
HAL Id: hal-04752941
https://hal.science/hal-04752941v1

Submitted on 25 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

TUNE-FL: adapTive semi-synchronoUs
semi-deceNtralizEd Federated Learning

Houssem Jmal, Kandaraj Piamrat, Ons Aouedi

To cite this version:
Houssem Jmal, Kandaraj Piamrat, Ons Aouedi. TUNE-FL: adapTive semi-synchronoUs semi-
deceNtralizEd Federated Learning. IEEE Consumer Communications & Networking Conference
(CCNC), Jan 2025, Las Vegas (Nevada), United States. �hal-04752941�

https://hal.science/hal-04752941v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

TUNE-FL: adapTive semi-synchronoUs
semi-deceNtralizEd Federated Learning

Houssem Jmal†, Kandaraj Piamrat†, Ons Aouedi‡
† Nantes University, École Centrale Nantes, IMT Atlantique, CNRS, INRIA, LS2N, UMR 6004, Nantes, France

‡ SnT, SIGCOM, University of Luxembourg, Luxembourg

Abstract—Today, Federated Learning (FL) stands out as the
solution to addressing the challenges of distributed computing
and empowering a wide range of edge devices with artificial intel-
ligence capabilities. One variant of FL called semi-decentralized
FL (SDFL) enables multiple server units to coordinate the
learning task instead of relying on only one central server, hence
preventing single-point failures. However, SDFL requires careful
consideration regarding the coordination between server nodes,
and dealing with the heterogeneous computing resources and
data distributions across end devices (FL clients). Therefore,
we propose TUNE-FL, an adapTive semi-synchronoUs semi-
deceNtralizEd Federated Learning that addresses the clients’
heterogeneity challenges. TUNE-FL alleviates these challenges
by (i) ensuring consensus regardless of the network topology,
and (ii) deploying an adaptive semi-synchronous mechanism for
coordinating the learning process across all nodes while taking
into consideration the heterogeneity presented by end devices.
We evaluated TUNE-FL for the intrusion detection system (IDS)
datasets and compared it with the three most representative
baseline models. The experimental results demonstrate that
TUNE-FL outperforms the baselines in accuracy while greatly
reducing the duration of FL training by approximately 97 times.

Index Terms—Semi-Decentralized federated learning, edge de-
vice heterogeneity, adaptive synchronization.

I. INTRODUCTION

The rapid proliferation of sensory data generated by ubiqui-
tous end devices, coupled with the emergence of cloud com-
puting and the widespread availability of wireless networks,
has catalyzed the rise of Federated Learning (FL) [1]. The goal
of FL is mainly to maintain the privacy of the data that can
contain sensitive and confidential information and to reduce
communication costs by transferring only model updates. In
this context, decentralized Federated Learning (DFL), where
edge servers are connected in a peer-to-peer manner without
a central server, further improves the limitations of having a
single point of failure, trust dependencies, and bottlenecks at
the central server node [2]. DFL has been widely employed in
various real-life scenarios. For instance, the Industrial Internet
of Things (IIoT) can leverage the scalability of DFL to seam-
lessly adapt to geographically dispersed production sites [3].
To further prevent communication bottlenecks and address
the challenge of heterogeneity in data, semi-decentralized FL
(SDFL) has been used as an alternative [4]. In SDFL, multiple
edge servers, connected to each other, orchestrate the learning
process and clients are divided into clusters where each cluster
is directly connected to one corresponding edge server.

Generally, in FL, there are two communication modes. First,
synchronous mode requires edge servers to wait for all clients

to finish training; however, it can be impractical in scenarios
with varying clients’ computational speeds, leading to delays.
Second, asynchronous mode updates the global model imme-
diately after receiving local models, causing model divergence
due to outdated updates. In addition, [5] presents a semi-
decentralized federated edge learning system (SD-FEEL). Al-
though the authors considered providing the synchronous and
asynchronous versions of their approach, the latter still suffers
from different aspects, such as static training time or redundant
model exchange between edge servers.

