasts vs adipocytes. Bulk RNA-seq data (TPM) of osteoblasts (green) and adipocytes (red) are plotted for
downregulated sc DEGs (x-axis). Boxplots indicate the gene specific backgrounds from 63 mouse tissues (see methods).
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