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If you please, draw me a neuron — linking evolutionary 
tinkering with human neuron evolution
Baptiste Libé-Philippot1,2,3,*, Franck Polleux4,5,* and  
Pierre Vanderhaeghen1,2,*

Animal speciation often involves novel behavioral features that 
rely on nervous system evolution. Human-specific brain 
features have been proposed to underlie specialized cognitive 
functions and to be linked, at least in part, to the evolution of 
synapses, neurons, and circuits of the cerebral cortex. Here, we 
review recent results showing that, while the human cortex is 
composed of a repertoire of cells that appears to be largely 
similar to the one found in other mammals, human cortical 
neurons do display specialized features at many levels, from 
gene expression to intrinsic physiological properties. The 
molecular mechanisms underlying human species-specific 
neuronal features remain largely unknown but implicate 
hominid-specific gene duplicates that encode novel molecular 
modifiers of neuronal function. The identification of human- 
specific genetic modifiers of neuronal function brings novel 
insights on brain evolution and function and, could also provide 
new insights on human species-specific vulnerabilities to brain 
disorders.
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Introduction
“If you please — draw me a sheep” (“S′il te plait, dessine-moi 
un mouton”), asked the Little Prince to the airplane pilot 
Antoine de Saint-Exupéry, lost in the desert (1943). 
What could we offer to the Little Prince if he were to ask 
us today to draw a human neuron? The answer would 
rely on how human neurons differ from their counter
parts found in the brain of other species. Tackling this 
question requires cross-species comparisons [1], in
cluding closely related hominids (e.g. chimpanzees), si
mians (e.g. macaques), primates (e.g. marmosets), more 
distant mammals (e.g. mice), and other amniotes and 
vertebrates. The evolution of the human brain was dis
cussed in the 1970s by the biologist François Jacob in his 
essay ‘Evolution and Tinkering’ [2], where he described 
the notion of molecular tinkering: “it works on what al
ready exists, either transforming a system to give it new func
tions or combining several systems to produce a more elaborate 
one”. But at the time, human brain evolution was a 
speculative and observational field of investigation, lar
gely inaccessible to experimental manipulations at the 
molecular and cellular levels. This has changed radically 
over the past decade, thanks to rapid progress in com
parative genomics, human genetics, and neurobiology.

Human brain evolution at the neuronal level
Speciation involves the emergence of behavioral features, 
which rely on the evolution of the development, struc
ture, and function of neural circuits [3,4]. Human species- 
specific brain properties, which underlie the specialized 
cognitive functions of our species, are thought to be 
linked mostly to the evolution of synapses, neurons, and 
circuits of the cerebral cortex [5]. Comparative analyses of 
the mammalian cortex have pointed to multiple sub
strates for such evolution, including divergence in cy
toarchitecture and cell type composition: more cortical 
neurons and expansion of some layers and areas, the ap
pearance of new cell types (for instance, more diverse 
subtypes of cortical pyramidal neurons [CPNs] populating 
cortical upper layers) [6–8], and patterns of cortical neu
ronal connectivity (for instance, increase in associative 
cortical areas and of cortico-cortical projections) [5].

But this is not all. Recent comparative transcriptomic 
analyses have revealed that hominid (human and great 
apes), simian, primate, and mouse adult cortex display a 
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surprisingly similar repertoire of neuronal types [8–10]. 
This echoes recent findings that cortical cell types are 
conserved between most vertebrates despite consider
able changes in their relative proportions and location 
[11,12]. In contrast, recent work focusing on completely 
different neuronal features, that is, electrophysiological 
recordings from human and non-human cortical tissue, 
also converged to the same conclusion that individual 
cortical neurons display species-specific intrinsic func
tional properties [13]. Thus, human brain evolution 
could also rely on divergent properties in ‘orthologous’ 
(same cell types across different species) cell types 
found in the mammalian cortex, leading to species-spe
cific features at the individual neuron level, as described 
in other species [3,14]. Here, we will present an over
view of recent work that identifies species-specific 

molecular and physiological properties among human 
cortical neurons and then discuss how they have started 
to be linked more mechanistically, opening novel op
portunities to study the impact of neuronal divergence 
on human brain function.