Finally, to address these issues, a hybrid semi-
asynchronous/synchronous FL has been introduced as
an alternative. It is a mechanism that merges both
synchronous and asynchronous strategies. In this context,
we present TUNE-FL, an adapTive semi-synchronoUs
semi-deceNtralizEd Federated Learning. Our work addresses
the challenges of adaptiveness to heterogeneous clients with
varying resource availability, as well as generalizability
to different and complex network topologies. Overall, our
research contributions are as follows.

• We develop a novel semi-synchronous mechanism, called
TUNE-FL that reduces the FL training process dura-
tion by relying on clients’ time estimations to reach
convergence in the next FL round while taking into
consideration their dynamic behavior.

• We present an optimized method for information ex-
change between edge servers that avoids redundancy and
communication overhead.

• We evaluate our approach for intrusion detection systems
against three baselines. Our results show that our method
outperforms the baselines while significantly reducing the
training time duration.

The rest of the paper is organized as follows. In Sec. II, we
review the literature. Sec. III presents our assumptions and
problem formulation. Sec. IV describes our work, and Sec. V
evaluates the proposed method. Finally, Sec. VI concludes our
paper and provides possible research direction.

II. RELATED WORK

The performance of Decentralized and semi-decentralized
FL (DFL/SDFL) is greatly influenced by FL clients’ hetero-
geneity, which can be divided into two types, System Het-
erogeneity and Data Heterogeneity, refereed to the stragglers’
capacity constraints and non-IID data, respectively.

First, the heterogeneous nature of devices entails varying
computational resources, such as processing speed, and mem-
ory usage. To address this challenge, many works proposed
using selection mechanisms, staleness-aware procedures, and
cache-based approaches [6]. Specifically, [7] leverages an
adaptive asynchronous protocol in DFL. In this protocol, work-
ers or nodes dynamically determine the number of neighboring
workers to communicate with, prioritizing only the fastest
ones. Each iteration begins with identifying these neighbors
and concludes once local gradient computations are completed.
Also, in [8], edge devices form local cluster topologies based
on their communication capability. The authors account for
the local topologies between edge devices, aiming to optimize
the trade-off between energy consumption, delay, and model
accuracy by introducing an aperiodic consensus procedure
of models within local device clusters and aperiodic global
aggregations by a server. Moreover, [9] proposes a semi-
synchronous FL protocol for the Internet of Vehicles. In this
work, during each FL round, clients are selected based on their
computing capacity, network capacity, and the learning value
of their training samples. Lately, The server waiting time is
then calculated as the maximum of the sum of both computing
and communication times for all selected clients.

Furthermore, numerous works have used the network topol-
ogy to optimize the FL process. In particular, [10] presents
a new multigraph topology to reduce training time in cross-
silo FL. This is achieved by decomposing the multigraph
into simpler graphs. The approach identifies nodes capable
of performing model aggregation independently of others in
each simple graph, based on the delay introduced by each
node’s links, which significantly reduces FL training time.
In addition, the authors in [11] introduce MATCHA, which
breaks down the set of possible communications into pairs of
clients and tunes the frequency of inter-node communication
during each round. Finally, the work in [12] addresses the slow
convergence challenge in complex graphs by incorporating ad-
ditional edges. The approach consists of finding the set of most
beneficial edges serving as the path for faster convergence.

In summary, our work differs from existing methods by
addressing the dynamic client resource availability in DFL
or SDFL, regardless of the network topology between edge
servers. In particular, we develop an adaptive synchronization
strategy for clients, taking into consideration their heteroge-
neous and dynamic behavior.

III. PROBLEM FORMULATION

In this section, we present the context, the assumptions,
and finally the problem formulation for SDFL and the semi-
synchronous model.

