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APPROXIMATION OF RATIONAL VALUATIONS

BERNARD TEISSIER

Abstract. Let (R,m) be a complete equicharacteristic noetherian lo-
cal domain and ν a valuation of its field of fractions whose valuation
ring Rν dominates R with trivial residue field extension k ' kν . In
order to extend to all rational valuations the torific method (se below)
of local uniformization which works for rational valuations with finitely
generated semigroup, new methods are needed. One such method is to
approximate the given valuation by semivaluations (valuations on quo-
tients, also called pseudo-valuations) with finitely generated semigroups.
We produce equations in a generalized power series ring for the algebra
encoding the degeneration. We use this to represent ν as the limit of a
sequence of semivaluations of R with finitely generated semigroups.
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2 Local uniformization of valuations

the field of fractions K of R. A valuation ring is a commutative domain in
which given two non zero elements, one divides the other. This implies that
it is local. We refer to [3, Chapter VI, §1, §3, §4] for the definitions and facts
stated in the next paragraphs.

The valuation is the quotient morphism of groups ν : K∗ → K∗/U where
U is the multiplicative group of units of Rν . This quotient, which we will
denote by Φ, is totally ordered by the relation x ≤ y if y

x ∈ Rν .
The rational rat.rk.ν of the valuation is the rational rank dimQΦ⊗ZQ of

the abelian group Φ. The rank (or height) of the valuation is the length of the
maximal sequence of convex subgroups of Φ. It is also the Krull dimension
of the ring Rν which is not noetherian in general.

If the valuation is centered at m, which means that mν ∩ R = m, the
dimension of the valuation is defined to be the transcendence degree tr.kν/k
of kν = Rν/mν over k = R/m and one has Abhyankar’s inequality

tr.kν/k + rat.rk.ν ≤ dimR.

If equality holds one says that ν is an Abhyankar valuation of R.

1. Introduction

We continue here the program, presented in [28], [29] and [31], to prove the
existence of torific embeddings for valuations centered in equicharacteristic
excellent local domains (R,m) of dimension d ≥ 1 with an algebraically
closed residue field. Here is its structure:

(1) Reduce the general case to the case of rational valuations, those with
trivial residue field extension: Rν/mν = R/m = k. They correspond
to k-rational points of the Zariski-Riemann manifold of the field of
fractions of R.

(2) Reduce the case of rational valuations to the case where R is com-
plete.

(3) Assuming that R is complete, reduce the case of a rational valuation
to that of rational Abhyankar valuations (rational rank=dimR).

(4) Assuming that R is complete, prove the existence of "torific embed-
dings"1 for rational Abhyankar valuations using embedded resolution
of affine toric varieties, which is blind to the characteristic, applied
to the toric graded ring grνR associated to the filtration defined by
the valuation.

Step 1) was dealt with in [28, Section 3.6].
Step 2), except in the cases of rank one or Abhyankar valuations, is wait-
ing for the proof of a conjecture about the extension of valuations of R to
its completion (see [28, *Proposition 5.19*], [13, Conjecture 1.2] and [31,
Problem B]), which is in progress in [14].
We note that in the case where we start from a complete local domain, the
strict transform under a birational ν-extension R ⊂ R′ ⊂ Rν is understood
to be the completion of the local ring R′, which is essentially of finite type
over R, at the center of the valuation.

1A torific embedding of an algebroid space with a valuation is an embedding into an
affine space such that the valuation can be uniformized in an embedded manner by toric
birational maps.
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Step 4) was made in [29].
The essential remaining hurdle is step 3), and the main result of this paper:
is a step in this direction.

The paper is organized as follows:
- The first part revisits the valuative Cohen theorem of [29] which relates
the ring R and the graded k-algebra grνR associated to the valuation. This
graded algebra is a twisted semigroup k-algebra of the semigroup of values Γ
of ν on R. Here the main result is is a structure theorem (Theorem 3.42) for
the set of (possibly infinitely many) equations which define the total space
of the specialization of R to grνR.

- The second part uses this result to produce (Theorem 4.8) a sequence of
Abhyankar semivaluations (or quasi-valuations) (νBα)a∈N of R supported on
r-dimensional quotients of R, whose finitely generated semigroups ΓBa ⊂ Γ
fill up Γ as a grows. Here r is the rational rank of the valuation ν. This
corresponds to a part of a conjecture stated in [31, Part 1].

Aknowledgements I am very grateful to Mark Spivakovsky for promptly
detecting errors in two previous versions, and to him and Patrick Popescu
Pampu for suggesting a number of important improvements in the redaction.

2. Preliminaries

A valuation ν with value group Φ on a local domain R determines a
filtration of R by the ideals

Pϕ(R) = {x ∈ R/ν(x) ≥ ϕ} and P+
ϕ (R) = {x ∈ R/ν(x) > ϕ} for ϕ ∈ Φ.

We note that this is not in general a filtration in the usual sense because the
totally ordered abelian value group Φ of ν may not be well ordered so that an
element of Φ may not have a successor. However, the successor ideal P+

ϕ (R)

is well defined and if ϕ has a successor ϕ+ we have P+
ϕ (R) = Pϕ+(R).

In this text we shall deal with local subrings R of the valuation ring
Rν which are dominated by Rν , so that mν ∩ R = m and the semigroup
Γ = ν(R \ {0}) is contained in Φ≥0. By definition Pϕ(R) = Pϕ(Rν)∩R and
Pϕ(Rν) = Rν for ϕ ≤ 0 so that the graded k-algebra

grνR =
⊕
ϕ∈Γ

Pϕ(R)/P+
ϕ (R) ⊂

⊕
ϕ∈Φ≥0

Pϕ(Rν)/P+
ϕ (Rν) = grνRν

associated to the ν-filtration on R is the graded k-subalgebra of grνRν
whose non zero homogeneous elements have degree in the sub-semigroup2

Γ of Φ≥0.
In view of the defining property of valuation rings, for all ϕ ∈ Φ any two

elements of Pϕ(Rν)\P+
ϕ (Rν) differ by multiplication by a unit of Rν so that

their images in Pϕ(R)/P+
ϕ (R) differ by multiplication by a non zero element

of kν = Rν/mν . Thus, the homogeneous components of grνRν are all one
dimensional vector spaces over kν .

2I follow a tradition of calling semigroup of values of a valuation what is actually a
monoid.



4 Local uniformization of valuations

If the valuation ν is rational, the same is true of the non zero homoge-
neous components of grνR as k = R/m vector spaces. Then one has a toric
description of grνR as follows.
Since R is noetherian the semigroup Γ is well ordered and so has a minimal
system of generators Γ = 〈γ1, . . . , γi, . . .〉, where γi+1 is the smallest non
zero element of Γ which is not in the semigroup 〈γ1, . . . , γi〉 generated by
its predecessors. We emphasize here that the γi are indexed by an ordinal
I ≤ ωh, where h is the rank (or height) of the valuation.

The graded k-algebra grνR is then minimally generated by homogeneous
elements (ξi)i∈I with degξi = γi and we have a surjective morphism of
graded k-algebras, which we denote by grwπ for reasons which will appear
in Theorem 3.13 below.

grwπ : k[(Ui)i∈I ] −→ grνR, Ui 7→ ξi,

where k[(Ui)i∈I ] is the polynomial ring in variables indexed by I, graded by
giving Ui the degree γi.

If the non zero homogeneous components of grνR are one dimensional k-
vector spaces, the kernel of grπ is generated by isobaric binomials
(Um

` − λ`Un
`
)`∈L, with λ` ∈ k∗, where Um represents a monomial in the

Ui’s (see [28, Proposition 4.2]). These binomials correspond to a generating
system of relations between the generators γi of the semigroup, and for all
practical purposes we can think of grνR as the semigroup algebra over k of
the semigroup Γ. This is asserted in [28, Proposition 4.7] and made more
precise in subsection 3.1 below.
We assume that the set (Um

` −λ`Un
`
)`∈L is such that none of the binomials

is in the ideal generated by the others. In particular, since the kernel of grπ is
a prime ideal, the binomials Um`−λ`Un

` are irreducible in k[(Ui)i∈I ], which
means, if k is algebraically closed, that the vectors m` − n` are primitive.

Since the semigroup of weights is well ordered and there are only finitely
many binomials of a given weight, this minimality property can be achieved
by a transfinite cleaning process eliminating at each step the binomials of
least weight belonging to the ideal generated by binomials Um` − λ`Un

` in
the kernel of grπ, necessarily of smaller weight.

By general results in [28, §2.3] the ring R is a deformation of grνR
3.

More precisely, we have the following generalized version of what we have just
seen and of [28, Propositions 2.2 and 2.3]. Recall that an order function on a
commutative ring R with values in a totally ordered abelian group Φ is a map
o : R\{0} → Φ≥0 satifying o(xy) ≥ o(x)+o(y) and o(x+y) ≥ min(o(x), o(y)).
An order function defines a filtration of R by ideals

Fϕ(R) = {x ∈ R|o(x) ≥ ϕ} and F+
ϕ (R) = {x ∈ R|o(x) > ϕ},

where we agree that o(0) is larger than any element of Φ. We assune that
F+

0 = m, the maximal ideal of R and remark that Fϕ(R) = R for ϕ ≤ 0.

3Nowadays the corresponding specialization of R to grνR is deemed to be, when the
semigroup is finitely generated, an example of "toric degeneration".
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Then we define the associated graded ring of the order function

groR =
⊕
ϕ∈Φ≥0

Fϕ(R)/F+
ϕ (R).

This algebra is not in general a domain, or even reduced. It is reduced if
and only if o(xn) = no(x) and is a domain if and only if the order function
is a valuation.

Proposition 2.1. Let R be a local k-algebra with residue field k and o an
order function on R as above.

• The k[vΦ≥0 ]-algebra

Ao(R) =
⊕
ϕ∈Φ

Fϕ(R)v−ϕ ⊂ R[vΦ]

is faithfully flat, where the algebra structure comes from the compo-
sition of inclusions k[vΦ≥0 ] ⊂ R[vΦ≥0 ] ⊂ Ao(R), the last inclusion
being that of elements of degree ≤ 0.
• The natural map Ao(R) → groR defined by xϕv−ϕ 7→ xϕ mod.F+

ϕ

induces an isomorphism of graded rings

Ao(R)/(vϕ, ϕ > 0) ' groR,

where (vϕ, ϕ > 0) denotes the ideal generated by the vϕ with ϕ > 0.
• The inclusion R[vΦ≥0 ] ⊂ Ao(R) induces, after taking rings of frac-
tions with respect to the multiplicative subset (vΦ>0) an isomorphism

(vΦ>0)−1R[vΦ≥0 ] ' (vΦ>0)−1Ao(R).

• Given a character χ : Φ → k∗, the surjection Ao(R) → R defined by∑
xϕv

−ϕ 7→
∑
xϕχ(−ϕ) induces an isomorphism

Ao(R)/(vϕ − χ(ϕ)ϕ∈Φ)Ao(R) ' R.
In the algebraic category, the proposition states that the map

SpecAo(R)→ Speck[vΦ≥0 ]

is faithfully flat, its special fiber is SpecgroR and its general fiber is SpecR.

Proof. The proof is exactly the same as that of [28, Propositions 2.2 and
2.3]. �

The construction of the algebra Ao(R), with another intent and the order
function associated to the powers of an ideal, goes back to work of David
Rees in the 1950’s. See [28, Section 2].

Coming back to filtrations induced by rational valuations, when in addi-
tion grνR is finitely generated, not only is the faithfully flat specialization
of R to grνR equidimensional (see Proposition 3.47 below), so that we have
equality in Abhyankar’s inequality below, but the space associated to this
toric degeneration (see section 3.8 below) is "equiresolvable at ν" in the sense
that there exist generators (ξi)i∈I of the maximal ideal of R whose initial
forms (ξi)i∈I are generators of the k-algebra grνR and some birational toric
maps which provide, in the associated coordinates (ξi)i∈I , an embedded reso-
lution of singularities of the affine toric variety SpecgrνR, and when applied
to the generators ξi of the maximal ideal of R and localized at the point
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(or center) picked by ν, provide an embedded local uniformization of the
valuation ν.

Of course, in the case where grνR is not finitely generated, we must adapt
this notion of "ν-equiresolvability" since SpecgrνR does not even have a
resolution of singularities, embedded or not.
By a theorem of Piltant (see [28], proposition 3.1) we know however that
the Krull dimension dimgrνR is the rational rank r(ν) of the valuation even
when grνR is not finitely generated.
For rational valuations of a noetherian local domain R of dimension d,
Abhyankar’s inequality r(ν) ≤ d then reads as the following inequality of
Krull dimensions

(A) dimgrνR ≤ dimR.

Those for which equality holds, called (zero dimensional) Abhyankar valua-
tions, were the subject of [29], where it was shown that their graded algebra
is quasi-finitely generated4, and that they could be uniformized in an em-
bedded manner in a torific embedding5.

The proof reduced the excellent equicharacteristic case to the complete
equicharacteristic case using the good behavior of Abhyankar valuations
with respect to completion shown in [29, Section 7.2]. The case of com-
plete equicharacteristic local domains was then reduced to a combinatorial
problem using a valuative version of Cohen’s structure theorem to obtain
equations describing the specialization of R to grνR.
The classical Cohen structure theorem presents a complete equicharacteristic
noetherian local ring R as a quotient of a power series ring in finitely many
variables by an ideal generated by deformations adding terms of higher degree
to the homogeneous polynomials defining the associated graded ring grmR
as a quotient of a polynomial ring.
The valuative Cohen theorem presents a complete equicharacteristic noethe-
rien local ring endowed with a rational valuation ν as a quotient of a gen-
eralized power series ring in such a way that the corresponding morphism
of associated graded rings is a presentation of grνR as a quotient of a gen-
eralized weighted polynomial ring by a binomial ideal. In a second part,
it describes the kernel of the surjection to R as topologically generated by
overweight deformations of the binomials.
The geometric interpretation of the first part of the valuative Cohen theorem
is that after embedding the algebroid germ X corresponding to R in an affine
space A|I|(k) by the generators (ξi)i∈I , the valuation ν becomes the trace
on X of a monomial valuation (a.k.a. weight in the sense of [29, Definition
2.1]) on the the ambient possibly infinite dimensional affine space.
The interpretation of the second part is that the image of the embedding in
question is defined by a (possibly infinite) set of equations which constitutes
an overweight deformation (see definition 3.2 below) in a generalized sense

4This means that there is a local R-algebra R′ essentially of finite type dominated by
the valuation ring Rν (a birational ν-modification) such that grνR

′ is finitely generated.
For more on finite and non finite generation of grνR, see [6].

