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ABSTRACT Wireless Sensor Networks (WSNs) are critical for various applications ranging from envi-
ronment monitoring to industrial monitoring. The varying and continuously growing interest in this field
demands an understanding of the sensor node distribution to ensure robustness and to improve resource
utilization for data processing and decision making. In this paper, we focus on reconstructing the boundaries
of a wireless sensor network, which also has a lot of applications in IoT and Robotics. As these sensor node
locations can be considered as a set of points in the 2D plane, boundary detection of a WSN can be related
to classical shape reconstruction problem in Computational Geometry. In this paper, we extend a simple and
generic strategy for hole detection to a geometric solution for boundary/shape reconstruction. Furthermore,
we introduce a simple and controllable heuristic algorithm to patch the coverage holes identified by our
boundary reconstruction algorithm. Not only does this study improve the reliability of WSNs, but it also
provides a useful tool for the extensive domain of computational geometry and shape analysis. Our different
experiments show that the proposed reconstruction algorithm outperforms the existing state-of-the-art
methods, and hole patching gives a simple and controllable solution for mobile node placement.

INDEX TERMS Shape reconstruction, Delaunay Triangulation, Coverage Hole Detection, Dynamic Node
Placement, Coverage Optimization

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have become an
important domain with applications in different fields,

including environmental monitoring, industrial automation,
and smart cities. These networks are typically composed of
spatially distributed sensors that collaborate with each other
to acquire and transmit required data to the user. The per-
formance of a WSN is typically determined by its capacity
to cover a designated region. However, the random nature
of node deployment, natural/physical barriers present in the
designated region, and malfunctioning of sensors often create
coverage holes in the network, which further deteriorates the
network’s functionality.

We define coverage holes as the areas within the designated
intended region that do not receive any monitoring from any
sensor. Such holes can affect the overall performance and
reliability of the network as it lead to missing events and
ends up in inaccurate data collection. The consequence of
this limitation becomes severe in applications such as disas-
ter management and security surveillance. So, being able to
efficiently identify coverage holes and patch them (placing
additionalmobile nodes to avoid coverage holes) is important.

And to find such coverage holes, it is important to know the
boundaries defined by the sensor nodes. Current solutions to
identify boundaries and patch coverage holes typically rely on
geometric, statistical or topological analysis. Although these
approaches have shown some success, they often struggle
with computational complexity and require global network
information. Different from existing solutions, this work pri-
marily focuses on the precision and controllability aspects of
boundary detection and patching problems, respectively.

The location of the sensor nodes can be considered as a set
of 2D points where the problem of finding their boundary is
analogous to a solution of the shape reconstruction problem.
From the perspective of computational geometry, given a set
of planar points, the shape reconstruction problem asks for a
shape that best approximates the points [1]. Although most
algorithms in this direction focus on reconstructing exterior
boundaries alone, there are a few works that are capable of
reconstructing interior (holes) and exterior boundaries. How-
ever, almost all the algorithms in this direction are created
and evaluated from a human perception point of view with
applications in Computer Graphics and related fields. Unlike
this line of work (but still creates comparable or better re-
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FIGURE 1. Top row: Results of various shape reconstruction algorithms. Left to right: α-Shape, Simple shape, EC-Shape, CT-Shape, Discern, Our result, our
result after extracting the boundary edges. Bottom row: The input point set and the effect of varying the parameter corresponding to sensor radius.

FIGURE 2. Hole detection strategy. Left to right: Input points, coverage areas drawn as circles around each point, grid points, and the covered and
uncovered points in green and red colors.

sults), the proposedmethod introduces a powerful and generic
algorithm for shape reconstruction (both exterior and interior
boundaries) with a focus onWSNs. In other words, unlike the
literature, the proposed method takes the sensing radius into
account when identifying the shape and hole. Having such
a reconstruction algorithm is not only valuable for the shape
modeling community but also helps analyze the node distribu-
tion and understand the underlying topology inWSNs. Figure
1 compares the output of our algorithm with state-of-the-art
methods in shape reconstruction.