Human cortical neurons display specialized 
functional properties
Most human cortical neurons display species-specific mor
phological features compared with their rodent or non
human primate counterparts. For instance, human CPNs are 
overall much larger, displaying larger dendritic arbor length 
[15] and increased numbers of synapses per neuron com
pared to all other species examined, including chimpanzee 
[16] (Figure 1a,b). How about functionality? Recent work, 
comparing ex vivo human and nonhuman cortical tissue 

Figure 1  
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Evolution of human CPNs. (a) Phylogenic tree with human species and other hominid (chimpanzee), simian (macaque), primate (marmoset), and 
mammalian (mouse) species. (b–d) Human CPNs display species-specific morphological and physiological cell-intrinsic properties (in purple).
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using electrophysiological single-cell recordings, has re
vealed that human CPNs display a high number of spe
cialized functional features (Figure 1b–d). These include 
stronger synapses [17] and higher levels of synaptic plasticity 
[18], which could contribute to the distinct functionality of 
cortical circuits. Even more surprisingly, human CPNs were 
found to display specialized biophysical and physiological 
properties, including at the level of basic features such as 
action potential (AP) generation [19], likely reflecting dis
tinct properties or subcellular distribution of ion channels 
and/or their regulators [20–25], as discussed below.

One such critical determinant of neuronal function that 
displays human specificities is intrinsic excitability: recent 
work shows that human CPNs do not follow allometric 
rules between neuronal size and excitability, resulting in 
lower excitability of human CPNs compared with coun
terparts in other species [20,24] (Figure 1c). Neuronal ex
citability, or input–output relationship, is a critical property by 
which CPNs produce different patterns of AP trains (e.g. 
AP frequency) (=output) in response to synaptic stimuli 
(=input) [26]. These electrophysiological differences char
acterizing similar neuronal subtypes between species could 
have significant consequences at the level of cortical cir
cuits, for instance, by modifying their coding properties or 
plasticity [27], but they could also reflect scaling processes 
to maintain circuit function of neural circuits composed of 
more and/or larger CPNs and synapses.

Cellular and molecular mechanisms proposed so far to 
explain the decreased neuronal excitability of human 
CPNs focused on the dendritic compartment, including 
enhanced compartmentalization of human CPNs com
pared to rodents and changes in the conductance of 
specific ion channels (voltage-gated potassium and 
Hyperpolarization-activated Cyclic Nucleotide–gated) 
[20,21,25]. However, recent studies also highlighted mo
lecular differences at the level of the axon initial segment 
(AIS), the site of AP generation in CPNs [19,28], as dis
cussed below, as well as in GABAergic interneurons [29].

Finally, recent findings in the human cerebellum indicate 
that Purkinje cells are more complex in their dendritic tree 
arborization and also intrinsically less excitable than mouse 
counterparts [30,31], suggesting that such divergent prop
erties might be shared with other human cell types in other 
brain areas. Evolutionary tinkering has thus led to func
tional divergence in human neuron function, including in 
basic properties such as excitability, as previously reported 
in invertebrate and lower vertebrate species [3].

Species-specific transcriptional regulation in 
human cortical neurons
What could be at the origin of the species-specific 
functional properties of human cortical neurons? While 
morphological and hodological features are likely the 

consequence of divergent gene regulatory programs 
taking place during brain development [5], the specia
lized functional properties more likely reflect the mo
lecular properties of human cortical neurons at the adult 
stage. Several recent studies of comparative single-cell 
transcriptomics of hominid, simian, primate, and mouse 
adult cortex have pointed to strong patterns of molecular 
divergence of cortical neurons, despite a strong con
servation of cellular composition. In a nutshell, these 
analyses have revealed that although a higher diversity 
of cell subclasses may be observed in humans compared 
to other species [7,8], all examined mammalian species 
display a remarkably similar repertoire of cortical neu
ronal types [8–10]. And while most of these conserved 
types share patterns of gene expression defined using 
single-cell transcriptomics, they also display species- 
specific gene expression. This divergence seems to be 
particularly high for human CPNs, as chimpanzee CPNs 
appear to be closer to gorilla CPNs than to human 
counterparts [8], which is unexpected given the 
equivalent phylogenetic distances between humans and 
chimpanzees to gorillas. Hundreds of genes are thus 
expressed in a human-specific fashion in cortical neu
rons, some of which are specific to certain neuronal 
subtypes, while others are expressed throughout cortical 
cell types. Interestingly, the divergent genes displaying 
human-specific expression are enriched in genes in
volved in neuronal and/or synaptic function, thus re
presenting potential modifiers of neuronal function [8].

