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Abstract. While the burden caused by air pollution in urban areas is well documented, the origin of this pol-
lution and therefore the responsibility of the urban areas in generating this pollution are still a subject of scien-
tific discussion. Source apportionment represents a useful technique to quantify the city’s responsibility, but the
approaches and applications are not harmonized and therefore not comparable, resulting in confusing and some-
times contradicting interpretations. In this work, we analyse how different source apportionment approaches
apply to the urban scale and how their building elements and parameters are defined and set. We discuss in
particular the options available in terms of indicator, receptor, source, and methodology. We show that different
choices for these options lead to very large differences in terms of outcome. For the 150 large EU cities selected
in our study, different choices made for the indicator, the receptor, and the source each lead to an average differ-
ence of a factor of 2 in terms of city contribution. We also show that temporal- and spatial-averaging processes
applied to the air quality indicator, especially when diverging source apportionments are aggregated into a single
number, lead to the favouring of strategies that target background sources while occulting actions that would be
efficient in the city centre. We stress that methodological choices and assumptions most often lead to a system-
atic and important underestimation of the city’s responsibility, with important implications. Indeed, if cities are
seen as a minor actor, plans will target the background as a priority at the expense of potentially effective local
actions.

1 Introduction

About 55 % of the world’s population lives in urban ar-
eas nowadays, and this number is expected to increase to
68 % by 2050, according to the United Nations (UN2018,
2018). Large population growth is also projected by 2030
in most of the major European cities (Alberti et al., 2019),
with predicted population growth varying between Berlin
(15 %), Paris (19 %), Milan and Rome (21 %), Prague (37 %),
London (39 %), and Brussels (52 %) (see https://urban.jrc.
ec.europa.eu/thefutureofcities/urbanisation#the-chapter, last
access: 24 November 2021). As a result of this population

trend, urban emissions and their associated pollution levels
are expected to increase as well.

According to a recent estimate (EEA, 2020), about 74 %
of the EU-28 urban population is exposed to pollution of fine
particulate matter (PM2.5) in concentrations above the WHO
air quality guidelines value; this number rises to 99 % for
ozone (O3) and is about 4 % for nitrogen dioxide (NO2). Air
pollution is a heavy burden on human health, with more than
380 000 premature deaths in the EU-28 reported in 2017 ac-
cording to the same EEA estimates. For a wide range of Eu-
ropean cities, Khomenko et al. (2021) showed that the health
burden due to air pollution varies greatly by city, with annual
premature mortality reaching up to 15 % for PM2.5 and 7 %
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for NO2. The highest mortality burden for PM2.5 occurs in
northern Italy, southern Poland, and eastern Czech Repub-
lic. De Bruyn and de Vries (2020) showed that for all 432
cities in their sample (total population: 130 million inhabi-
tants), the social costs (e.g. hospital admissions, premature
mortality) but also the costs due to air pollution exceeded
EUR 166 billion in 2018 for Europe (EU-27 plus the UK,
Norway, and Switzerland). City size was shown to be a key
factor contributing to the total social costs: all cities with a
population over 1 million feature in the top 25 cities with the
highest social costs due to air pollution.

Given the health and economic burden caused by air pol-
lution in urban areas, it is important to identify the origin
of this pollution in order to reduce and control its impact.
Identifying the sources of urban pollution and then assigning
responsibilities enables a process to implement measures and
control air pollution. Assessing the responsibility or share of
cities for their pollution has important implications. For be-
ing effective, pollution reduction plans must be designed and
applied to target the most polluting sectors at the relevant
spatial scale (national, regional, and/or local) and with the
appropriate temporal scales. In this context, quantifying the
share of the city pollution caused by their own emissions be-
comes a crucial element to determine whether actions need to
be applied locally or at the regional, national, or continental
scale. This has important governance consequences for the
effective control of air pollution.

For pollutants like NO2 that mostly originate from traffic
sources and have a relatively short lifetime in the atmosphere,
there is a general agreement on the fact that cities are the
main contributor to these pollutant concentration levels and
that acting locally on traffic emissions is the most efficient
way of improving NO2 concentration levels in a particular
city (Tobías et al., 2020). There is available European-wide
information, such as in Degraeuwe et al. (2019), providing
overviews of the potential impact of traffic emission reduc-
tions per vehicle type in different European cities. There is
also agreement regarding O3 that this secondary pollutant
is most effectively reduced by implementing reduction mea-
sures at larger spatial scales, involving actions driven at the
regional and even continental scales (e.g. Luo et al., 2020).
For other pollutants, like PM2.5, complex physical and chem-
ical atmospheric processes with different timescales drive its
formation, involving numerous precursors themselves emit-
ted by several sources. The sources of PM2.5 pollution range
from local traffic, domestic fuel burning, and industrial ac-
tivities to regional sources such as agriculture in rural areas.
Even though the latter emissions do not originate from cities,
Thunis et al. (2018) showed that their impact on urban pollu-
tion could be important, reaching up to 30 % in several Euro-
pean cities. Because of this complexity, there is less consen-
sus regarding a city’s responsibility for or share of its pollu-
tion when addressing PM2.5. Because of this lack of consen-
sus and the major burden of PM2.5 on health, we focus our
analysis on this pollutant.

The usual approach to assess the city’s share of pollution
levels (in other words the city’s responsibility) is source ap-
portionment (SA). However, many SA approaches exist. The
most widely used SA methods are the “potential impact”
(or brute force), “increment”, and “tagging” approaches. An
overview description of these methods and an evaluation of
their limitations and capabilities for use can be found in Thu-
nis et al. (2019). Moreover, many ways to parameterize them
exist as well, leading to a variety of results and interpreta-
tions. For the 18 million inhabitants of New Delhi, Amann
et al. (2017) concluded that only 40 % of the PM2.5 pollution
was originating from local city sources, based on potential
impact SA and expressed in terms of city-averaged popula-
tion exposure, averaged yearly. In the context of the Coper-
nicus programme, CAMS (Copernicus Atmosphere Monitor-
ing Service) performs SA calculations daily with two differ-
ent approaches, namely tagging and potential impacts, for a
series of European cities. Results show important differences
on a day-by-day basis, although these differences smooth
out when considering longer-term averages (Pommier et al.,
2020). Based on the increment approach, Kiesewetter and
Amann (2014) derived SA estimates for a series of Euro-
pean cities and aggregated these detailed results at the coun-
try level, leading to relatively low city responsibilities (e.g.
about 25 % for French, German, and Italian cities). Based on
a potential impact approach, Thunis et al. (2018) estimated
city shares for 150 cities in Europe. They highlighted their
large variability across Europe and stressed the importance
of the definition of the city with regards to the results by test-
ing the sensitivity to different city extensions. The choice of
the SA method, but also the way this method is configured,
can lead to very different outcomes for the city’s share of
pollution, ranging from cities being a major contributor to
their pollution to cities having a limited responsibility. This
explains why the actual city’s responsibility for its pollution
remains a topic of discussion and why some authors stress
the importance of local actions (Thunis et al., 2018; Wu et
al., 2011; Raifman et al., 2020) when others stress the need
for regional, national, or even continental actions (Huszar et
al., 2016; ApSimon et al., 2021; Liu et al., 2013). This di-
versity of conclusions has serious consequences in terms of
policy decisions. Blaming external (i.e. outside the city) pol-
lution sources as being primarily responsible for urban pollu-
tion is sometimes an easy argumentation for decision makers
to justify local inaction.

