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Summary
alchemlyb is an open-source Python software package for the analysis of alchemical free energy
calculations, an important method in computational chemistry and biology, most notably in
the field of drug discovery (Merz et al., 2010). Its functionality contains individual composable
building blocks for all aspects of a full typical free energy analysis workflow, starting with the
extraction of raw data from the output of diverse molecular simulation packages, moving on to
data preprocessing tasks such as decorrelation of time series, using various estimators to derive
free energy estimates from simulation samples, and finally providing quality analysis tools for
data convergence checking and visualization. alchemlyb also contains high-level end-to-end
workflows that combine multiple building blocks into a user-friendly analysis pipeline from the
initial data input stage to the final results. This workflow functionality enhances accessibility
by enabling researchers from diverse scientific backgrounds, and not solely computational
chemistry specialists, to use alchemlyb effectively.

Statement of need
In the pharmaceutical sector, computational chemistry techniques are integral for evaluating
potential drug compounds based on their protein binding affinity (Deng & Roux, 2009).
Notably, absolute binding free energy calculations between proteins and ligands or relative
binding affinity of ligands to the same protein are routinely employed for this purpose (Merz
et al., 2010). The resultant estimates of these free energies are essential for understanding
binding affinity throughout various stages of drug discovery, such as hit identification and lead
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optimization (Merz et al., 2010). Other free energies extracted from simulations are useful in
solution thermodynamics, chemical engineering, environmental science, and material science
(Schlaich et al., 2015).

Molecular simulation packages such as GROMACS (Abraham et al., 2015), Amber (Case et al.,
2005), NAMD (Phillips et al., 2020), LAMMPS (Thompson et al., 2022), and GOMC (Nejahi
et al., 2021) are used to run free energy simulations and many of these packages also contain
tools for the subsequent processing of simulation data into free energies. However, there are
no standard output formats and analysis tools implement different algorithms for the different
stages of the free energy data processing pipeline. Therefore, it is very difficult to analyze data
from different simulation packages in a consistent manner. Furthermore, the native analysis
tools do not always implement current best practices (Klimovich et al., 2015; Mey et al.,
2020) or are out of date. Overall, the coupling between data generation and analysis in most
simulation packages hinders seamless collaboration and comparison of results across different
implementations of data generation for free energy calculations.

alchemlyb addresses this problem by focusing only on the data analysis portion of this process
with the goal to provide a unified interface for working with free energy data generated from
different software packages. In an initial step data are read from the native package file
formats and then organized into a common standard data structure, organized as a pandas
DataFrame (McKinney, 2010). Functions are provided for pre-processing data by subsampling
or decorrelation. Statistical mechanical estimators are available to extract free energies
and thermodynamic expectations as well associated metrics of quality; these estimators are
implemented as classes with the same API as estimators in scikit-learn (Buitinck et al., 2013;
Pedregosa et al., 2011). alchemlyb implements modular building blocks to simplify the process
of extracting crucial thermodynamic insights from molecular simulations in a uniform manner.

alchemlyb succeeds the widely-used but now deprecated alchemical-analysis.py tool
(Klimovich et al., 2015), which combined pre-processing, free energy estimation, and plotting
in a single script. alchemical-analysis.py was not thoroughly tested and hard to integrate
into modern workflows due to its monolithic design, and only supported (now outdated)
Python 2. alchemlyb improves over its predecessor with a modular, function based design
and thorough testing of all components using continuous integration. Thus, alchemlyb is
a library that enables users to easily use well-tested building blocks within their own tools
while additionally providing examples of complete end-to-end workflows. This innovation
enables consistent processing of free energy data from diverse simulation packages, facilitating
streamlined comparison and combination of results.

Notably, alchemlyb’s robust and user-friendly nature has led to its integration into other
automated workflow libraries such as BioSimSpace (Hedges et al., 2019) or MDPOW (Fan et
al., 2020), demonstrating its accessibility and usability within broader scientific workflows and
reinforcing its position as a versatile tool in the field of computational chemistry.

