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This review is devoted to the different techniques that have been developed to compute
the coherent transport properties of quantum nanoelectronic systems connected to
electrodes. Beside a review of the different algorithms proposed in the literature, we
provide a comprehensive and pedagogical derivation of the two formalisms on which
these techniques are based: the scattering approach and the Green’s function approach.
We show that the scattering problem can be formulated as a system of linear equations
and that different existing algorithms for solving this scattering problem amount to
different sequences of Gaussian elimination. We explicitly prove the equivalence of
the two formalisms. We discuss the stability and numerical complexity of the existing
methods.
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I. INTRODUCTION

The field of quantum nanoelectronics, also as “meso-
scopic physics” was born in the early eighties with the
first experiments directly illustrating the impact of the
wave nature of electrons on macroscopic observables such
as the electrical conductance. While already before it
was known that quantum mechanics plays a role in the
transport properties, this role was restricted to the mate-
rial band structure, i.e., to its behavior on atomic scale,
while the physics at larger scales was described by a semi-
classical incoherent theory—Boltzmann equation. Such a
description was adequate until it became possible to study

the transport properties of samples at ultra-low tempera-
tures or to make very small devices. At low temperature,
the characteristic length LΦ over which the electron wave
function retains a well-defined phase becomes large and
eventually exceeds the device size. The demonstration of
the quantum Hall effect (Klitzing et al., 1980) and the
phenomena of universal conductance fluctuations or the
weak localization (Akkermans and Montambaux, 2007)
were early observations of the impact of the wave nature
of electrons in electronic devices made indirectly in bulk
samples. Later, as clean room technology made possible
to pattern increasingly smaller devices, direct observation
of, e.g., the Aharonov-Bohm effect in a small metal loop
(Webb et al., 1985) or the conductance quantization in
a constriction (van Wees et al., 1988) became possible.
Nowadays, the phase coherence length has reached record,
almost macroscopic, values LΦ ≈ 250 µm making possible
to envision operating these interferometers to make flying
quantum bits or other complex manipulations of quantum
states (Bäuerle et al., 2018).

Building a theoretical understanding of the quantum
transport phenomena required figuring out how one con-
nects the macroscopic world, where one injects currents
and measures voltage differences, to the mesoscopic scale
described by quantum mechanics. Landauer proposed
that the problem could be formulated as a waveguide prob-
lem where the electrodes are treated as infinite waveguides
with well-defined incoming waves. This viewpoint eventu-
ally lead to a number of striking predictions including the
conductance quantization and the separation between the
cause of finite electrical resistance (elastic scattering) and
the corresponding Joules heating that takes place in the
electrodes. The theory eventually evolved into two very
different looking, albeit strictly equivalent, approaches to
quantum transport. In the Landauer-Büttiker or scatter-
ing formalism, one treats the quantum-mechanical system
as a scattering problem and arrives at the celebrated Lan-
dauer formula. The other approach relies on the Keldysh
perturbation theory to build the non-equilibrium Green’s
functions (NEGF) formalism.

Computational quantum transport, that aims to cal-
culate the transport properties of coherent samples nu-
merically, is almost as old as mesoscopic physics itself.
Interference effects are indeed very sensitive to micro-
scopic details so that, as P. W. Anderson stated in his
1977 Nobel lecture, in the context of localization, “one has
to resort to the indignity of numerical simulations to settle
even the simplest questions about it”. Despite their in-
dignity, numerical simulations of quantum transport have
become increasingly popular and powerful. This work
aims to provide a systematic review of the techniques that
were developed to perform such computations.
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A. Scope of this review

This review focuses on computational techniques that
address coherent quantum transport for discrete models
that consist of a finite system connected to semi-infinite
quasi-one-dimensional electrodes. We omit the calculation
of local quantities (e.g., conductivities) already described
in other reviews (Fan et al., 2021; Weiße et al., 2006).
These calculations are based on linear response Kubo
formula (Greenwood, 1958; Kubo, 1957) which may or
may not capture non-local effects depending on the level
of approximation (Baranger and Stone, 1989). Here, we
focus on techniques that focus on global quantities (e.g.,
conductances).

The goals of this article are threefold:

1. provide a detailed pedagogical entry point for new-
comers to the field,

2. present a modern and comprehensive derivation of
the mathematical formalism for both the scattering
approach and NEGF as well as the equivalence
between the two,

3. review the relevant literature with a stress on the
algorithms, as well as a few selected applications.

The techniques introduced in this review have a broad
range of applications, including devices combining multi-
ple materials semiconductors, superconductors, magnetic
materials, metals, graphene, topological insulators in a
wide variety of geometries and in different dimensions.
Due to the vastness of the applications, it is not feasible
for us to review all of them in detail. Instead we will
cover several illustrative examples that demonstrate the
benefits provided by computational quantum transport
in analyzing physical phenomena.