This work aims at explaining the main causes of discrepan-
cies between different assessments of the city emission’s im-
pact on its pollution levels and show that these discrepancies
generally lead to underestimation of the city’s responsibility.
It proposes a specific harmonized nomenclature for source
apportionment approaches, and it shows how it is important
to document the choices to enable correct interpretation of
the results. We begin with a conceptual overview of the pa-
rameters structuring any SA approach (Sect. 2). This includes
the definition of the key parameters of any SA study: indica-
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tor, source, receptor, and methodology to relate them. Then
(Sect. 3) we assess the sensitivity of the urban SA results to
the choices of these four parameters. In Sect. 4, we analyse
implications in terms of air quality planning and suggested
strategies. We finally provide conclusions in Sect. 5.

2 Assessing the city’s responsibility for air
pollution: main concepts

In this section, we detail the steps required to quantify the
responsibility of a city for its air pollution through source
apportionment (SA). SA is a methodology that serves to es-
timate the contribution of a given source at a specific recep-
tor for a given indicator (for example the concentration of a
given pollutant like PM or NO2). It involves the following
steps (Fig. 1):

1. defining a relevant indicator, denoted as (I ) to charac-
terize air pollution;

2. defining the receptor (R) through its spatio-temporal
characteristics, i.e. the area (xr) and time period (t r) over
which the indicator is averaged;

3. defining the source (S), in our case the city, and its
spatio-temporal characteristics, i.e. the city area (xs) and
time period for which the city’s responsibility is as-
sessed (ts);

4. selecting the source apportionment (SA) methodology
to capture the processes that relate the source to the re-
ceptor.

Figure 1 summarizes these steps as well as the nomencla-
ture and symbols used in this work. We use this new nomen-
clature to attach contextual information (i.e. metadata) to the
source apportionment. Further explanations of the symbols
are given in the subsections below.

2.1 Definition of the air pollution indicator (I)

The first step required to assess the role and responsibility of
city emissions with respect to its air pollution is to define an
indicator that identifies the pollution aspect we are interested
in. The indicator can be defined in many ways, for example
as the total concentration of a given compound (e.g. PM), as
a specific constituent of that total concentration (e.g. PM2.5
or its primary fraction, PPM), as a composite based on a mix
of different pollutants (e.g. maximum among O3, PM2.5, and
NO2 concentrations as in some air quality indexes such as
ATMO2003, 2003), or as population exposure (i.e. product
of population and concentration).

2.2 Definition of the receptor (R)

Estimating the indicator, from either a measuring instrument
or a model simulation, implies an averaging process in both

space and time. For model data, averages correspond to the
spatial and temporal resolutions (e.g. the time step and grid
cell size), whereas for measurement, the space–time average
will depend on the instrument acquisition time and on the
atmospheric dispersion characteristics at the measuring site.
Regardless of these intrinsic time and space averages, indica-
tors are generally averaged over longer spatial and temporal
scales for convenience. The receptor is defined as the spatio-
temporal entity over which the indicator is averaged. Both a
spatial and a temporal scale (denoted by xr and t r, respec-
tively) must be associated with the receptor to define it.

For the temporal dimension, typical examples for PM2.5
are days (t r =D) or years (t r = Y ). Spatially, the indicator
can be estimated at a specific location, e.g. the city centre
(xr = xcenter) or at the location where the maximum concen-
tration occurs (xr = xmax), or it can be averaged over the city
(xr = city). For convenience, we use interchangeably the fol-
lowing notations to refer to the receptor:

R
(
xr, t r

)
= R = xrt r. (1)

2.3 Definition of the source (S)

The source is defined as the spatio-temporal entity (e.g.
city, emission macro-sector, etc.) for which we assess the
contribution to the indicator. For the purpose of this work,
the source is defined as the city and more precisely as the
emissions that originate from it. The source emissions (de-
noted by E) are indeed responsible for the pollution frac-
tion that can be associated with the source or city at the re-
ceptor (R). These emissions are characterized by a spatial
(xs= extension of the city) and a temporal scale (ts= period
of time over which the source activity is assessed). For con-
venience, we use interchangeably the following notations to
refer to the source:

S (xs, ts)= S = E = city= xsts. (2)

In this work, we analyse in particular the impact of the
city extension (xs) on the apportionment outcome. For this
purpose, we define cities in two ways:

1. as core cities, i.e. the local administrative units, with a
population density above 1500 km−2 and a population
above 50 000, where the majority of the population lives
in an urban centre, and

2. as functional urban areas (OECD, 2012, denoted as
“FUAs”) composed of core cities plus their wider com-
muting zone, consisting of the surrounding travel-to-
work areas where at least 15 % of the employed resi-
dents work in the city.

Details on the FUA and core city areas are available for 150
EU cities in the urban PM2.5 atlas (Thunis et al., 2017). Note
that other city definitions exist. In the context of the CAMS
source allocation analysis, cities are defined as an arbitrary
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Figure 1. Schematic flow chart representing the four steps required to fully define any SA process. The red letters indicate the indicator
characteristic under consideration. The general notation for the indicator (I ) includes a superscript for the methodological approach (M), a
subscript to inform about the source (S), and brackets to inform about the receptor (R). The spatial and temporal dimensions associated with
the source and receptor are denoted by “x” and “t”, respectively. The overbar indicates an averaging process. The lowest row provides for
each parameter examples used in this work. Some images used in this schematic flow chart are adapted from https://www.flaticon.com/ (last
access: 24 November 2021).

number of grid cells in the modelling domain (Pommier et
al., 2020).