5A proof of local uniformization for Abhyankar valuations of algebraic function fields,
with assumptions on the base field, had appeared in [19] and a more general one in [?].
See also [?].



B. Teissier 7

of a set of binomial equations defining the generalized affine toric variety
SpecgrνR.
This allows us to produce (relatively) explicit equations for the total space
of the degeneration of the algebroid (or formal) germ corresponding to R to
SpecgrνR; see section 3.8 below. This is of course necessary to show that a
(partial) embedded toric resolution of SpecgrνR extends to a uniformization
of ν.

Remark 2.2. Just as Kaplansky’s embedding theorem (see [17] for valued
fields, [25] for regular rings, and [32]) is a valuative generalization of the
Newton-Puiseux theorem, the valuative Cohen theorem is a valuative gen-
eralization of the Cohen structure theorem. It would be useful to write a
proof of the valuative Cohen Theorem in the mixed characteristic case, as
suggested in [28, Remark before §3].

Example 2.3. Let R be the algebra of an algebroid branch over an alge-
braically closed field k. That is, a complete equicharacteristic noetherian
one dimensional local domain with residue field k. The integral closure of
R is k[[t]] and R has only one valuation ν: the t-adic valuation. Its value
semigroup on R is a numerical semigroup and therefore finitely generated
(see [29, Corollary 6.3], [11], [23]). Let I = (γ0, γ1, . . . , γg) be the ordered set
of degrees of a minimal set of generators (ξi)i∈I of the k-algebra grνR ⊂ k[t].
We then have

grνR ' k[tγ0 , . . . , tγg ],

the algebra of a monomial curve with the same semigroup of t-adic values
as R.
In characteristic zero and for plane branches, the set I is in order preserving
bijection with the set (β0, β1, . . . , βg) of characteristic Puiseux exponents.
For positive characteristic see [28, Example 6.2] or [30].
Representatives ξi ∈ R of the (ξi)i∈I embed the curve in Ag+1(k) as a
curve defined by equations that are overweight deformations of the binomials
defining the monomial curve Speck[tΓ] (read [28, Example 5.69] in the formal
power series context). This is the first example of a torific embedding.

In view of the constancy of fiber dimension in a flat degeneration such as
that of R to grνR in [28, Proposition 2.3] in the case of finite generation,
strict inequality in inequality (A) implies that the k-algebra grνR is not
finitely generated (see Proposition 3.47 below). Then ν-equiresolvability
should mean that some partial toric resolutions of the singularities of the
toroidal scheme SpecgrνR, affecting only finitely many of the (ξi)i∈I , when
applied to the elements ξi ∈ R instead of the ξi ∈ grνR, should uniformize
the valuation ν on R.

The problem is to find the appropriate finite subset of the set L of binomial
equations written above. It should generate a prime ideal in a finite set of
variables and have the property that some of the embedded toric resolutions
of the toric variety corresponding to this prime binomial ideal uniformize the
valuation. Theorem 4.8 below provides the appropriate finitely generated
approximations to grνR.
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3. Valued complete equicharacteristic noetherian local rings
and the valuative Cohen theorem

3.1. The graded algebra of a rational valuation is a twisted semi-
group algebra. The purpose of this section is to make sure that we can
apply to the graded algebras asssociated to rational valuations the results
and techniques known for semigroup algebras even when the graded algebra
is not finitely generated.

Let ν be a rational valuation centered in a noetherian local domain R with
residue field k. denoting by k the algebraic closure of k, given a minimal
system of generators (ξi)i∈I of the k-algebra grνR, a simple algebraic argu-
ment based on the fact that the group Φ has a finite rational rank shows
that there exist elements ρi ∈ (k)∗ such that the morphism of k-algebras
k ⊗k grνR → k[tΓ] determined by 1 ⊗k ξi 7→ ρit

γi is an isomorphism of
graded algebras. By [11, Theorems 17.1 and 21.4] we know that the Krull
dimension of k[tΓ] is the rational rank r of ν and by Piltant’s Theorem that
grνR is also an r-dimensional domain. Considering the surjective composed
morphism

k[(Ui)i∈I ] −→ k[tΓ], Ui 7→ ρit
γi ,

all that is needed is that the Ui = ρi are non zero solutions of the system of
binomial equations (Um

` − λ`Un
`

= 0)`∈L which generate the kernel. There
exists a finite set F ⊂ I such that the (γi)i∈F rationally generate the value
group Φ of our valuation. The binomial equations involving only the vari-
ables (Ui)i∈F are finite in number and have non zero solutions ρi ∈ (k)∗

by the nullstellensatz and quasi-homogeneity. All the other γi are ratio-
nally dependent on these. The result then follows by a transfinite induction
in the well ordered set I: assuming the algebraicity to be true for bino-
mial equations corresponding to the relations between the (γj)j∈F∪{j∈I|j<i}
and choosing non zero algebraic solutions ρj , we substitute ρj for Uj in
the binomials involving the variables (Uj)j∈F∪{j∈I|j<i} and Ui to obtain bi-
nomial equations in Ui with coefficients in k((ρj)j∈F∪{j∈I|j<i}). By ratio-
nal dependence we know there is at least one such equation, of the form
Unii −mi(ρ) = 0 where mi(ρ) is a non zero Laurent term in the (ρj)j∈F , and
in k((ρj)j∈F∪{j∈I|j<i})[Ui, U

−1
i ] the ideal generated by the equations coming

from all binomials involving Ui is principal so that up to multiplication by
a root of unity we have a well defined solution ρi ∈ k∗ and this gives the
result. So we have proved the following slight generalization of known results
(compare with [28, Proposition 4.7] and, for the case of submonoids of Zr,
[4, Exercise 4.3]):

Proposition 3.1. Let Γ = 〈(γi)i∈I〉 be the semigroup of values of a rational
valuation ν on a noetherian local domain R with residue field k. Given a
minimal set (ξi)i∈I of homogeneous generators of the k-algebra grνR, with
degξi = γi, the map which to an isomorphism ρ of graded k-algebras

ρ : k ⊗k grνR ' k[tΓ]

associates the family of elements (ρ(1⊗kξi)t−γi)i∈I of (k)∗ defines a bijection
from the set of such isomorphisms to the set of k-rational points of SpecgrνR
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all of whose coordinates in Speck[(Ui)i∈I ] are non zero, a generalized torus
orbit. This set is not empty.

The graded algebra grνR is a twisted semigroup algebra in the sense of [16,
Definition 10.1]. In particular, if k is algebraically closed, there are many
isomorphisms of graded k-algebras from grνR to k[tΓ].
For a different viewpoint on the same result, and some interesting special
cases, see [2].

3.2. Overweight deformations of prime binomial ideals. This section
is a reminder of [29, Section 3]. Let w : NI → Φ≥0 be a semigroup morphism
defining a weight on the variables (ui)i∈I of a polynomial or power series ring
over a field k, with values in the positive part Φ≥0 of a totally ordered group
Φ of finite rational rank. If we are dealing in finitely many variables, the
semigroup of values taken by the weight is well-ordered by a theorem of B.
Neumann in [21, Theorem 3.4].

Let us consider the power series case, in finitely many variables, and the
ring S = k[[u1, . . . , uN ]]. Consider the filtration of S indexed by Φ≥0 and
determined by the ideals Qϕ of elements of weight ≥ ϕ, where the weight of
a series is the minimum weight of a monomial appearing in it. Defining sim-
ilarly Q+

ϕ as the ideal of elements of weight > ϕ, the graded ring associated
to this filtration is the polynomial ring⊕

ϕ∈Φ≥0

Qϕ/Q+
ϕ = k[U1, . . . , UN ],

with Ui = inwui, graded by degUi = w(ui).

Definition 3.2. Given a weight w as above, a (finite dimensional) overweight
deformation is the datum of a prime binomial ideal (um

`−λ`un
`
)1≤`≤s, λ` ∈

k∗, of S = k[[u1, . . . , uN ]] such that the vectors m` − n` ∈ ZN generate the
lattice of relations between the γi = w(ui), and of series

(OD)

F1 = um
1 − λ1u

n1
+ Σw(p)>w(m1)c

(1)
p up

F2 = um
2 − λ2u

n2
+ Σw(p)>w(m2)c

(2)
p up

.....

F` = um
` − λ`un

`
+ Σw(p)>w(m`)c

(`)
p up

.....

Fs = um
s − λsun

s
+ Σw(p)>w(ms)c

(s)
p up

in k[[u1, . . . , uN ]] such that, with respect to the monomial order determined
by w, they form a standard basis for the ideal which they generate: their
initial forms generate the ideal of initial forms of elements of that ideal.
Here we have written w(p) for w(up) and the coefficients c(`)

p are in k.
The dimension of the ring R = k[[u1, . . . , uN ]]/(F1, . . . , Fs) is then equal

to the dimension of k[[u1, . . . , uN ]]/(um
1 −λ1u

n1
, . . . , um

s −λsun
s
), which is

the rational rank of the group generated by the weights of the ui.
The structure of overweight deformation endows the ring R with a rational
valuation. Its filtration is the image in R of the filtration by weight in S. In
other words, the valuation of a nonzero element of R is the maximum weight
of its representatives in k[[u1, . . . , uN ]]. It is a rational Abhyankar valuation.
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Remark 3.3. In particular, R is a domain.

3.3. A reminder and complements about the valuative Cohen the-
orem. When one wishes to compare an equicharacteristic noetherian local
domain R endowed with a rational valuation ν with its associated graded
ring grνR, the simplest case is when R contains a field of representatives k
and the k-algebra grνR is finitely generated. After re-embedding the space
X corresponding to R in an affine space where SpecgrνR can be embed-
ded one can again, at least if R is complete, write down equations for the
faithfully flat degeneration of X to SpecgrνR within that new space (see
[28, §2.3]) and use their special form as overweight deformations to prove
local uniformization for the valuation ν as explained in [29, §3]. However,
without some strong finiteness assumptions on the ring R and the valuation
ν, one cannot hope for such a pleasant situation. The valuative Cohen theo-
rem shows that when R is complete one can obtain a similar state of affairs
without any other finiteness assumption than the noetherianity of R.

Let ν be a rational valuation on a complete equicharacteristic noetherian
local domainR. SinceR is noetherian, the semigroup of values Γ = ν(R\{0})
is countable and well ordered, and has a minimal set of generators (γi)i∈I
which is indexed by an ordinal I ≤ ωh(ν) according to [35, Appendix 3,
Proposition 2].

Introduce variables (ui)i∈I in bijection with the γi and consider the k-
vector space of all sums Σe∈Edeu

e where E is any set of monomials in the ui
and de ∈ k. Since the values semigroup Γ is combinatorially finite this vec-
tor space is in fact, with the usual multiplication rule, a k-algebra ̂k[(ui)i∈I ],
which we endow with a weight by giving ui the weight γi. Combinatorial
finiteness means that there are only finitely many monomials with a given
weight, and we can enumerate them according to the lexicographic order of
exponents. Thus, the set of monomials um can be seen as a well ordered
subset, for the lexicographic order, of the product Γ × N(N), where N(N)
represents the set of finite sequences of non negative integers, each being or-
dered lexicographically. Combinatorial finiteness also implies that the initial
form of every series with respect to the weight filtration is a polynomial, so
that we have:

Proposition 3.4. The graded algebra of ̂k[(ui)i∈I ] with respect to the weight
filtration is the polynomial algebra k[(Ui)i∈I ] with Ui = inwui, graded by
giving Ui the weight γi. �

The k-algebra ̂k[(ui)i∈I ] is endowed with a monomial valuation given by
the weight w(Σe∈Edeu

e) = minde 6=0w(ue). This valuation is rational since all
the γi are > 0. Note that 0 is the only element with value∞ because here∞
is an element larger than any element of Γ. With respect to the "ultrametric"
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given by u(x, y) = w(y − x), the algebra ̂k[(ui)i∈I ] is spherically complete6
by [29, Theorem 4.2].

Lemma 3.5. Let A,B be two sets of (not necessarily distinct) monomials.
If a monomial uc appears infinitely many times among the monomials ua+b

with ua ∈ A, ub ∈ B, then at least one decomposition c = a+ b must appear
infinitely many times. Thus, some ua or ub with c = a + b must appear
infinitely many times in A or B respectively.

Proof. The combinatorial finiteness of the semigroup Γ implies that the num-
ber of posssible distinct decompositions c = a + b is finite. Thus, at least
one of them must occur infinitely many times. �

Definition 3.6. Let J be an ideal in ̂k[(ui)i∈I ]. The closure of J with
respect to the ultrametric w is the set of elements of ̂k[(ui)i∈I ] which are a
transfinite sum of elements of J . That is, the set of elements which can be
written y =

∑
τ∈T (yτ+1 − yτ ) where T is a well ordered set, (yτ )τ∈T is a

pseudo-convergent sequence and for each τ ∈ T we have yτ+1 − yτ ∈ J .

Proposition 3.7. The closure of an ideal of ̂k[(ui)i∈I ] is an ideal.

Proof. This follows from the fact that a transfinite series exists in ̂k[(ui)i∈I ]
if any given monomial appears only finitely many times. Since that must be
the case for the sum y of the definition, it is also the case for the sum or
difference of two such elements, and for the product with an element of the
ring. All the terms of such sums are in J .

�

Proposition 3.8. For any series h(u) ∈ ̂k[(ui)i∈I ] which is without constant
term, the series

∑∞
a=0 h(u)a converges in ̂k[(ui)i∈I ].