Our environment consists of two main components: edge
servers and clients, as depicted in Fig. 1. We consider an
FL setting composed of powerful edge servers with stable
and rapid connectivity, acting as the main computational hub
for aggregation and information sharing. On the other hand,
clients are distinguished from each other by their diverse com-
putational power, dynamic behavior, and data distributions. We

Clients with
Heterogeneous and
Dynamic Resource

Availability

Edge Server

Information Flow Between Edge Server and Assigned Clients

Information Flow Between Two Edge Servers

Connectivity Link

Fig. 1: TUNE-FL environment.

adopt the client categorization from [13], considering only
edge devices capable of training ML models. Hence, our
clients are categorized as follows: Slow, Medium, and Fast.

First, we represent a given network as an undirected con-
nectivity graph G(V,E,C), where communication between
any two nodes is bidirectional. V implies the set of vertices
representing edge servers, E is the set of edges reflecting
connections between servers, and C is the set of available
clients. We assume the graph is strongly connected, meaning
there is at least one path between any two edge servers.

We also denote the set of clients assigned to the edge
server node vi as Cvi . Each client has a set of private local
training data denoted as Dk = {xj , yj}|Dk|

j=1 , k ∈ C where
xj is the training sample and yj its corresponding label. Let
f(xj , yj ;W) be the loss of the data point (xj , yj) based on the
model parameter W . The goal of FL is to generate one global
model W by minimizing the global loss across all clients as
follows:

min
W

F (W) =
∑
k∈C

pkFk(W) (1)

where Fk(W) = 1
|Dk|

∑
(xj ,yj)∈Dk

f(xj , yj ;W) and pk refers
to the normalized participation weight of the k-th device.

The objective of FL is to iteratively refine the parameters of
the global model W , following a predefined communication
mechanism. We define a semi-synchronous FL model as a
hybrid approach where there is a synchronization mechanism
that forces all participating clients to synchronize their models,
but it does not necessarily wait for all clients to complete their
training. We aim to determine an adaptive synchronization
time T r+1 for each FL round r + 1. Please note that we
only consider the computation time, which is dependent on
the client category and the size of the data set |Dk|.

To determine the necessary number of communication
rounds N between edge servers, we consider the message from
node i at round r as mi, where mi = ({W r

i }, {S
r+1
k }k∈Cvi

)
and W r

i is the sub-global model of node i. Our objective is to
enable each node to possess all messages {m1, · · · ,m|V |}.
At each message passing round n, each node vi diffuses
the set ∆Mi(n − 1), which are new messages received from
the previous communication round, to its neighboring nodes

,

, ,

N Rounds of Message Passing

Client Cluster

Edge Server

Send aggregation weights, updated local
models and estimated next round times

Send previous global model and
synchronization time of the current round

Aggregate received local models

Recieve from the neighbors aggregated
models and saved times

Send to the neighbors aggregated
model and saved time

Training Phase Communication Phase

2

Calculate and

Local training

2

1

3

4

6

5

Fig. 2: TUNE-FL Process Workflow.

N (vi) to optimize communication and avoid redundancy while
sharing information. Hence, the set of messages at nodes vi
is updated as follows:

Mi(n) = Mi(n− 1) ∪

 ⋃
vj∈N (vi)

∆Mj(n− 1)

 (2)

where Mi(0) = {mi}, and ∆Mi(n−1) = Mi(n)\Mi(n−1),
∀vi ∈ V . Therefore, our objective is to identify the minimal
number of message-passing rounds irrespective of the network
topology as follows:

min
N

Mi(N) = {m1, · · · ,m|V |} ,∀vi ∈ V. (3)

IV. PROPOSED SOLUTION: TUNE-FL

In this section, we provide a detailed description of our
methodology. This includes determining the essential number
of message passing rounds and describing the various steps
during the training and communication phases.
A. Methodology