Finally, we define the city background as the sum of all
contributions from sources that are not covered by the spatial
(xs) and temporal (ts) scales of the city source.

One main difference between sources and receptors is that
for the latter, spatio-temporal characteristics are averaged.
Apart from this, temporal and spatial characteristics can also
differ in terms of value. For example, the source can be de-
fined as the FUA (xs=FUA), while the receptor is a specific
location (xr = xmax). Temporally, interest can be in assessing
the contribution of the city weekly activity (ts= 1 week) for
a given day (t r =D) at the receptor. In the results presented
here, the source and receptor temporal scales are however
chosen to be identical for convenience.

2.4 Selection of the SA methodology

When the air pollution indicator and the spatio-temporal
characteristics of both the receptor and the source have been
selected, the next step consists of distinguishing and quanti-
fying the fractions of the indicator related to the city source
(Icity(R)) and to the background (Ibg(R)) at the receptor R,
respectively. This decomposition is summarized by the fol-
lowing equation:

I (R)→
{
Icity(R),Ibg(R)

}
. (3)

Different SA methodologies exist to perform this opera-
tion. In this section, we describe three main approaches, but
only in brief, as details about each of these are discussed
in other works (Clappier et al., 2017; Thunis et al., 2019,
2018; Mertens et al., 2018). As mentioned previously, we use

the indicator’s superscript to refer to its calculation method
(IMcity(R)). Methods are summarized in Table 1.

– Potential impacts (PI). The city contribution in this
method is denoted as IPI100

city (R) and is calculated as the
difference between two simulations: a base case that in-
cludes the city (I (R)) and a scenario in which the city
emissions are switched off

(
Icity100 (R)

)
. In this nota-

tion, the source superscript (here, 100) indicates the per-
centage intensity by which the source emissions are re-
duced. Reductions are intended as percentage variations
from the base case situation. The same approach can
be used with reduction percentages that are lower than
100 %. In this case the resulting difference is divided by
the reduction percentage to obtain the potential impact(
IPIα

city (R)
)

. A similar approach is used to calculate the
background contribution, i.e. by removing or reducing
partially the background emission sources. Potential im-
pact methods for source apportionment are widely used
(Osada et al., 2009; Huszar et al., 2016; Huang et al.,
2018; Wang et al., 2014, 2015; Van Dingenen et al.,
2018; Thunis et al., 2016; Clappier et al., 2015; Pisoni
et al., 2017).

– Increment (INC). With this methodology, the back-
ground contribution is estimated as the concentra-
tion observed or modelled at a given location “y”(
I INC

bg (R)= I
(
y, t r

))
. This location must be far enough

from the source to not feel its influence but be close
enough to the source to avoid influences from other
sources external to the city. These assumptions are fur-
ther described and discussed in Thunis et al. (2017).

Atmos. Chem. Phys., 21, 18195–18212, 2021 https://doi.org/10.5194/acp-21-18195-2021
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The city contribution is then obtained as the difference
between the base case indicator and the background
contribution

(
I INC

city (R)= I
(
xr, t r

)
− I

(
y, t r

))
. The in-

crement methodology has been used by, for example,
Lenschow et al. (2001), Petetin et al. (2014), Kiesewet-
ter et al. (2015), Squizzato and Masiol (2015), Tim-
mermans et al. (2013), Keuken et al. (2013), Ortiz and
Friedrich (2013), and Pey et al. (2010).

– Tagging (TAG). With this approach, species emitted by
the city are numerically tagged and followed through
the modelled transport, dispersion, and chemical trans-
formation processes. When chemical transformations
take place, preserved atoms are used as tracers. For
example, the nitrogen atom (N) will be used to fol-
low the NO source emissions through its successive
transformations into NO2 and HNO3 to reach its fi-
nal product NO3, which will then be attributed to that
source. Example of tagging applications are, for exam-
ple, Kranenburg et al. (2013), Yarwood et al. (2004),
Wagstrom et al. (2008), Kwok et al. (2013), Bhave
et al. (2007), and Wang et al. (2009). Some of these
approaches are implemented operationally to estimate
daily city contributions to air pollution (https://topas.
tno.nl/documentation/, last access: 24 November 2021).
The formulations corresponding to these three main ap-
proaches are summarized in Table 1.

A few key points are worth noting. While tagging and
potential impact approaches explicitly consider city emis-
sions in their calculations, this is not the case for incre-
ments that only refer to them implicitly. By construction,
both the increment and tagging approaches are additive (i.e.
I (R)= Icity(R)+Ibg(R)), whereas this is not the case for po-
tential impacts when pollutants behave non-linearly because
of air transport, deposition, or chemical processes (Clappier
et al., 2017).

3 Results

Recognizing the impossibility of assessing the sensitivity of
the results for all combinations of indicators, source, recep-
tor, and methodology, we focus our analysis on comparisons
in which only one parameter is changed at a time to highlight
major sensitivities. For this purpose, we use the following
two main sources of data and results.

– SHERPA. SHERPA is a modelling tool based on
source–receptor relationships that represent a simplified
version of a chemistry transport model, used to simu-
late the contribution to PM2.5 concentration levels by
all precursor emissions (NOx , non-methane volatile or-
ganic compounds (NMVOCs), PPM, SO2, and NH3)
from different cities in Europe (Clappier et al., 2015;
Thunis et al., 2016, 2018). In its current configuration,

SHERPA is based on the CHIMERE model (Menut et
al., 2013) covering the whole of Europe at roughly 7 km
spatial resolution. In this work, we use the source appor-
tionment results over 150 cities as reported in the PM2.5
urban atlas (Thunis et al., 2017) as well as additional
SHERPA data to provide further analysis.

– EMEP simulations. The EMEP model is an offline
regional transport chemistry model (Simpson et al.,
2012; https://github.com/metno/emep-ctm, last access:
24 November 2021). The model has 20 vertical levels,
with the first level around 50 m. The model uses mete-
orological initial conditions and lateral boundary con-
ditions from the European Centre for Medium-Range
Weather Forecasts (ECMWF) Integrated Forecasting
System (IFS). The meteorological year is 2015. De-
tailed information on the meteorological driver, land
cover, model physics, and chemistry is described in
Simpson et al. (2012) and in the EMEP 2017 status
report (EMEP2017, 2017). In this work, we use spe-
cific simulations where emissions have been removed
partially or fully in a series of European cities. Addi-
tional details regarding these simulations are provided
together with the discussion of the results.

