
HAL Id: hal-04752550
https://hal.science/hal-04752550v1

Submitted on 24 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

alchemlyb: the simple alchemistry library
Zhiyi Wu, David Dotson, Irfan Alibay, Bryce Allen, Mohammad Soroush

Barhaghi, Jérôme Hénin, Thomas Joseph, Ian Kenney, Hyungro Lee, Haoxi
Li, et al.

To cite this version:
Zhiyi Wu, David Dotson, Irfan Alibay, Bryce Allen, Mohammad Soroush Barhaghi, et al..
alchemlyb: the simple alchemistry library. Journal of Open Source Software, 2024, 9 (101), pp.6934.
�10.21105/joss.06934�. �hal-04752550�

https://hal.science/hal-04752550v1
https://hal.archives-ouvertes.fr


alchemlyb: the simple alchemistry library

Zhiyi Wu 1*, David L. Dotson 2,3*, Irfan Alibay 4, Bryce K. Allen 5,
Mohammad Soroush Barhaghi 6, Jérôme Hénin 7, Thomas T. Joseph 8,
Ian M. Kenney 2, Hyungro Lee 9, Haoxi Li 10, Victoria Lim 11, Shuai
Liu 12, Domenico Marson 13, Pascal T. Merz 14, Alexander Schlaich 15,
David Mobley 11, Michael R. Shirts 16, and Oliver Beckstein 2,17¶

1 Exscientia plc, Schroedinger Building, Oxford, United Kingdom 2 Department of Physics, Arizona
State University, Tempe, Arizona, United States of America 3 Datryllic LLC, Phoenix, Arizona, United
States of America (present affiliation) 4 Open Free Energy, Open Molecular Software Foundation, Davis,
California, United States 5 Differentiated Therapeutics, San Diego, CA 6 Department of Chemical
Engineering and Materials Science, Wayne State University, Detroit, Michigan, United States of America
7 Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, Paris, France 8 Department of
Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia,
Pennsylvania, United States of America 9 Pacific Northwest National Laboratory, Richland, Washington,
United States of America 10 UNC Eshelman School of Pharmacy, University of North Carolina, Chapel
Hill, NC, United States of America 11 Departments of Pharmaceutical Sciences and Chemistry,
University of California Irvine, Irvine, California, United States of America 12 Silicon Therapeutics LLC,
Boston, United States of America 13 Molecular Biology and Nanotechnology Laboratory
(MolBNL@UniTS), DEA, University of Trieste, Trieste, Italy 14 PM Scientific Consulting, Basel,
Switzerland 15 Stuttgart Center for Simulation Science (SC SimTech) & Institute for Computational
Physics, University of Stuttgart, Stuttgart, Germany 16 University of Colorado Boulder, Boulder,
Colorado, United States of America 17 Center for Biological Physics, Arizona State University, Tempe,
AZ, United States of America ¶ Corresponding author * These authors contributed equally.

DOI: 10.21105/joss.06934

Software
• Review
• Repository
• Archive

Editor: Sarath Menon
Reviewers:

• @glycodynamics
• @ryankzhu

Submitted: 05 June 2024
Published: 26 September 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
alchemlyb is an open-source Python software package for the analysis of alchemical free energy
calculations, an important method in computational chemistry and biology, most notably in
the field of drug discovery (Merz et al., 2010). Its functionality contains individual composable
building blocks for all aspects of a full typical free energy analysis workflow, starting with the
extraction of raw data from the output of diverse molecular simulation packages, moving on to
data preprocessing tasks such as decorrelation of time series, using various estimators to derive
free energy estimates from simulation samples, and finally providing quality analysis tools for
data convergence checking and visualization. alchemlyb also contains high-level end-to-end
workflows that combine multiple building blocks into a user-friendly analysis pipeline from the
initial data input stage to the final results. This workflow functionality enhances accessibility
by enabling researchers from diverse scientific backgrounds, and not solely computational
chemistry specialists, to use alchemlyb effectively.