Proof. Since there is no constant term, we have to prove that any non con-
stant monomial can appear only finitely many times in the series. If the
value group is of rank one, the result is clear by the archimedian property.
We proceed by induction on the rank. If Ψ1 is the largest non trivial convex
subgroup of the value group Φ, we can write h(u) = h1(u) + h2(u) where
h1(u) contains all the terms in h(u) which involve only variables with weight
in Ψ1. Then h(u)a =

∑a
i=0

(
a
i

)
h1(u)ih2(u)a−i. If a monomial appears infin-

itely many times in the (h(u)a)a∈N then applying lemma 3.5 to the sets of
monomials appearing in the (h1(u)i)i∈N and (h2(u)j)j∈N respectively shows
that some monomial must appear infinitely many times in the collection of
series (h1(u)i)i∈N, which we exclude by the induction hypothesis applied to
Ψ1, or some monomial must appear infinitely many times in the collection
of series (h2(u)j)j∈N, which is impossible because the semigroup Φ+ \Ψ1 is
archimedian since Φ/Ψ1 is. �

6A pseudo-convergent, or pseudo-Cauchy sequence of elements of ̂k[(ui)i∈I ] is a se-
quence (yτ )τ∈T indexed by a well ordered set T without last element, which satisfies the
condition that whenever τ < τ ′ < τ” we have w(yτ ′−yτ ) < w(yτ”−yτ ′) and an element y
is said to be a pseudo-limit of this pseudo-convergent sequence if w(yτ ′ − yτ ) ≤ w(y− yτ )
for τ, τ ′ ∈ T, τ < τ ′. Spherically complete means that every pseudo-convergent sequence
has a pseudo-limit.



12 Local uniformization of valuations

Corollary 3.9. The ring ̂k[(ui)i∈I ] is local, with maximal ideal m̂ consisting
of series without constant term and residue field k. The maximal ideal is the
closure of the ideal generated by the (ui)i∈I .

Indeed the proposition shows that the non invertible elements of the ring
are exactly those without constant term, which form an ideal. The second
assertion follows from the fact that any series without constant term is a
transfinite sum of w-isobaric polynomials in the ui.

Proposition 3.10. The local ring ̂k[(ui)i∈I ] is henselian.

Proof. This follows from the fact that it is spherically complete, that the
value group of w is of finite rational rank, and the characterization of henselian
rings by the convergence of pseudo-convergent sequences of étale type found
in [9, Proposition 3.7]. �

Corollary 3.11. The henselization of the localization k[(ui)i∈I ]m̂∩k[(ui)i∈I ]

of the polynomial ring k[(ui)i∈I ] at the maximal ideal which is the ideal of
polynomials without constant term, is contained in ̂k[(ui)i∈I ].

Proof. By proposition 3.8, any element of k[(ui)i∈I ] which is not in the max-
imal ideal is invertible in ̂k[(ui)i∈I ], which is henselian. �

Corollary 3.12. If the series h(u) has no constant term, given any other se-
ries g(u) ∈ ̂k[(ui)i∈I ] and a monomial um, writing g(u) =

∑
a∈N ga(u)(um)a,

where no term of a ga(u) is divisible by um, the substitution
∑

a∈N ga(u)h(u)a

gives an element of ̂k[(ui)i∈I ]: in this ring, we can substitute a series without
constant term for any monomial, and in particular for any variable.

Proof. Since any monomial appears finitely many times in g(u), by combina-
torial finiteness, any monomial can appear only finitely many times among
the series (ga(u))a∈N.
Should a monomial appear infinitely many times among the terms of the sum∑

a∈N ga(u)h(u)a, by lemma 3.5 applied to the set of monomials appearing
in the (ga(u))a∈N and the set of monomials appearing in the (h(u)a)a∈N\{0},
a monomial would have to appear infinitely many times among the h(u)a

and this would contradict proposition 3.8. �

In conclusion, the k-algebra ̂k[(ui)i∈I ] is regular in any reasonable sense
and has almost all of the properties of the usual power series rings except of
course noetherianity if Γ is not finitely generated. If Γ is finitely generated,
̂k[(ui)i∈I ] is the usual power series ring in finitely many variables, equipped

with a weight.

Theorem 3.13. (The valuative Cohen theorem, part 1) Let R be a complete
equicharacteristic noetherian local domain and let ν be a rational valuation
of R. We fix a field of representatives k ⊂ R of the residue field R/m and
a minimal system of homogeneous generators (ξi)i∈I of the graded k-algebra
grνR. There exist choices of representatives ξi ∈ R of the ξi such that the
application ui 7→ ξi determines a surjective morphism of k-algebras

π : ̂k[(ui)i∈I ] −→ R
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which is continuous with respect to the topologies associated to the filtrations
by weight and by valuation respectively. The associated graded morphism
with respect to these filtrations is the morphism

grwπ : k[(Ui)i∈I ] −→ grνR, Ui 7→ ξi

whose kernel is a prime ideal generated by binomials (Um
`−λ`Un

`
)`∈L, λ` ∈

k∗.
If the semigroup Γ = ν(R \ {0}) is finitely generated or if the valuation ν is
of rank one, one may take any system of representatives (ξi)i∈I .

This is proved in [29, §4] and we recall that we have:

Proposition 3.14. Let p : S → R be a surjective morphism of commutative
local domains and let Q = (Qϕ)ϕ∈Φ≥0

be a filtration of S by ideals indexed
by the positive part Φ≥0 of a totally ordered abelian group Φ of finite ra-
tional rank, and such that

⋂
ϕ∈Φ≥0

Qϕ = {0} and the set of ϕ ∈ Φ≥0 such
that Qϕ/Q+

ϕ 6= 0 is well ordered. Assume further that R is noetherian and
complete. Let (Fϕ)ϕ∈Φ≥0

= (p(Qϕ))ϕ∈Φ≥0
be the image filtration of R. The

kernel of the induced surjective map of graded rings grQS → grFR consists
of the Q-initial forms of the elements of the kernel F of the morphism p.

Proof. From the definition we have that x ∈ R is in Fϕ \ F+
ϕ if and only

if x has a representative x̃ ∈ S such that x̃ ∈ Qϕ \ Q+
ϕ . We can use the

proof of [29, Proposition 3.3] to verify that any x ∈ R has a representative of
maximum Q-order. An element x̂ ∈ S whose initial form inQx̂ is mapped to
zero in grFR is not a representative of maximum order of its image x ∈ R.
It satifies x̂ − x̃ ∈ F , where x̃ is a representative of maximum order. Thus
inQ(x̂− x̃) = inQx̂ ∈ inQF . Conversely, if inQx1 ∈ inQF it means precisely
that it is the initial form of an element x1 − y ∈ F with y of Q-order larger
that that of x1, so that x1 is not a representative of maximum order of its
image in R and the image of inQx1 in grFR is zero. �

Corollary 3.15. (See [29, Proposition 3.6]) The initial form inwh(u) of an
element h(u) ∈ ̂k[(ui)i∈I ] is in the kernel of grwπ if and only if w(h(u)) <
ν(π(h(u))).

Proof. The ν-initial form of an element x of R is of the form cξ
e with c ∈ k∗

and ξe a monomial in the ξi. The weight of the term cue ∈ ̂k[(ui)i∈I ] is ν(x)
which shows that the ν-adic filtration of R is the image by the morphism π

of the w-adic filtration of ̂k[(ui)i∈I ]. �

In other words, the filtration of R by the valuation ideals is the image by
π of the filtration by weight on ̂k[(ui)i∈I ] and the kernel of the associated
graded morphism encodes the difference between the two.

Remarks 3.16. 1) The only case where the morphism π is an isomorphism is
the case where the ring R is regular and the valuation ν is monomial.

2) After giving this result its name, I realized that Cohen’s structure theorem
had roots in valuation theory. It is an analogue for complete noetherian local
rings of a structure theorem for complete valued fields due to H. Hasse and
F.K. Schmidt. See [24, Section 4.3]. However, this result was itself inspired
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by a conjecture of Krull in commutative algebra which directly inspired I.S.
Cohen; see [5, Introduction].

3) The sum σ =
∑
um of all monomials is an element of ̂k[(ui)i∈I ] and

can be deemed to represent the transfinite product
∏
i∈I(

1
1−ui ) since in the

expansion of 1
1−ui each power of ui appears exactly once and with coefficient

1.
If we consider the canonical morphism of topological k-algebras

κ : ̂k[(ui)i∈I ]→ k[[tΓ]], ui 7→ tγi

defined in [29, introduction to section 4],7 by construction a monomial of
weight γ in the variables ui encodes a representation of γ as a combination
of the generators γi so that the image by κ of the series σ is the generalized
generating series

∑
γ∈Γ p(γ)tγ ∈ k[[tΓ]] where γ 7→ p(γ) ∈ N is a partition

function: the number of distinct ways of writing γ as a combination with
coefficients in N of the generators γi. Using the morphism κ, we see that it
satisfies a generalized version of Euler’s identity for the generating series of
partitions: ∑

γ∈Γ

p(γ)tγ =
∏
i∈I

(
1

1− tγi
).

We observe that the semigroup Φ≥0 is itself well ordered and combinato-
rially finite if and only if its approximation sequences constructed in [29,
Proposition 2.3]

Nr
0 ⊂ Nr

1 ⊂ · · · ⊂ Nr
h ⊂ Nr

h+1 ⊂ · · ·Φ≥0

by linearly nested free subsemigoups Nr, where r is the rational rank of
Φ, are finite. Indeed, if such a sequence is infinite there must be infinite
decreasing sequences of elements of Φ≥0 because if the linear inclusion Nr

h ⊂
Nr
h+1 ⊂ Φ≥0, encoded by a matrix with entries in N, is not an equality, the

sum of the basis element of Nr
h+1 is strictly smaller than the sum of basis

elements of Nr
h. Conversely, we know that Nr is well ordered because it

is the semigroup of values of a monomial valuation on the noetherian ring
k[[x1, . . . , xr]].

Therefore, if Φ≥0 is well ordered, we have Φ≥0 = Nr where r is the rational
rank of Φ. The same construction as above can be applied when taking
variables ui indexed by all the elements of Nr instead of only generators and
taking r = 1 we recover the usual partition function p(n) and the usual Euler
identity.
The series

∑
γ∈Γ p(γ)tγ can also be viewed as the generalized Hilbert-Poincaré

series of the graded algebra grw
̂k[(ui)i∈I ] since p(γ) is the dimension of the

k-vector space generated by the different monomials of degree γ. We note
that the Hilbert-Poincaré series of grνk[[tΓ]] = k[tΓ] is again, up to a change
in the meaning of the letter t, the sum

∑
γ∈Γ t

γ of all monomials.

7which minimally presents k[[tΓ]] as a quotient of a generalized power series ring.
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3.4. The valuative Chevalley Theorem. In this section we dig a lit-
tle deeper into the relationship between the valuative Cohen theorem and
Chevalley’s theorem (see [28], section 5, and [3], Chap. IV, §2, No. 5, Cor.4),
which is essential in its proof. Let R be a complete equicharacteristic noe-
therian local domain and let ν be a rational valuation centered in R. Let us
take as set (γi)i∈I the entire semigroup Γ. If the valuation ν is of rank one,
this set is of ordinal ω (see [35, Appendix 3, Proposition 2]) and cofinal in
Φ≥0 since by [7, Theorem 3.2 and §4] the semigroup Γ has no accumulation
point in R because we assume that R is noetherian (see also [26, Lemma
3.16]). Since we have

⋂
γ∈Γ Pγ = (0), it is an immediate consequence of

Chevalley’s theorem that given a sequence of elements of R of strictly in-
creasing valuations, their m-adic orders tend to infinity. This is no longer
true for valuations of rank > 1 as evidenced by the following:
Example 3.17. Let R = k[[x, y]] equipped with the monomial rank two
valuation µ with value group (Z2)lex such that µ(x) = (1, 0) and µ(y) =
(0, 1). The elements (x + yi)i≥1 have strictly increasing values (1, i) but
their m-adic order remains equal to 1.

This is the reason why in the valuative Cohen theorem the representatives
of generators of the associated graded algebra have to be chosen. In this
section we present some consequences of this choice.

Let (γi)i∈I be a well ordered set contained, with the induced order, in the
non negative semigroup of a totally ordered group Φ of finite rational rank.
By the theorem of B. Neumann in [21] which we have already quoted, the
semigroup Γ generated by these elements is well ordered. Let

(0) = Ψh ⊂ Ψh−1 ⊂ · · · ⊂ Ψ1 ⊂ Ψ0 = Φ

be the sequence of convex subgroups of Φ, where h is the rank of Φ and Ψk

is of rank h − k. Let us consider the canonical morphism λ : Φ → Φ/Ψh−1.
With these notations we can state the following inductive definition:
Definition 3.18. A subset B of a well ordered subset (γi)i∈I of Φ≥0 is said
to be initial in (γi)i∈I when

• If h = 1, then B is of the form {γi|i ≤ i0}.
• If h > 1, then λ(B) is initial in the set (λ(γi))i∈I ⊂ Φ/Ψh−1 of the
images of the γi and for every ϕh−1 ∈ λ(B) we have that the set of
differences B ∩ λ−1(ϕh−1) − ϕ̃h−1 is initial in the set of differences
{γi)i∈I}∩λ−1(ϕh−1)− ϕ̃h−1 ⊂ (Ψh−1)≥0, where ϕ̃h−1 is the smallest
γi contained in λ−1(ϕh−1).

One verifies by induction on the rank that the intersection of initial subsets
is initial, so that we have an initial closure of a subset C of (γi)i∈I , the
intersection of the initial subsets containing C.
Remark 3.19. If the valuation is of rank > 1, it is not true that if γi ∈ B
and γj < γi, then γj ∈ B.

The useful features of initial sets are what comes now and especially the
valuative Chevalley Theorem below which shows that finite initial subsets
provide a way of approximating the countable ordinal I indexing the gen-
erators of Γ by nested finite subsets which is appropriate for the valuative
Cohen Theorem.
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To simplify notations, we shall sometimes identify each γi with its index
i, as in the proof below.

Proposition 3.20. Let the (γi)i∈I be as above. The initial closure of a finite
subset of (γi)i∈I is finite.