Based on these sources of information and data, we discuss
hereafter the sensitivity of the SA results to the choice of
the indicator (Sect. 3.1), to the choice of the methodology
(Sect. 3.2), to the source (Sect. 3.3), and finally to the recep-
tor (Sect. 3.4).

3.1 Sensitivity to the indicator

The implications resulting from the choice of the indicator
are illustrated in Fig. 2 for four indicators based on SHERPA
results for 150 cities in Europe. The four indicators selected
to characterize air pollution are (a) the PM2.5 concentration
(top left; from Thunis et al., 2017), (b) the anthropogenic
fraction of PM2.5 (“PM2.5 ant”; top right), (c) the primary
anthropogenic fraction of PM2.5 (“PPM2.5 ant”; bottom left),
and (d) the primary fraction of PM2.5 originating from the
transport and residential sectors (“PPM2.5 oxy”; bottom left).
The reference (PM2.5 total mass; top left) corresponds to the
indicator currently used in legislation (e.g. European Ambi-
ent Air Quality Directive, AAQD2008, 2008) against which
health impacts are correlated (WHO2005, 2005). In the sec-
ond case, the indicator is limited to its anthropogenic fraction
(PM25 ant), excluding therefore natural contributions (dust,
marine salt, etc.). This is motivated by the fact that policies
have no impact on this component. According to this indica-
tor, city contributions increase significantly (by about 20 %
on average), and in some cities where natural dust pollution
is important (e.g. in Sicily), the city’s responsibility shifts
from minor to major. If we further restrict the indicator to its
primary anthropogenic fraction (“PPM2.5 ant”; bottom right)
because of its suggested higher health burden (Park et al.,

https://doi.org/10.5194/acp-21-18195-2021 Atmos. Chem. Phys., 21, 18195–18212, 2021
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Table 1. Formulation of the three main methods to estimate the contribution, potential impact, and increment of a city. The letters, I , S,
and R refer to the indicator, source, and receptor, respectively. The indicator superscript refers to the SA method (PI for potential impacts,
INC for increments, and TAG for tagging), while its subscript indicates the source (city or background (bg)); α represents the percentage
reduction factor applied for the source emissions in the potential impacts method. See text for additional details.

City contribution Background contribution

Potential impact IPIα
city =

I (R)−Icityα (R)
α IPIα

bg =
I (R)−Ibgα (R)

α

Increment I INC
city = I

(
xr, t r

)
− I

(
y, t r

)
I INC
bg = I

(
y, t r

)
Tagging ITAG

city =
city∑
E

IE(R) ITAG
bg =

bg∑
E

IE(R)

2018; Viana et al., 2008), the city contribution then increases
significantly in most cities. This becomes even more strik-
ing if we limit the indicator to the PPM2.5 fraction originat-
ing from the transport and residential sectors (bottom right).
These two sectors have recently been shown to generate the
largest burden on human health given the high oxidative po-
tential of their emissions (Daellenbach et al., 2020; Li et al.,
2016). With this indicator, the majority of EU cities become
main contributors to their pollution. Regarding the latter in-
dicator, it is important to note that although the increasing
adoption of electric vehicles shows rather positive impacts
on health (Choma et al., 2020), the remaining PM emissions
from road traffic like tyres and brake and road wear emis-
sions (Kole et al., 2017; Grigoratos and Martini, 2014; Ntzi-
achristos and Boulter, 2019) will remain an issue. The cal-
culation of various geochemical indices (enrichment factor,
geo-accumulation index, pollution index, and potential eco-
logical risk) also show that road dust is extremely enriched
and contaminated by elements from tyre and brake wear (e.g.
Sb, Sn, Cu, Bi, and Zn).

3.2 Sensitivity to the SA methodology

A comparison of SA methodologies is proposed in Thunis
et al. (2019), where the potential impact, increment, and tag-
ging approaches are compared on both simple theoretical ex-
amples and real data to highlight differences among meth-
ods and stress their limitations. In this section, we summa-
rize the main findings of this work and complement it with
comparisons that focus on the apportionment of the city vs.
background contributions. We also provide in Appendix A a
comparison of all SA methods discussed in this section, ap-
plied on a theoretical example tuned to the city scale.

3.2.1 Increment vs. potential impacts

Thunis (2018) compared increments and potential impacts
with the SHERPA model for a series of European cities. He
showed that increment approaches lead to important underes-
timations (30 % to 50 %) of the city’s responsibility for PM2.5
and NO2 with respect to potential impacts. This underestima-

tion is explained by the non-fulfilment of the two underlying
increment assumptions related to the external location (i.e.
y in I INC

bg (R)= I
(
y, t r

)
) being (1) far enough from the city

to not feel its influence but (2) close enough to the city to
avoid influences from sources external to the city. The au-
thors show that these two assumptions are seldom fulfilled in
reality.

3.2.2 Tagging vs. potential impacts

Clappier et al. (2017) discussed the concepts underlying
these two SA methods and showed that important differences
in terms of results arise as soon as non-linear processes are
present. Belis et al. (2020) highlighted and quantified these
large differences based on a real-case inter-comparison ex-
ercise. Finally, Thunis et al. (2019) reviewed in their work
many inter-comparisons between tagging and potential im-
pact SA results. In their application over the Po basin (Italy),
they showed that differences are large for the agriculture sec-
tor (dominated by NH3 emissions) but are also important
for other sectors when dealing with high temporal resolution
(e.g. daily) at the receptor. Unfortunately, these examples did
not address the particular case of a city-scale apportionment.