Although most of the material presented in this review
is known, some aspects were not presented before at this
level of generality and/or within a unified formalism. We
also include some new material: specifically the detailed
algorithms that were developed for the Kwant package
(Groth et al., 2014) that were not yet published.

B. A short history of computational quantum transport

The scattering approach to quantum transport was ini-
tially defined in (Landauer, 1957) and further extended by
(Büttiker, 1986; Fisher and Lee, 1981; Stone and Szafer,
1988). The approach is reviewed in (Blanter and Buttiker,
2000) or (Datta, 1995). The first formulations of the scat-
tering problem for discrete models can be traced down
to (Lent and Kirkner, 1990) in the nanoelectronics com-
munity and (Ando, 1991) in the physics community. The
alternative NEGF theory is based on the Keldysh formal-
ism (Keldysh, 1964) which considerably simplifies in the
context of non-interacting systems (Caroli et al., 1971).

The point of reference in the field is the work (Meir and
Wingreen, 1992), which generalizes (Caroli et al., 1971)
to interacting systems.

The first numerical calculation of the electrical con-
ductance of a quantum system was made in (Thouless
and Kirkpatrick, 1981) and (Lee and Fisher, 1981) where
the recursive Green’s function (RGF) algorithm was in-
troduced for a one-dimensional system. The RGF was
soon to become the reference of the field thanks to sev-
eral groups that generalized it to quasi-one-dimensional
systems (MacKinnon, 1985) and developed the equivalent
wave function approach (Ando, 1991). The initial appli-
cations of RGF focused on tight-binding systems with a
square lattice and a rectangular geometry for studying An-
derson localization, quantum dots, quantum billiards, or
other mesoscopic systems. This early code was considered
highly useful, to the extent that its reference implementa-
tion was referred to as “the Program” in some research
groups.

These numerical techniques were then generalized to
tackle a wider class of problems including general lattices
(most prominently the graphene honeycomb structure),
multi-terminal systems, systems with internal degrees of
freedom (e. g. spin or electron/hole for superconductivity),
and arbitrary geometries beyond the rectangular shape
that was natural in RGF (Kazymyrenko and Waintal,
2008; Wimmer and Richter, 2009), and extensions be-
yond quasi one-dimensional systems (Settnes et al., 2015).
Various strategies to accelerate the calculations were also
developed, including algorithms that precalculate building
blocks (Rotter et al., 2000; Teichert et al., 2017), parallel
algorithms (Costa Girão and Meunier, 2013; Drouvelis
et al., 2006; Kuzmin et al., 2013), slicing strategies for
recursive algorithms (Mason et al., 2011; Mou et al., 2011;
Thorgilsson et al., 2014; Wimmer and Richter, 2009), or
nested dissection (Boykin et al., 2008; Li et al., 2008). The
range of applications expanded considerably to a much
wider spectrum including mesoscopic superconductivity,
electronic interferometers, quantum Hall effect, spintron-
ics, graphene, any combination of the above and much
more.

While most codes remain internal to the research groups
where they have been developed, publicly available and
open source codes have started to be developed. These in-
clude SMEAGOL (Rocha et al., 2006), nextnano (Birner
et al., 2007), Knit (Kazymyrenko and Waintal, 2008),
Kwant (Groth et al., 2014), and Quantica.jl (San-Jose,
2021b). There exist also quantum transport extensions
to ab-initio packages such as TransSIESTA (Brandbyge
et al., 2002), OpenMX (Ozaki, 2003), NanoTCAD Vides
(Areshkin and Nikolić, 2010; Bruzzone et al., 2014), GOL-
LUM (Ferrer et al., 2014), and Nemo5 (Huang et al.,
2016).
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C. How to read this review

This review first establishes the scattering matrix for-
malism, and uses it to derive the NEGF formalism. At-
tention has been taken to derive both formalisms using
unified notation and to gather a comprehensive set of
proofs, including several original ones.

In order to not overwhelm the readers with the technical
details, we start with a pedagogical Sec. II that introduces
the main concepts: scattering wave functions, scattering
matrix, and Landauer formula using the minimal example
of a square lattice, which allows to keep the notation
and the derivation simple. Readers not familiar with the
scattering theory can use this section as an entry point
to the field, but experts can skip this section altogether.

Sec. III introduces the scattering problem as a set of
linear equations whose solution defines both the scattering
wave function and the scattering matrix. It also introduces
the notation used in the rest of the review. Solving
for both the wave function and the scattering matrix
at the same time is not entirely standard in the field,
we name it the ΨS-approach. It forms the backbone
of this review from which all the other approaches are
derived. This section maintains maximal generality, only
assuming discrete models and translationally invariant
leads. Sec. IV expands on Sec. III by transforming the
scattering problem into a form that is stable for numerical
calculations.