Statement of need
In the pharmaceutical sector, computational chemistry techniques are integral for evaluating
potential drug compounds based on their protein binding affinity (Deng & Roux, 2009).
Notably, absolute binding free energy calculations between proteins and ligands or relative
binding affinity of ligands to the same protein are routinely employed for this purpose (Merz
et al., 2010). The resultant estimates of these free energies are essential for understanding
binding affinity throughout various stages of drug discovery, such as hit identification and lead

Wu et al. (2024). alchemlyb: the simple alchemistry library. Journal of Open Source Software, 9(101), 6934. https://doi.org/10.21105/joss.06934. 1

https://orcid.org/0000-0002-7615-7851
https://orcid.org/0000-0001-5879-2942
https://orcid.org/0000-0001-5787-9130
https://orcid.org/0000-0002-0804-8127
https://orcid.org/0000-0001-8226-7347
https://orcid.org/0000-0003-2540-4098
https://orcid.org/0000-0003-1323-3244
https://orcid.org/0000-0002-9749-8866
https://orcid.org/0000-0002-4221-7094
https://orcid.org/0009-0004-8369-1042
https://orcid.org/0000-0003-4030-9312
https://orcid.org/0000-0002-8632-633X
https://orcid.org/0000-0003-1839-9868
https://orcid.org/0000-0002-7045-8725
https://orcid.org/0000-0002-4250-363X
https://orcid.org/0000-0002-1083-5533
https://orcid.org/0000-0003-3249-1097
https://orcid.org/0000-0003-1340-0831
https://doi.org/10.21105/joss.06934
https://github.com/openjournals/joss-reviews/issues/6934
https://github.com/alchemistry/alchemlyb
https://doi.org/10.5281/zenodo.13799342
http://sarathmenon.me/
https://orcid.org/0000-0002-6776-1213
https://github.com/glycodynamics
https://github.com/ryankzhu
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06934


optimization (Merz et al., 2010). Other free energies extracted from simulations are useful in
solution thermodynamics, chemical engineering, environmental science, and material science
(Schlaich et al., 2015).

Molecular simulation packages such as GROMACS (Abraham et al., 2015), Amber (Case et al.,
2005), NAMD (Phillips et al., 2020), LAMMPS (Thompson et al., 2022), and GOMC (Nejahi
et al., 2021) are used to run free energy simulations and many of these packages also contain
tools for the subsequent processing of simulation data into free energies. However, there are
no standard output formats and analysis tools implement different algorithms for the different
stages of the free energy data processing pipeline. Therefore, it is very difficult to analyze data
from different simulation packages in a consistent manner. Furthermore, the native analysis
tools do not always implement current best practices (Klimovich et al., 2015; Mey et al.,
2020) or are out of date. Overall, the coupling between data generation and analysis in most
simulation packages hinders seamless collaboration and comparison of results across different
implementations of data generation for free energy calculations.

alchemlyb addresses this problem by focusing only on the data analysis portion of this process
with the goal to provide a unified interface for working with free energy data generated from
different software packages. In an initial step data are read from the native package file
formats and then organized into a common standard data structure, organized as a pandas
DataFrame (McKinney, 2010). Functions are provided for pre-processing data by subsampling
or decorrelation. Statistical mechanical estimators are available to extract free energies
and thermodynamic expectations as well associated metrics of quality; these estimators are
implemented as classes with the same API as estimators in scikit-learn (Buitinck et al., 2013;
Pedregosa et al., 2011). alchemlyb implements modular building blocks to simplify the process
of extracting crucial thermodynamic insights from molecular simulations in a uniform manner.

alchemlyb succeeds the widely-used but now deprecated alchemical-analysis.py tool
(Klimovich et al., 2015), which combined pre-processing, free energy estimation, and plotting
in a single script. alchemical-analysis.py was not thoroughly tested and hard to integrate
into modern workflows due to its monolithic design, and only supported (now outdated)
Python 2. alchemlyb improves over its predecessor with a modular, function based design
and thorough testing of all components using continuous integration. Thus, alchemlyb is
a library that enables users to easily use well-tested building blocks within their own tools
while additionally providing examples of complete end-to-end workflows. This innovation
enables consistent processing of free energy data from diverse simulation packages, facilitating
streamlined comparison and combination of results.