In summary, our main technical contribution is a simple
hole detection strategy, which is extended to create a powerful
and more generic solution to the boundary reconstruction
problem. In addition, we introduce a simple and controllable
geometric solution to patch coverage holes.

II. RELATED WORK
In this section, we summarize the important works relevant
to the proposed method in two categories: in the context of
WSN and in the context of shape reconstruction. Although
we introduce a simple preliminary solution for hole patching,
that is not our primary objective, and therefore, we direct
interested readers to a recent survey by Singh et al. [2] to learn
more about the literature on hole patching.

Boundary reconstruction in WSN: Identifying boundaries
and coverage holes and using them for efficient routing is
an important problem in WSN [3]. The early works in this
direction used geometric [4] and topological [5] constraints to
capture boundaries - a detailed survey on these techniques can
be seen in Chen et al. [6]. Though simple, these methods often
struggle with exact boundary extraction and non-uniform
sensor distribution. These methods are later improved by
using common geometric structures like Voronoi diagram [7],
minimum spanning tree (MST) [8], and Delaunay triangu-
lation [9]. Though the usage of Delaunay structure (along
with Voronoi and MST) has been used a lot in the literature,
our algorithm shows superior performance in detecting the
boundaries - which also makes it an alternative starting point
for algorithms like TELPAC [10]. A few other works in this
direction worth mentioning includes Blind Swarm-based Ap-
proach [11], Two Anchor (TA) & Cyclic Segment Sequence
(CSS) Algorithm [12], Hop-basedApproach [13], Clustering-
based Approach [14] and Distributed Sector Cover Scanning
(DSCS) & Directional Walk (DW) [15]. Unfortunately, these
algorithms require additional information or have constraints
on possible boundaries. Recently, researchers have been fo-
cusing on extending such techniques for specific applications
[16]. Recent detailed surveys and comparisons can be seen in
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FIGURE 3. Results generated by our hole detection strategy for each node having a different random sensing range.

Kundu et al. [17] and Sharma et al. [18] [19].
Shape reconstruction: From a geometry perspective, shape

reconstruction algorithms can be classified into two: curve re-
construction and shape reconstruction from dot patterns. We
limit our literature to shape reconstruction from dot patterns
as sensor nodes in WSN can be considered as a dot pattern.
Interested readers can read the recent survey [20] to know
more about the literature on curve reconstruction. One of the
initial works in the direction of shape reconstruction from
dot patterns is by Edelsbrunner et al. [21], called α-shape.
As the main motivation of α-shape is the generalization of
the convex hull, it was further refined by Melkemi et al.
[22] to introduce A-shape. Following these works, a sculpting
strategy was introduced in χ-shape [23] (and a non-Delaunay
variant called simple-shape [24]) and further improved by
Peethambaran et al. [25]. As sculpting strategies typically
need a separate condition to detect holes, and to improve
the sculpting criteria, an empty circle approach was later
introduced by Methirumangalath et al. [1], [26]. Another
work in this direction, CT -shape [27], uses the local Delau-
nay properties to decide whether an edge should be retained
or not, which was then extended to create a more generic
approach called Discern [28]. A very recent work in this
direction called Prudent Carving [29] uses intelligent ways to
prune and extract the required details starting from a convex
hull. A detailed explanation and comparisons of works in this
direction can be seen in recent surveys [30], [31]. Unlike
all these algorithms, our method varies in different ways.
The main difference is the improved quality of the results.
Second, our method uses a single strategy for inner and outer
boundary detection. Third, the proposed method gives more
control to the user and is not highly sensitive to parameter
tuning (making it easy to tune). Also, this parameter is readily
available in a WSN as it corresponds to the sensing radius.

III. HOLE DETECTION & RECONSTRUCTION
In this section, we first describe our simple strategy for hole
detection. Given a set of sensor node locations and its sensing
radius, our objective is to identify the regions in the area of
interest that cannot be covered by any of the sensors. We
then extend this strategy to introduce a simple yet powerful
solution for boundary/shape reconstruction.
Let us first start with a few preliminaries in WSN:

• Sensor node: The basic building unit of a WSN, a device

that collects and transmits the required data. A node Ni
is represented by its location (xi, yi).

