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Abstract. The recent advances in technologies such as Artificial In-
telligence, Internet of Things (IoT), automated drones and embedded
systems has involved tremendous changes in many industrial systems ar-
chitectures. The shift from non-interoperable simple systems to complex
systems that involve hundreds of devices, gathered by various networks
happened at a fast pace, leading to situations where the operators them-
selves do not have a clear idea of what their system is, how to secure
them and how to recognize faulty behavior, understand the causes of
such a behavior and how to correct it.
On the other hand, huge progress have occurred since the rise of Auto-
nomic Computing twenty years ago. Indeed the initial promises of such
system - complete autonomy, self healing properties to name a few - have
been shown almost impossible to reach on real life large scale systems.
However, a significant load of tasks may be offloaded to the operator by
using some of those principles. Moreover, AI and machine learning re-
cent advance greatly enhanced the capacity of a system to perceive and
forecast its own state.
Intrusion Detection Systems (IDS) is one of services that is a the junction
of all those advances. AI may help malicious traffic detection on highly
heterogeneous systems involving IoT, embedded systems and more classic
LAN. Human operators have to drive automatic actions against malicious
patterns, while letting suspicious but honest traffic continue. Designing
and implementing an efficient system in this case is an active research
topic.
In this paper, we consider the specific case of IDS for networks dedicated
to agriculture, from the operational point of view: while many work has
focused on new techniques to efficiently implement IDS on those setup,
this paper aims at identify constraints and possible solutions to perform
an operational deployment of such IDS.

Keywords: IDS · Smart Farming · Operation.

1 Introduction

The last decades the rise of Internet of Things (IoT) involved tremendous changes
in most industrial sectors. Nowadays most industrial systems are composed of
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sensors and actuators, local gateways and servers coupled together into a com-
mon architecture. Local, small-scale networks may be of completely different
kinds: ad-hoc vehicle networks, low-energy network of sensors and actuators,
traditional computer networks, aggregation of networks composed by those ele-
ments, to name a few examples. For example, network dedicated to agriculture
may encompass flying drones to detect diseases, human-guided tractors with
the help of tracing systems, temperature or various hydrometry sensors, wa-
tering actuators, all of them gathering data to feed decision analysis systems
(DA) dedicated to farmers. This fully-connected agriculture is often referred as
agriculture 4.0 or smart agriculture.

On the infrastructure side, those industrial systems may be embodied by
different kind of architecture, cloud, edge or fog-based system may be chosen.
For example 5G systems offers network slicing to operate such system, where
the network function layer gives the ability to deploy network services in any
location of the network from the edge to the core, for a given price. While
this architecture gives a lost of elasticity to the network services using Network
Function Virtualization (NFV), it implies also to fully trust the infrastructure
providers. The recent reluctance of Europe and US to deploy Chinese Huawei
5G equipment says a lot about the dangers of such approach.

Other actual infrastructure solution bypass these problems by employing
most traditional Cloud technologies, also relying on NFV and Software Defined
Networking (SDN) solutions. From a broad point of view, these architecture of-
fers the same functionalities: aggregating networks, deploying services at various
cost in different point of it, and some high level solution to orchestrate services
(Management and Orchestration (MANO)) that may be fully automatic (Zero-
Touch MANO).

While these infrastructures provides easy ways to aggregate network and
orchestrate their services, it is still up to the logical network manager (the tenant)
to monitor his network and enforce its security. Intrusion Detection Systems
(IDS) is one of the means offered to the tenant to monitor its network, detect
possible intrusion into the system and forestall future intrusions by changing
low-level firewall rules tables. To do so, the different network entities have to
collect some traffic traces, then some learning is done on those traces to help
administrator decide whether a traffic is malicious or not. On many systems,
collecting traces would be unfeasible: algorithms are employed to perform a fast
estimation of how odd a network flow is compared to other normal, legitimate
traffic, and only those strange traffic is collected. it is then queued in an alert
system, and eventually a human expert estimates if the traffic is legitimate or
malicious, how to stop it and how to efficiently mitigate risks of future similar
intrusion or how to stop this traffic to be considered as potentially dangerous.

Design such a system in this highly heterogeneous context is actually an
active research topic nowadays (see for example [17]). The use of Low Energy
equipment adds an additional challenge, as the cost of gathering traffic on these
equipment is higher compared to network core. More broadly, agriculture 4.0 is a
specific setup where requirements for an IDS differs from traditional platforms.
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While most of literature in this domain is focused on describing new solutions,
mainly AI-based ones to implement IDS, our target is to identify challenges in
this context when IDS is deployed and operating.