In order to address the problem defined previously, we
propose TUNE-FL as an adaptive semi-synchronous FL so-
lution, as illustrated in Fig. 2. Before starting the FL process,
we first determine the required number of message passing
rounds, denoted as N based on the connectivity established
between edge servers (Sec. IV-B). Each FL global round
includes multiple steps. At the beginning of each global round
r, edge servers trigger the training phase (Sec. IV-C) by
dispatching the prevailing global model W r−1 along with the
synchronization time T r to their assigned clients 1 . Then
each device k starts its local training using its private dataset
Dk. They continue to train until the deadline T r is met, or they
have converged before it 2 . After the deadline, each client
k estimates, the time required to achieve convergence for the
subsequent global round, then communicates its participation
weight zk, local model update wk and estimated next round
time Sr+1

k to their respective edge servers vi 3 , who will
collect this information, aggregate the local updates received
and saves the new sub-global model W r

vi together with the
set of estimated next round time for each client {Sr+1

k }k∈Cvi

4 . Following this, edge servers trigger the communication

phase 5 (Sec. IV-D), they exchange information through
message-passing to finally compute a unified global model W r

and a next-round synchronization point T r+1 6 , reflecting the
insights of all participating devices.

B. Determining Number of Message Passing Rounds

In graph theory, message passing refers to the process of
exchanging data between nodes. Our goal is to determine the
number of message-passing rounds N that satisfies Equation 3,
regardless of the network topology formed by the FL systems.
Thus, we propose the following solution. Given the connectiv-
ity graph G between edge servers, let A = (aij)1≤i,j≤|V | be
the adjacency matrix of the graph G. A represents the nodes
visited after 1 step in the graph, specifically aij = 0 indicates
that node i cannot reach node j and the same is true for node
j due to the symmetry of A (undirected graph). Therefore, An

gives us the visited nodes after the n steps. By summing the
adjacency matrices A1 + A2 + · · · + AN , we accumulate the
visited nodes at each step, capturing the complete traversal
history within N hops. Let HN =

∑N
n=1 A

k, we need to
find N such that HN = (hij)1≤i,j≤|V | satisfies the following
condition, i.e., ∀1 ≤ i, j ≤ |V |, hij ̸= 0. A zero in HN

indicates that the corresponding node is not reachable after
N hops on the graph. To calculate HN , we use the following
equations:

(A− I)×HN = AN+1 − I (4)

If A− I is invertible where I is the identity matrice, then by
multiplying by [A− I]−1

HN = [A− I]−1 ×
[
AN+1 − I

]
(5)

Since null elements in HN decreases as N increases, we
employ a binary search algorithm to efficiently determine
the required number of message-passing rounds N . Fig. 3
illustrates the intuition behind our method for determining N .

C. Training Phase

At the beginning of round r, each edge server vi dissem-
inates the global model W r−1 and the synchronization time
T r to their assigned clients Cvi . Subsequently, clients initiate
their local training using their private dataset Dk. In the j-th
epoch, each client k performs a model update with his local

0

1

2

3

4

Edge servers network Edge servers connectivity graph G

1

3 2

0

4

1

0 3 2 4

2

1

4 3 0

3

1

02

4 31

02

4

Local training

Fig. 3: Relation between adjacency matrices A and N .

dataset using the minibatch SGD algorithm, as shown in the
following expression:

wj ←W r−1 − ηf j
k(ξk;W

r−1) (6)

where W r−1 is the downloaded global model from the r− 1-
th round, fk(ξ

(r)
k ;W r−1) is gradient calculated based on a

randomly selected batch of local training data ξ
(r)
k from client

k, while η represents the learning rate. After each epoch, we
update the minimal loss fmin

k = min(fmin
k , f j

k), and compare
it to the current j-th loss value. We define the convergence
state of client k as follows:

|f j
k − fmin

k | ≤ ϵ, ϵ > 0 (7)

Throughout the training process, clients continuously update
their local models until the deadline T r is met or their local
model has converged before the deadline. We denote trk, the
elapsed time took client k if he has converged before T r. Our
goal is to enable all clients to adaptively estimate the necessary
time needed Sr+1

k for the next round to satisfy Equation 7.
Initially, in the first FL round, each edge server must wait for
all clients to reach their convergence state, thus S1

k = t1k, where
t1k is the actual time it took for the client k to converge. Lately,
based on its individual training progress, each client estimates
the required time to achieve convergence for the next round
using the following expression, ∀r ≥ 1:

Sr+1
k =

{
βtrk + (1− β)Sr

k if trk ≤ T r

(1− β)T r + βSr
k otherwise.