• Sensing radius: A sending radius ri of a node Ni is the
radius within which Ni can detect events or monitor the
surroundings.

• Coverage area of a node: The coverage area of a sensor
nodeNi with sensing radius ri is defined as a diskDi with
radius ri centered at Ni. In simple words:
Di = {(x, y) ∈ R2 | (x − xi)2 + (y− yi)2 ≤ r2i }

• Coverage area of a network: The coverage area of a
network is the union of the coverage areas of all sensor
nodes, defined as C =

⋃N
i=1Di

Given a monitoring region (area of interest, typically de-
fined as a rectangle)M and the coverage area of a network C ,
a coverage hole H is defined as H = M\C .
As shown in Figure 2, our strategy starts with discretizing

the monitoring region using a grid. The grid points are then
individually checked to know whether they lie inside the
coverage area of any of the sensor nodes. For simplicity and
efficiency, we implement it a little differently. Assuming that
the sensing radius is constant, we first compute the Delaunay
triangulation of the input point set, defined as:

• Delaunay Triangulation - A Delaunay triangulation for
a set of points P in a plane is a triangulationDT (P) such
that the circumcircle of any triangle in DT (P) is empty
of any other point in P.

To check whether a point on the grid gpi is covered by a
sensor ni with radius r , we insert each gi into the triangula-
tion and compute the distance to its connected vertices. As
nearest neighbors are, by definition, neighbors in Delaunay
triangulation, we can tag gi as covered if ||gpi − ni|| ≤ r for
some neighbor ni. After marking the covered nodes for all the
sensor nodes, we extract and return the uncovered nodes as
points outside the expected boundary. The gi is then removed
from the Delaunay triangulation. Unfortunately, this efficient
method would not work if the nodes have varying sensing
radii. In such cases, we employ an alternative techniquewhere
we begin at the grid point nearest to each sensor node’s
location. We then iteratively expand outwards, covering all
neighboring points within the node’s sensing radius.
As the identified uncovered nodes are discrete points, we

then create a graph G = (V ,E) such that the vertices are the
grid points and edges connecting neighboring (horizontally,
vertically and diagonally) vertices. The region covered by
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FIGURE 4. Overview of our algorithm. Left to right: Input point set, circles with sensor radius around each point, covered (green) and uncovered (red)
points in the grid, edges in the Remove set, Our result.

this graph can be considered as part of the hole regions. This
strategy can directly be applied for nodes with varying sens-
ing ranges, as shown in Figure 3 (which is common in real-
life WSNs). Although this simple strategy seems trivial, we
build our boundary/shape reconstruction and hole patching
algorithms on it.

Next, we extend this strategy to the boundary/shape recon-
struction. The overall algorithm is shown in Algorithm 1. The
process starts with creating a grid of resolution δ. In our im-
plementation, we fixed the thickness of the grid as AABB width

100
if the width of the axis-aligned bounding box (AABB) of the
point set is greater than its height; otherwise, AABB height

100 (in
the remaining section, we use the parameter δ to represent
a factor by which the AABB width/height is divided, i.e.,
AABB width/height

δ ). In the next step, all the grid points that are
covered by any of the sensor nodes are marked as covered.
Subsequently, we compute the Delaunay triangulation DT1
of the union of uncovered grid points and input points P.

As shown in the inset, the de-
sired boundary edges are a sub-
set of this Delaunay triangula-
tionDT1. Our main observation
is that, thanks to the properties
of Delaunay triangulation, with
appropriate sampling and sens-
ing radius, no two grid points will have an edge between
them that crosses a desired boundary edge. Based on this
observation, we first identify all the edges of DT1 that are not
between two points in P and store them in a set Remove. The
Delaunay triangulation of P alone,DT2, is then computed and
pruned further to reconstruct the final shape by removing all
the edges in DT2 that intersect with edges in Remove. Please
note that this idea is inspired by the Crust algorithm [32],
whereVoronoi vertices are taken instead of the uncovered grid
points; however, these Voronoi vertices are meaningful only
when the input is a boundary sampled curve.