Proof. This is a variant of the proof of lemma 5.58 of [28]. Let C be a finite
subset of I. If the valuation is of rank one the ordinal of I is at most ω (see
[35, Appendix 3, Proposition 2]) and the initial closure of C is the set of
elements of I which are less than or equal to the largest element of C, and
it is finite. Assume now that the result is true for valuations of rank ≤ h− 1
and let ν be a valuation of rank h. Let λ : Φ → Φh−1 = Φ/Ψh−1 be the
morphism of groups corresponding to the valuation νh−1 of height h−1 with
which ν is composed. Set C1 = λ(C) and let I1 index the distinct (λ(γi))i∈I .
We have a natural monotone map I → I1, which we still denote by λ. By
the induction hypothesis, we have a finite set C̃1 containing C1 and initial
in I1. Define C̃ as follows: it is the union of finite subsets C̃i1 of the λ−1(i1)

for i1 ∈ C̃1, where C̃i1 is the set of elements of λ−1(i1) which are smaller
than or equal to the largest element of C ∩ λ−1(i1). By loc. cit., Lemma 4,
or Proposition 3.17 of [28], each of these sets if finite and C̃ =

⋃
i1∈C̃1

C̃i1 is
the initial closure of C. �

Corollary 3.21. Given a finite set B0 ⊂ I, there is a countable sequence
(Ba)a∈N>0 of nested finite initial subsets containing B0 whose union is I:

B0 ⊂ B1 ⊂ · · · ⊂ Ba ⊂ Ba+1 ⊂ · · · ⊂ I

Proof. Consider the sequence of morphisms

Φ
λh−1−→ Φ/Ψh−1

λh−2−→ Φ/Ψh−2 · · · · · ·
λ2−→ Φ/Ψ2

λ1−→ Φ/Ψ1 −→ 0.

Denote by µi the compositum λi ◦ λi+1 ◦ · · · ◦ λh−1 : Φ→ Φ/Ψi.
Let B0,1 ⊂ Φ/Ψ1 be the initial closure of the union of the image of B0 in

Φ/Ψ1 and the smallest element of the image of I in Φ/Ψ1 which is not in that
image. For each ϕ1 ∈ B0,1 take the initial closure in λ−1

1 (ϕ1) of the union of
λ−1

1 (ϕ1) ∩ µ2(B0) and the smallest element of λ−1
1 (ϕ1) ∩ µ2(I) which is not

in λ−1
1 (ϕ1)∩ µ2(B0). The union of the results of this construction is a finite

initial subset B0,2 of µ2(I) which contains µ2(B0).
We repeat the same construction starting from B0,2 ⊂ µ2(I) to build a finite
initial subset B0,3 of µ3(I), and so on until we have created a finite initial
subset B1 of I which strictly contains B0 unless B0 = I. Then we apply the
same construction replacing B0 by B1 to obtain B2, and so on.

Let us now prove that the union of the Ba is I. We keep the notations
of Definition 3.18 and Proposition 3.20, where λh−1 = λ. The result is true
if Φ is of rank one because a strictly increasing sequence of elements of I is
cofinal in I (see [7, Theorem 3.2]). Let us assume that it is true for groups
of rank ≤ h − 1 and assume that the result is not true for rank h. Let ι
be the smallest element of I which is not in

⋃
t∈NBa. Using our induction

hypothesis, define a0 as the least a such that λ(ι) ∈ λ(Ba). Let ϕ̃ι be the
smallest element of I ∩ λ−1(λ(ι)). By the definition of initial closure, for
a ≥ a0 the elements of each set of differences Ba ∩ λ−1(λ(ι))− ϕ̃ι are initial
in I ∩λ−1(λ(ι))− ϕ̃ι ⊂ Ψh−1. We are reduced to the rank one case and since
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by construction the Ba ∩ λ−1(λ(ι)) grow with a we obtain that for large
enough a we have ι ∈ Ba ∩ λ−1(λ(ι)) and a contradiction. �

Corollary 3.22. The finite initial subsets of I with inclusion maps form a
direct system whose limit is I. �

Theorem 3.23. (The valuative Chevalley theorem) Let R be a complete
equicharacteristic noetherian local domain and let ν be a rational valuation
of R. Denote by Γ the semigroup of values of ν and by (γi)i∈I a minimal set
of generators of Γ. Assume that the set I is infinite and let D be an integer.
Let B0 be a finite subset of I. There exist elements (ξi)i∈I in R such that
ν(ξi) = γi for all i ∈ I and a finite initial subset C(D) of (γi)i∈I containing
B0 and such that whenever γi /∈ C(D), then ξi ∈ mD+1.

Proof. This is essentially a consequence of the valuative Cohen theorem of
[29], or rather of its proof. Recall that the choice of the ξi in the proof of
the valuative Cohen theorem is such that if the image of ξi in a quotient
R/pq is in a power of the maximal ideal, then ξi lies in the same power of
the maximal ideal in R, for all primes pq which are the centers of valuations
with which ν is composed. So if p1 is the center of the valuation ν1 of height
one with which ν is composed, we may assume by induction that the result
is true for the ξi whose value is in the convex subgroup Ψ1 of Φ associated to
ν1. By a result of Zariski (see [28, corollary 5.9]), we know that the ν1-adic
topology on R is finer than the m-adic topology, which means that there
exists a ϕ1 ∈ Φ1 = Φ/Ψ1 such that if ν1(ξi) ≥ ϕ1 then ξi ∈ mD+1. So we
are interested only in the ξi whose ν1-value is positive and less that ϕ1. If
ν1(m) > 0, they are finite in number (see [28, proposition 3.17]) so it suffices
to add them to the finite set constructed at the previous inductive stage.
If not, since Φ1 is of rank one, there are only finitely many values of the
ν1(ξi) which are positive and less than ϕ1. Let η be one of these. Denote
by λ : Φ → Φ1 the natural projection. Again using the argument of the
proof of the valuative Cohen theorem, and in particular Chevalley’s theorem
applied to the filtration of Pη/P+

η by the Pϕ/P+
η with λ(ϕ) = η, we have

that for each η there is a ϕ0(η) ∈ λ−1(η) such that if ν(ξi) ∈ λ−1(η) and
ν(ξi) ≥ ϕ0(η) then ξi ∈ mD+1. Again by ([28], proposition 3.17) there are
finitely many generators of Γ in λ−1(η) which are ≤ ϕ0(η). It suffices to add
to our finite set the union of these finite sets over the finitely many values η
that are ≤ ϕ1. �

Proposition 3.24. If the rational valuation ν is of rank one, Theorem 3.23
is equivalent to the existence for each integer D > 0 of a finite initial set
C(D) in Γ such that for γ /∈ C(D) we have Pγ ⊂ mD+1.

Proof. If the set I is infinite, the γi are cofinal in Φ≥0 since by [7, Theorem
3.2 and §4] the semigroup Γ has no accumulation point in R because we
assume that R is noetherian. Therefore we have

⋂
i∈I Pγi = (0) where the

ordinal of I is ω. By Chevalley’s theorem (see [3, Chap. IV, §2, No. 5, Cor.
4]), all but finitely many of the ξi are in mD+1. Conversely, assuming the
result of Theorem 3.23, recall that Pγ is generated by the monomials ξe of
value ≥ γ and let s ∈ I be the smallest index such that t ≥ s implies that
ξt ∈ mD+1. Let (γi)i∈J be the finite set of the γj < γs. For any monomial
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ξe such that some decomposition of ν(ξe) as sum of γi contains a γt with
t ≥ s we have ξe ∈ mD+1. Let C(D) be the set of elements of Γ which are
≤ Dγs. If ν(ξe) = γ > Dγs, either its decomposition along the γi contains
a γt with t ≥ s or it can be written γ =

∑
i∈J aiγi with ai ∈ N and then

since (
∑

i∈J ai)sup(γi)i∈J > Dγs we must have (
∑

i∈J ai) ≥ D + 1 and thus
ξe ∈ mD+1 since the ξi are in m.
If the set I is finite, taking as initial set C(D) the set of elements of Γ which
are ≤ Dγs, where now γs is the largest of the γi, the last argument of the
proof shows that Pγ ⊂ mD+1 for γ /∈ C(D). �

Remark 3.25. So we see that in the rank one case Theorem 3.23 is indeed
equivalent to the result given by Chevalley’s theorem.

Corollary 3.26. In the situation of the valuative Cohen theorem, given an
infinite collection of monomials (uq`)`∈L such that each monomial appears
only finitely many times, for any integer D all but finitely many of the ξq`
are in mD+1.

Proof. Set C = C(D) and let us consider the monomials uq` which involve
only the finitely many variables ui with i ∈ C. If there are finitely many
such monomials, we are done. Otherwise, since each monomial appears only
finitely many times and we are now dealing with finitely many variables, the
monomials which are such that |q`| ≤ D are finite in number and we are
done again since the ξi are in m and by construction all the other monomials
are in mD+1. �

Remark 3.27. Since each monomial appears only finitely many times, the
sum

∑
`∈L u

q` exists in ̂k[(ui)i∈I ] and therefore its image
∑

`∈L ξ
q` must

converge in R, albeit in a transfinite sense. The corollary shows an aspect
of this.

3.5. Finiteness in the valuative Cohen theorem. Since the binomials
(Um

` − λ`Un
`
)`∈L with λ` ∈ k∗ generate the w-initial ideal of the kernel

F of the morphism π : ̂k[(ui)i∈I ] −→ R, for each ` ∈ L there is at least
one element of the form um

` − λ`u
n` +

∑
w(p)>w(um` )

cpu
p which is in F

(overweight deformation of its initial binomial). Let us call such elements
F`.

When the rational valuation ν on the noetherian complete local domain
R is of rank > 1 and the semigroup Γ is not finitely generated, not only does
one have to choose the representatives ξi ∈ R of generators of the k-algebra
grνR carefully (see [29]) in order to avoid adding infinitely many times the
same element in sums such as

∑
i∈I ξi, but the equations F` whose initial

forms are the binomials (um
` − λ`un

`
)`∈L, λ` ∈ k∗ also have to be chosen

carefully in order to avoid similar accidents when writing elements of the
closure in ̂k[(ui)i∈I ] of the ideal which they generate. In this subsection we
show how the noetherianity of the local domain R can be used to prove the
existence of good choices of the (F`)`∈L.

Proposition 3.28. The elements F` can be chosen, without modifying the
initial binomial, in such a way that each one involves only a finite number
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of variables and no monomial up appears in infinitely many of them or in
infinitely many products A`F`, where the A` are terms such that there are at
most finitely many products A`F` of any given weight.

Proof. According to equation (E) of subsection 3.3, the image in R of a
topological generator is of the form ξm

` − λ`ξn
` −

∑
p c

(`)
p ξp with ν(ξp) >

ν(ξm
`
) for all exponents p and of course it is zero in R. Since the ring R

is noetherian, the ideal generated by the ξp which appear in the series is
finitely generated, say by ξe1 , . . . , ξes . Let us choose finitely many of the ξj
which generate the maximal ideal of R, call them collectively Ξ and call U
the collection of the corresponding variables in ̂k[(ui)i∈I ] . Then our series
can be rewritten as ξm` − λ`ξn

` −
∑s

j=1G
(`)
j (Ξ)ξej , where G(`)

j (Ξ) ∈ R is a
series of terms in the elements of Ξ, possibly with a non zero constant term.
Our series is the image of the element um` − λ`u

n` −
∑s

j=1G
(`)
j (U)uej of

F . This element has the same initial binomial as our original series since
w(uej ) > w(um

`
) for all j and involves only finitely many variables. It

can replace our original series as element of the ideal F with initial form
um

` − λ`un
` .

To prove the second assertion, remember from [29, §4] or section 3.3 above
that there is a well-ordering on the set of all monomials obtained by embed-
ding it into Γ × N(N) thanks to the finiteness of the fibers of the map
ue 7→ w(ue). Fix a choice of (F`)`∈L and consider all k-linear combinations
of the F` of the form F` − µF`′ which do not modify the initial binomial. If
the set of monomials ue which appear infinitely many times as terms in all
such linear combinations is not empty, it has a smallest element ue0 . Note
that we may assume that such a monomial does not appear in the initial
binomials because there are only finitely many initial binomials involving a
given finite set of variables.
Denote by L0 the set of indices ` ∈ L such that ue0 appears in F` as above,
and by L1 ⊂ L0 the finite set of indices ` ∈ L0 such that the weight of the
initial form of F` is minimal.
Denote by L2 the set of indices in L0 \L1 such that the weight of the initial
form of F` is minimal, and define recursively in the same manner finite
subsets Lι indexed by an ordinal. Now for each ` ∈ L1 we can replace F` by
F`−µ`,`′F`′ with an `′ ∈ L2 without changing the initial binomial, where the
constant µ`,`′ is chosen to eliminate the monomial ue0 from the difference. In
so doing we create a new system of overweight deformations of the collection
of binomial ideals and cannot add a monomial of lesser weight than ue0

which might appear infinitely many times since ue0 was the smallest in the
original family (F`)`∈L. We continue this operation with ` ∈ Lι, `′ ∈ Lι+1. In
the end we have a new system of overweight deformations obtained by linear
combinations and in which ue0 cannot appear. This contradiction shows that
we can choose the F` so that no monomial appears infinitely many times.
It follows from lemma 3.5 that under our assumption, for any collection of
isobaric polynomials A`, the A`(F`−(um

`−λ`un
`
)), cannot contain infinitely

many times the same monomial. On the other hand since each A` is an
isobaric polynomial, a monomial can appear only finitely many times in all
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the A`um
` or A`un

` , so that altogether no monomial can appear infinitely
many times in the collection of series A`F`. �

Theorem 3.29. (The valuative Cohen theorem, part 2) The kernel F of
π is the closure of the ideal generated by the elements F` obtained as in
Proposition 3.28 as Um`−λ`Un

` runs through a set of generators of the kernel
of grwπ. In a slightly generalized sense, these generators form a standard
basis of the kernel of π with respect to the weight w.

Proof. Let h be a non zero element of F ; its weight is finite but its image
in R has infinite value. By Corollary 3.15, inwh belongs to the ideal F0

generated by the (Um
` − λ`Un

`
)`∈L.