Notably, alchemlyb’s robust and user-friendly nature has led to its integration into other
automated workflow libraries such as BioSimSpace (Hedges et al., 2019) or MDPOW (Fan et
al., 2020), demonstrating its accessibility and usability within broader scientific workflows and
reinforcing its position as a versatile tool in the field of computational chemistry.

Background: Alchemical free energy calculations
Free energy differences are fundamental to understand many different processes at the molecular
scale, ranging from the binding of drug molecules to their receptor proteins or nucleic acids
through the partitioning of molecules into different solvents or phases to the stability of crystals
and biomolecules (Deng & Roux, 2009). The calculation of such transfer free energies involves
constructing two end states where a target molecule interacts with different environments. For
example, in a solvation free energy calculation, in one state (the coupled state) the target
molecule interacts with a solvent (in the case of hydration free energies, water), while in the
other state (the decoupled state) the ligand has no intermolecular interactions, which mimics
the transfer of a ligand from infinite dilution in the solvent to the gas phase. The solvation
free energy is then obtained by calculating the free energy difference between these two end
states, but it is crucial to ensure sufficient overlap in phase space between the coupled and

Wu et al. (2024). alchemlyb: the simple alchemistry library. Journal of Open Source Software, 9(101), 6934. https://doi.org/10.21105/joss.06934. 2

https://www.gromacs.org/
https://ambermd.org/
https://www.ks.uiuc.edu/Research/namd/
https://lammps.org/
https://gomc-wsu.org/
https://pandas.pydata.org
https://scikit-learn.org
https://github.com/MobleyLab/alchemical-analysis
https://doi.org/10.21105/joss.06934


decoupled states, a condition often challenging to achieve.

Stratified alchemical free energy calculations have emerged as a de-facto standard approach
whereby non-physical intermediate states are introduced to bridge between the physical end
states of the process (Mey et al., 2020). In such free energy calculations, overlapping
states are created by the introduction of a parameter 𝜆 that continuously connects the
functional form (the Hamiltonian of the system) of the two end-states, resulting in a series
of intermediate states each with a different 𝜆 value between 0 and 1 and with the physically
realizable end states at 𝜆 = 0 and 𝜆 = 1. In general, 𝑁 alchemical parameters are used to
describe the alchemical transformation with a parameter vector �⃗� = (𝜆1, 𝜆2,… , 𝜆𝑁), so that
�⃗� = (0, 0,… , 0) indicates the initial and �⃗� = (1, 1,… , 1) the final state. The intermediate
states are non-physical but required for converging the calculations. At each �⃗�-value (or
“window”), the system configurations are sampled in the relevant thermodynamic ensemble,
typically using Molecular Dynamics (MD) or Monte Carlo (MC) simulations, while generating
and accumulating free energy data discussed below. Estimators are then applied to these data
to compute free energy differences between states, including the difference between the final
and initial state, thus yielding the desired free energy difference of the physical process of
interest.

Implementation

Core design principles
alchemlyb is a Python library that seeks to make alchemical free energy calculations easier
and less error prone. It includes functionality for parsing data from file formats of widely used
simulation packages, subsampling these data, and fitting these data with an estimator to obtain
free energies. Functions are simple in usage and pure in scope, and can be chained together
to build customized analyses of data while estimators are implemented as classes that follow
the tried-and-tested scikit-learn API (Buitinck et al., 2013). General and robust workflows
following best practices are also provided, which can be used as reference implementations and
examples.