What are the origins of these species-specific differences in 
gene expression patterns? Comparative genomics has pro
vided many insights on the changes at the genomic level 
that could lead to the evolution of gene regulatory net
works (GRNs) in the human brain (reviewed in Ref. [32]). 
Recent high-scale cross-species genomic, transcriptomic, 
and epigenomic comparisons have revealed various classes 
of human-specific putative cis-regulatory elements, in
cluding so-called human accelerated regions (HARs), 
human-specific deletions in non-coding genomic regions 
(hCONDELs), human gain/lost enhancers, and human 
ancestor quickly evolved regions (HAQERs) [33–37]. 
These genomic human novelties are likely linked to 
human-specific neuronal gene expression, as for instance 
HARs, HAQERS and hCONDELs are enriched next to 
genes displaying human-specific expression in cortical 
neurons [8,36]. Moreover, many of them are associated to 
neurological diseases [36,38–40], suggesting human-spe
cific sensitivities to some of these disorders.

Overall, these data strongly suggest that these divergent 
genomic regions are directly linked to human neuronal 
evolution. This remains to be tested in a more sys
tematic way by exploring the physiological con
sequences of such differences in cortical neurons. It will 
also be important to determine the conservation of the 
structure and function of human-specific elements 
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within the human population. Finally, it will be fasci
nating to explore the evolution of genomic features in 
non-primate species (like cetaceans or elephants) that 
also display large neuronal size and extended life span, 
searching for convergent evolution of similar GRN fea
tures. The lack of high quality genomic resources in 
many closely related species in those lineages (especially 
transcriptomic resources) makes this a challenging en
deavor but could also be partially addressed with plur
ipotent stem cell modeling from these species [41].

On the other hand, post-transcriptional and translation 
regulation will be important to explore in the context of 
human neuron evolution. For instance, proteomic ana
lyses on synaptosomes isolated from the cortex of human 
and nonhuman mammalian species have uncovered 
human-specific differences that are not always related to 
transcriptional differences [42].

While the bulk of evolutionary changes are linked to 
changes in gene regulation, other genomic changes con
tribute to evolution. These include divergence in coding 
regions, although the sequences of brain-associated genes 
tend to be strongly conserved in primates compared to 
genes associated with other organs [38]. Interestingly, a 
recent mass spectrometry analysis from cerebral cortex 
samples reported > 200 human-specific (compared to 
mouse and macaque) open reading frames coding for 
small peptides (< 15 amino acids) [43], for which the li
gands and the function remain to be explored.

Last but not least, another important driver of evolution is 
the emergence of novel genes through segmental dupli
cation. Gene duplication is a major mechanism of gene 
diversification, where an ancestral gene is duplicated one or 
several times into several related paralogous genes. While 
many of these duplicates are expected to turn into pseu
dogenes, some constitute a rich substrate for evolutionary 
changes. In this context, hominid-specific or even human- 
specific segmental gene duplications have received a lot of 
recent attention in relation with human brain evolution. 
Indeed, several of them have been linked to human spe
ciesspecific features of cortical development, from neuro
genesis to synaptic development and connectivity. As 
these were extensively reviewed recently [5], we focus 
here on one of these, called LRRC37B, which was recently 
implicated in the evolution of human adult cortical neu
ronal physiology [28], thus providing a surprisingly direct 
molecular mechanism between genomic and neuronal 
evolution, as discussed further in the next section.