Thus, there exists a finite set of elements (F`)`∈L1 , with L1 ⊂ L, and isobaric
polynomials (A`)`∈L1 in the ui such that w(h−

∑
`∈L1

A
(1)
` F`) > w(h). Since

this difference is still in F , we can iterate the process and build a series
indexed by the set T of weights of the successive elements, say ya, with
y0 = h, y1 = h −

∑
`∈L1

A
(1)
` F` and, if τ + 1 is the successor of τ in the

index set T , yτ − yτ+1 =
∑

`∈Lτ A
(τ)
` F`, such that w(yτ+1) > w(yτ ), so

that w(yτ ) = w(yτ+1 − yτ ). The sequence (yτ )τ∈T is a pseudo-convergent
sequence with respect to the ultrametric u(x, y) = w(y−x) which, according
to [29, §4] has 0 as a pseudo-limit in the spherically complete ring ̂k[(ui)i∈I ].
This is of course not sufficient to prove what we want. However, in view of
proposition 3.28, no monomial can appear in infinitely many of the yτ−yτ+1.
If h 6=

∑
τ<ρ(yτ+1−yτ ), the initial form of h−

∑
τ<ρ(yτ+1−yτ ) is in F0 and we

can continue the approximation. Thus, the transfinite sum
∑

τ∈T (yτ −yτ+1)

exists in ̂k[(ui)i∈I ] and, by definition of T , has to be equal to h so that 0 is
indeed the limit of the sequence yτ . This shows that h is in the closure of
the ideal generated by the F`. �

Remark 3.30. The statement about the F` topologically generating the kernel
of π is part a) of the asterisked8 proposition 5.49 of [28]. Part b) of that
proposition is incorrect, as the next section shows.

From now on we shall assume not only that the (ξi)i∈I are representatives
in R of the ξi ∈ grνR which make the valuative Cohen theorem valid, but
also that each of the equations F` we consider involves only finitely many
variables and the F`’s topologically generate the kernel of π.

In view of their definition the (ξi)i∈I generate the maximal ideal of R. Since
R is noetherian there is a finite subset J ⊂ I such that the elements (ξi)i∈J
minimally generate this maximal ideal. According to ([28], 5.5), for each
` ∈ I \ J there must be among the topological generators (E) of the ideal F
one which contains u` as a term. We detail the argument here:

The element ξ` is expressible as a series h((ξi)i∈J). Therefore the series
u` − h((ui)i∈J) must belong to the ideal F . There must be an element H of
the closure of the ideal generated by the series (F`)`∈L such that

w(u` − h((ui)i∈J)−H) > γ`.

8An asterisked proposition in that text means it is endowed with hope but not with a
proof.
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Thus, the series H must contain u` as a term so that at least one of the
topological generators of F must contain u` as a term. An argument given
in ([29], proof of proposition 7.9) establishes the following:

Proposition 3.31. Up to a change of the representatives ξi we may assume
that each variable ui with i ∈ I\J appears as a term in a topological generator
of kerπ of the form:

um
i − λiun

i − gi((uj)j<i)− ui, (Fi)

where every term of the series gi((uj)j<i) has weight > w(um
i
) and < w(ui).

Proof. Up to multiplication of variables by a non zero constant and corre-
sponding modification of the λ`, we may assume that for each i ∈ I \ J ,
the variable ui appears with coefficient minus one in Fi. Let i1 be the
smallest element of I \ J such that there exists an equation Fi as above
containing ui linearly and not having the form described above. We write
g((uj)j<i1) for the series of terms of weight < i1. Such terms use only
variables of weight < w(ui1) i.e., of index < i1 so that the condition is
stronger than what the notation suggests. The remaining part of Fi1 can be
written −ui1 +

∑
w(p)>γi1

c
(i1)
p up. If we replace the representative ξi1 ∈ R

by ξi1 −
∑

w(p)>γi1
c

(i1)
p ξp without changing the previous ξj , we modify the

equation Fi1 into the desired form. We note that in view of the definition of
i1 we may assume that no variable of index < i1 appears as a term in (Fi1).
We then continue with the smallest index i2 such that the corresponding
equation does not have the desired form, and obtain the result by transfinite
induction. �

Proposition 3.32. Each F` is irreducible in ̂k[(ui)i∈I ].

Proof. Should it be reducible, since the kernel F of π is prime, one of its
factors should be in F and by Theorem 3.29 and the fact that the kernel of
grwπ is prime, the initial binomial of F` should be in the ideal generated by
the initial forms of the other generators of F , which is impossible in view of
the assumption we made on the generating binomials.

�

Remark 3.33. Since the initial forms of the F` are the binomials defining
our toric variety SpecgrνR, Theorem 3.29 indeed provides equations for the
degeneration to SpecgrνR, as we shall see more precisely below in section
3.8. However, since the binomials (Um

`−λ`Un
`
)`∈L come in bulk, only being

ordered by their weight, it is difficult to make use of them. The next two
subsections address this difficulty.

3.6. The valuative Cohen theorem for power series rings. In this
section we prove that, in the case where R is a power series ring, the equations
provided by the valuative Cohen theorem can then be given a more specific
form.
Assume that R is a power series ring over a field k. Since by the valuative
Cohen Theorem the ξi generate the maximal ideal, there is a subset J ⊂ I
such that the (ξi)i∈J form a minimal system of generators of the maximal
ideal of R. Note that we state nothing about the rational independence of
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their valuations. By Proposition 3.31 for each i ∈ I \ J there is a series of
the form

um
i − λiun

i − gi((uj)j<i)− ui, (Fi)

among the topological generators of kerπ.
Generators of the relations between the values of the (ξi)i∈J are encoded by
finitely many binomials (Um

`−λ`Un
`
)`∈L0 which according to Theorem 3.29

are the initial forms for the weight w of series (F`)`∈L0 which are among the
topological generators of kerπ.

Theorem 3.34. If R is regular, i.e., a power series ring with coefficients
in k, the kernel of the morphism π : ̂k[(ui)i∈I ]→ R asssociated to a rational
valuation ν by Theorems 3.13 and 3.29 is the closure of the ideal generated
by the (Fi)i∈I\J .

Proof. It suffices to show that all the (F`)`∈L of Theorem 3.29 are in the
ideal generated by the Fi. It is impossible for any F` to use only variables
with indices in J because if that were the case its image in R by π would be
a non trivial relation between the (ξi)i∈J , contradicting the fact that these
are a minimal set of generators of the maximal ideal in a regular local ring.
Given F` with ` ∈ L, let i be the largest index which is not in J of a variable
appearing in F`. Let us substitute ui + Fi = um

i − λiun
i − gi((uj)j<i) in

place of ui in F`, according to corollary 3.12. Denote by F [i]
` the result of

this substitution. It involves only finitely many variables, and those whose
indices are not in J are all of index < i. The difference F`−F

[i]
` is a multiple

of Fi and F
[i]
` is in kerπ. If F [i]

` = 0, since F` is irreducible it should be equal
to Fi up to multiplication by a unit, which proves the assertion in this case.
Thus we may assume that F [i]

` 6= 0. Now we can again take the variable of
highest index not in J , say i1, appearing in F [i]

` , make the substitution of ui1
by ui1 +Fi1 and repeat the argument; if the result of the substitution is zero,
then F` belonged to the ideal generated by Fi and Fi1 . Otherwise we have
a non zero element in kerπ involving only variables of index < i1 < i and
variables with index in J . Since the indices are elements of a well ordered
set, after finitely many such steps, either we obtain zero which shows that
F` is in the ideal generated by finitely many Fi’s, or we obtain a non zero
element of kerπ involving only the variables (ui)i∈J . Again the image of
this element by π would be a non trivial relation between the elements of a
minimal system of generators of the maximal ideal of R, which is impossible
since R is regular. Thus we obtain a contradiction if F` did not belong to
the ideal generated by the Fi. �

Remark 3.35. Theorem 3.34 can be interpreted as a manifestation of the
"abyssal phenomenon" of [28, section 5.6]. If the values of the generators
(ξi)i∈J of the maximal ideal of our power series ring are rationally inde-
pendent, the semigroup Γ is finitely generated, and we have an Abhyankar,
even monomial, valuation. If such is not the case even after some birational
ν-modification, after [29, Section 7], the rational rank of the valuation is
strictly less than the dimension of R and we are in the non-Abhyankar case.
The semigroup Γ is not finitely generated and the binomial relations in grνR
expressing the rational dependance of values of the (ξi)i∈J cannot give rise
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to relations in R, as they should in view of the faithful flatness of the de-
generation of R to grνR, because R is regular. The role of the equations
(Fi = 0)i∈I\J is to prevent their expression in R, which would decrease the
dimension and introduce singularities, by sending this expression to infinity.
Of course one could point out that something like this is necessary to deform
a non-noetherian ring such as grνR into the noetherian R, but that leaves
out the precise structure of the deformation, which is significant even when
grνR is noetherian; see Example 2.3.

In order to make full use of the valuative Cohen Theorem, we need a
notion of a finite set of generators of the semigroup which is adapted to
the generators Fi of Proposition 3.31. Except in rank one, the overweight
condition does not imply that the indices of the variables appearing in the
series gi((uj)j<i) above are in the initial set B; see Remark 3.19. This is
an obstruction, in the case where we consider finitely many variables, to the
process of successive elimination of the variables ui which we used in the
proof of Theorem 3.34. The purpose of the next proposition is to correct
this.

Proposition 3.36. In the situation of the valuative Cohen Theorem, each
finite initial set B is contained in a finite set Bfull such that the indices of
the finitely many variables appearing in Fi for i ∈ Bfull \ J belong to Bfull.

Proof. Consider the equations Fi for i ∈ B and the largest weight γimax in B.
In view of the construction of the Fi, the weight of each of the variables uj
with j /∈ B appearing in the Fi for i ∈ B is < γimax . Let us add these weights
to the set B to obtain a finite set B1. We now take the equations Fj with
j ∈ B1\B corresponding to these new variables, with a new maximum weight
< γimax and repeat the process, producing a strictly decreasing sequence of
weights, which has to stop after finitely many steps since Γ is well ordered.
When it stops, it means that no new variables are needed. Denoting by Bfull

the finite set of indices thus created, we see that it has the property of the
Proposition. �

Definition 3.37. The finite subset Bfull associated as above to a finite
subset B of I and an appropriate set F of topological generators of the
kernel of the morphism π of the valuative Cohen theorem is called the F-
filling or for short filling of B. It depends not only on the semigroup but
also on the equations (F`)`∈L. By construction, filling preserves inclusions.

Remark 3.38. The fillings of finite initial sets have all the properties of finite
initial sets with respect to the valuative Chevalley Theorem, which is the
important property of initial sets for us.

From now on the notation B shall designate the filling of an initial set B.

By the faithful flatness of the toric degeneration, each binomial um` − λ`un
`

is the initial binomial of an equation F` and thus the F` are a (generalized)
standard basis for the kernel of π (see [28, Proposition 5.53]). It needs not
be the case that the Fi, which when R is a power series ring topologically
generate the same ideal, are such a standard basis. See example 4.1 for a
very special case where this happens.
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3.7. Lifting the valuation to a power series rings. We can present our
complete equicharacteristic local domain R as a quotient of a power series
ring S = k[[x1, . . . , xn]] over k by a prime ideal P . Our rational valuation ν
then appears as a valuation on S/P which we can compose with the PSP -adic
valuation µ1 of the regular local ring SP , with center on S the ideal P and
residue field kµ1 = SP /PSP = Frac(S/P ) to obtain a rational valuation µ
on S; see [3, Chapter VI, no. 4, Proposition 2]. By definition of the symbolic
powers P (e) = P eSP ∩ S, the associated graded ring of S with respect to µ1

is grµ1
S =

⊕
e∈N

P (e)

P (e+1) .
The graded ring grµS is then the graded ring associated to the filtration

of grµ1
S induced on each homogeneous component by the valuation ideals

Pϕ/P (e+1) with P (e+1) ⊆ Pϕ ⊆ P (e), where ϕ ∈ {e} ⊕ Φ.
Let us pick a minimal system of generators p1, . . . , pf for the ideal P . We

note that a regular system of parameters for the regular local ring SP consists
of n− d of the pq’s. We shall assume in the sequel that the dimension of S
is minimal, which means that its dimension is the embedding dimension of
R.

Proposition 3.39. 1) The valuation µ on S obtained as explained above is
rational and its value group is (Z⊕ Φ)lex.
2) The generators p1, . . . , pf of the ideal P can be chosen so that µ(p1) <
µ(p2) < . . . < µ(pf ) and their µ-initial forms inµp1, . . . , inµpf are part of a
minimal system of generators of grµS. All the generators of the semigroup
of µ which are of µ1-value > 0 and are not among the µ(pq) are of value
> µ(pf ).
3) With such a choice the ideal PSP is minimally generated by p1, . . . , pn−d,
which constitute a regular sequence in S. In particular the µ1-initial forms
inµ1p1, . . . , inµ1pn−d of p1, . . . , pn−d are non zero in P/P (2).

Proof. Let Sµ ⊂ Sµ1 be the inclusion of valuation rings corresponding to the
fact that µ is composed with µ1 and let mµ1 be the intersection with Sµ of
the maximal ideal of Sµ1 . The valuation ring Rν is equal to the quotient
Sµ/mµ1 and has the same residue field as Sµ. By ([33], §4), the value group
of µ is an ordered extension of Z by Φ, which can only be (Z ⊕ Φ)lex (see
[33, Remarque before section 5]).

If µ(p1) = µ(p2) for example, their initial forms in grµS are proportional
since µ is rational, and we may replace p2 by p2−λp1 whose value is > µ(p1)
if λ is chosen appropriately in k, and so on. In view of the example given
on page 200 of [10], some of the series pq may belong to P (2). However, that
is not possible for those which constitute a regular system of parameters for
PSP . 9

9When the field k is of characteristic zero, it is likely that none of the pq may belong
to P (2). We do not know whether P (2) ⊂ (x1, . . . , xn)P (see [10]) which would give the
result immediately by Nakayama’s Lemma, but we can obtain a partial result:
If pq ∈ P (2), there is an h /∈ P such that hpq ∈ P 2. In characteristic zero this implies
that ∂pq

∂xi
∈ P for i = 1, . . . , n. By [27, Chap. 0, 0.5], pq is then integral over mP so that

if we denote by P1 ⊂ P the ideal generated by the generators of P which are not in P (2),
we have P1 +mP = P . Since the ideal P is integrally closed, by the integral Nakayama
Lemma of [27, lemme 2.4], with n1 = 0, we have P1 = P .
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To prove the second assertion of 2), let ζ ∈ S be a representative of the
smallest element of the semigroup of µ on S whose µ1-value is > 0. This ele-
ment has to be part of a minimal system of generators of grµS. By construc-
tion we have µ(ζ) ≤ µ(p1). We also have inµ1ζ ∈ P/P (2), which is generated
as S/P -module by the images of the pq, so that µ(ζ) ≥ min(µ(pq)) = µ(p1)
and finally µ(ζ) = µ(p1).