We establish the relation to NEGF in Sec. V by in-
troducing the retarded Green’s function using a linear
problem approach, similar to the one that defines the
scattering formalism. While this is an uncommon ap-
proach, it has the advantage of emphasizing the close
analogy between the scattering matrix and the Green’s
function techniques and allowing for a direct derivation of
the Fisher–Lee relations that connect one with the other.
Sec. V ends with making contact with the more stan-
dard approach to Green’s function that uses the Dyson
equation and the RGF class of algorithms.

Sections III, IV and V only deal with the single particle
quantum mechanics of infinite systems (or more precisely
finite systems connected to semi-infinite electrodes) as
well as the algorithms used to solve the corresponding
mathematical problems. In order to calculate observables,
such as the electrical conductance, quantum mechanics
must be complemented with out-of-equilibrium statistical
physics. Sec. VII introduces various observables that
can be obtained from the scattering matrix ranging from
the conductance (Landauer formula) to current noise
and thermoelectric effects. Sec. VIII describes the NEGF
approach for the calculations of the observables. Although
the two approaches look very different, we establish their
complete equivalence. Sections VII and VIII end the
technical part of this review.

We end this review with a brief overview of different
models used in computational quantum transport and a

FIG. 1 Sketch of a quasi one-dimensional wire of width W.
The shaded scattering region in the middle symbolizes an
arbitrary potential that scatters the plane waves coming from
the left into reflected (r) and transmitted (t) wave.

selection of prominent applications. It is impossible for
this part of the review to be exhaustive, and we restrict
ourselves to a few examples that illustrate the main theo-
retical concepts. We somewhat artificially split the dis-
cussion of the applications in two sections: the top-down
and bottom-up approaches to modeling. Sec. IX discusses
applications that make use of the model Hamiltonians
originating in the effective minimal models of physical ma-
terials. We demonstrate how these models apply to a wide
range of systems and phenomena: mesoscopic supercon-
ductivity, spintronics, topological materials, and graphene.
In contrast, Sec. X introduces the Hamiltonian models
from ab-initio or atomistic calculations. These models
are more realistic and precise, but also more limited in
their range of applicability.

II. A PEDAGOGICAL EXAMPLE: CONDUCTANCE OF
SAMPLES CUT OUT OF A TWO-DIMENSIONAL
ELECTRON GAS

We begin by demonstrating in a pedagogical manner
how different concepts of computational quantum trans-
port apply to a minimal example. Readers who are already
experienced with the concepts of scattering matrix, self-
energy, or the Landauer formula for the conductance can
skip this part altogether. Because a number of sources
already describes in detail the non-computational aspects
of the scattering formalism of quantum transport (see,
e.g., (Datta, 1995)), we restrict ourselves to a concise
presentation of the basic concepts.

We consider a fully coherent quantum conductor con-
nected to two perfect electrodes—leads—where all the
dissipation takes place. This is an idealized situation: in
a real device, electrons always experience some dephas-
ing due to, e.g., coupling to phonons or electron-electron
interaction. Nevertheless, typical dephasing lengths at
dilution fridge temperature (∼ 10 mK) can exceed tens of
microns, and as device sizes continue to shrink, this model
captures the salient features of many realistic devices.
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A. The Schrödinger equation as a waveguide problem

We consider the quantum mechanics of an electron
confined in the simple geometry sketched in Fig. 1: a
two-dimensional wire that is infinite in the x direction,
has width W in y-direction, and contains a scattering
region of size L. Our first task is to solve the spinless
Schrödinger equation for the problem:

ℏ2

2m∗ ∆Ψ(x, y) + V (x, y)Ψ(x, y) = EΨ(x, y), (1)

where m∗ is the electronic effective mass, E is the en-
ergy of the electron, Ψ is its wave function, and V (x, y)
is an arbitrary potential, which is non-zero in a finite
region 0 < x < L of the wire. The boundary condi-
tions require that Ψ vanishes at the wire boundaries:
Ψ(x, y = 0) = Ψ(x, y = W) = 0. To construct the full
solutions of this equation, we first analyze it outside of
the scattering region, where V (x, y) = 0, and the sys-
tem is therefore translationally invariant. In that case
the solutions are linear superpositions of plane waves
exp(ikxx+ ikyy) with E = ℏ2/(2m∗)(k2

x + k2
y). Imposing

the boundary conditions at y = 0 and y = W further
restricts the wave functions to be linear combinations of
eikxx sin(kyy), with ky = απ/W, where α is an integer
that labels lead modes. The dispersion relation requires
that kx = ±kα ≡ ±

√
2m∗E/ℏ2 − (πα/W)2. For the

Np values of α such that ℏ2k2
y/2m∗ < E, kα is real and

positive. These modes are, therefore, propagating: they
extend to x → ±∞, and they define conduction channels.
Infinitely many modes with α > Np have imaginary kα,
and are exponentially decaying either to the left or to the
right from the scattering region. We therefore parametrize
the wave function left of the scattering region (x < 0)
using

Ψ(x, y) =
∑

α

sin (παy/W)√
W|kα|/2

[
qL−,αe

ikαx + qL+,αe
−ikαx

]
,

(2a)
and accordingly on the right of the scattering region
(x > L) using

Ψ(x, y) =
∑

α

sin (παy/W)√
W|kα|/2

[
qR+,αe

ikαx + qR−,αe
−ikαx

]
.