Algorithm 1: Boundary Reconstruction Algorithm
Data: Input points P, Sensor radius r
Create a square grid G of resolution δ around P
Covered = ϕ, Remove = ϕ, Shape = ϕ
for each input point pi do

for each gj ∈ G | ||pi − gj|| ≤ r do
Covered = Covered

⋃
gj

Uncovered = G− Covered
DT1 = Delaunay triangulation of Uncovered

⋃
P

for each edge eij ∈ DT1 do
Extract the endpoints pi and pj of eij
if pi /∈ P or pj /∈ P then

Remove = Remove
⋃
eij

DT2 = Delaunay triangulation of P
for each edge eij ∈ DT2 do

if eij do not intersect with eab,∀eab ∈ Remove then
Shape = Shape

⋃
eij

Return Shape

The overall steps in the algorithm are shown in Figure 4.
As can be seen, the resultant Shape captures the outer and
inner boundaries represented by the point set. While deleting
edges from DT2, we can remember all the retained triangles
whose one neighbor is removed and use their interface edge
to extract the boundary edges alone. Figure 5 shows various
challenging results generated using our method. As can be
seen, our simple method could capture complex shapes, in-
cluding multiple components, outer boundaries, and multiple
and complex holes (inputs taken from existing methods).
The resulting shape depends on the input parameter r

corresponding to the sensing radius, and as can be seen in
Figure 6, r has a huge effect on the resulting shape. Though
this relation is important for the application in WSN, it might
not be important for visual applications as humans might not

FIGURE 5. Various challenging shapes reconstructed using our methods (the input point sets are taken from existing papers).
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FIGURE 6. Effect of varying the radius parameter corresponding to the sensing radius. Left to right: r = 10, 15, 20, 25, 30.

FIGURE 7. Left to right: Input points, covered and uncovered grid points, the result of our method, result of our method with a constraint on the number
of points in a region.

FIGURE 8. Varying grid resolutions. Left to right: δ = 10, δ = 20, δ = 50, δ = 100, δ = 200, taking 0.054s, 0.131s, 1.125s, 11s, 150s respectively.

perceive it as a hole. Figure 7 shows such an example where
the sparse and random sampling creates an unwanted hole. It
is important to note that for applications where such holes
are unnecessary, we can easily remove them based on the
number of uncovered points within a connected component,
as illustrated. As shown in Figure 8, though we fixed δ as 100,
the resolution of the grid has an impact on the reconstructed
shape and the overall computation time.

IV. HOLE PATCHING
In applications like WSN, rectifying the holes detected from
the boundaries is as important as identifying them. The typ-
ical solution for so-called hole patching is to place mobile
nodes in the hole regions to make sure that these regions
are covered. A simple solution for such a method would be
to densely distribute mobile nodes within the hole regions,
which, unfortunately, is not a cost-effective approach. So,
our objective is to intelligently place mobile nodes in such
a way that the coverage holes are rectified with a minimal
number of sensors. As explained in [33], finding optimal
positions to place these mobile nodes is an NP-hard problem.
So, we introduce a heuristic algorithm to do this mobile node
placement. As will be explained later, our main objective is to
introduce a priority to characterize the efficiency of placing
mobile nodes at a particular position and to have more control
over the mobile node placement strategy.

As shown in Algorithm 2, our method starts with the

pruned graph structure our hole identification process returns
- a graph connecting neighbor uncovered grid points. Our first
step is to analyze the connected components of this pruned
graph. Here, a connected component is defined as follows:

• Connected Component: A connected component of an
undirected graph is a subgraph in which any two vertices
are connected to each other by a path.