Background: Alchemical free energy calculations
Free energy differences are fundamental to understand many different processes at the molecular
scale, ranging from the binding of drug molecules to their receptor proteins or nucleic acids
through the partitioning of molecules into different solvents or phases to the stability of crystals
and biomolecules (Deng & Roux, 2009). The calculation of such transfer free energies involves
constructing two end states where a target molecule interacts with different environments. For
example, in a solvation free energy calculation, in one state (the coupled state) the target
molecule interacts with a solvent (in the case of hydration free energies, water), while in the
other state (the decoupled state) the ligand has no intermolecular interactions, which mimics
the transfer of a ligand from infinite dilution in the solvent to the gas phase. The solvation
free energy is then obtained by calculating the free energy difference between these two end
states, but it is crucial to ensure sufficient overlap in phase space between the coupled and
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decoupled states, a condition often challenging to achieve.

Stratified alchemical free energy calculations have emerged as a de-facto standard approach
whereby non-physical intermediate states are introduced to bridge between the physical end
states of the process (Mey et al., 2020). In such free energy calculations, overlapping
states are created by the introduction of a parameter 𝜆 that continuously connects the
functional form (the Hamiltonian of the system) of the two end-states, resulting in a series
of intermediate states each with a different 𝜆 value between 0 and 1 and with the physically
realizable end states at 𝜆 = 0 and 𝜆 = 1. In general, 𝑁 alchemical parameters are used to
describe the alchemical transformation with a parameter vector 𝜆⃗ = (𝜆1, 𝜆2,… , 𝜆𝑁), so that
𝜆⃗ = (0, 0,… , 0) indicates the initial and 𝜆⃗ = (1, 1,… , 1) the final state. The intermediate
states are non-physical but required for converging the calculations. At each 𝜆⃗-value (or
“window”), the system configurations are sampled in the relevant thermodynamic ensemble,
typically using Molecular Dynamics (MD) or Monte Carlo (MC) simulations, while generating
and accumulating free energy data discussed below. Estimators are then applied to these data
to compute free energy differences between states, including the difference between the final
and initial state, thus yielding the desired free energy difference of the physical process of
interest.

Implementation

Core design principles
alchemlyb is a Python library that seeks to make alchemical free energy calculations easier
and less error prone. It includes functionality for parsing data from file formats of widely used
simulation packages, subsampling these data, and fitting these data with an estimator to obtain
free energies. Functions are simple in usage and pure in scope, and can be chained together
to build customized analyses of data while estimators are implemented as classes that follow
the tried-and-tested scikit-learn API (Buitinck et al., 2013). General and robust workflows
following best practices are also provided, which can be used as reference implementations and
examples.

First and foremost, scientific code must be correct and we try to ensure this requirement by
following best software engineering practices during development, close to full test coverage of
all code in the library (currently 99%), and providing citations to published papers for included
algorithms. We use a curated, public data set (alchemtest) for automated testing; code in
alchemtest is published under the open source BSD-3 clause license while all data are included
under an open license such as CC0 (public domain) or CC-BY (attribution required).

The guiding design principles are summarized as:

1. Use functions when possible, classes only when necessary (or for estimators, see (2)).
2. For estimators, mimic the object-oriented scikit-learn API as much as possible.
3. Aim for a consistent interface throughout, e.g. all parsers take similar inputs and yield a

common set of outputs, using the pandas.DataFrame as the underlying data structure.
4. Have all functionality tested.

alchemlyb supports recent versions of Python 3 and follows the SPEC 0 (Minimum Supported
Dependencies) Scientific Python Ecosystem Coordination community standard for deciding on
when to drop support for older versions of Python and dependencies. Releases are numbered
following the Semantic Versioning 2.0.0 standard of MAJOR.MINOR.PATCHLEVEL, which
ensures that users immediately understand if a release may break backwards compatibility
(increase of the major version), adds new features (increase of minor version), or only contains
bug fixes or other changes that do not directly affect users. All code is published under the
open source BSD-3 clause license.
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Library structure
alchemlyb offers specific parsers in alchemlyb.parsing to load raw free energy data from
various molecular simulation packages (GROMACS (Abraham et al., 2015), Amber (Case et al.,
2005), NAMD (Phillips et al., 2020), and GOMC (Nejahi et al., 2021)) and provides a general
structure for implementing parsers for other packages that are not yet supported. The raw data
are converted into a standard format as a pandas.DataFrame (McKinney, 2010) and converted
from the energy of the software to units of 𝑘𝑇 where 𝑘 = 1.380649×10−23 J K−1 is Boltzmann’s
constant and 𝑇 is the temperature at which the simulation was performed. Metadata such as
𝑇 and the energy unit are stored in DataFrame attributes and propagated through alchemlyb,
which enables seamless unit conversion with functions in the alchemlyb.postprocessing