(2b)
This asymptotic wave function is parametrized using coef-
ficients qL/R,±,α, which are yet undetermined. The L/R
subscript labels the left and right sides of the scattering re-
gion, while + and − label the modes propagating towards
or away from the scattering region, regardless of the side.
While the normalization constants (W |kα|/2)−1/2 may
be absorbed in the definition of qL/R,±,α, we introduce
them for later convenience. Determining the values of
the qL/R,±,α requires solving the Schrödinger equation
in the difficult scattering region, and then matching the
wave function in the different parts of the system by using

the continuity of the wave function and its derivative.
Furthermore, for the wave function to not diverge away
from the scattering region, the solutions that diverge at
x → ±∞ must be absent: qL−,α = qR−,α = 0 for α > Np.
Unless V (x, y) belongs to a narrow class of sufficiently
simple potentials, the wave function matching admits
no analytical solution and must be obtained numerically
(hence this review!). Despite that, we can draw several
predictions about the general properties of the solution
without having it.

B. The scattering matrix

The wave matching problem is underdetermined, and
therefore admits infinitely many solutions. We, therefore
describe its solutions by expressing some unknown pa-
rameters qL/R,±,α through the others. Setting one of the
qL/R,−,α0 to be unity and all other qL/R,−,α0 to zero, for
α0 < Np allows to determine a unique value of all the
other coefficients. Collecting these solutions into a matrix
allows to relate the amplitudes of the propagating modes
using the scattering matrix S:(

qL+
qR+

)
= S

(
qL−
qR−

)
≡
(
r t′

t r′

)(
qL−
qR−

)
, (3)

where qL/R± are size Np vector containing all the coef-
ficients of the propagating modes. The different blocks
of the S-matrix are the reflection (r, r′) and transmission
(t, t′) matrices.

Let us check how current conservation applies to the
S-matrix. The total particle current Ip flowing through
the wire,

Ip = ℏ
m∗

∫ W

0
dy Im Ψ∗(x, y)∂xΨ(x, y), (4)

is independent of x for any solution of Eq. (1). Substitut-
ing Eq. (2) into Eq. (4) yields

Np∑
α=1

|qL+,α|2 + |qR+,α|2 =
Np∑

α=1
|qL−,α|2 + |qR−,α|2, (5)

where we have used the orthogonality of the trans-
verse wave function

∫W
0 dy sin(παy/W) sin(πβy/W) =

δαβ(W/2). We also see that the normalization constants
in Eqs. (2) are chosen so that the Eq. (5) has no prefactors.
For every solution (3) of the scattering problem to satisfy
Eq. (5), the S-matrix must preserve norm of vectors, or
in other words it must be unitary:

SS† = S†S = 1. (6)

Similarly to how the Hermiticity of the Hamiltonian leads
to current conservation and the unitarity of S, other
properties of the Hamiltonian give other constraints to
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S. For example, in presence of a magnetic field B with a
vector potential A⃗(x, y), the Hamiltonian becomes

H = 1
2m∗

(
iℏ∇⃗ − eA⃗

)2
+ V (x, y). (7)

One observes that if Ψ(x, y) is an eigenstate of Eq. (7) with
magnetic field B and vector potential A⃗, then Ψ(x, y)∗ is
an eigenstate at the same energy, field −B, and vector
potential −A⃗. While the mode wave functions in Eqs. (2)
are not Hamiltonian eigenstates in presence of a vector
potential, a similar decomposition into lead modes still
holds. Taking the complex conjugate of Eqs. (2) conju-
gates the amplitudes qL/R±,α and exchanges the outgoing
(+) and incoming (−) propagating modes. The Eq. (3)
then transforms into(

q∗
L−
q∗

R−

)
= S(−B)

(
q∗

L+
q∗

R+

)
. (8)

Comparing this to Eq. (3) we conclude that
S∗(−B)S(B) = 1, and additionally utilizing the
unitarity of S(B) we obtain

S(−B) = ST (B). (9)

C. The Landauer formula for the conductance

The scattering matrix S(E) parametrizes the single
particle eigenstates of the system at an energy E. Because
it describes the scattering of the states far away from the
scattering region, it turns out to enter many macroscopic
observables, such as the electrical conductance of the
system.