(8)

where 0 ≤ β ≤ 1 is a parameter for controlling the weight of
the most indicative convergence time point.

Clients can show different behaviors during their training;
some may not be able to converge before the deadline, which
results in incomplete training, and can seriously hinder the
convergence of the global model. Rather than discarding
the contributions of these clients, we adjust their influence
in the aggregation process by considering the ratio of the
synchronization point to their estimated convergence time at
round r, as described below:

zk =

{
|Dk|, if Sr

k ≤ T r

T r

Sr
k
· |Dk| otherwise

(9)

zk is computed locally by the client and denotes the participa-
tion weight of client k and |Dk| his data size. After receiving

the participation weights, we update the sub-global model W r
vi

of vi with the following equation:

W r
vi =

∑
k∈Cvi

zk∑
j∈Cvi

zj
wk (10)

D. Communication Phase

Each edge node possesses a ”Mailbox” dedicated to saving
incoming messages. This can be implemented in traffic control
messages either in mobile standardization or wireless standard
via protocols such as the Optimized Link State Routing
Protocol (OLSR). Initially, each mailbox is empty. Once
the training phase is completed, the communication phase
begins. During this phase, each server gathers the necessary
information to construct Mi(0), exchanging information as
detailed in Sec. III. This process aims to generate a unified
global model and a synchronization point for the subsequent
round, benefiting from the contribution of all clients.

After all rounds of message passing are completed, each
edge server has received and stored all sub-global models W r

vi
from other edge nodes and all next-round estimated times
of all clients Sr+1

k as described in equation 3. Each edge
node aggregates all the sub-global models received from other
servers, resulting in a unified global model that encapsulates
contributions from all clients as follows:

W r =
1

|V |
∑
vi∈V

W r
vi (11)

Given the heterogeneous nature of clients, as discussed in
Sec. III, discrepancies in computation times for the next round
can arise, especially with outliers, i.e., slow and fast clients.
To address this, we used the interquartile mean (IQM) for its
robustness against outliers. Thus, T r+1 is calculated using the
following expression:

T r+1 = IQM(Sr+1
1 , · · · , Sr+1

|C|) (12)

V. EVALUATION AND RESULTS

The evaluation process is twofold: (1) analyzing the influ-
ence of the hyper-parameter β on our approach (Sec. V-C), and
(2) comparing the performance and training speed between our
approach and the baselines (Sec.V-D).

A. Experimental Settings

We choose to evaluate TUNE-FL on intrusion detection sys-
tem (IDS) datasets. In this regard, we employ two commonly
used datasets: UNSW-NB15 [14] and CIC-IDS2017 [15]. Both
datasets contain a comprehensive set of network traffic features
collected from a realistic environment, including normal and
attack traffic. We use a fully connected Neural Network with
three fully connected layers for the binary classification task
(benign/attacks).

To validate the effectiveness of our approach, we compare
it against three FL baselines:

• FedAvg-SDFL [16], where all edge servers must wait for
their clients to finish their training, we set 10 local epochs
for all clients.

• SemiSync-SDFL [17] which uses a periodic synchroniza-
tion determined based on the maximum time required
by any learner to complete a single epoch. Clients will
continue training until the deadline is met.

• SD-FEEL [5], which is a synchronous SDFL approach
that consists of edge servers that will perform inter-cluster
aggregation when the j-th epoch is a multiple integer
of τ1, but not τ1τ2, and they will perform intra-cluster
aggregation when j is a multiple integer of τ1τ2 (FL
round). Here τ1 = 1 and τ2 = 3.