3.2.3 Full vs. partial potential impacts

To analyse differences between full and partial impacts, we
use a series of EMEP simulations in which we remove totally
(PI100) or partly (PI20) the London FUA emissions (source)
during an entire year. Figure 3 shows the differences between
city contributions obtained with the two PI methods. Dif-
ferences can be important (up to 25 percentage points for
specific days). Although the number of high-difference days
is limited (leading to a yearly average difference of a few
per cent), these days might represent high-pollution episodes
for which assessing the city’s responsibility is important to
act. In general, the higher resolution applied to the temporal
and/or spatial averages at the receptor, the larger the differ-
ences are among methods. It is also interesting to note that
partial potential impacts systematically underestimate full
potentials (no negative values).
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Figure 2. SHERPA results for 150 major cities in Europe for the overall PM2.5 concentration (a), for its anthropogenic fraction (“PM25_ant”;
b), for its anthropogenic primary fraction (“PPM25_ant”; d), and for its primary fraction originating from the transport and residential sectors
(“PPM25_oxy”; c). For all cities, the source is defined spatially as the FUA over which emissions are reduced over a year (Y ). The receptor
is defined as the city location where the concentration is maximum (xmax), and the indicator is averaged yearly at the receptor (Y ). All
calculations are made with the same SA methodology, namely potential impacts (PIs) with city emissions reduced by 50 % (PI50).

Figure 3. Histogram of daily city contribution differences to London PM2.5 levels between two potential impacts methods, PI100 and
PI20, calculated with the EMEP model. The source is defined spatially as the FUA where emissions are reduced yearly (Y subscript). The
receptor is defined spatially as the city location where the maximum yearly averaged concentration is modelled (xmax) and temporally as
daily average (D). Each column represents the number of days with a specific PI difference (PI100−PI20). The blue line provides the yearly
average difference.

3.3 Sensitivity to the source

Figure 4 shows the comparison between SA obtained with
sources defined as core cities (left) and as FUAs (right). The
city contribution or responsibility is multiplied by a factor
of 2 on average (see also Fig. 8) when FUAs are consid-
ered. The larger spatial extension of the FUA and its implied
additional emissions explain the differences that lead some
cities to become a major actor, i.e. where the city contribution
dominates the background one (e.g. Athens, Warsaw, Milan,
Turin, and Rome).

3.4 Sensitivity to the receptor

In this section, we discuss the spatial and temporal averages
applied at the receptor. Spatially, different averaging options
exist, ranging from a single location (i.e. one model grid cell)
to more or less extended areas covering part of the source or
even larger. To illustrate the sensitivity of SA to that choice,
we use the case of Paris (Fig. 5), where emissions have been
reduced over the FUA (source) over a full year.

SA varies largely from one location to another within
Paris. We highlight this with bars that distinguish the city
vs. background contributions for locations at different dis-
tance from the city centre. We note opposite trends, domi-
nated by the city source (around 60 %) at the city centre and
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Figure 4. Maps of city contributions obtained for spatial sources defined in two ways: core city (CC; a) and FUA (b). Results are shown for
150 cities in Europe based on the SHERPA-CHIMERE model using a potential impact SA method for a reduction strength of 50 % (PI50).
The indicator is the total PM2.5 concentration. The receptor is selected as the location where the maximum yearly average concentration
occurs (xmax) and applies a yearly time average (Y ). The source emissions are reduced over a full year (Y ).

Figure 5. City rings’ source apportionment for Paris PM2.5 and associated population exposure. The city and background apportionment
(bars) is represented for rings (i) progressively more distant from the city centre (x axis). The ring average concentration (Ci ) and population
density (Pi ) relative to the city centre values are represented in blue and green, respectively. The relative (to the FUA total, i.e. all rings)
weight of each ring (i) in the city average concentration (brown) is calculated as Ci × Si/

∑
i (Ci × Si ), where Si is the ring area. A similar

expression (Ci×Si×Pi/
∑
i (Ci×Si×Pi )) is used to determine the weight of each ring in the calculation of the average population exposure

(red curve).

dominated by the background source towards the periphery
(around 80 %). While the SA at the city centre is representa-
tive of a single cell within the city, this is not the case for SA
close to the periphery. This is highlighted by the city rings
(below the x axis) that indicate the area of representative-
ness of a given SA. When we spatially average an indicator
(PM2.5 or population exposure) over a receptor that covers
the entire FUA (all six rings), these areas of representative-
ness enter into play. The brown curve indicates the weight
(in the spatial average) attached to each city ring relative to
the city total (i.e. all rings). Weights increase fast when mov-
ing towards the periphery because of the larger ring areas.
The spatial-averaging process leads to over-representation of
the periphery, which outweighs the city centre SA by almost
a factor of 40. It is interesting and counterintuitive to note
that with this averaging process, the city’s responsibility de-

creases when the city area increases. With population expo-
sure as an indicator (weights shown by the red curve), the
rapid population density decrease balances the ring area in-
crease when moving outward, leading to weights that domi-
nate for middle rings. With average population exposure, the
city centre weight is still similar to the weight obtained 28 km
away.

Figure 6 compares SA for 150 cities obtained for receptors
defined (1) as the location where the maximum concentration
is reached within the FUA (xmax) and (2) as the FUA spatial
average (FUA). On average, city impacts for a spatially aver-
aged receptor are about 55 % lower. Depending on the spatial
characteristic of the receptor, some cities will be considered
to be minor or major actors with respect to their pollution.
We discuss this point further in Sect. 4.
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Figure 6. Comparison of potential impacts for 150 cities in Europe
obtained for a receptor spatially defined as the location where the
concentration is maximum in the city (xmax – x axis) and defined
as the spatially averaged FUA (FUA). For these calculations, the
source is defined as the FUA over which emissions are switched
off during the whole year. The indicator is the total PM2.5 mass.
All results are based on the SHERPA-CHIMERE model using a
potential impact SA method for a reduction strength of 50 % (PI50)
and are based on yearly averages at the receptor (Y ).

As seen from these results, spatial averages at the recep-
tor significantly reduce the city’s responsibility, potentially
leading to underestimation of the city’s ability to reduce pol-
lution levels via local controls. The large differences result-
ing from the choice of the receptor settings prevent meaning-
ful comparisons. It is for example challenging to compare
CAMS city contributions that are averaged spatially over
the city area with the urban results obtained in the context
of the Thematic Strategy on Air Pollution (Kiesewetter and
Amann, 2014) that are aggregated at the country level or with
SHERPA estimates based on a single grid cell receptor. It is
therefore crucial to associate all SA settings (metadata) to
the results in order to inform about the meaningfulness of a
comparison. We further discuss this issue in the context of
air quality planning in Sect. 4.