We now proceed by induction and assume that the µ-initial forms of
p1, . . . , pj are the first j generators of grµS whose µ1-value is > 0. Since
S is complete, it is complete for the valuation µ (see [28, Proposition 5.10])
and we may assume that inµpj+1 is not the initial form inµ(

∑j
q=1 aqpq) of an

element of the ideal of S generated by p1, . . . , pj ; if it were, we might replace
pj+1 by pj+1 −

∑j
q=1 aqpq without affecting its role as generator of P while

increasing the µ-value, and continue until we either reach a contradiction
with the minimality of the system of generators or obtain a generator with
the desired property. This is essentially the same as the argument in the
proof of lemma 4.6 of [29].

Since µ is a rational valuation and inµpj+1 is not the initial form of an
element of the ideal generated by p1, . . . , pj , it cannot be a monomial in the
inµui and the inµp1, . . . , inµpj so that µ(pj+1) is not in the semigroup ∆j

generated by the µ-values of the elements of S \P and µ(p1), . . . , µ(pj). Let
µ(ζ) be a generator of the semigroup ∆ of µ on S which is not in ∆j and is
≤ µ(pj+1).

We can write ζ =
∑j

q=1 aqpq +
∑f

q=j+1 aqpq and if µ(ζ) < µ(pj+1) the
µ-initial form of ζ must come from the first sum and thus be the initial form
of an element of the ideal of S generated by p1, . . . , pj . Now inµ(pj+1) is a
monomial necessarily involving some of these inµ(ζ) so either µ(pj+1) is the
smallest of the µ(ζ) and we have what we want, or inµ(pj+1) is the initial
form of an element of the ideal of S generated by p1, . . . , pj and we have a
contradiction.
Assertion 2) now follows by induction on j.
To prove 3) we use the fact that by construction each pj does not belong to
the ideal generated by p1, . . . , pj−1 for 2 ≤ j ≤ n − d, so that p1, . . . , pn−d
minimally generate the ideal PSP . �

Corollary 3.40. If B is a finite initial set in the minimal set of generators
(γi)i∈I of the value semigroup of the valuation ν, then B

⋃
{µ(p1), . . . , µ(pn−d)}

and B
⋃
{µ(p1), . . . , µ(pf )} are finite initial sets in the minimal set of gen-

erators of the value semigroup of the valuation µ.
The filling of B

⋃
{µ(p1), . . . , µ(pf )} adds only variables ui.

Proof. This follows from part 2) of the Proposition and the definition of
initial sets. �

Given the rational valuation µ of rational rank r + 1 < n on the power
series ring S = k[[x1, . . . , xn]] which we have just built, the generators γi
of the semigroup Γ are part of the minimal system of generators of the
semigroup ∆ of µ. Other elements of the minimal system of generators of ∆
are the µ(p1), . . . , µ(pf ) ∈ Z ⊕ Φ by proposition 3.39, and finally the other
members of this minimal system of generators of ∆ which are > µ(pf ) and
which we denote by δa.



26 Local uniformization of valuations

We therefore have a surjection of graded k-algebras

k[(Ui)i∈I , V1, . . . , Vf , (Wa)a∈A]→ grµS, Ui 7→ inµηi, Vq 7→ inµpq,Wa 7→ inµζa,

where ζa ∈ S with µ(ζa) = δa.
By the valuative Cohen theorem we can lift the ξi ∈ R to elements ηi ∈ S,

the (ξi)i∈J which minimally generate the maximal ideal of R lifting to (ηi)i∈J
with the same property for S since we assumed that the dimension of S is
the embedding dimension of R. We can choose representatives ζa in S for
the elements of grµS of degree δa in such a way that the theorem applies,
the pq being finite in number can be kept, and so we obtain a continuous
surjective morphism of topological k-algebra

Π: ̂k[(ui)i∈I , v1, . . . , vf , (wa)a∈A]→ S, ui 7→ ηi, vq 7→ pq, wa 7→ ζa,

to which we can apply Theorem 3.34 and obtain the following

Lemma 3.41. Let θ ∈ S be an element whose initial form in grµS is part
of a minimal system of generators of this k-algebra and let
z ∈ {(ui)i∈I , (vq)1≤q≤s, (wa)a∈A} be the corresponding variable. A topological
generator Fz of the kernel of Π which contains −z as a term according to
Theorem 3.34 can be chosen so that the following holds: If θ is one of the ηi
or one of the pq, the initial binomial of Fz involves only the variables (ui)i∈I .
If θ is one of the ζa, each term of the initial binomial of Fz involves some of
the vj.

Proof. If θ is one of the ηi the result is clear, since the variables in the initial
binomial must be of value less than that of ηi. If θ is one of the pq, say
p`, there cannot even exist a Fz whose initial binomial is not in k[(ui)i∈I ]
because if that was the case, both terms of the initial binomial would contain
a monomial in the pq and then p` would be in the ideal generated by the pq of
smaller value, which contradicts the minimality of the system of generators.
Now if wa corresponds to ζa ∈ P which is not one of the pq, there exist
aq ∈ ̂k[(ui)i∈I , v1, . . . , vf , (wa)a∈A] such that wa −

∑f
q=1 aqvq is in kerΠ and

is not zero. The process of expressing this difference as a series

wa −
f∑
q=1

aqvq =
∑

A`F`

in the topological generators of kerΠ begins with expressing the initial form
for the weight of that difference as a combination of binomials which are
part of a generating system for kergrΠ. In a minimal such expression there
can be no term which is a monomial in the ui because there is no such term
in the initial form of the difference. Since the values can only increase from
there and in view of the fact that the valuation µ is composed with the
PSP -adic valuation, the sum

∑
A`F` can contain no term using only the ui.

On the other hand, since wa is a term in the difference it must appear as
a term in that sum, and we know that one of the F` must contain wa (or
−wa) as a term. It follow that one of the F` appearing in the sum, which by
construction has an initial binomial which uses some of the vq, wb, contains
wa (or −wa) as a term. �
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Keeping the notations of this section, let us now denote by P the closure
of the ideal of ̂k[(ui)i∈I , v1, . . . , vf , (wa)a∈A] generated by the (vq)q=1,...,f and
the (wa)a∈A. We have a commutative diagram:

(∗) ̂k[(ui)i∈I , v1, . . . , vf , (wa)a∈A]

��

Π // S

��
̂k[(ui)i∈I ]

π // R

where the left vertical arrow is the quotient by the ideal P. It follows from
Lemma 3.41 that we can now prove:

Theorem 3.42. (Structure of rational valuations on complete equicharac-
teristic noetherian local domains)
Let R be a complete equicharacteristic noetherian local domain and let k ⊂ R
be a field of representatives of the residue field of R. Let ν be a rational valua-
tion of R and let (ξi)i∈I be representatives in R of a minimal set of generators
(ξi)i∈I of the k-algebra grνR for which the valuative Cohen theorem holds.
Let J ⊂ I be a minimal set such that the (ξi)i∈J generate the maximal ideal
of R and let (Um

` − λ`Un
`
)`∈L be a minimal set of generators of the kernel

of the surjective morphism of k-algebras k[(Ui)i∈I ]→ grνR, Ui 7→ ξi.
Then a set of topological generators for the kernel of the continuous sur-

jective morphism π : ̂k[(ui)i∈I ]→ R given by the valuative Cohen theorem is
structured as follows:

• For each i ∈ I \ J , a generator of the form

Fi = um
i − λiun

i − gi((uj)j<i)− ui,

where the initial binomial is one of the (um
` − λ`un

`
)`∈L, the series

gi((uj)j<i) ∈ ̂k[(ui)i∈I ] depends only on variables of index < i and
the weight of each of its terms is > w(um

i
) and < w(ui).

• A finite subset of the complement in L of the set of binomials used
above is in bijection with generators of the form

Fq = um
q − λqun

q − gq(u),

with gq(u) ∈ ̂k[(ui)i∈I ] and the weight of each of its terms is >
w(um

q
).

• The series (F`)`∈L constitute a (generalized) standard basis with re-
spect to the weight w, in the sense of Definition 3.2, for the ideal of
̂k[(ui)i∈I ] topologically generated by the (Fi)i∈I\J , (Fq)q=1,...,f .

Moreover, each of the (F`)`∈L uses only finitely many of the variables ui.

Proof. From the diagram above we see that we have the equality Π−1(P ) =

kerΠ + P and that kerπ is the image of this ideal in ̂k[(ui)i∈I ]. So we
obtain topological generators of kerπ by reducing the topological generators
of kerΠ modulo P. By Theorem 3.34 the ideal kerΠ is generated by the
(Fi)i∈I\J , (Fvq)q=1,...,f , (Fwa)a∈A. By Lemma 3.41, modulo P those which
involve a −wa as a term vanish entirely, those which involve a −vq as a
last term do not vanish since their initial binomial involves only the ui and
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become the Fq of the theorem. Those which involve a −ui as a last term
pass to the quotient without modification and become the Fi ∈ kerπ.
Finally, by construction the initial forms of the F` generate the kernel of the
morphism grwπ, which is the initial ideal of the kernel of π with respect to
the weight w. �

Remarks 3.43. 1) We know that, since the (η̃j)j∈J generate the maximal
ideal of S, we can write each pq as a series in the (η̃j)j∈J . In fact the
morphism Π induces an isomorphism from the sub k-algebra k[[(uj)j∈J ]] of

̂k[(ui)i∈I , v1, . . . , vf , (wa)a∈A] to S and the pq((uj)j∈J) − vq belong to the
kernel of Π. The point is to obtain each pq(η̃j)j∈J), as we do using the
topological generator of kerΠ which contains −vq as a term, as the result of
successive eliminations through equations whose initial forms are binomials
belonging to our set of generators of the kernel of grwΠ. This is what will
allow us to obtain a quotient of R as an overweight deformation of a finite
number of these binomials.
2) The theorem shows the persistence of the abyssal phenomenon of Remark
3.35 even when R is not regular.
3) An interpretation of the theorem is that it presents the valuation ν on R
as the image of the monomial valuation on ̂k[(ui)i∈I ] given by the weights,
in the sense that the value of an element of R is the maximum weight of its
representatives in ̂k[(ui)i∈I ] (see [29, Proposition 3.3]). In other words, the
ν-adic filtration on R is the image by the morphism π of the w-adic filtration
on ̂k[(ui)i∈I ].
4) The semigroup ∆ of values of the valuation µ on S requires more gener-
ators than the (0, γi), the µ(pj) and some of the (n, γ), n ∈ N \ {0}, γ ∈ Γ,
and their description would be interesting. We do not need it here thanks
to Lemma 3.41.

3.8. Equations for the toric degeneration. We can now write the equa-
tions for the toric degeneration of R to grνR in the natural parameters, the
vϕ, where ϕ runs through a system of generators for the semigroup Φ≥0,
although there is not a minimal one in general. See [28, §4].

Recall from Proposition 2.1 or [28, Section 2.3] that the algebra encoding
the toric degeneration of the ring R to its associated graded ring grνR is the
valuation algebra

Aν(R) =
⊕
ϕ∈Φ

Pϕ(R)v−ϕ ⊂ R[vΦ].

Having fixed a field of representatives k ⊂ R of the residue field, let us
consider the k[vΦ≥0 ]-algebra k[vΦ≥0 ] ̂[(ûi)i∈I ] = k[vΦ≥0 ] ⊗k ̂k[(ûi)i∈I ], which
is the same construction as ̂k[(ui)i∈I ] in section 3.3 but where the series have
coefficients in k[vΦ≥0 ]. Each variable ûi still has weight γi and we continue
to write w(p) for w(ûp).

In [28, Section 2.4] we defined on the algebra Aν(R) a valuation νA by

νA(
∑

xϕv
−ϕ) = min(ν(xϕ)), with grνAAν(R) ' k[vΦ≥0 ]⊗k grνR,

an isomorphism as (bi-)graded k[vΦ≥0 ]-algebras. See loc.cit. for details.
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Proposition 3.44. With the notations of Theorem 3.13, the (ξiv
−γi)i∈I

constitute a minimal system of homogeneous topological generators of the
k[vΦ≥0 ]-algebra Aν(R) in the sense that the morphism of k[vΦ≥0 ]-algebras

π̂ : k[vΦ≥0 ] ̂[(ûi)i∈I ] −→ Aν(R), ûi 7→ ξiv
−γi

is surjective and continuous for the topologies defined by the weight and the
valuation νA respectively.

Proof. By the valuative Cohen theorem (Theorem 3.13), if x ∈ Pϕ(R) we
can write x =

∑
e deξ

e where the de ∈ k∗ and the ξe are monomials in the
ξi of increasing valuations, with the minimum value being ≥ ϕ. Let us write
−ϕ = −ν(ξe) + ηe with ηe ≥ 0. Note that the ηe corresponding to the
smallest index in the sum is zero if ν(x) = ϕ and all the others are > 0.
Then we can write xv−ϕ =

∑
e dev

ηeξev−ν(ξe) and since the ξev−ν(ξe) are
monomials in the ξiv−γi and the minimality is clear as well as the continuity,
this proves the result. �

We now think of the ûi = ξiv
−γi as defining an embedding of the total

space of the toric degeneration into the space corresponding to the algebra
k[vΦ≥0 ] ̂[(ûi)i∈I ]. We are seeking equations for the image of this embedding,
that is, generators for the kernel of the morphism π̂ of Proposition 3.44
above.
If a series H((ûi))i∈I) is in the kernel, we see that by definition of the mor-
phism, we have H((vγi ûi)i∈I) = 0 in R, and conversely. so that the change
of variables ui 7→ vγi ûi, which is well defined over Spec(vΦ+)−1k[vΦ≥0 ],
carries the kernel of the morphism π of Theorem 3.13 to the kernel of π̂.
It realizes the isomorphism, valid over Spec(vΦ+)−1k[vΦ≥0 ] of the fiber of
SpecAν(R)→ Speck[vΦ≥0 ] with the space corresponding to R.
Now for each topological generator F` = um

` −λ`un
`
+ · · · of the kernel of π

we see that F`(vγ û), with the obvious contracted notation, is divisible, as an
element of k[vΦ≥0 ] ̂[(ûi)i∈I ], by vw(m`) = vw(n`). The ideal of k[vΦ≥0 ] ̂[(û)i)i∈I ]
topologically generated by the

F̂` = v−w(m`)F`(v
γ û) = ûm

` − λ`ûn
`

+
∑

w(p)>w(m`)

cpv
w(p)−w(m`)ûp

is contained in the kernel of π̂, is equal to it and also isomorphic to the kernel
of π over Spec(vΦ+)−1k[vΦ≥0 ], while the space it defines modulo the ideal
(vΦ>0) is the same as the space defined by Aν(R) modulo that ideal, namely
SpecgrνR. By flatness of Aν(R) over k[vΦ≥0 ], they have to coincide.