LRRC37: a hominid-specific gene family 
linking human species-specific molecular and 
functional properties of cortical neurons
Previous studies identified over 30 genes that arose 
through segmental duplications, specifically in hominids, 

and that are dynamically expressed during human cor
ticogenesis [44]. Among these, the leucine-rich-repeat 
containing 37 (LRRC37) genes encode a novel class of 
membrane receptors that are selectively amplified in 
primate genomes and expressed in cortical neurons. 
Lrrc37 genes can be found in all amniotes, but they 
expanded during primate evolution to reach more than a 
dozen of genes in the human genome [45]. One of these, 
LRRC37B, stands out as it is present only in the human 
and great ape genomes and expressed at highest levels in 
the human cerebral cortex at adult stages [28] (Figure 
2a). Most strikingly, the examination of LRRC37B pro
tein distribution in the human cerebral cortex revealed 
that it is expressed selectively at the level of the axon 
initial segment AIS of human CPNs but not of non
human primate or mouse CPNs (Figure 2a). The AIS is a 
key specialized segment of the proximal part of the 
axon, highly enriched for voltage-gated sodium channels 
(Nav). The AIS is the major site of AP generation and 
thereby of regulation of neuronal excitability [46]
(Figure 2a). Intriguingly, LRRC37B expression was 
found to be heterogeneous among CPNs: it is expressed 
in about half of them, independently of their subtype 
identity (Figure 2a).

What could be the neuronal function of LRRC37B? 
Overexpression of LRRC37B in the mouse cortex re
vealed a similar distribution of the receptor at the AIS 
level. Electrophysiological recordings of control and 
LRRC37B-expressing mouse CPNs then indicated that 
the forced expression of LRRC37B leads to a decrease in 
their intrinsic excitability, selectively reducing the 
ability of neurons to trigger APs at the level of the AIS. 
Using ex vivo electrophysiological recordings of human 
cortical tissue obtained from neurosurgery resections, it 
was found that the CPNs that display LRRC37B at their 
AIS are less excitable compared with those whithout 
(Figure 2). Thus, LRRC37B is a human-specific com
ponent of the AIS of cortical neurons that regulates their 
excitability [28] (Figure 2b).

Each LRRC37 gene encodes a putative membrane pro
tein with an extracellular domain containing a leucine- 
rich repeat (LRR) and a short intracellular domain, thus 
suggestive of a receptor function. The ligands of 
LRRC37B were discovered using in vitro binding 
screens and ex vivo immunoprecipitation experiments 
from human brain. LRRC37B was found to bind with 
high affinity to FGF13A, an extracellular ligand of the 
FGF family. Also, it was found to bind to the Nav sub
unit 1 (SCN1B), a transmembrane protein localized at 
the AIS and a regulator of Nav (Figure 2c). Further 
biochemical and cellular investigations revealed that 
FGF13A also acts as a negative regulator of neuronal 
excitability by binding directly to NaV1.6, which is se
lectively present at the AIS. By binding to FGF13A, 
LRRC37B promotes its targeting to the AIS and thereby 
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Figure 2  

Current Opinion in Genetics and Development

A novel evolutionary molecular pathway based on LRRC37-FHF-SCNb protein interaction in human neurons modulates their physiological properties. 
(a) LRRC37B displays several evolutionary levels: 1) emergence of the gene in hominid species, 2) higher transcript abundance in humans compared 
to chimpanzees, 3) LRRC37B protein location at the axonal initial segment (AIS) selectively of human CPNs. Of note, it is a subset of human CPNs that 
display LRRC37B at their AIS. (b) LRRC37B protein location at the AIS is correlated with a lower neuronal excitability in humans, and it leads to lower 
neuronal excitability when expressed in mouse CPNs. (c) LRRC37B binds to secreted FGF13A and transmembrane SCN1B that both are modulators 
of voltage-gated sodium channels (Nav channels). (d) LRRC37B acts by concentrating the FGF13A ligand at the AIS where it inhibits Nav channels.  
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enhances its inhibitory effect on neuronal excit
ability, selectively at the level of the AIS (Figure 2d).