Similar considerations apply to temporal averages. Fig-
ure 7 compares SA obtained when the indicator at the recep-
tor is averaged yearly and seasonally with daily single val-
ues. For a yearly average, Madrid city’s contribution is 54 %,
but the spectra of daily contributions show variations that
range from 10 % to beyond 90 %. Even seasonal averages
show important differences of a factor of 2 between summer
and winter. Similarly to spatial averages, temporal averages
encompass a large spectra of SA outcomes. Indicators aver-
aged yearly at the receptor have been used for example in
SHERPA (Thunis et al., 2017) and GAINS (Kiesewetter and
Amann, 2014), whereas daily indicators are used in CAMS
(Pommier et al., 2020). Correlating low and high city contri-
butions to meteorological factors (cold vs. warm days, windy
vs. calm situations, etc.) is beyond the scope of this work.
This point is however addressed in Pisoni et al. (2021).

Note that spatial averages have a larger smoothing effect
than temporal ones because they are bidimensional.

3.5 Methodological assumptions and uncertainties

In addition to referring to the SA method itself (Sect. 2.4),
other modelling parameters need to be documented as well.
We list the main ones hereafter.

One of the main assumptions attached to models is the spa-
tial resolution and its potential impact on the calculation of
the city contribution. While a coarse resolution might be able
to capture relatively well the background (characterized by
smoother fields), this will not be the case for peak concentra-
tions within the city. The coarser the model spatial resolution,
the larger the underestimation of the city’s responsibility will
be (De Meij et al., 2007).

Uncertainties may result from our incomplete knowledge
of some model input parameters, in particular chemical pro-
cesses and emission sources. Some urban emission sources
are not well documented and are probably underestimated.
This is the case for residential emissions, for which the inclu-
sion of condensable organic species remains a question mark
(Bessagnet and Allemand, 2020; Simpson et al., 2020), or
for the resuspension of particles generated by vehicles (Am-
ato et al., 2014). On the other hand the spatial allocation for
emissions can be uncertain for some sectors. These lacking
or incomplete emission sources will lead to a potential mis-
estimate of the city’s responsibility.

On the meteorological side, the estimation of wind speed,
planetary boundary layer (PBL) height, and/or turbulence in-
tensity will largely influence the dispersion of city emissions
and uncertainties, and these will therefore impact the calcu-
lation of city contributions. While the impact of meteorolog-
ical parameterization on air quality has been extensively as-
sessed from regional to urban cases (De Meij et al., 2009,
2015, 2018; Jiang et al., 2020), only few studies assessed
their importance to city contributions. One of these (Huszar
et al., 2021) shows, for example, that the inclusion of an ur-
ban canopy meteorological forcing in multi-year simulations
largely impacts the estimation of the city’s responsibility. In
the next section, we discuss the consequences of these re-
sults on policy, in particular when SA information is used to
design air quality plans.

4 Implications for air quality strategies

Estimating a city’s pollution contribution has important con-
sequences in terms of air quality management. Indeed, an
important city contribution will be a logic argument to sup-
port substantial control measures at the local level to abate
pollution. The effectiveness of the control measures then re-
lies on the relevance and accuracy of this city contribution;
over- or underestimated city contributions potentially lead to
inefficient measures.
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Figure 7. Frequency histogram of daily potential impact at 100 % (PI100) modelled with the EMEP model for the city of Madrid. Each
column represents the number of days with a given daily PI. The blue line provides the yearly average PI. For these calculations, the source
is the Madrid functional urban area (FUA) over which emissions are switched off during the whole year (Y ). The indicator is the total PM2.5
mass. The receptor point is the city centre location (xcentre).

In previous sections, we see that the city contribution
largely varies depending on the choices made for the SA set-
ting parameters (definition of the indicator, source, receptor,
and methodology), hence the challenge to obtain a relevant
and accurate estimate to support local action.

Given the range of possible SA options and their impact on
results, the first recommendation is obviously to report these
SA setting choices together with the results to provide policy-
makers with the full picture and allow them to take informed
decisions. This advocates for the use of the proposed nomen-
clature or a similar one that reports and details the choices
in the SA approach, providing accountability of the method
and enabling correct interpretation of the results. The pro-
posed nomenclature can be understood as a documentation
of the SA metadata information. Apart from this point on the
importance of documenting SA approach choices, we show
below that some of the SA settings are fixed by the purpose
of the study. We provide suggestions for the remaining free
choices.

4.1 METHOD: an approach based on potential impacts
is recommended for SA

It is important to recall that not all SA methodologies are
equally suited to support air quality planning. As mentioned
by several authors (Burr and Zhang, 2011; Qiao et al., 2018;
Mertens et al., 2018; Clappier et al., 2017; Grewe et al.,
2010, 2012; Thunis et al., 2019), potential impacts are rec-
ommended when non-linear species are involved (which is
the case for PM2.5 and PM10 but also for other species like
NO2 or O3). It is worth reminding that tagging or incremen-
tal approaches are still used erroneously and believed to be
suited for air quality planning purposes (Qiao et al., 2018;
Guo et al., 2017; Itahashi et al., 2017; Timmermans et al.,
2017; Wang et al., 2015; Hendriks et al., 2013). Although
challenging practical issues are attached to potential impacts
and may be seen as a burden (e.g. lack of additivity; see Ap-
pendix), they only reflect the complexity of the real processes
that must be accounted for. It is true that uncertainties asso-
ciated with the PI approach (e.g. imperfect emission inven-

tory) may lead other SA methods to perform better in some
instances because methodological biases compensate uncer-
tainties; this is however coincidental. While uncertainties can
be tackled and reduced to improve the approach, this is not
the case for methodological biases. These points are exten-
sively discussed in Thunis et al. (2019).

For the remainder of this section, focusing on policy as-
pects, only potential impact results are discussed. Fixing the
methodology, however, still leaves free options in terms of in-
dicator, receptor, and source. Figure 8 summarizes the vari-
ability in the SA results presented in the previous sections
(i.e. Figs. 2, 4, and 6) to these free options. Differences in
terms of the city’s responsibility reach a factor of 2 on aver-
age for each of these remaining parameters, with much larger
values for some cities.

4.2 INDICATOR: the indicator choice is driven by health
and environmental objectives

The choice of the indicator is generally motivated by health
or environmental considerations. Currently, the WHO guide-
lines (WHO2005, 2005) refer to the total PM2.5 mass as the
indicator correlating best with health impacts. These guide-
lines (or the Ambient Air Quality Directive, AAQD, limit
values) are then the logical and most relevant indicator choice
among the options presented in Sect. 3.1 and shown in Fig. 2.
As illustrated by Fig. 8, evolving knowledge of health-related
pollution impacts (i.e. the increased toxicity of some PM2.5
constituents like those related to the traffic and residential
activities) might, however, drive the choice towards more de-
tailed indicators (e.g. PPM2.5), leading to an increased re-
sponsibility for the cities.