B. Implementation and Simulation

We implement the simulations using PyTorch 1.13.1, and
NetworkX 3.1 to model the behavior of edge servers and
clients. The simulation environment consists of 100 clients
(60% fast clients, 20% medium, and 20% slow [18]) randomly
assigned to 10 edge servers. We also randomly generate a
strongly connected graph for the network topology. To sim-
ulate the heterogeneity and dynamic behavior of our clients,
we define a client class threshold TH where ∀k ∈ C:

TH(k) =


0.3, if k is slow

0.6 if k is medium

0.9 otherwise

(13)

TH indicates the robustness of client k to continue his
training. Hence, after each iteration, we generate a random
value b ∼ U(0, 1). If b ≥ TH(k), client k pauses for 0.02s to
simulate a training interruption.

For all experiments, we set a batch size of 15, 0.01 as
the learning rate and ϵ = 0.001. To simulate the non-IID
distribution, we partition the datasets among clients using the
Dirichlet distribution Dir100(0.5), where for each client k a
proportion of qy,k sampled from qy ∼ Dir100(0.5) is assigned
to k. Also, we conduct all experiments using a MacBook Pro
equipped with an Apple M1 Pro processor and 32 GB RAM.
C. Hyper-parameter Assessment

The goal of this experiment is to determine β that maxi-
mizes the test accuracy for both datasets.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Beta

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Te
st

 A
cc

ur
ac

y

UNSW-NB15 Accuracy
CIC-IDS2017 Accuracy
UNSW-NB15 Time
CIC-IDS2017 Time

200

300

400

500

600

700

800

Ti
m

e
(s

)

Fig. 4: Influence of β on FL training duration (30 FL rounds)
and test accuracy.

We start by varying β from 0.1 to 0.9 for both datasets,
recording the resulting test accuracy and the total duration of
training after 30 FL rounds, as shown in Fig. 4. Overall, we
observe a general trend in test accuracy as β changes. We

notice that the accuracy for both datasets steadily increases,
reaching its maximum at β = 0.8. This behavior is attributed
to the fact that TUNE-FL provides sufficient time for training
in each global round at β = 0.8. Each client estimates the time
required to reach its convergence state in each FL round by
prioritizing the most recent convergence duration, as described
in Equation 8. However, we notice a decrease in accuracy after
β = 0.8, which is due to insufficient training duration as we
also observe a drop in the FL training time.

D. Performance Evaluation

We continue our evaluation process with β = 0.8 since it
yields the highest accuracy.

0 5 10 15 20 25 30
FL-Rounds

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Te
st

 A
cc

ur
ac

y TUNE-FL Accuracy
FedAvg-SDFL Accuracy
SemiSync-SDFL Accuracy
SD-FEEL Accuracy
TUNE-FL Time
FedAvg-SDFL Time
SemiSync-SDFL Time
SD-FEEL Time

0

20

40

60

80

Ti
m

e
(s

)

(a) UNSW-NB15

0 5 10 15 20 25 30
FL-Rounds

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Te
st

 A
cc

ur
ac

y

TUNE-FL Accuracy
FedAvg-SDFL Accuracy
SemiSync-SDFL Accuracy
SD-FEEL Accuracy
TUNE-FL Time
FedAvg-SDFL Time
SemiSync-SDFL Time
SD-FEEL Time 0

100

200

300

400

500

600

700

800

Ti
m

e
(s

)

(b) CIC-IDS2017

Fig. 5: Comparison between TUNE-FL and baselines in test
accuracy-synchronization point T r evolution per FL round.