The remainder of this paper is organized as follows. First, we give an overview
of the context and typical components of a network dedicated to agriculture in
section 2, then give an overview of related work in section 3. We then give
requirements and induced challenges in section 4 and conclude in section 5.

2 Context

2.1 Devices

Indeed many tools are now available to fully automatize agriculture, ranging
from basic sensors to autonomous tractors.

Most common devices in used nowadays are sensors: widely deployed, sensors
can monitor many parameters, rain, moisture, humidity, temperature, wind, just
to give a few example. Data collected are usually used to forecast mandatory
actions that farmers will have to perform in order to maintain production levels
highs.

Other quite common fixed devices are more or less complex actuators dedi-
cated to specific operations: automatic sprinklers, antifreeze towers [1], farmbots
[2] to name a few.

Flying drones are also used for monitoring, detect anomalies, diseases and
various problems on plots.

Finally tractors are a good examples of fully connected devices: usually mod-
ern tractors are usually guided by GPS systems, some of them are now fully
autonomous and unmanned [13].

All devices are usually linked to a gateway, which may provides some comput-
ing resources to form an edge platform with other plots parts of the agricultural
exploitation. the size of plots and their numbers may be quite different depending
of the type of agricultural exploitation: for example in France vineyards produc-
ing protected designation of origin wines may group together tens of small-sized
plots, while intensive farming producing cereals will group a few very large plots.

2.2 Architecture

Figure 1 gives an overview on how devices are usually coordinated using a
edge/fog architecture. This is the architecture chosen for example by MERI-
AVINO project [4].

All on-fields devices are usually communicating either with each other or
most of the time with a gateway, that may include computing resources. Some
devices may bypass this gateway by communicating using LPWAN protocols and
dedicated gateways/antennas (LoRaWAN or SigFox for example) that does not
include computing resources. Some may use wired communications (humidity
and rain sensors for example) as sensors are deployed close to antennas while
other may use Bluetooh or WiFi to exchange with base stations.
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Fig. 1. Architecture of agriculture 4.0 solutions

Gateways communicates with each other by using networks, 5G dedicated
networks slices, VLAN or encrypted communications to cloud resources gather-
ing and analyzing data. Finally an interface is given to the end user to monitor
this exploitation and decides if actions may be done on plots. Nowadays end user
interface usually includes mobile applications and portals. Many vendors follow
this architecture, as for example [3] or [6].

Usually those architecture are managed remotely by vendors. It implies that
data coming from various exploitation may be gathered by the vendor, and used
for various purposes. In our perspective, there is then an opportunity for the
vendor to use those data to train DNN so as to efficiently protect the different
networks of their platform. However, data sharing between clients or disclosure of
clients data must be avoided: the different parameters measured, illness of some
plots, are of critical interest for industrial competitors; it is as well a critical
information to disclose a cyber attack occurred in the exploitation. Federated
learning is a solution that allows to not disclose such sensitive information while
taking benefits out of others’ experience.

War in Ukraine showed how critical food production is an highly critical in
case of conflicts: any part of the production chain, from fields to storage, is a
potential target to cyber or physical attacks [5].

One of the main specificities of such platforms mainly rely on the fact that
devices are deployed in-field, with little or no qualified persons being able to
repair, fixe or mitigate risks when an attack or a failure happen. While this
feature is shared with other networks (battlefield tactical networks for example
[9]), criticity and deadline in case of problem may be different.
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Sensors installation is usually done by vendors, while recalibration and main-
tenance is done by sending sensors back to the vendors. Actuators and tractors
maintenance is usually up to the farmer. Usually farmer have little to no qualifi-
cations in computer science ; compromised devices are then unusable/untrustable
until a technician can come if network connection is lost. Most of on field de-
ployed devices having low energy consumptions requirements, it is usually not
feasible to remotely stop intrusion on a local a system.

3 Related Work

Along with the rise of concerns about security and privacy worldwide, cyber-
security of smart farming has drawn a lot of attention in the last few years.
There is actually a lot of prospective work, discussing about opportunities and
challenges for that sector, as well as adapting techniques to this context (mostly
AI-based, particularly Federated Learning that is fitting well with the require-
ments of smart farming, as discussed later in this paper).

Usually IDS can be considered in two different ways: by considering the
targeted system it watchs, or by considering the techniques it uses. From the
targeted systems point of vie, IDS are either Network-based IDS (NIDS, detect-
ing intrusion based on network activities) or Host-based IDS (HIDS, detecting
intrusion based on host behavior and/or activities). From the techniques the IDS
uses, it may be (1) signature-Based, relying on pre-defined patterns, called sig-
natures, to identify malicious activity, (2) anomaly-based, establishing a baseline
of normal activity and flags any significant deviations as potential threats, or
(3) hybrid combining both signature-based and anomaly-based detection. Those
hybrid IDS It leverages pre-defined signatures for known threats while also mon-
itoring for unusual activity.