module. Two types of free energy data are considered: Hamiltonian gradients (dHdl, 𝑑𝐻/𝑑𝜆)
at all lambda states, suitable for thermodynamic integration (TI) estimators (Kirkwood, 1935),
and reduced potential energy differences between lambda states (u_nk, 𝑢𝑛𝑘), which are used
for free energy perturbation (FEP) estimators (Zwanzig, 1954).

Both types of estimators assume uncorrelated samples in order to give unbiased es-
timates of the uncertainties, which requires subsampling of the raw data. The
alchemlyb.preprocessing.subsampling module provides tools for data subsampling
based on autocorrelation times (Chodera et al., 2007; Chodera, 2016) as well as simple slicing
of the dHdl and u_nk DataFrames.

The two major classes of commonly used estimators are implemented in alchemlyb.estimators.
Unlike other components of alchemlyb that are implemented as pure functions, estimators are
implemented as classes and follow the well-known scikit-learn API (Buitinck et al., 2013) where
instantiation sets the parameters (e.g., estimator = MBAR(maximum_iterations=10000)) and
calling of the fit() method (e.g., estimator.fit(u_nk)) applies the estimator to the data
and populates output attributes of the class; these results attributes are customarily indicated
with a trailing underscore (e.g., estimator.delta_f_ for the matrix of free energy differences
between all states). In alchemlyb, TI (Paliwal & Shirts, 2011) and TI with Gaussian quadrature
(Gusev et al., 2023) estimators are implemented in the TI category of estimators (module
alchemlyb.estimators.TI). FEP category estimators (module alchemlyb.estimators.FEP)
include Bennett Acceptance Ratio (BAR) (Bennett, 1976) and Multistate BAR (MBAR) (Shirts
& Chodera, 2008), which are implemented in the pymbar package (Shirts & Chodera, 2008)
and called from alchemlyb.

To evaluate the accuracy of the free energy estimate, alchemlyb offers a range of assessment
tools. The error of the TI method is correlated with the average curvature (Pham & Shirts,
2011), while the error of FEP estimators depends on the overlap in sampled energy distributions
(Pohorille et al., 2010). alchemlyb creates visualizations of the smoothness of the integrand
for TI estimators and the overlap matrix for FEP estimators, which can be qualitatively and
quantitatively analyzed to determine the degree of overlap between simulated alchemical
states, and suggest whether additional simulations should be run. For statistical validity, the
accumulated samples should be collected from equilibrated simulations and alchemlyb contains
tools for assessing (alchemlyb.convergence) and plotting (alchemlyb.visualisation) the
convergence of the free energy estimate as a function of simulation time (Yang et al., 2004) and
means to compute the “fractional equilibration time” (Fan et al., 2020) to detect potentially
non-equilibrated data.

alchemlyb offers all these tools as a library for users to customize each stage of the analysis
(Figure 1).
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Figure 1: The building blocks of alchemlyb. Raw data from simulation packages are parsed into common
data structures depending on the free energy quantities, pre-processed, and processed with a free energy
estimator. The resulting free energy differences are analyzed for convergence and plotted for quality
assessment.

Workflows
The building blocks are sufficient to compute free energies from alchemical free energy
simulations and assess their reliability. This functionality is used, for example, by the Streamlined
Alchemical Free Energy Perturbation (SAFEP) analysis scripts (Salari et al., 2018; Santiago-
McRae et al., 2023).

alchemlyb also provides a structure to combine the building blocks into full end-to-end workflows
(module alchemlyb.workflows). As an example, the ABFE workflow for absolute binding free
energy estimation reads in the raw input data and performs decorrelation, estimation, and
quality plotting of the estimate. It can directly estimate quantities such as solvation free
energies and makes it easy to calculate more complex quantities such as absolute binding free
energies (as the difference between the solvation free energy of the ligand in water and the
solvation free energy of the ligand in the protein’s binding pocket).
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