Combining this with Theorem 3.42 we have obtained the following:

Theorem 3.45. With the notations of Theorem 3.42, a set of topological
generators in k[vΦ≥0 ] ̂[(ûi)i∈I ] for the ideal kerπ̂ defining the total space of
the degeneration of R to grνR is as follows:

• For each i ∈ I \ J , a generator of the form

F̂i = ûm
i − λiûn

i − ĝi(v, (ûj)j<i)− vγi−w(ûm
i)
ûi,
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where the initial binomial is one of the (Um
` − λ`Un

`
)`∈L, the series

ĝi(v, (ûj)j<i) ∈ k[vΦ≥0 ] ̂[(ûi)i∈I ] depends only on variables ui of index
< i and the weight of each of its terms is > w(ûm

i
) and < w(ûi).

• A finite subset of the complement in L of the set of binomials
(ûm

` − λ`û
n`)`∈L used by the F̂i is in bijection with generators of

the form
F̂q = ûm

q − λqûn
q − ĝq(v, û),

with ĝq(v, û) ∈ k[vΦ≥0 ] ̂[(ûi)i∈I ] and the weight of each of its terms is
> w(ûm

q
).

Moreover, we have:
• The series (F̂`)`∈L constitute a standard basis for the ideal kerπ̂ with
respect to the weight filtration.

Each series uses finitely many of the variables ûi and each term appearing
in the series F̂i or F̂q is of the form cev

w(ûe)−w(ûm
i
)ûe or cevw(ûe)−w(ûm

q
)ûe

with ce ∈ k∗. �

Remark 3.46. In view of [29, Proposition 2.3], the ring k[vΦ≥0 ] is the union of
a nested sequence of polynomial rings in r variables, where r is the rational
rank of Φ:
k[x

(0)
1 , . . . , x(0)

r ] ⊂ . . . ⊂ k[x
(h)
1 , . . . , x(h)

r ] ⊂ k[x
(h+1)
1 , . . . , x(h+1)

r ] ⊂ . . . ⊂ k[vΦ≥0 ],

where each variable x(h)
i is mapped to a monomial in the x(h+1)

j , j = 1, . . . , r.
Therefore, whenever we deal with a finite set of series F`, for example the F`|B
of section 4 below, since we may assume that they use only finitely many of the
variables ui, the parameter space of the toric degeneration can be taken to be an
r-dimensional affine space Ar(k).

Proposition 3.47. If the semigroup Γ is finitely generated, the valuation ν
is Abhyankar.

Proof. If Γ is finitely generated, there are finitely many variables and finitely
many equations involved to encode the specialization of R to grνR, which
means, in view of Remark 3.46, that it corresponds to a morphism

k[x
(h)
1 , . . . , x(h)

r ]→ Â(h)
ν (R)

for sufficiently large h, where Â(h)
ν (R) is the algebra corresponding to the

degeneration as in Theorem 3.42, with the vϕ replaced by elements of
k[x

(h)
1 , . . . , x

(h)
r ]. This morphism is still faithfully flat while the rings are

now noetherian and we can apply [3, AC VIII, §4, no.4, Corollaire 1] to
prove the equidimensionality of the fibers, that is, dimgrνR = dimR. �

Remark 3.48. This is one direction of [29, Theorem 7.21].

Example 3.49. Consider the overweight deformation, as in section 3.2:

y2 − x3 − u, u2 − xs−1y

of the binomial ideal y2−x3, u2−xs−1y, where x, y, u have weights 4, 6, 2s+1
respectively, with s ≥ 6. Set x̂ = v−4x, ŷ = v−6y, û = v−(2s+1)u.
Substituting x = v4x̂, y = v6ŷ, u = v2s+1û in the equations, we obtain
v12ŷ2 − v12x̂3 − v2s+1û = 0, v4s+2û2 − v4s+2x̂s−1ŷ = 0.
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After dividing each equation by the highest possible power of v, we obtain
the equations for the total space of the toric degeneration over Speck[v] of
the formal curve in A3(k) with ring R = k[[x, y, u]]/(y2−x3−u, u2−xs−1y)
to the monomial (toric) curve x̂ = t4, ŷ = t6, û = t2s+1:

ŷ2 − x̂3 − v2(s−6)+1û = 0, û2 − x̂s−1ŷ = 0.

Example 3.50. Let us go back to Example 2.3 and let R ⊂ k[[t]] be the
algebras of an algebroid plane branch and its normalization, endowed with
the t-adic valuation. We have an inclusion of valuation algebras Aν(R) ⊂
Aν(k[[t]]) ' k[v][[t]][v−1t]. As above, we introduce t̂ = v−1t to embed the
space corresponding to Aν(k[[t]]) in the affine space A1(k[v]) over the affine
line A1(k). The ξi ∈ R of Example 2.3, viewed as elements ξi(t) ∈ k[[t]],
parametrize the embedding of our curve in Ag+1(k). They can be written

ξi(t) = tγi +
∑
e>γi

c(i)
e t

e, with c(i)
e ∈ k.

The generators v−γiξi of Aν(R) then become elements v−γiξi(vt̂) ∈ k[v][[t̂]]
which realize in a parametric way the degeneration of our curve to the mono-
mial curve with the same semigroup, as in [?, Section 3]:

v−γiξi(vt̂) = ξ̂i(v, t̂) = t̂γi +
∑
e>γi

c(i)
e v

e−γi t̂e, with c(i)
e ∈ k.

A version of this example appears in [28, Section 5.4].

One can compare the degenerations, by equations and by parametrization,
on the following example. It is the case s = 6 of Example 3.49, where the
equation of the plane branch has been changed a little in order to simplify
the parametrization, and we assume characteristic 6= 2.
The equations and the parametrization correspond for v = 1 to the torific
embedding in A3(k) of the plane branch with equation

(y2 − x3)2 − x5y − 1

16
x7 = 0.

They are

ŷ2 − x̂3 − vû = 0, û2 − x̂5ŷ − 1

16
v2x̂7 = 0

x̂ = t̂4, ŷ = t̂6 +
1

2
vt̂7, û = t̂13 +

1

4
vt̂14.

Remarks 3.51. 1) The assumption that the characteristic is 6= 2 is geometri-
cally meaningful: the curve given parametrically by x = t4, y = t6 + t7 which
in characteristic 6= 2 has the same semigroup 〈4, 6, 13〉 as this example, has
in characteristic 2 the semigroup 〈4, 6, 15〉.
In characteristic 6= 0, given a parametric presentation x(t), y(t) in k[[t]] of a
formal plane branch, the relation between the two series, the semigroup of
the branch, and the characteristic of k is very mysterious to us. See, however,
[1]. In characteristic zero the question was settled by Zariski in [34, Chap.
1].
2) Since Aν(R) is a Φ-graded algebra, the component of degree ϕ being
Pϕv−ϕ, it is natural that equations and parametrizations for the toric de-
generation should be homogeneous (or rather isobaric) when v is given weight
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−1. Thus, one can write directly equations for the total space of the degen-
eration from the overweight deformation.

4. Approximating a valuation by Abhyankar semivaluations

4.1. The basic example of approximation of a valuation by Abhyankar
semivaluations. This example comes from the interpretation found in [28,
Example 4.20] of an example of Zariski.

Let k be an algebraically closed field and let ν be a rational valuation
of rational rank one on the ring R = k[[x, y]]. It cannot be Abhyankar,
and therefore the semigroup Γ = ν(R \ {0}) is not finitely generated (see
[29, beginning of §7]). Up to a change of variables we may assume that
ν(x) < ν(y) and that ν(y) is the smallest non zero element of Γ which is
not in Γ0 = Nν(x). By [8, Theorem 1.1 and Lemma 2.1], the semigroup
Γ is generated by positive rational numbers ν(x), ν(y), (γi)i≥2 and we can
normalize the valuation by setting γ0 = ν(x) = 1. Here, as in Example 2.3,
we denote the smallest element of Γ by γ0 instead of γ1 to underscore the
special role played historically by the coordinate x.
Moreover, denoting by Φi (resp. Γi) the subgroup (resp. subsemigroup)
of Q generated by 1, ν(y), ν(u2), . . . , ν(ui), with Φ0 = Z, Φ1 (resp. Γ1)
generated by ν(x), ν(y), and denoting by ni the index [Φi : Φi−1], we have
that γi+1 > niγi and as a consequence niγi ∈ Γi−1 and the relations between
the γi are generated by the expressions of this last result as

niγi = t
(i)
0 γ0 + t

(i)
1 γ1 +

i−1∑
j=2

t
(i)
j γj with t

(i)
j ∈ N, 0 ≤ j ≤ i− 1,

where we may assume that t(i)j < nj for j ≥ 1.
According to Theorem 3.34, by a good choice of the representatives ξi ∈
k[[x, y]] of the generators γi the morphism

̂k[x, y, (ui)i≥2]→ k[[x, y]], x 7→ x, y 7→ y, ui 7→ ξi,

is well defined and surjective, and has a kernel generated up to closure by

yn1 − xt
(1)
0 − g1(x, y)− u2,

...

unii − xt
(i)
0 yt

(i)
1
∏

2≤q≤i−1 u
t
(i)
q
q − gi(x, y, (uj)2≤j≤i)− ui+1

u
ni+1

i+1 − xt
(i+1)
0 yt

(i+1)
1

∏
2≤j≤i u

t
(i+1)
j

j − gi+1(x, y, (uj)2≤j≤i+1)− ui+2

...

...

with the series gi(x, y, (uj)2≤j≤i) ∈ k[[(x, y, (uj)2≤j≤i]] satisfying the over-
weight condition and having each term of weight < γi+1.

Now if we keep only the first i equations, and set uj = 0 for j ≥ i+ 1, we
obtain by elimination of the variables uj , 2 ≤ j ≤ i the equation pi(x, y) = 0
of a plane branch Ci in the formal affine plane. It has a unique valuation,
which is Abhyankar and has a semigroup Γi generated by 1, ν(y), ν(uj)2≤j≤i.
The unique valuation on the branch Ci is an Abhyankar semivaluation on
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k[[x, y]] and the corresponding semigroups Γi = 〈1, γ1, γ2, . . . , γi〉 fill the
semigroup Γ as i grows. The intersection numbers with Ci at the origin of
the elements ξj ∈ k[[x, y]] are the γj , for 2 ≤ j ≤ i.

We note that by construction the valuation of pi(x, y) is that of ui+1, that
is γi+1.
Finally, by Chevalley’s theorem, there exists a function β : N→ N with β(i)

tending to infinity with i, such that pi(x, y) ∈ (x, y)β(i).
To the branch Ci is associated a rank two valuation νi on k[[x, y]] defined

as follows: each element h ∈ k[[x, y]] can be written uniquely as h = pni h̃

with h̃ not divisible by pi and then the restriction of h̃ to Ci has a value
γ ∈ Γi.
The map h 7→ (n, γ) ∈ Z×Φi is the rank two valuation νi, which is a rational
Abhyankar valuation dominating k[[x, y]]. The valuations νi approximate ν
in the sense that given any h ∈ k[[x, y]], for sufficiently large i the element
pi(x, y) ∈ (x, y)β(i) does not divide h so that νi(h) ∈ {0}×Γi is also ν(h) by
what we have seen above. So we can indeed approximate the non-Abhyankar
valuation ν of rank one and rational rank one by Abhyankar valuations of
k[[x, y]] of rank two and rational rank two, but the fundamental fact is the
approximation of ν by Abhyankar semivaluations.

Remark 4.1. If the algebraically closed field k is of characteristic zero, each
equation pi(x, y) = 0 has for roots the conjugates of a Puiseux expansion
yi(x) with i + 1 characteristic exponents β0, . . . , βi which coincide, up to
renormalization, with the Puiseux expansion up to and excluding the (i+1)-
th Puiseux exponents of the roots of the equations pj = 0 for j > i (see
[22]). As i tends to infinity these Puiseux series yi(x) converge to a series
y∞(x) ∈ k[[xQ≥0 ]] which is not a root of any polynomial or power series
in x, y because the denominators of the exponents are not bounded. Thus,
given h(x, y) ∈ k[[x, y]]\{0}, the series h(x, y∞(x)) is not zero, and the map
which to a series h(x, y) associates the order in x of h(x, y∞(x)) defines a
valuation on k[[x, y]], which is the valuation ν. For more details in a more
general situation, see [20].
The relationship between these Puiseux exponents βj and the generators of
the semigroup is quite simple (see [34, Chap.1]): it is γj+1−njγj = βj+1−βj .
For a wider perspective one can consult [12] and [?].

These beautiful facts are unfortunately missing when one tries to under-
stand valuations over fields of positive characteristic. Even for branches the
behaviour of solutions in generalized power series y(x) ∈ k[[xQ≥0 ]] of alge-
braic equations is much more complicated when k is of positive characteristic
(see [18]) and as far as we know the relationship of these solutions with the
semigroup of values has not been clarified (see [30, Section 1]).

The purpose of this section is to show that the situation described above
is in fact quite general. We start from Theorem 3.42.

4.2. Definition of the ideals KB. Let us choose a finite initial subset B0

of I which contains:
• The set J of indices of the elements (ξi)i∈J minimally generating the
maximal ideal of R;
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• A set of r = rat.rk.Φ indices i1, . . . , ir such that the (γit)t=1,...,r

rationally generate the group Φ;
• The indices of the finite set of variables ui appearing in the equations

(Fq)1≤q≤f of Theorem 3.42.