Thus, LRRC37B acts as a human species-specific 
modifier of neuronal excitability and, as such, constitutes 
a striking example of how molecular tinkering can in
fluence species-specific properties of the brain. What 
could be the impact of LRRC37B at the level of cortical 
circuits and brain function? One can only speculate at 
this point, considering its negative effect on excitability 
of some but not all human cortical neurons. LRRC37B 
could affect how neurons process and encode signals, 
adapting the neuronal responses to synaptic inputs, and 
influence synaptic transfer of information through gain 
modulation, which depends on output modulation at the 
level of the AIS [26,47]. This could then influence at
tention, learning and/or multisensory integration, or 
neuronal plasticity, whether Hebbian or homeostatic. 
Thus, through its ability to modulate input/output re
lationships in the CPNs in which it is expressed, 
LRRC37B could have a critical impact on key properties 
of cortical circuits, including some that display human 
species-specific features, such as CPN synaptic plasticity 
and information transfer efficiency [13]. Alternatively or 
in addition, LRRC37B expression in the human cortex 
could be an adaptive feature for the increased synaptic 
connectivity of human CPNs. Future work should ex
amine these possibilities in more depth, for instance, 
using mouse models in which LRRC37B expression is 
‘humanized’, an approach that was previously successful 
to reveal the functional impact of another human-spe
cific gene, SRGAP2C, on cortical circuits [48].

Human genetics also points to a potentially important 
role for normal human brain function. On the one hand, 
LRRC37B copy numbers are fixed in the human popu
lation compared to other paralogs [28], pointing to a 
strong selection on the dosage of the gene, thus sug
gesting important functional relevance. On the other 
hand, while no pathogenic mutations of LRRC37B have 
been found (so far) in patients presenting alterations of 
neuronal excitability, it is striking to note that its three 
identified partners, FGF13A, SCN1B, and SCN8A 
(Nav1.6), were all previously shown to be mutated in 
severe forms of epilepsy [49–51]. Thus, through its 
ability to modulate the function of FGF13A and Nav 
channels, LRRC37B could act as a human-specific 
modifier of brain disorders including forms of epilepsy 
and autism spectrum disorders.

Changes in voltage-gated channel biophysical 
properties enable sustained fast action 
potential signaling in human cortical 
pyramidal neurons
Human CPNs display a decreased excitability but yet can 
produce a fast AP firing rate when performing cognitive 

tasks [19]. Recent work showed that during such high 
trains of spiking, the shape of individual APs remains 
stable in human CPNs compared to mouse CPNs [19]
(Figure 1c). This work linked this sustainability of AP to 
the biophysical properties of the Nav channels (AP in
itiation) and Kv channels (AP termination) [19]. Human 
CPNs displayed a larger fraction of Nav channels that can 
be activated compared to mouse CPNs [19]. As described 
above, Nav channels not only activated more slowly but 
also inactivated more slowly and yet recovered more 
quickly than mouse CPNs [19]. In addition, Kv channels 
activated faster in human CPNs compared to mouse 
CPNs [19]. This highlights the fact that lower excitability 
(channels activated more slowly) can be a companion of 
easier AP generation (more channels available) in long 
trains of AP (for which the soma vs. AIS contribution 
remains to be determined), which can be key for high 
cognitive tasks in the human species. Further work would 
decipher whether these properties are shared with other 
primates and how channel biophysical properties are 
changed between species.

Concluding remarks and perspectives
Today, we would draw a human neuron as an orthologous 
CPN, shared between primates and mammals, that yet 
depicts divergent structural and functional cell-intrinsic 
properties compared to other hominids, explained by 
species-specific gene expression patterns, hominid-specific 
duplications, and changes in the biophysical properties of 
voltage-gated channels. Taken together, these genetic 
changes relate to most of the genomic changes in the 
human lineage after the separation from our common an
cestor with great apes, and these could account for species- 
specific sensitivities to brain disorders. Intriguingly, a re
cent study also suggested the possibility of species-specific, 
sex-related differences in gene expression, which needs to 
be explored further [52]. Last but not least, little is known 
about brain differences between modern humans and ar
chaic hominin species, notably because of the absence of 
brain primary tissues, although they display a number of 
genomic differences that might be potentially relevant to 
neuronal evolution [53].

“The air pilot [drew] 3 pictures of a sheep, that the child refused 
one after the other […] the air pilot drew a box with holes, 
asserting that the ideal sheep was inside. This time, the child 
sounds happy with his sheep”. Like the sheep in the Little 
Prince, our knowledge of human species-specific features 
of neurons is still buried in a box with holes of unknowns, 
but the recent convergence of cross-species comparative 
-omics and neurobiology constitutes an exciting venue to 
reveal the singularity of human neural cells.
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