First and foremost, scientific code must be correct and we try to ensure this requirement by
following best software engineering practices during development, close to full test coverage of
all code in the library (currently 99%), and providing citations to published papers for included
algorithms. We use a curated, public data set (alchemtest) for automated testing; code in
alchemtest is published under the open source BSD-3 clause license while all data are included
under an open license such as CC0 (public domain) or CC-BY (attribution required).

The guiding design principles are summarized as:

1. Use functions when possible, classes only when necessary (or for estimators, see (2)).
2. For estimators, mimic the object-oriented scikit-learn API as much as possible.
3. Aim for a consistent interface throughout, e.g. all parsers take similar inputs and yield a

common set of outputs, using the pandas.DataFrame as the underlying data structure.
4. Have all functionality tested.

alchemlyb supports recent versions of Python 3 and follows the SPEC 0 (Minimum Supported
Dependencies) Scientific Python Ecosystem Coordination community standard for deciding on
when to drop support for older versions of Python and dependencies. Releases are numbered
following the Semantic Versioning 2.0.0 standard of MAJOR.MINOR.PATCHLEVEL, which
ensures that users immediately understand if a release may break backwards compatibility
(increase of the major version), adds new features (increase of minor version), or only contains
bug fixes or other changes that do not directly affect users. All code is published under the
open source BSD-3 clause license.

Wu et al. (2024). alchemlyb: the simple alchemistry library. Journal of Open Source Software, 9(101), 6934. https://doi.org/10.21105/joss.06934. 3

https://github.com/alchemistry/alchemtest
https://opendefinition.org/licenses/#recommended-conformant-licenses
https://creativecommons.org/publicdomain/zero/1.0/
http://opendefinition.org/licenses/cc-by/
https://scientific-python.org/specs/spec-0000/
https://scientific-python.org/specs/spec-0000/
https://semver.org/
https://doi.org/10.21105/joss.06934


Library structure
alchemlyb offers specific parsers in alchemlyb.parsing to load raw free energy data from
various molecular simulation packages (GROMACS (Abraham et al., 2015), Amber (Case et al.,
2005), NAMD (Phillips et al., 2020), and GOMC (Nejahi et al., 2021)) and provides a general
structure for implementing parsers for other packages that are not yet supported. The raw data
are converted into a standard format as a pandas.DataFrame (McKinney, 2010) and converted
from the energy of the software to units of 𝑘𝑇 where 𝑘 = 1.380649×10−23 J K−1 is Boltzmann’s
constant and 𝑇 is the temperature at which the simulation was performed. Metadata such as
𝑇 and the energy unit are stored in DataFrame attributes and propagated through alchemlyb,
which enables seamless unit conversion with functions in the alchemlyb.postprocessing

module. Two types of free energy data are considered: Hamiltonian gradients (dHdl, 𝑑𝐻/𝑑𝜆)
at all lambda states, suitable for thermodynamic integration (TI) estimators (Kirkwood, 1935),
and reduced potential energy differences between lambda states (u_nk, 𝑢𝑛𝑘), which are used
for free energy perturbation (FEP) estimators (Zwanzig, 1954).

Both types of estimators assume uncorrelated samples in order to give unbiased es-
timates of the uncertainties, which requires subsampling of the raw data. The
alchemlyb.preprocessing.subsampling module provides tools for data subsampling
based on autocorrelation times (Chodera et al., 2007; Chodera, 2016) as well as simple slicing
of the dHdl and u_nk DataFrames.