We consider the current injected by the L and R
electrodes described by two different thermal equilib-
ria with chemical potentials µL/R and temperatures
ΘL/R. This corresponds to the different scattering so-
lutions (3) of the Eq. (1) having an occupation number
fL/R(E) = [e(E−µL/R)/(kBΘL/R) +1]−1 given by the Fermi
distribution of the electrode from which the incoming
mode qL/R,−,α originates. The contribution of a state
with momentum k normalized to 1 per unit length to the
macroscopic observables is (2π)−1 ∫ dk times the matrix
element of the observable. In the case of the current, this
simplifies to (e/ℏ)

∑
α

∫
dE(k)/(2π) since the current is

proportional to the group velocity ℏ−1∂Eα(k)/∂k. Here

Eα(k) = ℏ2/(2m∗)
[
k2 + (πα/W )2] (10)

is the dispersion relation of mode α. The electrical cur-
rent flowing through the left electrode is the sum of the
incoming current from the left, current that is reflected
back to the left from the scattering region, and current

transmitted from the right, and it equals

I = e

ℏ

Np∑
α=1

∫
dE

2π fL(Eα)

1 −
Np∑

β=1
|rβα|2


− e

ℏ

Np∑
α=1

∫
dE

2π fR(Eα)

 Np∑
β=1

|t′βα|2
 . (11)

This result simplifies further due to unitarity requiring
that

Np −
Np∑

α,β=1
|rβα|2 =

Np∑
α,β=1

|tβα|2 =
Np∑

α,β=1
|t′βα|2, (12)

and yields

I = e

h

∫
dE [fL(E) − fR(E)]

Np∑
α,β=1

|tβα(E)|2, (13)

which is the general form of the celebrated Landauer for-
mula. In the ideal case of zero temperature ΘL/R = 0
and a small bias voltage Vb applied to the electrodes
(µL/R = EF ± eVb), Landauer formula relates the differ-
ential conductance g = dI/dVb to the scattering matrix:

g = e2

h

Np∑
α,β=1

|tβα(EF )|2 = e2

h
Tr t(EF )t†(EF ). (14)

The Landauer formula relates an important measurable
observable (the conductance) to the solution of a waveg-
uide problem. Because the matrix tt† = 1 − rr† is hermi-
tian and positive semi-definite, it can be diagonalized to
obtain the transmission eigenvalues 0 ≤ Tα ≤ 1. These
contain all the necessary information from the scattering
matrix to obtain the conductance

g = e2

h

Np∑
a=1

Tα(EF ). (15)

One of the first successes of the scattering theory of
quantum transport is the prediction of the quantization
of the conductance in units of e2/h when the conductor
is fully ballistic, and V (x, y) = 0.

Extending the above approach to other measurable
quantities allows to determine the frequency spectrum of
current fluctuations, the Seebeck and Peltier coefficients
as well as other thermodynamic properties.

D. Combination rule of the scattering matrices

So far we considered the scattering matrix as the final
answer of the scattering problem. However, it is also
possible to combine the scattering matrices of different
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parts of the system to obtain the scattering matrix of the
whole system. This becomes possible if the evanescent
modes decay sufficiently strongly in the region between
the two scattering regions, or in other words if the two
scattering regions are separated by a sufficiently large
region without scattering.

Let us consider two scattering regions in a quasi-1D
conductor, with scattering matrices SA and SB , with the
first scattering region A left of the scattering region B.
The scattering equations for both regions therefore read(

qAL+
qAR+

)
= SA

(
qAL−
qAR−

)
, (16a)(

qBL+
qBR+

)
= SB

(
qBL−
qBR−

)
, (16b)

where the new subscripts A and B label the scattering
regions. We observe that the modes incoming into the
first scattering region from the right are the left outgoing
modes of the second scattering region qAR− = qBL+, and
vice versa: the modes incoming into the second scattering
region from the left are the right outgoing modes of the
first scattering region qBL− = qAR+.

After eliminating the variables corresponding to the
region between A and B from the Eqs. (16), we obtain
the expression for the scattering matrix of the two regions
combined:

S =
(
rA + t′ArB

1
1−r′

A
rB
tA t′A

1
1−rBr′

A
t′B

tB
1

1−r′
A

rB
tA r′

B + tBr
′
A

1
1−rBr′

A
t′B

)
. (17)

This block matrix combination is also known as the Red-
heffer star product S = SA ⋆ SB (Redheffer, 1959). It
also has an intuitive interpretation in terms of counting
partial contributions of interfering waves. Expanding the
expression for t into a power series in r′

ArB we obtain

t = tBtA + tBr
′
ArBtA + tBr

′
ArBr

′
ArBtA + . . . , (18)

or in other words the amplitude t to be transmitted from
right to left is the sum of the amplitudes for the direct
path (transmitted by A, then transmitted by B with
amplitude tBtA), the path with two internal reflections
(transmitted by A, then reflected by B then reflected by
A then transmitted by B with amplitude tBr′

ArBtA), the
path with four reflections and so on.