- Time Cost Comparison. We show the test accuracy
evolution along with each FL round training duration over 30
global rounds in Fig. 5. First, as TUNE-FL waits for all clients
to achieve convergence in the first FL round, we report a higher
synchronization point compared to the baselines. Lately, We
observed that our approach rapidly converges in terms of test
accuracy and training duration, exhibiting an increase in test
accuracy and an exponential decrease in training duration. This
shows that TUNE-FL not only handles heterogeneous clients
effectively but also becomes aware of each client’s conver-
gence state, thereby avoiding unnecessary training. On the
other hand, it is expected for FedAvg-SDFL and SemiSync-
SDFL to convey large training durations with the presence
of Slow clients. We notice fluctuations in the synchronization
time per FL round for FedAvg-SDFL, which is attributed to the
dynamic behavior of the clients. In contrast, SemiSync-SDFL

TABLE I: Performance comparison across both datasets.
Dataset UNSW-NB15 CIC-IDS2017

Approach TUNE-FL FedAvg-SDFL SemiSync-SDFL SD-FEEL TUNE-FL FedAvg-SDFL SemiSync-SDFL SD-FEEL
Accuracy 0.862 0.811 0.851 0.810 0.979 0.928 0.919 0.930
Precision 0.815 0.745 0.755 0.744 0.955 0.999 1 0.999

Recall 0.940 0.997 0.986 0.999 0.921 0.547 0.383 0.552
F1 Score 0.948 0.853 0.857 0.853 0.937 0.707 0.554 0.711

maintains a static synchronization period from the beginning,
resulting in a prolonged training duration. We also observe that
TUNE-FL consistently records shorter synchronization points
compared to SD-FEEL. We note that SD-FEEL has been
proposed as a solution for achieving faster convergence, and
it highly abuses the communication between clients and edge
servers. Overall, our approach reduces the training duration by
approximately 92×, 91× and 7× for UNSW-NB15 and 96×,
97× and 86× for CIC-IDS2017 compared to FedAvg-SDFL,
SemiSync-SDFL and SD-FEEL, respectively.

- Classification Comparison. We compare the performance
of TUNE-FL to the baselines in Table I. We notice that
our approach outperforms the baselines on both datasets. In
particular, our method demonstrates more balanced metrics
with 0.948 and 0.937 F1-Score for UNSW-NB15 and CIC-
IDS2017, respectively, which results in fewer false positives
and a higher true positive detection rate. We draw attention
to the consensus achieved with the N rounds of message
passing that not only makes TUNE-FL capable of adaptively
estimating the synchronization point but also benefits from
the contribution of all clients’ local models, improving the
performance of the IDS. Note that a more advanced model can
be used to further improve the accuracy of the classification.

VI. CONCLUSION AND FUTURE WORK

To address the challenges presented by the clients’ het-
erogeneity, this work presents an adaptive semi-synchronous
mechanism in semi-decentralized networks. We demonstrate
the ability of TUNE-FL to handle resource-constrained clients
and their dynamic behaviors regardless of the network topol-
ogy while reducing the duration of the training and achieving
promising results. We also highlight the need for an adaptive
synchronization mechanism throughout the FL process to
ensure training efficiency. The results demonstrate the ability
of TUNE-FL to handle three main challenges in SDFL: (i)
a general approach for any network topology, (ii) the non-
IID distribution, and (iii) the heterogeneous and dynamic
computing capabilities in edge devices.

Our future work includes extending TUNE-FL capabilities
to estimate communication time in case of a lossy channel,
as delays can be introduced during the communication phase
between edge servers, altering the synchronization time.

ACKNOWLEDGEMENT

This work was supported by the ANR CHIST-ERA project
Di4SPDS-Distributed Intelligence for Enhancing Security and
Privacy of Decentralised and Distributed Systems.

REFERENCES

[1] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” 2019.

[2] L. Yuan, Z. Wang, L. Sun, P. S. Yu, and C. G. Brinton, “Decentralized
federated learning: A survey and perspective,” IEEE Internet of Things
Journal, pp. 1–1, 2024.

[3] M. Du, H. Zheng, X. Feng, Y. Chen, and T. Zhao, “Decentralized
federated learning with markov chain based consensus for industrial iot
networks,” IEEE Transactions on Industrial Informatics, vol. 19, no. 4,
pp. 6006–6015, 2023.