Most of the paper are focused on NIDS and on anomaly-based IDS. One can
find many different implementations based on the technologies it relies on. FE-
LIDS for example is an FL-based NIDS for Smart Farming, focusing on detection
for the most common protocols in this doemain [12]. [15] is similar, focusing on
the deployment of CNN on fog resources. Authors may also only focus on the
ML/AI methods themselves by exploring the different techniques possible and
trying to determine which one suits the most to smart farming, such as the work
of [16], or [14].

Many surveys can also be found on the literature on different aspects: some
surveys deal with the cybersecurity of smart farming as a whole [11] [8], [18],
[19] while other are focused on IDS, or on AI techniques used in IDS for smart
farming and datasets to test those techniques [10]. [20] is a survey about FL
in agriculture, with a section about IDS. Up to our knowledge, none of them
however is focused on the operational aspects of IDS for smart farming.
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4 Requirements and Challenges Induced by them

4.1 Remote SIEM

IDS data are gathered into SIEM, so as SOC analyst can investigate when alerts
are raised. Remote SIEM and SOC are a de facto standard when its comes
to smart farming: most of farmers does not have the ability, the skill and the
human resources to maintain and operate their own SIEM and SOC, and thus,
smart farming has to rely on remotely operated SIEM and SOC. However, such
a remote operation induces some challenges to IDS.

One major obstacle is the issue of limited bandwidth. Many farms, especially
those in remote locations, often struggle with limited or unreliable internet con-
nectivity. Uploading the vast amounts of sensor data generated by smart farming
systems to a remote SIEM can strain this already limited bandwidth, potentially
disrupting critical agricultural operations. Additionally, data latency becomes
a concern. Real-time monitoring of agricultural processes is crucial for timely
decision-making. Delays in data transmission due to remote SIEM access can
lead to slow response times for security incidents, potentially causing significant
damage to crops or equipment.

Security concerns also arise when transmitting sensitive agricultural data
over the internet. Data such as soil moisture levels or crop yields can be valuable
to competitors or malicious actors. Implementing robust security measures, such
as encryption, to secure communication channels and ensure data privacy adds
complexity to the remote SIEM setup.

Furthermore, the effective utilization of a remote SIEM necessitates efficient
data handling practices. Sensor data from smart farming systems is often di-
verse and unstructured. Pre-processing and filtering this data at the farm level
before sending it to the SIEM is essential. This pre-processing reduces band-
width consumption and allows the SIEM to focus on analyzing relevant security
data. However, implementing such data pre-processing procedures requires ex-
pertise that may not be readily available on all farms. Sending experts in remote
location is then a non-negligible additional cost.

Finally, the expertise required to manage and maintain a complex security
solution like a remote SIEM can be a significant hurdle for many farms. Smaller
farms in particular may not have dedicated IT staff with the necessary skillset
to configure and utilize the system effectively. This lack of expertise can lead to
vulnerabilities and a compromised security posture.

Some of those challenges may be mitigated by using some specific techniques.
In particular, IDS may rely on Federated Learning to overcome the bandwidth
and privacy concerns. The latter two challenges requires the integration of secu-
rity solution

4.2 Dealing with Brownfield Devices

Securing the complex smart farming ecosystem presents unique challenges, par-
ticularly when incorporating brownfield devices into the security architecture.
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A primary challenge lies in the inherent heterogeneity of brownfield de-
vices. These devices, often deployed before cybersecurity considerations were
paramount, frequently lack standardized communication protocols and security
features. This heterogeneity makes it difficult to establish a consistent security
posture across the entire smart farming infrastructure. Furthermore, the limited
processing power and memory capabilities characteristic of brownfield devices
can hinder the installation and operation of resource-intensive IDS agents. The
additional processing overhead introduced by IDS software can potentially dis-
rupt the core functionalities of these legacy devices, potentially impacting critical
agricultural operations.

Another significant challenge is the issue of limited visibility and control.
Brownfield devices often operate with outdated firmware and may not possess the
necessary functionalities to integrate seamlessly with modern security solutions
like IDS. This limited visibility into device activity and a lack of granular control
over these devices make it difficult for IDS to effectively monitor for suspicious
behavior and enforce security policies. Additionally, the potential incompatibility
between legacy communication protocols and modern IDS solutions can further
impede communication and data exchange, hindering the overall effectiveness of
the intrusion detection system.

The challenge of vulnerability management is particularly concerning when
dealing with brownfield devices. Due to their outdated nature, these devices
may have known security vulnerabilities for which patches are no longer avail-
able or cannot be applied due to hardware or software limitations. This creates
exploitable entry points for malicious actors seeking to disrupt agricultural op-
erations or compromise sensitive data.