An alternative way to derive the Eq. (17) is to consider
the transfer matrix M connecting the waves on the left
of a scattering region to those on the right of it:(

qR+
qR−

)
= M

(
qL−
qL+

)
. (19)

By using the definition of S, and treating qR− as unknown
and qL+ as known, we obtain the following expression for
the transfer matrix:

M =
(
t− r′t′−1r −t′−1r
r′t′−1 t′−1

)
. (20)

Because the transfer matrix relates the modes on the left
to the modes on the right, the composition rule for the
transfer matrices simplifies to the matrix product:

M = MAMB . (21)

Inverting the Eq. (20) and substituting the Eq. (21) once
again yields the Eq. (17).

The combination of scattering matrices (17) is a modi-
fication of the Ohm’s law for adding two conductors in
series to the case when the conductors are coherent. It
can be easily generalized for more complicated networks of
scattering matrices when the subparts have more than two
leads. Some numerical simulations use a phenomenologi-
cally defined network of scattering matrices as a starting
point for the quantum transport calculations, see, e.g.,
Chalker and Coddington 1988.

E. From continuum models to discrete Hamiltonians

We now turn to the main focus of this review, the de-
sign of numerical techniques to compute the S matrix and
other related quantities. The vast majority of these tech-
niques are built around discretized versions of the Hamil-
tonian of the system. These discrete models are obtained
by various means that include the atomistic tight-binding
approach where the Schrödinger equation is projected
onto a basis of atomic orbitals, or a discretization of an
effective k⃗.p⃗ or other continuum Hamiltonians. In this
introductory section, we use a minimal three-point finite
difference discretization scheme on a square lattice with
lattice constant a: ∂f(x)/∂x ≈ [f(x+ a) − f(x− a)]/(2a)
and ∂2f(x)/∂x2 ≈ [f(x+a)+f(x−a)−2f(x)]/a2. Intro-
ducing Ψnx,ny

= Ψ(nxa, nya) and Vnx,ny
= V (nxa, nya),

we obtain the discretized version of Eq. (1):

EΨnx,ny
= −ℏ2

2m∗a2

[
Ψnx+1,ny

+ Ψnx−1,ny
+ Ψnx,ny+1

+Ψnx,ny−1 − 4Ψnx,ny

]
+ Vnx,ny Ψnx,ny .

(22)
In general, the discretization procedure yields systems of
equations of the form∑

m

HnmΨm = EΨn, (23)

where the indices n and m label the sites and orbitals
of the system. In our example each index consists of a
tuple (nx, ny), but in general they include other degrees
of freedom such as spin or orbital index, as well as more
dimensions or lattices. The off-diagonal matrix elements
Hnm with n ̸= m are called hoppings, while the diagonal
ones Hnn are the onsite energies. The hoppings define
the underlying graph structure of the scattering problems,
such as the ones shown in the insets of Fig. 2. The solution
of this infinite system of linear equations for a fixed E
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follows similar steps to the ones we used to solve the
continuum problem.

Coming back to our example, to keep the algebra simple,
we further restrict the construction of the solution to just
one dimension and drop the subscript in the index nx → n.
Setting the unit of energy to ℏ2/(2m∗a2) and absorbing
the constant −4 shift in the definition of Vn, we seek to
solve the following set of equations:

−Ψn+1 − Ψn−1 + VnΨn = EΨn. (24)

where Vn ̸= 0 in the scattering region 1 ≤ n ≤ L. Simi-
lar to the continuum problem, we solve the Schrödinger
equation in the electrodes first by requiring that the wave
function in the left electrode region n ≤ 0 is a superposi-
tion of plane waves:

Ψn = eikn + re−ikn, (25)

while in the right electrode

Ψn = teikn. (26)

The dispersion relation in the electrodes for the unique
mode α = 1 now takes the form

E1(k) = −2 cos(k) (27)

and the current is I = Ψ∗
nΨn+1 − Ψ∗

n+1Ψn = |t|2v(k)
where the velocity now becomes v(k) ≡ dE/dk = 2 sin k.
The above set of equations matches its continuous version
in the large wavelength limit k → 0, or in other words
whenever the wave function changes slowly on the scale of
the lattice constant. In the minimal example, obtaining
the propagating modes (25), (26) in the lead is a one-liner,
however once the Hamiltonian becomes more complex,
the it requires advanced algorithms that we describe in
Sec. III.A.

To calculate the transmission amplitude t, the reflection
amplitude r and the scattering wave function Ψn inside
the scattering region, we need to “match” the wave func-
tion at the scattering region/electrode interface. Using
Eq. (24) for n = 0, 1 2 ≤ p ≤ L− 1, L and L+ 1 we get
a set of L+ 2 linear equations with as many unknowns,

re−ik − Ψ1 = −eik, (28a)
r + (E − V1)Ψ1 + Ψ2 = −1, (28b)

Ψp−1 + (E − Vp)Ψp + Ψp+1 = 0, (28c)
ΨL−1 + (E − VL)ΨL + teik(L+1) = 0, (28d)

ΨL − teikL = 0. (28e)

Solving this set of equation for the vector
(Ψ1,Ψ2, . . .ΨL, r, t)T is usually done numerically
using standard linear algebra routines for sparse matrices.
A large fraction of this review is devoted to setting up
this linear system of equations in general situations
where the geometry, lattice, number of electrodes, etc. is
arbitrary.