Let B be (the filling of) a finite initial subset of I containing B0. Denote
by ιB the injection k[[(ui)i∈B]] ⊂ k[[(ui)i∈I ]] and consider in R the ideal KB

of R generated by the images by the morphism of k-algebras

π ◦ ιB : k[[(ui)i∈B]] −→ R ; ui 7→ ξi

of the F` whose initial binomial involves only variables whose index is in B
and in which all the ui with i /∈ B have been set equal to 0.
These series are denoted by F`|B. Note that the F` which use only variables
in B are mapped to zero in this operation and the images by π ◦ ιB of the
other F`|B are contained in the ideal generated by the (ξi)i/∈B. .
The ideal KB is the image by π ◦ ιB of the ideal KB of k[[(ui)i∈B]] generated
by the F`|B.

Consider the following commutative diagram, which results from our con-
structions.

(∗∗) k[[(ui)i∈B]]

πB
**

� � ιB // ̂k[(ui)i∈I ]
π // R

��
R/KB

Lemma 4.2. Assuming that B is full, the kernel of the surjective morphism
π ◦ ιB is generated by the (Fi)i∈B\J , (Fq)1≤q≤f and the kernel of πB is gen-
erated by the F`|B for the F` whose initial binomial is in k[[(ui)i∈B]], which
include the generators of the kernel of the morphism π ◦ ιB.

Proof. The morphism π ◦ ιB is surjective because B contains the indices of
a set of generators of the maximal ideal of R. To prove the first statement,
we note that the (Fi)i∈B\J and (Fq)1≤q≤f in question belong to the kernel
of π ◦ ιB. Let us go back to section 3.7 and let again (ξi)i∈J be elements
of our set of representatives (ξi)i∈I minimally generating the maximal ideal
of R. In view of point 2) of Remark 3.43, the intersection of the kernel of
π◦ιB with the subalgebra k[[(ui)i∈J ]] of k[[(ui)i∈B]] is generated by the series
pq((ui)i∈J), q = 1, . . . , f .
Remembering of course the fact that the finite set B is full we can use the
Fi to successively eliminate the variables ui, i /∈ J from the Fq as we did
in the proof of Theorem 3.34. This shows that modulo the ideal generated
by the (Fi)i∈B\J , the series Fq belongs to the ideal of k[[(ui)i∈B]] generated
by the pq((ui)i∈J), q = 1, . . . , f . On the other hand, by the same process,
any element of the kernel of π ◦ ιB is congruent modulo the ideal generated
by the Fi to an element of the restriction to k[[(ui)i∈J ]] of that kernel and
so, modulo the ideal generated by the Fi, belongs to the ideal generated by
the pq((ui)i∈J), q = 1, . . . , f . This proves the result. The second statement
follows from the first and the definition of KB.

�
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Proposition 4.3. Let B be (the filling of) a finite initial set of the set of
generators of the semigroup Γ.

(1) The quotient R/KB is an overweight deformation of the prime bino-
mial ideal generated by the binomials um`−λ`un

` which are contained
in k[(ui)i∈B]. In particular, KB is a prime ideal.

(2) Given an integer D there exists (the filling of) a finite initial set
B(D) such that for any (filling of a) finite initial set B containing
B(D) we have KB ⊂ mD+1.

(3) For each set B as above, we have:

ν(KB) = mini/∈Bγi.

In particular, ξi /∈ KB for i ∈ B.

Proof. The ringR/KB is the quotient of k[[(ui)i∈B]] by the ideal generated by
the F`|B and the kernel of π◦ιB. Let us denote by PB the filtration of R/KB

which is the image of the filtration by weight in k[[(ui)i∈B]]. In the language
of Proposition 2.1 this means that we consider the order function on R/KB

which associates to an element the maximum weight of its representatives in
k[[(ui)i∈B]]. The induced morphism

grw(πB) : grwk[[(ui)i∈B]] = k[(Ui)i∈B]→ grPB (R/KB)

is surjective by construction. By Proposition 3.14, its kernel is the w-initial
ideal of the kernel of πB, which by Lemma 4.2 is generated by the binomi-
als Um` − λ`Un

` which are in k[(Ui)i∈B]. These are exactly the binomials
corresponding to the relations between the (ξi)i∈B.
Thus, the k-algebra grPB (R/KB) is, by Proposition 3.1, a twisted semi-
group algebra for the semigroup which is the image in Φ of Nb =

⊕b
i=1 Nei,

with b = |B|, by the map ei 7→ γi. This semigroup is ΓB = 〈(γi)i∈B〉.
Since B contains B0, the rational rank of the group it generates is r so
that dimgrPB (R/KB) = r. By the flatness of the degeneration of R/KB to
grPB (R/KB), which is finitely generated (see Proposition 3.47), this implies
that R/KB has dimension r. We now have to show that it is an overweight
deformation of grPB (R/KB). This follows from the next Lemma.

In the following lemma, an overweight unfolding is a deformations of equa-
tions which adds only terms of higher weight, without any condition on the
initial forms of the elements of the ideal generated by the deformed equations.

Lemma 4.4. Let F0 = (um
` − λ`u

n`)`∈L be a prime binomial ideal in
k[[u1, . . . , uN ]] corresponding to a minimal system of generators of the rela-
tions between the generators of a finitely generated semigroup Γ = 〈γ1, . . . , γN 〉
generating a totally ordered abelian group of rational rank r. Let w be the
weight on k[[u1, . . . , uN ]] defined by giving ui the weight γi.

Let (F` = um
`−λ`un

`
+
∑

w(up)>w(um` )
c

(`)
p up)`∈L be overweight unfoldings

of the binomials. Let F be the ideal of k[[u1, . . . , uN ]] generated by the (F`)`∈L
and R = k[[u1, . . . , uN ]]/F.
If dimR = r, then the unfolding is an overweight deformation of the binomial
ideal.
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Exactly as in the proof of Theorem 3.3 of [29], we can define an order func-
tion with values in Γ on R by associating to a non zero element of R the high-
est weight of its preimages in k[[u1, . . . , uN ]]. Then we have, by Proposition
2.1, a faithfully flat specialization of R to k[[u1, . . . , uN ]]/inwF, where inwF
is the w-initial ideal of the ideal F, and dim(k[[u1, . . . , uN ]]/inwF) = dimR.
On the other hand we have the exact sequence

(0)→ inwF/F0 → k[[u1, . . . , uN ]]/F0 → k[[u1, . . . , uN ]]/inwF→ (0),

and since F0 is prime and the domain k[[u1, . . . , uN ]]/F0 is of dimension
r (see [28, Proposition 3.7]), the equality dimR = r implies the equality
inwF = F0 which means that we have an overweight deformation. This
proves the first assertion of the proposition.

The second part of Proposition 4.3 follows from the fact that by Theorem
3.23 we can choose B(D) so that the (ξi)i/∈B(D) are all in mD+1 and by
construction the image in R of F`|B ∈ k[[(ui)i∈B(D)]] differs from zero by a
series all of whose terms are in the ideal generated by the (ξi)i/∈B(D). This
remains true for any finite set B containing B(D).

The ideal KB is contained in the ideal generated by the (ξi)i/∈B, so that
ν(KB) ≥ mini/∈Bγi. Since B is full, if uj is the variable of weight mini/∈Bγi,
all the other variables appearing in the series Fj belong to B. Setting uj = 0
in the series Fj and taking the image of the result in R creates an easily
written element of value mini/∈Bγi in KB. �

To summarize, the ring R/KB is indeed an overweight deformation of the
prime binomial generated by the um` − λ`u

n` which are in k[[(ui)i∈B]] in
the sense of subsection 3.2 and [29, Section 3], and the induced valuation,
which we shall denote by νB, has to be Abhyankar, of rational rank r =
rat.rk.ν = dimR/KB. The value semigroup of this Abhyankar valuation is
the subsemigroup ΓB of Γ generated by the (γi)i∈B. The filtration of R/KB

associated to νB is the filtration PB introduced above.

Remarks 4.5. 1) The reader can verify that in example 4.1, if we take i ≥ 3,
forget the equations beginning with u

nj
j for j ≥ i + 1 and set uj = 0 for

j ≥ i we obtain by successive elimination of the ui with i ≥ 2 the equation
of a plane branch pi(x, y) = 0 with semigroup 〈1, ν(y), ν(u2), . . . , ν(ui)〉 for
its only valuation, which is Abhyankar. Of course in this case R = k[[x, y]]
is regular. The fact that the valuation of pi(x, y) is γi is generalized in the
third statement of the proposition.
2) The ideal KB is zero exactly when all the F` whose initial binomial is
in k[(ui)i∈B] are in k[[(ui)i∈B]] and then R is an overweight deformation of
the prime binomial ideal generated by the initial binomials of the F`. This
implies that dimR = r and ν is an Abhyankar valuation. See Remark 4.9
below.

4.3. Properties of the ideals KB. We now study some properties of the
collection of the ideals KB following in particular from Proposition 4.3.

Notice that given an inclusion B ⊂ B′, the set of generators of the ideal
KB′ contains more F`’s because there are more initial binomials, but a series
F`|B in KB must become in KB′ a series F`|B′ which is in general different.
Thus, an inclusion B ⊂ B′ does not imply an inclusion between KB and
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KB′ . However, as we just saw, the m-adic order of the ideals KB grows with
B and tends to infinity.
By construction, the w-initial ideal of KB is contained in the w-initial ideal
of KB′ .

Corollary 4.6. (of Proposition 4.3) With the notations of Corollary 3.21,
we have

⋂
B⊃B0

KB =
⋂
a∈NKBa = (0).

Proof. This follows from the fact that R is noetherian and the second part
of the proposition. �

Corollary 4.7. Let J ⊂ R be the jacobian ideal, defining the singular locus
of the formal germ associated to R. There exists a finite initial set BJ
containing B0 and such that if an initial set B contains BJ we have that
J 6⊂ KB so that the localization RKB is a regular ring. In particular, in the
sequence of Corollary 3.21, we have that J 6⊂ KBa and RKBa is a regular
ring for large enough a.

Proof. Since R is a domain and a quotient of a power series ring, we know
that the ideal J is not zero. Since R is noetherian, we know that

⋂∞
j=1m

j =

(0). Let D be the largest integer E such that J ⊂ mE in R. If we take
BJ = B(D) as in the proposition, we have that KBJ ⊂ mD+1. Thus, if
BJ ⊂ B it is impossible for J to be contained in KB. �

Theorem 4.8. The Abhyankar semivaluations νB of R are better and better
approximations of the valuation ν as the finite initial set B grows in the sense
that:

(1) The union of the finitely generated semigroups ΓB = 〈(γi)i∈B〉 is
equal to Γ, and in particular the nested union of the ΓBa correspond-
ing to the sequence of Corollary 3.21 is equal to Γ.

(2) Given an inclusion B ⊂ B′, if x ∈ R is such that x /∈ KB ∪ KB′, we
have the inequality νB(x) ≤ νB′(x).

(3) For any x ∈ R\KB we have the inequality νB(x) ≤ ν(x) and for any
x ∈ R \ {0} there exists a finite set B such that for any B′ ⊃ B we
have νB′(x) = ν(x). In particular, for any x ∈ R \ {0} there is an
index a0(x) in the sequence of Corollary 3.21 such that for a ≥ a0(x)
we have νBa(x) = ν(x).

Proof. The first statement follows from Corollary 3.21. By definition (see the
line just before Remark 4.5 and Proposition 3.14) of the Abhyankar valuation
on R/KB, the νB-value of the image x ∈ R/KB of an element x ∈ R is the
maximum weight of its representatives in k[[(ui)i∈B]]. Let hB(x) be such
a representative. Since hB(x) is also a representative of x in ̂k[(ui)i∈I ], we
have νB(x) = w(hB(x)) ≤ ν(x).
Given an inclusion B ⊂ B′ and x /∈ KB ∪KB′ , we can choose representatives
of maximum weight hB, hB′ in k[[(ui)i∈B′ ]] of the images of x ∈ R in R/KB

and R/KB′ respectively. We must then have hB − hB
′ ∈ KB + KB′ so

that inw(hB − hB
′
) ∈ inw(KB + KB′) = inwKB′ . If w(hB

′
) < w(hB) we

get inwh
B′ ∈ inwKB′ which contradicts the maximality of the weight. This

proves the inequality νB(x) ≤ νB′(x).
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Given x ∈ R \ {0} there exists a representative of x in ̂k[(ui)i∈I ] which is of
weight ν(x). By the argument of the proof of Proposition 3.28 we can choose
a representative h of x which has the same weight and involves only finitely
many of the variables ui. Let B be the filling of a finite initial set containing
B0 and these variables. We now have h ∈ k[[(ui)i∈B]] and inwh /∈ inwKB so
that h /∈ KB + ker(π ◦ ιB). Thus we have x /∈ KB and νB(x) = w(h) = ν(x).
The second statement of part 2) of the theorem follows from the inequalities
νB(x) ≤ νB′(x) ≤ ν(x) we have seen above. �

Remarks 4.9. 1) We have concentrated on the case where ν is not an Ab-
hyankar valuation because that is the unsolved case. The case of Abhyankar
valuations with finitely generated semigroups is solved from the viewpoint of
this paper in [29] and in the next section but there are Abhyankar valuations
with infinitely generated semigroup (see [6]). Let ν be such a valuation, so
that in our construction we have r = d. For a given finite subset B as above,
the ideal KB is zero, so that all the series F`|B belong to the ideal generated
by the (Fi)i∈B\J , (Fq)1≤q≤f . This implies that the ring R is presented as an
overweight deformation of the binomial ideal generated by the initial forms
of the F`|B and as such is endowed with a valuation νB with a finitely gener-
ated semigroup. In this case, the valuation ν is approximated by valuations
with finitely generated semigroups.
2) Just as in Example 4.1, using Corollary 4.7, we can, for large enough B,
compose the valuation νB with the KBRKB -adic valuation of the regular
local ring RKB , to obtain a valuation ν̃B on R of rational rank r+ 1. These
valuations are Abhyankar if r + 1 = dimR and approximate ν in the sense
that given x ∈ R, for large enough B we have ν̃B(x) = ν(x) since x /∈ KB.
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