4.3 SOURCE: importance of matching sources with
governance levels

Figure 8 shows that plans limited to city cores would be sig-
nificantly less efficient than if applied at the FUA scale. On
average over all cities, the efficiency decreases by a factor
of 2, but larger differences occur in many cities. The source
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Figure 8. Box quantile diagrams summarizing the city contributions to PM2.5 levels for the 150 EU cities. All results are based on a similar
method (potential impacts at 50 %) and a similar temporal receptor (Y ) but for different choices of city sources (left), receptors (centre),
and indicators (right). See previous sections for details. The two extremities of each vertical line represent the 10th and 90th percentile
contributions among the 150 cities, respectively. The box crossing the horizontal line represents the median.

does not, however, represent a free choice in the context of
policy practice. Indeed, authorities in charge of air quality
(AQ) plans only have power to act on the area under their
responsibility, which sets where measures apply. The same
applies for the source temporal characteristic, fixed as the
period of time during which measures apply. A good match
between the SA settings and the temporal and spatial charac-
teristics of the source is therefore important to provide mean-
ingful support to policymakers.

4.4 RECEPTOR: drawbacks associated with spatial-
and temporal-averaging processes at the receptor

As clearly shown in Fig. 5, spatial-averaging processes lead
to a loss of information. In our example, a city-average-based
SA would totally occult the city centre SA. It would lead to
a strategy that mostly targets the background at the expense
of the city centre, where the high concentration issues would
not be solved. This is well illustrated by Amann et al. (2017),
who analyse the responsibility of the city of New Delhi for
its air pollution, both at a city centre hot spot receptor and in
terms of city-average population exposure. In the first case,
SA suggests acting on local sources, while in the second, SA
suggests acting on regional sources. Spatial averaging drives
the balance towards regional actions that will be less effec-
tive in solving the pollution issue at the city centre. The larger
the city, the more important this shift will be. As illustrated
by Fig. 8, there is a difference of more than a factor of 2 be-
tween city-averaged and hot spot indicators. Similar consid-
erations apply to temporal averages. Figure 7 clearly shows
that yearly average values hide the potential for effective lo-
cal actions during wintertime and even more on specific days.

Averaging implies merging, into one single number, lo-
cations and time instants that are characterized by different
and sometimes opposite SA. This may lead to strategies that
will not be efficient everywhere all the time. Whenever the
final objective is to reduce a temporally or/and spatially aver-

aged indicator (e.g. average population exposure), strategies
would gain in efficiency with the following process: (1) per-
form SA and hierarchize the raw (not averaged) SA results
into homogeneous spatio-temporal clusters; (2) design strate-
gies on the basis of these clusters; (3) assess the strategy ef-
ficiency against the averaged indicator. The key here is to
design strategies for raw or clustered results rather than av-
eraged ones to prevent information loss. Note that design-
ing a unique strategy based on multiple SA results (point 2
above) does not necessarily complicate the analysis as these
different SAs will likely suggest action for different sectors
of activity that can be combined in the final strategy.

5 Conclusions

Although air quality has improved in Europe over the last
decades, in great part thanks to effective measures and con-
sistent EU-wide legislation, pollution hot spots still remain in
many European cities. The extent to which city emissions are
causing these elevated urban pollution levels is however still
a subject of scientific discussion. This can be explained by
the complex processes driving the formation of some pollu-
tants like PM2.5, for which there is not a simple relationship
between emissions and concentrations (in other words, local
emissions do not always imply local responsibilities). Source
apportionment represents a useful technique to quantify the
city’s responsibility, but the approaches and applications are
however not harmonized and therefore not comparable, re-
sulting in confusing and sometimes contradicting interpreta-
tions.

In this work, we analysed how different SA approaches
apply to the urban scale and how their building elements
and parameters are defined and set. We identified the pos-
sible settings associated with four key steps in SA: indicator,
receptor, source, and methodology. We showed that differ-
ent choices for these settings lead to very large differences
in terms of results. On average over the 150 large European
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cities selected as examples, the choices made for the indi-
cator, the receptor, and the source each lead to an average
difference of a factor of 2 in terms of the city’s responsibil-
ity. These various options and the large differences that re-
sult highlight the difficulty of comparing results from differ-
ent studies and stress the need to document the SA approach
with its related metadata associated with the key four steps.

This work advocates for the use of a harmonized nomen-
clature to support the comparability of SA approaches. We
propose the use of indexes and sub-indexes attached to the
four key steps in any SA approach in a harmonized way to
uniquely document the approach and enable correct inter-
pretation of the results. We believe that the adoption of this
nomenclature will provide clarity to the scientific discussion
on different results and enable the correct interpretation of
the results for policy applications. Even though this is ap-
plied to the specific case of PM2.5, the concepts presented
here can easily be generalized to other pollutants.

In the context of supporting urban air quality plans, the
SA configuration and most setting parameters are driven by
the purpose of the AQ plan itself and by its associated con-
straints. While environment- and/or health-related consider-
ations guide the choice of the indicator, the spatio-temporal
characteristics of the source are strongly correlated to gov-
ernance aspects. In other words, the source characteristics
should reflect the governance levels to facilitate interpreta-
tion. Finally, the recommended SA method should be based
on “potential impacts” to prevent misleading interpretations
in terms of expected AQ plan outcome.

At the receptor level, temporal- and spatial-averaging pro-
cesses lead to a loss of information, especially when diverg-
ing SA results are aggregated into a single number. Averag-
ing process, in particular spatial, often lead to the favouring
of strategies that target background sources while neglect-
ing actions that would be efficient at the city centre. In our
150-city example, the impact of spatial averaging leads to
an average difference of a factor of 2 in terms of the city’s
responsibility. Results differ not only from one city to the
other and from one location to another in a given city, they
also differ through time. To cope with this variability, we rec-
ommend using non-averaged SA results for the design of AQ
strategies. Once clustered in homogeneous spatio-temporal
classes, these can serve to understand where and when ac-
tions are most efficient. When implemented, the efficiency
of abatement measures can then be assessed via spatially and
temporally averaged indicators (e.g. city-average population
exposure).