Solving for the vector (Ψ1,Ψ2, . . .ΨL, r, t)T provides
both the scattering matrix and the scattering wave func-
tion in one large vector, and we therefore call it the
ΨS-approach While not historically first, we find this ap-
proach to be more mathematically direct, and we use it
to derive equivalent alternative formulations. This is also
the approach used in, e.g., the Kwant package developed
by some of us (Groth et al., 2014).

F. Self energies and Green’s functions

The ΨS-approach is mathematically equivalent to the
older wave function, mode-matching, or open boundaries
approach (Ando, 1991; Khomyakov et al., 2005) that
introduces the concept of self-energy Σ(E). To obtain the
wave function approach, we eliminate r and t from the
set of linear equations Eqs. (28), a procedure also known
as “integrating out the leads”. The remaining equations
contain only L unknowns (Ψ1,Ψ2, . . .ΨL)T , and read

(E − V1 − Σ)Ψ1 + Ψ2 = −iΣv, (29a)
Ψp−1 + (E − Vp)Ψp + Ψp+1 = 0, (29b)

ΨL−1 + (E − VL − Σ)ΨL = 0, (29c)

where we introduced the lead self-energy

Σ(k) = −eik. (30)

This set of equations is the simplest example of what is
known in the literature as the “wave function approach”
to the quantum transport problem.

An alternative way to arrive to the same equations
is provided by the Green’s function approach, which in-
troduces the retarded Green’s function (Fisher and Lee,
1981) as a solution of

[E −H + iη]G = 1. (31)

Here η is an infinitesimal energy that sets the boundary
conditions to be equivalent to those in the ΨS-approach,
and makes the retarded Green’s function the Fourier trans-
form of the time evolution operator between different sites
of the scattering region. The Green’s function formalism
is the original approach used in the early days of compu-
tation quantum transport, and it extremely common to
this day. Writing down the Green’s function equations
in terms of individual elements of the Green’s function
yields

(E − V1 − Σ)G1q +G2q = δ1q, (32a)
Gp−1,q + (E − Vp)Gpq +Gp+1,q = δpq, (32b)

GL−1,q + (E − VL − Σ)GLq = δLq, (32c)

where the left hand side matrix is the same as in Eqs. (29),
and the right hand side is an identity matrix.
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FIG. 2 Examples of conductance calculations in a two dimensional square lattice. For each example the inset shows the
tight-binding system that has been used with the scattering region in black and the first two layers of semi-infinite electrodes in
red. Upper left: conductance quantization in a perfect ballistic quantum wire. Conductance g is shown as a function of the
Fermi energy E expressed in units of the nearest-neighbor hopping strength t. Upper right: Aharonov-Bohm effect in a ring
device threaded by magnetic flux Φ. Lower left: quantum Hall effect in an example shape. The conductance is shown as a
function of magnetic field in units of flux quanta per surface of a lattice unit cell (a2). The inset displays the current density for
one particular value of magnetic field which is indicated by the arrow. Lower right: Fano resonance in a quantum dot device.

G. Practical examples of numerical calculations

We end this pedagogical section with a few examples of
practical systems that illustrate the kinds of calculations
that can be made. We restrict these examples to toy mod-
els of simple devices made from a two-dimensional square
lattice with a single orbital per site. More advanced ex-
amples involving more complex lattices (e.g., graphene),
realistic modeling, multi-terminal devices, three dimen-
sions, and treatment of internal degrees of freedom such
as spin or particles and holes in superconductivity will be
presented in the Secs. IX and X.

Figure 2 shows the conductance as a function of Fermi
energy or magnetic field strength for four simple devices.
The first device is a five sites wide perfect wire. Due to
the translation invariance of the wire all the available con-
ductance channels have perfect transmission Ta = 1. Con-
sequently, g(E), shown in Fig. 2(a) has a staircase shape
with the maximum number of propagating channels occur-

ring in the middle of the band, where the corresponding
infinite 2D system has a Van Hove singularity. Analyzing
the number of open modes in a lead is a useful part of the
workflow for setting up more complex calculations. The
Hamiltonian matrix of this example has a simple graph
structure that is displayed in the inset. The Hamiltonian
itself is given by Eq. (22) with index m running from 1
to 5 due to the finite system width.