This can be seen as a way to cluster the hole regions. We
then individually process the connected components. Initially,
a minimum-oriented bounding box (MOBB) is computed
using the Minimum_Oriented_Bounding_Box(C) function.
We used the Rotating Calipers Algorithm [34] to compute
this MOBB. In simple words, the MOBB is the bounding box
with the smallest area that encloses a given set of points. We
then pack squares with diagonal length r (the largest square
that could fit inside the coverage area of the mobile node) into
the MOBB using theDecompose_to_Square() function. As it
may not always be possible to perfectly fit squares inside an
MOBB, we fit as many squares as possible inside the MOBB
and then distribute the remaining space evenly between them
to create overlapping squares. To achieve this, we first rotate
the MOBB to align it with the coordinate axes and overlay
it with a grid of squares, each with a diagonal length of r .
All squares intersecting with the MOBB are selected and
adjusted to fit completely within its boundaries. Finally, the
squares and the MOBB are transformed back to their original
orientation. Please note that the resulting squares align with
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FIGURE 9. Left to right: Pruned graph, Clusters after connected component analysis, MOBB of each cluster, MOBB decomposed to squares, Squares
identified by our algorithm to place mobile nodes, Final result.

FIGURE 10. Squares identified by our algorithm along with our final result for different mobile node sensing radius.

FIGURE 11. Effect of limiting the number of mobile nodes based on the amount of grid points it covers.

the MOBB orientation.

After the square fitting, we assign a priority to each of these
squares based on the number of uncovered grid points that lie
inside the circle enclosing the square. Based on this priority,
the squares are inserted into a priority queue (implemented
using a heap data structure). The squares are then taken in
order from this priority queue, and mobile nodes are placed
in its center. Since placing a mobile node will cover a set of
previously uncovered grid points, we update the priority of
each square by considering only the uncovered points after
placing this new mobile node.

The overall pipeline for hole patching is shown in Figure 9.
As shown in Figure 10, this simple hole patching algorithm
can effectively cover various complex coverage holes and
can be modified depending on the sensing radius of mobile
nodes. Thanks to clusters and our priority-based mobile node
placement strategy, the user can have increased control over
the node placement (as will be explained in Section V).

It is worth noting that we can also limit the placement of

Algorithm 2: Hole Patching Algorithm
Data: Pruned graph G connecting neighbor uncovered

grid points, Mobile node radius r
Do a Connected Component Analysis on G
PQ = ϕ
for each connected component C do

MOBB = Minimum_Oriented_Bounding_Box(C)
S = Decompose_to_Square(MOBB, r)
for each square s ∈ S do

Compute priority pri for s
PQ.Enqueue(s, pri)

while PQ ̸= ϕ do
s = PQ.Dequeue()
Place a mobile node in the center of s
Recompute the priorities and update the PQ
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FIGURE 12. Comparison with various State-of-the-art algorithms. Top to bottom: Complex shape with random point distribution, point set with outliers,
and multiple sparse components. Left to right: Input points, Results of α-shape [21], EC-shape [1], [26], CT-shape [27], Discern [28], and our results.

FIGURE 13. Accuracy evaluation with various State-of-the-art algorithms for boundary/shape reconstruction. Left to right: edge detection accuracy (higher
better), percentage of false positive edges (lower better), and percentage of missed edges (lower better).

FIGURE 14. Similar complex hole pattern reconstructed by a state-of-the-art method [35] and a recent method [2] along with our results.

mobile sensor nodes by considering the number of previously
uncovered grid points they can cover. Figure 11 shows a
sample case where, from left to right, it covers at least one
point, 100 points, and 200 points. As can be seen, this strategy
will help us better place the available mobile nodes in a
reasonable way.
Mobile nodes with varying radii: Our algorithm can be
easily extended to handle mobile nodes with varying radii.
Thanks to our generic framework, we can sort all sensors in
descending order of their sensing radii and, in each iteration,
decompose the MOBB based on the radius and place appro-

priate sensor nodes. We can iteratively do this until all the
sensors are placed.

V. RESULTS & DISCUSSION
Implementation details: We implemented our algorithm in
C++ using the CGAL library. All the experiments were con-
ducted on an Apple M2 Max 32GB Mac studio, and the
results were written to an SVG file for better visualization.
Our boundary detection algorithm took around 6 seconds for
a 366x298 grid, with 0.35 seconds to run our algorithm and
the remaining to check the size of the hole for clustering.
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FIGURE 15. Sample visual comparison of our hole patching with 3HA [36] and Tree-based approach [8].