The responsibility of a city to its pollution is obviously
city-dependent. But even for a given city, SA studies us-
ing different approaches and parameter settings will deliver
very different outcomes. It is important to note that on top of
departure from the methodological recommendations listed
above, additional uncertainties and assumptions will most of-
ten lead to a systematic and important underestimation of the
city’s responsibility. We showed that on average over 150 Eu-

ropean cities, departures in terms of source, receptor, and in-
dicator may each lead to an underestimation by a factor of 2.
This comes with important implications: if cities are seen as
a minor actor, plans will target the background as a priority
at the expense of potentially effective local actions.

Future work will consist of comparing spatially or tempo-
rally averaged SA results with SA results that are clustered
in homogeneous spatio-temporal classes and assess the im-
plications in terms of AQ strategy.

Appendix A

To illustrate the differences among SA methods, we use here
the theoretical example schematically represented in Fig. A1.
A city source (in red) emits with a Gaussian dispersion
profile both primary PM (PPM) and a gas-phase precursor
(NOx). The background pollution (in blue) is composed of a
mix of NOx , NH3, and PPM compounds. The various chem-
ical reactions that take place are simplified here for conve-
nience into a single reaction; 1 mol of NH3 reacts with 1 mol
of NOx to create 1 mol of ammonium nitrate (NH+4 NO−3 ),
i.e. secondary PM (NOx+NH3+X→→ NH+4 NO−3 ). We as-
sume here that the external compounds involved in the reac-
tion (X) are abundant and do not have a limiting effect on the
formation of PM. While the city emissions (source) remain
unchanged, we modify the relative importance of the three
background compounds so that the background becomes in
turn PPM-, NOx-, and NH3-dominated. The PM concentra-
tion at a given location “x” is given by

PM(x)= PPM(x)+min{NOx(x),NH3(x)}mole

×NH+4 NO−3 . (A1)

Based on the formulations provided in Table 1 and Eq. (4),
the expressions to calculate the city and background com-
ponents for the theoretical example presented above are de-
tailed in Table A1. While these formulations are relatively
straightforward for potential impacts and increments, it is
more complex for the tagging method. The city tagging com-
ponent is the sum of all PM species that are directly related
to the city emissions. This includes PPM and NO3 that are
related to the PPM and NOx city emissions, respectively. For
the background component, it includes PPM, NOx , and also
NH4 that is related to the NH3 emissions. Tagging allows the
NOx and NH3 emitted compounds to be followed through
their chemical processes and transformations until they cre-
ate NO3 and NH4, respectively, that can be attributed to their
respective sources. As NOx is emitted by both sources, the
total NO3 must be fractionated and attributed to each single
source. In our example, the NO3 fraction attributed to the city
depends on the ratio of the available NOx precursor at the lo-
cation of interest

(
β =

NOx,city(cc)
NOx (cc)

)
. A similar process is used

to calculate the background component.
This example is used to compare the increment (INC), tag-

ging (TAG), and potential impact (PI) SA approaches.
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Table A1. Formulations for the potential impacts, increments, and tagging approach for the example presented in Fig. A1. The indicator
for all methods and components is the total particulate matter mass (PM). The SA method is indicated as superscript (PIα, INC, or TAG),
whereas the source (city or bg) is in subscript. The receptor is the city centre (cc), while the rural location selected for the increment approach
is denoted by “bg”. For the tagging, the source subscript is also expressed directly as emissions (E) distinguishing each compound (within
brackets).

Potential impact

City PMPIα
city(cc)=

PM(cc)−PMcityα (cc)
α

Background PMPIα
bg (cc)=

PM(cc)−PMbgα (cc)
α

Increment

City PMINC
city (cc)= PM(cc)−PM(bg)

Background PMINC
bg (cc)= PM(bg)

Tagging

City PMTAG
city (cc)=

city∑
E

PME(cc)= PPME(PPM)city (cc)+βNO−3 E(NO2)city
(cc)

Background PMTAG
bg (cc)=

bg∑
E

PME(cc)= PPME(PPM)bg (cc)+ (1−β)NO−3 E(NO2)bg
(cc)+NH+4 E(NH3)bg

(cc)

Figure A1. Schematic representation of the theoretical example
used to compare the three SA approaches. The city source (in red)
emits NOx and PPM. The background (in blue, including other
cities as well as rural sources) is composed of NOx , PPM, and NH3
in different relative proportions (indicated by the arrow). The “cc”
and “bg” symbols represent the city centre receptor and the back-
ground location used for the increment approach, respectively.

Figure A2 shows the city and background contributions
obtained with the three SA methods, differentiating two op-
tions for the PI one: 100 % (PI100) and 20 % reduction in the
sources (PI20). The figure also distinguishes four situations
characterized by different background compositions.

– No background. When no background is present (top
left), the city NOx emissions do not form PM, only
PPM emissions do. In such cases, all methods deliver
the same response.

– PPM background. When the background is composed
of PPM only (top right), no secondary species are
formed. All methods agree, with the exception of the
increment approach. This is due to the non-fulfilment of

one of its underlying assumptions, i.e. the lack of spa-
tial homogeneity of the background, which affects the
rural and city locations differently (indicated by “cc”
and “bg” in Fig. A2, respectively).

– SEC background with NH3>NOx . When secondary
background precursors (NOx and NH3) reach the city
(bottom row), SA methods deliver different results be-
cause they manage non-linear processes differently.
When NH3 is more abundant than NOx (bottom left),
the PI100 method does not preserve additivity (dis-
cussed in Sect. 2.4); i.e. the sum of the two components
exceeds the total PM concentration. As seen from the re-
sults and also from Table A1, this is not the case for the
increment and tagging approaches that are constructed
to be additive.

– SEC background with NH3<NOx . When NH3 is less
abundant than NOx (bottom right), differences remain
important between the tagging, potential impact, and in-
crement approaches, but additivity is preserved for both
PI100 and PI10, which provide identical responses.
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Figure A2. Comparison of the city (red) and background (blue) components for four approaches applied to the theoretical examples described
in Fig. A1. Results are expressed for different types of background: (a) no background, (b) background limited to PPM, (c) background
limited to secondary but with NH3>NOx , and (d) background limited to secondary but with NH3<NOx .

Code availability. The SHERPA interface developed by the Eu-
ropean Commission (EC-JRC) is available at https://aqm.jrc.
ec.europa.eu/sherpa.aspx (last access: 24 November 2021), and
its code is available at https://doi.org/10.5281/zenodo.5770956
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