[4] J. Wu, S. Drew, F. Dong, Z. Zhu, and J. Zhou, “Topology-aware
federated learning in edge computing: A comprehensive survey,” 2023.

[5] Y. Sun, J. Shao, Y. Mao, J. H. Wang, and J. Zhang, “Semi-decentralized
federated edge learning with data and device heterogeneity,” IEEE
Transactions on Network and Service Management, vol. 20, no. 2, pp.
1487–1501, 2023.

[6] C. Xu, Y. Qu, Y. Xiang, and L. Gao, “Asynchronous federated learning
on heterogeneous devices: A survey,” 2023. [Online]. Available:
https://arxiv.org/abs/2109.04269

[7] G. Xiong, G. Yan, S. Wang, and J. Li, “Straggler-resilient decentralized
learning via adaptive asynchronous updates,” 2024. [Online]. Available:
https://arxiv.org/abs/2306.06559

[8] F. P.-C. Lin, S. Hosseinalipour, S. S. Azam, C. G. Brinton, and
N. Michelusi, “Semi-decentralized federated learning with cooperative
d2d local model aggregations,” IEEE Journal on Selected Areas in
Communications, vol. 39, no. 12, pp. 3851–3869, 2021.

[9] F. Liang, Q. Yang, R. Liu, J. Wang, K. Sato, and J. Guo, “Semi-
synchronous federated learning protocol with dynamic aggregation in
internet of vehicles,” IEEE Transactions on Vehicular Technology,
vol. 71, no. 5, pp. 4677–4691, 2022.

[10] T. Do, B. X. Nguyen, V. Pham, T. Tran, E. Tjiputra, Q. D. Tran, and
A. Nguyen, “Reducing training time in cross-silo federated learning
using multigraph topology,” 2023.

[11] J. Wang, A. K. Sahu, Z. Yang, G. Joshi, and S. Kar, “Matcha: Speeding
up decentralized sgd via matching decomposition sampling,” 2019.

[12] M. Zhou, G. Liu, K. Lu, R. Mao, and H. Liao, “Accelerating the
decentralized federated learning via manipulating edges,” in Proceedings
of the ACM on Web Conference 2024, ser. WWW ’24. New York,
NY, USA: Association for Computing Machinery, 2024, p. 2945–2954.
[Online]. Available: https://doi.org/10.1145/3589334.3645509

[13] A. Rocha Neto, B. Soares, F. Barbalho, L. Santos, T. Batista, F. Delicato,
and P. Pires, “Classifying smart iot devices for running machine learning
algorithms,” 07 2018.

[14] N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive data set for
network intrusion detection systems (unsw-nb15 network data set),” in
2015 Military Communications and Information Systems Conference
(MilCIS), 2015, pp. 1–6.

[15] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward
generating a new intrusion detection dataset and intrusion traffic
characterization,” in International Conference on Information
Systems Security and Privacy, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:4707749

[16] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” 2023.

[17] D. Stripelis, P. M. Thompson, and J. L. Ambite, “Semi-
synchronous federated learning for energy-efficient training and
accelerated convergence in cross-silo settings,” ACM Trans. Intell.
Syst. Technol., vol. 13, no. 5, jun 2022. [Online]. Available:
https://doi.org/10.1145/3524885

[18] J. Sun, A. Li, L. Duan, S. Alam, X. Deng, X. Guo, H. Wang,
M. Gorlatova, M. Zhang, H. Li, and Y. Chen, “Fedsea: A semi-
asynchronous federated learning framework for extremely heterogeneous
devices,” in Proceedings of the 20th ACM Conference on Embedded
Networked Sensor Systems, ser. SenSys ’22. New York, NY, USA:
Association for Computing Machinery, 2023, p. 106–119. [Online].
Available: https://doi.org/10.1145/3560905.3568538