FIGURE 16. Results of our hole patching on various shapes.

Though the clustering part could be improved using a spatial
data structure and parallel processing, we keep it for future
work. Also, the grid resolution has an effect on the run time
and the result, and by reducing it to 128x94, the runtime is
reduced to 0.7 seconds, with 0.1 seconds for running our
algorithm and 0.6 seconds for clustering the hole region.
Similarly, the algorithm for hole patching is influenced by
both grid resolution and sensing radius. To illustrate, in the
experimental setup shown in Figure 10, where 50 sensor
nodeswith varying radii were deployed on a 100x100 grid, the
process took 0.4 seconds. Upon increasing the sensing radius,
the runtime decreased to 0.12 seconds.
Additional functionalities: As explained earlier, the size
of the grid and/or the sensing radius are used to tune our
boundary detection algorithm. Also, to avoid undesired small
holes, the result could be pruned based on the size of the
cluster after the connected component analysis. Similarly, not
only does our simple hole patching heuristics give a nice
placement of mobile nodes, but it also has a few advantages
which are not limited to:
Handling arbitrary hole geometry: As in many existing

hole patching algorithms, we do not place any restrictions on
the hole geometry.
Limiting the number of mobile nodes: As mobile nodes

are usually costly [37], we can have a limit on the number
of available mobile nodes. Thanks to our algorithm, priority-
based deployment helps us place these available mobile nodes
in the best possible locations.
Associating importance: Again, as the priority gives the

amount of uncovered grid points, we can associate impor-
tance to each of these potential positions. It is possible to
define when we have to consider a position important (for
example, if the placement of a new node covers at least k
number of uncovered grid points).

Please note that, compared to literature, our method offers
several key advantages. First, unlike [36], no assumption
is made on the node distribution or hole topology, making
our method more flexible. Different from methods like [38],

[39], our method is scalable and easily adaptable to different
topologies. Although the precision of hole patching depends
on the grid resolution that we used for hole detection, we can
ensure full coverage by reducing the square size to account for
this imprecision, making our method differ from others that
do not guarantee full coverage [40]. Finally, our approach has
comparatively lower computational complexity and greater
flexibility in handling various real-life scenarios compared to
methods discussed in [41]. A fewmore results of our patching
on complicated holes are shown in Figure 16.

Complexity: Let the number of grid points and input points
be |G| and |P|, respectively, and define k1 = |G|.|P| and k2
= |G|+|P|. In the current naive implementation for the re-
construction of the boundary, the overall complexity consists
of several steps: it takes O(k1) to find the uncovered points,
O(k2 log k2) to compute the Delaunay triangulation DT1, and
O(k2) to compute the removal set. Furthermore, it takes O
(|P| log |P|) to computeDT2, and finally O(|P|.k2) to compute
the final reconstructed shape. The total overall complexity is
thus O(k1+k2 log k2+k2+|P| log |P|+|P|.k2), which simplifies
to O(|G|.|P| + (|G| + |P|) log(|G| + |P|) + |P| log |P| +
|P|.(|G|+|P|)). Similarly, the complexity of the hole patching
algorithm is dominated by the priority computation for each
square. This requires O(|G|) connected components, each
containing O

(
wh
r2
)
squares, where w and h are the width

and height of the MOBB, and r is the radius of the mobile
node. Consequently, a naive implementation of the priority
computation results in an overall complexity of O ( |G|2 · whr2 ).