Despite these challenges, the complete exclusion of brownfield devices from
a smart farming security strategy is often impractical or even impossible due
to their continued role in critical agricultural processes. Potential solutions to
address these challenges include segmentation strategies that isolate brownfield
devices from more secure systems, risk assessments to prioritize critical devices
for targeted security upgrades, and the exploration of lightweight IDS solutions
specifically designed for resource-constrained environments. Another option is
to use Azure Sphere approach [7], by physically deploying a security gateway on
the targeted device. This may not be possible for any device, may come with a
prohibitive cost, and may also be not resilient to the harsh in field conditions of
smart farming.

4.3 Safety Concerns Integration

Smart farming necessitates an expanded scope for IDS functionality, encompass-
ing not only cybersecurity concerns but also safety considerations.

Traditional IDS solutions effectively detect malicious activity aimed at dis-
rupting or compromising agricultural operations, but they often overlook po-
tential safety hazards. However, criticity of some alerts may not depend on IT
considerations but on safety. Indeed, smart farming systems integrate a mul-
titude of sensors and actuators that directly interact with the physical envi-
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ronment. Malicious actors could exploit vulnerabilities within these systems to
trigger actions that could have catastrophic consequences, such as over-irrigating
crops, overheating greenhouses, or causing malfunctions in critical agricultural
machinery.

The integration of safety level of criticity into IDS functionality may be a
solution to mitigate these risks, but it is a challenge. By incorporating safety
protocols and parameters alongside traditional cybersecurity measures, IDS can
detect anomalous behavior that could lead to physical harm or equipment dam-
age. For example, the system could be programmed to identify sudden spikes in
temperature readings from greenhouses, potentially indicating a malfunction in
the climate control system, or unusual fluctuations in water pressure that could
signal a potential irrigation issue.

However, integrating safety alerts into IDS necessitates careful consideration
of several challenges. The first hurdle lies in defining and establishing compre-
hensive safety protocols specific to the unique operational environment of each
farm. These protocols should encompass a wide range of potential safety hazards
associated with the specific sensors, actuators, and machinery deployed within
the smart farming system. Furthermore, the development of accurate detection
algorithms for safety-related anomalies requires collaboration between cyberse-
curity specialists and agricultural domain experts. These experts can provide
in-depth insights into potential safety risks and the operational parameters that
can be used to identify anomalous behavior.

Another challenge lies in the potential for an increase in false positives. Ex-
panding the scope of IDS to include safety alerts can lead to an influx of alerts
that may not represent actual threats. The development of sophisticated filter-
ing and analysis mechanisms becomes essential to differentiate between genuine
safety concerns and non-critical events.

4.4 Failure Alerts Integration

As stated before remotely managed SIEM is a de facto standard for smart farm-
ing, one of the causes of that fact being the prohibitive cost in human resource
to maintain and manage SIEM and SOC in any farm.

As a matter of fact, this means that mitigation, when it implies to come
physically on a device to reconfigure, initialize or recover it, may induce a very
high cost, both in terms of time and money. Indeed the travel from the remote
SOC to the farm may be long, and the activities of the farm may be stopped
during that time, similar to the waste of time experienced by farmers when
waiting for a device to be repaired.

Some compromission may even be mitigated by simply replacing the device
by a new one. The integration into complex Cyber Physical System may require
skills not related to the device itself but CPS experts, that may be able to
physically access to the device.

There is then a need of convergence in between the mitigation of cybersecurity
alerts and failure. This pledge for a SIEM and physical failure alert convergence.
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5 Conclusion

Smart farming, with its intricate network of interconnected devices and sensors,
presents unique challenges for cybersecurity. Intrusion Detection Systems (IDS)
play a critical role in safeguarding these complex ecosystems, but their effec-
tiveness hinges on addressing operational requirements and overcoming specific
hurdles.

We identified key operational requirements for IDS in smart farming, yet
unexplored by the literature, despite the numerous papers published so far on
this topic. We pledge that those requirements may be the key requirements that
future solutions developped must address.

If so, the potential benefits of utilizing IDS in smart farming are undeniable.
By acknowledging these hurdles and implementing appropriate solutions, farms
can leverage the power of IDS to enhance their security posture. The future of
IDS in smart farming lies in continuous innovation. The integration of safety
and failure alerts into IDS functionality would offer a significant cost reduction
because of the significant delay in between detection of failure and possible miti-
gation of it. Smart farming should also integrate in its architecture robustness as
a key requirement, to avoid loss of production due to the time before mitigation
happen, may it be due to cybersecurity or failure.
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