The two major classes of commonly used estimators are implemented in alchemlyb.estimators.
Unlike other components of alchemlyb that are implemented as pure functions, estimators are
implemented as classes and follow the well-known scikit-learn API (Buitinck et al., 2013) where
instantiation sets the parameters (e.g., estimator = MBAR(maximum_iterations=10000)) and
calling of the fit() method (e.g., estimator.fit(u_nk)) applies the estimator to the data
and populates output attributes of the class; these results attributes are customarily indicated
with a trailing underscore (e.g., estimator.delta_f_ for the matrix of free energy differences
between all states). In alchemlyb, TI (Paliwal & Shirts, 2011) and TI with Gaussian quadrature
(Gusev et al., 2023) estimators are implemented in the TI category of estimators (module
alchemlyb.estimators.TI). FEP category estimators (module alchemlyb.estimators.FEP)
include Bennett Acceptance Ratio (BAR) (Bennett, 1976) and Multistate BAR (MBAR) (Shirts
& Chodera, 2008), which are implemented in the pymbar package (Shirts & Chodera, 2008)
and called from alchemlyb.

To evaluate the accuracy of the free energy estimate, alchemlyb offers a range of assessment
tools. The error of the TI method is correlated with the average curvature (Pham & Shirts,
2011), while the error of FEP estimators depends on the overlap in sampled energy distributions
(Pohorille et al., 2010). alchemlyb creates visualizations of the smoothness of the integrand
for TI estimators and the overlap matrix for FEP estimators, which can be qualitatively and
quantitatively analyzed to determine the degree of overlap between simulated alchemical
states, and suggest whether additional simulations should be run. For statistical validity, the
accumulated samples should be collected from equilibrated simulations and alchemlyb contains
tools for assessing (alchemlyb.convergence) and plotting (alchemlyb.visualisation) the
convergence of the free energy estimate as a function of simulation time (Yang et al., 2004) and
means to compute the “fractional equilibration time” (Fan et al., 2020) to detect potentially
non-equilibrated data.

alchemlyb offers all these tools as a library for users to customize each stage of the analysis
(Figure 1).

Wu et al. (2024). alchemlyb: the simple alchemistry library. Journal of Open Source Software, 9(101), 6934. https://doi.org/10.21105/joss.06934. 4

https://www.gromacs.org/
https://ambermd.org/
https://www.ks.uiuc.edu/Research/namd/
https://gomc-wsu.org/
https://github.com/choderalab/pymbar
https://doi.org/10.21105/joss.06934


GROMACS

AMBER

GOMC

NAMD

MD Engine Parsing

u_nk

dH/dl

Preprocessing

Decorrelation

Estimator

BAR

MBAR

Decorrelation
TI

TI_QG

Plotting

Overlap

Curvature

Convergence

Figure 1: The building blocks of alchemlyb. Raw data from simulation packages are parsed into common
data structures depending on the free energy quantities, pre-processed, and processed with a free energy
estimator. The resulting free energy differences are analyzed for convergence and plotted for quality
assessment.

Workflows
The building blocks are sufficient to compute free energies from alchemical free energy
simulations and assess their reliability. This functionality is used, for example, by the Streamlined
Alchemical Free Energy Perturbation (SAFEP) analysis scripts (Salari et al., 2018; Santiago-
McRae et al., 2023).

alchemlyb also provides a structure to combine the building blocks into full end-to-end workflows
(module alchemlyb.workflows). As an example, the ABFE workflow for absolute binding free
energy estimation reads in the raw input data and performs decorrelation, estimation, and
quality plotting of the estimate. It can directly estimate quantities such as solvation free
energies and makes it easy to calculate more complex quantities such as absolute binding free
energies (as the difference between the solvation free energy of the ligand in water and the
solvation free energy of the ligand in the protein’s binding pocket).

Acknowledgements
Some work on alchemlyb was supported by grants from the National Institutes of Health
(Award No R01GM118772 to O.B., R35GM148236 to D.M., K08GM139031 to T.T.J.) and
the National Science Foundation (award ACI-1443054 to O.B.). A.S. acknowledges funding
by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2075 – 390740016 and support by the Stuttgart Center for Simulation
Science (SimTech). The sponsors were not involved in any aspects of the research or the
writing of the manuscript.