Comparison: As our primary focus is on hole detection,
we qualitatively and quantitatively compare our results with
various state-of-the-art shape reconstruction techniques in
Figures 12 and 13, respectively. To summarize:

α-shape: Similar to ours, α-shape could generate a vi-
sually good result for random point distributions and hole
shape (the spiral hole). However, the results start deterio-
rating once outlier points are introduced. Also, though it
could capture multiple components, if the points are sparse
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and non-uniformly distributed, α-shape captures unnecessary
details. On average, the α-shape resulted in an edge detection
accuracy of approximately 68%, a false positive rate of 13%
and 19% of missed edges.
EC-shape:As shown, it could not distinguish outlier points

and multiple components. Also, it identified many pseudo
holes in completely random distribution. The edge detection
accuracy, false positive edges and missed edges, on average,
are 79%, 13% and 7%.
CT-shape: It had difficulty in identifying boundaries from

a random distribution but could withstand outliers up to a
level. Once the multiple components are sparse and close to
each other, they cannot be reconstructed by CT -shape. The
average accuracies of results generated by the CT -shape are
52%, 11% and 44%, respectively.
Discern: It could give good results for outliers and multiple

components (though a few points are missed in our sparse
multiple-component example). But, similar to EC-shape, it
ended up in identifying many pseudo holes inside a randomly
distributed point set. The average accuracies are 62%, 18%,
and 17%, respectively.
Our result: Expect from a wrong edge in the outlier case,

our algorithm gave better results in the case of sparse mul-
tiple components and random distribution. Accuracy-wise,
our method outperformed other algorithms by giving average
accuracies of 89%, 4% and 2%.

Please note that from an accuracy perspective, we aim
to increase edge detection accuracy (higher is better) while
decreasing false positive edges and missed edges (lower is
better). In addition, we present a visual comparison of our
method with two hole detection works from a WSN per-
spective. As demonstrated in Figure 14, our results either
outperform or are comparable to other techniques.

Figure 15 shows another visual comparison of the inputs
that we recreated from 3HA and [8]. Our method gave a good
placement of themobile nodes close to 3HA.And [8] assumes
a varying fixed sensing radius for mobile nodes (which is not
practical) and also results in many uncovered regions.
Limitations and Future Work: Our main focus was on the
aspect of boundary/shape reconstruction, which, as demon-
strated in an extensive comparison, surpasses state-of-the-art
methods. However, our proposed method has some limita-
tions. First, the reconstruction algorithm relies on r , which, in
the context of WSN, can be predetermined from the sensing
radii of the nodes. While we used a fixed value of δ for all our
experiments, the user may need to manually tune its value
to get the desired result. Second, although our simple hole
patching strategy gives comparable mobile node placements,
starting with an MOBB might not always be optimal, espe-
cially in dynamic WSN environments.

In future, it will be interesting to introduce an optimization
on the mobile node positions that starts from the initial grid
position and allows local movement of the mobile node po-
sitions to improve the overall coverage, as the current results
are preliminary. Also, exploring various alternative priority
assignment strategies for placing the mobile nodes will be

interesting. Though we believe it would be possible to assume
a sampling model (for example, r-sampling as in [25]), we
keep it for the future as our current focus was more on
the practicality of our method. It is also important to note
that the reconstruction accuracy is highly dependent on the
grid resolution. Therefore, it is crucial to relate the sampling
model to the local features of the hole and then to the grid
resolution, ensuring that the grid resolution is appropriately
chosen to capture these details. Another natural future work
would be to extend the reconstruction algorithm to 3D.

VI. CONCLUSION
In this paper, we extend a simple strategy for reconstructing
boundaries in the wireless sensor network. The algorithm is
easy to implement, requires only a single parameter (which
is indeed predefined for sensor nodes), and is experimentally
shown to give good results. As shown in the extensive com-
parison, the proposed boundary reconstruction outperforms
all existing shape reconstruction methods, especially in chal-
lenging cases like random distribution, sparse sampling, and
multiple components. In contrast to other strategies widely
used in WSN for boundary reconstruction, our method does
not make any assumptions about the type/shape of the hole
or node distribution and has less computational overhead. We
believe this method will benefit researchers working on com-
putational geometry, WSNs and related fields, as it will facil-
itate further analysis of the region, hole, and node distribution
in WSNs. Additionally, though not the primary objective, we
have also presented a simple and easy-to-implement heuristic
for patching coverage holes.
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