We thank Dominik Wille, Travis Jensen, and Jennifer A. Clark for substantial code contributions,
Helmut Carter and Wei-Tse Hsu for small fixes, Shujie Fan for initial code for fractional
equilibration time calculation, and Jan Janssen for creating the initial conda-forge package.

Author contributions
D.L.D., M.R.S., D.M., and O.B. designed the project. Z.W., D.L.D., I.A., B.K.A., M.S.B,
J.H., T.T.J., I.M.K., H.L., H.L., V.L., S.L., D.M., P.T.M, A.S. contributed to new features.
Z.W., D.L.D., O.B. maintained the code base. Z.W., D.L.D., M.R.S, A.S., P.T.M., O.B. wrote
the manuscript.

Wu et al. (2024). alchemlyb: the simple alchemistry library. Journal of Open Source Software, 9(101), 6934. https://doi.org/10.21105/joss.06934. 5

https://doi.org/10.21105/joss.06934


References
Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015).

GROMACS: High performance molecular simulations through multi-level parallelism from
laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.
06.001

Bennett, C. H. (1976). Efficient estimation of free energy differences from monte carlo
data. Journal of Computational Physics, 22(2), 245–268. https://doi.org/10.1016/
0021-9991(76)90078-4

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V.,
Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J., Joly, A., Holt, B.,
& Varoquaux, G. (2013). API design for machine learning software: Experiences from the
scikit-learn project. ECML PKDD Workshop: Languages for Data Mining and Machine
Learning, 108–122. https://doi.org/10.48550/arXiv.1309.0238

Case, D. A., Cheatham, T. E., 3rd, Darden, T., Gohlke, H., Luo, R., Merz, K. M., Jr,
Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular
simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https:
//doi.org/10.1002/jcc.20290

Chodera, J. D. (2016). A simple method for automated equilibration detection in molecular
simulations. Journal of Chemical Theory and Computation, 12(4), 1799–1805. https:
//doi.org/10.1021/acs.jctc.5b00784

Chodera, J. D., Swope, W. C., Pitera, J. W., Seok, C., & Dill, K. A. (2007). Use of the
weighted histogram analysis method for the analysis of simulated and parallel tempering
simulations. Journal of Chemical Theory and Computation, 3(1), 26–41. https://doi.org/
10.1021/ct0502864

Deng, Y., & Roux, B. (2009). Computations of standard binding free energies with molecular
dynamics simulations. The Journal of Physical Chemistry B, 113(8), 2234–2246. https:
//doi.org/10.1021/jp807701h

Fan, S., Iorga, B. I., & Beckstein, O. (2020). Prediction of octanol-water partition coefficients
for the SAMPL6-log𝑃 molecules using molecular dynamics simulations with OPLS-AA,
AMBER and CHARMM force fields. Journal of Computer-Aided Molecular Design, 34,
543–560. https://doi.org/10.1007/s10822-019-00267-z

Gusev, F., Gutkin, E., Kurnikova, M. G., & Isayev, O. (2023). Active learning guided drug
design lead optimization based on relative binding free energy modeling. Journal of Chemical
Information and Modeling, 63(2), 583–594. https://doi.org/10.1021/acs.jcim.2c01052

Hedges, L. O., Mey, A. S. J. S., Laughton, C. A., Gervasio, F. L., Mulholland, A. J.,
Woods, C. J., & Michel, J. (2019). BioSimSpace: An interoperable Python framework
for biomolecular simulation. Journal of Open Source Software, 4(43), 1831. https:
//doi.org/10.21105/joss.01831

Kirkwood, J. G. (1935). Statistical mechanics of fluid mixtures. The Journal of Chemical
Physics, 3(5), 300–313. https://doi.org/10.1063/1.1749657

Klimovich, P. V., Shirts, M. R., & Mobley, D. L. (2015). Guidelines for the analysis of
free energy calculations. Journal of Computer-Aided Molecular Design, 29(5), 397–411.
https://doi.org/10.1007/s10822-015-9840-9

McKinney, Wes. (2010). Data Structures for Statistical Computing in Python. In Stéfan van
der Walt & Jarrod Millman (Eds.), Proceedings of the 9th Python in Science Conference
(pp. 56–61). https://doi.org/10.25080/Majora-92bf1922-00a

Merz, K. M., Jr, Ringe, D., & Reynolds, C. H. (2010). Drug design: Structure-and ligand-based

Wu et al. (2024). alchemlyb: the simple alchemistry library. Journal of Open Source Software, 9(101), 6934. https://doi.org/10.21105/joss.06934. 6

https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/0021-9991(76)90078-4
https://doi.org/10.1016/0021-9991(76)90078-4
https://doi.org/10.48550/arXiv.1309.0238
https://doi.org/10.1002/jcc.20290
https://doi.org/10.1002/jcc.20290
https://doi.org/10.1021/acs.jctc.5b00784
https://doi.org/10.1021/acs.jctc.5b00784
https://doi.org/10.1021/ct0502864
https://doi.org/10.1021/ct0502864
https://doi.org/10.1021/jp807701h
https://doi.org/10.1021/jp807701h
https://doi.org/10.1007/s10822-019-00267-z
https://doi.org/10.1021/acs.jcim.2c01052
https://doi.org/10.21105/joss.01831
https://doi.org/10.21105/joss.01831
https://doi.org/10.1063/1.1749657
https://doi.org/10.1007/s10822-015-9840-9
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.21105/joss.06934


approaches. Cambridge University Press. https://doi.org/10.48550/arXiv.1309.0238

Mey, A. S. J. S., Allen, B., Macdonald, H. E. B., Chodera, J. D., Kuhn, M., Michel, J., Mobley,
D. L., Naden, L. N., Prasad, S., Rizzi, A., Scheen, J., Shirts, M. R., Tresadern, G., &
Xu, H. (2020). Best practices for alchemical free energy calculations. Living Journal of
Computational Molecular Science, 2(1), 18378. https://doi.org/10.33011/livecoms.2.1.
18378

Nejahi, Y., Barhaghi, M. S., Schwing, G., Schwiebert, L., & Potoff, J. (2021). Update 2.70 to
“GOMC: GPU optimized Monte Carlo for the simulation of phase equilibria and physical
properties of complex fluids.” SoftwareX, 13, 100627. https://doi.org/10.1016/j.softx.
2020.100627

Paliwal, H., & Shirts, M. R. (2011). A benchmark test set for alchemical free energy
transformations and its use to quantify error in common free energy methods. Journal of
Chemical Theory and Computation, 7 (12), 4115–4134. https://doi.org/10.1021/ct2003995

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12, 2825–2830.

Pham, T. T., & Shirts, M. R. (2011). Identifying low variance pathways for free energy
calculations of molecular transformations in solution phase. The Journal of Chemical
Physics, 135(3), 034114. https://doi.org/10.1063/1.3607597

Phillips, J. C., Hardy, D. J., Maia, J. D. C., Stone, J. E., Ribeiro, J. V., Bernardi, R. C., Buch,
R., Fiorin, G., Hénin, J., Jiang, W., McGreevy, R., Melo, M. C. R., Radak, B. K., Skeel, R.
D., Singharoy, A., Wang, Y., Roux, B., Aksimentiev, A., Luthey-Schulten, Z., … Tajkhorshid,
E. (2020). Scalable molecular dynamics on CPU and GPU architectures with NAMD. The
Journal of Chemical Physics, 153(4), 044130. https://doi.org/10.1063/5.0014475

Pohorille, A., Jarzynski, C., & Chipot, C. (2010). Good practices in free-energy calculations.
The Journal of Physical Chemistry B, 114(32), 10235–10253. https://doi.org/10.1021/
jp102971x

Salari, R., Joseph, T., Lohia, R., Hénin, J., & Brannigan, G. (2018). A streamlined, general
approach for computing ligand binding free energies and its application to GPCR-bound
cholesterol. Journal of Chemical Theory and Computation, 14(12), 6560–6573. https:
//doi.org/10.1021/acs.jctc.8b00447

Santiago-McRae, E., Ebrahimi, M., Sandberg, J. W., Brannigan, G., & Hénin, J. (2023).
Computing absolute binding affinities by streamlined alchemical free energy perturbation
(SAFEP) [article v1.0]. Living Journal of Computational Molecular Science, 5(1), 2067.
https://doi.org/10.33011/livecoms.5.1.2067

Schlaich, A., Kowalik, B., Kanduč, M., Schneck, E., & Netz, R. (2015). Simulation techniques
for solvation-induced surface-interactions at prescribed water chemical potential. In G.
Sutmann, J. Grotendorst, G. Gompper, & D. Marx (Eds.), Computational trends in
solvation and transport in liquids-lecture notes (IAS series 28) (Vol. 28, pp. 155–185).
Forschungszentrum Jülich GmbH.

Shirts, M. R., & Chodera, J. D. (2008). Statistically optimal analysis of samples from
multiple equilibrium states. The Journal of Chemical Physics, 129(12), 124105. https:
//doi.org/10.1063/1.2978177

Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P.
S., in ’t Veld, P. J., Kohlmeyer, A., Moore, S. G., Nguyen, T. D., Shan, R., Stevens, M. J.,
Tranchida, J., Trott, C., & Plimpton, S. J. (2022). LAMMPS - a flexible simulation tool for
particle-based materials modeling at the atomic, meso, and continuum scales. Computer
Physics Communications, 271, 108171. https://doi.org/10.1016/j.cpc.2021.108171

Wu et al. (2024). alchemlyb: the simple alchemistry library. Journal of Open Source Software, 9(101), 6934. https://doi.org/10.21105/joss.06934. 7

https://doi.org/10.48550/arXiv.1309.0238
https://doi.org/10.33011/livecoms.2.1.18378
https://doi.org/10.33011/livecoms.2.1.18378
https://doi.org/10.1016/j.softx.2020.100627
https://doi.org/10.1016/j.softx.2020.100627
https://doi.org/10.1021/ct2003995
https://doi.org/10.1063/1.3607597
https://doi.org/10.1063/5.0014475
https://doi.org/10.1021/jp102971x
https://doi.org/10.1021/jp102971x
https://doi.org/10.1021/acs.jctc.8b00447
https://doi.org/10.1021/acs.jctc.8b00447
https://doi.org/10.33011/livecoms.5.1.2067
https://doi.org/10.1063/1.2978177
https://doi.org/10.1063/1.2978177
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.21105/joss.06934


Yang, W., Bitetti-Putzer, R., & Karplus, M. (2004). Free energy simulations: Use of reverse
cumulative averaging to determine the equilibrated region and the time required for
convergence. The Journal of Chemical Physics, 120(6), 2618–2628. https://doi.org/10.
1063/1.1638996

Zwanzig, R. W. (1954). High‐temperature equation of state by a perturbation method. I.
Nonpolar gases. The Journal of Chemical Physics, 22(8), 1420–1426. https://doi.org/10.
1063/1.1740409

Wu et al. (2024). alchemlyb: the simple alchemistry library. Journal of Open Source Software, 9(101), 6934. https://doi.org/10.21105/joss.06934. 8

https://doi.org/10.1063/1.1638996
https://doi.org/10.1063/1.1638996
https://doi.org/10.1063/1.1740409
https://doi.org/10.1063/1.1740409
https://doi.org/10.21105/joss.06934

	Summary
	Statement of need
	Background: Alchemical free energy calculations
	Implementation
	Core design principles
	Library structure
	Workflows

	Acknowledgements
	Author contributions
	References