A ring connected to two electrodes threaded by mag-
netic flux shown in Fig. 2(b) allows to study the Aharonov-
Bohm effect. To account for the presence of magnetic
flux ϕℏ/e through the hole, we modify the Hamiltonian
hopping matrix elements Hnm along a vertical line in
the lower arm of the ring Hnm → eiϕHnm. Because of
gauge invariance, the conductance does not depend on
the position of the cut along which the hoppings are mod-
ified. Other than that and the shape of the scattering
region, the Hamiltonian is again given by Eq. (22). The
oscillations of the g(ϕ) demonstrate the Aharonov-Bohm
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effect.
A step-shaped sample in Fig. 2(c) is subject to a con-

stant magnetic field, which brings it to the quantum Hall
regime once the field is strong enough. This magnetic
field prevents current from flowing through the middle
of the sample, and creates edge states that carry current
without backscattering [shown in the inset of Fig. 2(c)].
To include a vector potential in a tight-binding system
we use the Peierls substitution (Hofstadter, 1976; Peierls,
1933), which modifies the hopping according to

Hnm → Hnm exp
[
ie/ℏ

∫ rm

rn

Adr

]
. (33)

We choose the vector potential in the Landau gauge with
B = Bẑ, so that A = −Byx̂, so that the hoppings become

Hnm(Φ) = Hnm(0) × e−iΦ(xn−xm)(yn+ym)/2, (34)

with Φ = Bea2/ℏ the magnetic flux per lattice unit cell
in units of flux quanta, and a the lattice constant. Note
that we have chosen A such that Hnm does not depend
on x. This allows us to use the same gauge in x-directed
electrodes while keeping the electrode Hamiltonian trans-
lation invariant.1

A scattering setup with an irregular shape shown in the
Fig. 2(d) emulates a quantum dot attached to a quantum
wire. The dot traps a resonant level with energy E0
and a lifetime Γ, so that interference between the direct
transmission and resonant tunneling gives rise to the
conductance g(E) ∼ |td + Γ/(E −E0 + iΓ)|2, with td the
amplitude of direct transmission. The conductance trace
then has the characteristic asymmetric shape known as
the Fano resonance (Clerk et al., 2001; Göres et al., 2000).

III. SCATTERING FORMALISM FOR DISCRETE MODELS

There are several equivalent descriptions of quantum
transport that use the Green’s functions, wave functions,
or the scattering matrix as the main tool. This review
chooses the ΨS-formalism as the starting point and defines
everything in terms of the scattering wave functions and
the associated scattering matrix S. This section provides
a comprehensive description of the ΨS-approach and
includes several proofs that are scattered in the literature
as well as some new material. The other mathematically
equivalent approaches are derived as corollaries of the
scattering approach in the later sections.

A generic system considered here is shown in Fig. 3. It
consists of a central finite scattering region that has an

1 If the leads are not all parallel, choosing a vector potential com-
patible with the lead translation symmetry becomes more com-
plex (Baranger and Stone, 1989), however Kwant package imple-
ments a general solution to this problem.

scattering region

lead 0

lead 1

lead 2

FIG. 3 Schematic of a typical system for numerical simula-
tions. The finite scattering region (black) is connected to
semi-infinite, translationally invariant quasi-one dimensional
electrodes (red). The dark- light-red colored cells correspond
to the first and second unit cells of the semi-infinite leads
respectively. Each lead can be at a different chemical potential
and/or temperature.

arbitrary Hamiltonian. The scattering region is connected
to a number of semi-infinite electrodes, each consisting of
an infinite number of identical repeated unit cells.

A. Definition of the infinite lead problem

We first analyze the wave function in the translationally
invariant region of the leads without considering the tight-
binding equations of the scattering region. Each unit cell
contains Nt sites and it has an onsite Hamiltonian matrix
H and the hopping matrix V coupling one cell to the
next. Grouping the degrees of freedom of the unit cells of
multiple disconnected leads into a single vector defines a
single larger lead with the Hamiltonian and the hopping
being direct sums of the Hamiltonians and hoppings of
the individual leads. Therefore without loss of generality
we restrict our discussion to a single lead with the infinite
Hamiltonian,

Ĥlead =



. . . . . . . . .
V H V †

V H V †

V H V †

. . . . . . . . .

 , (35)

and a wave function ϕ̂ = [. . . , ϕ̂(j−1), ϕ̂(j), ϕ̂(j+1), . . .]T .
Because the tight-binding equations are translationally
invariant, the wave function can be written as a superpo-
sition of the eigenvectors of translation operator, each of
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the form

ϕ̂(j) = λjϕ, (36)

where the solutions with λ ≡ eik and hence |λ| = 1 are
plane waves, |λ| ≠ 1 are not normalizable and correspond
to evanescent modes. Applied to a translation eigenvalue,
the Schrödinger equation Ĥleadϕ̂ = Eϕ̂ reads

V ϕ+ λ(H − E)ϕ+ λ2V †ϕ = 0. (37)

This is a quadratic eigenvalue problem for λ and ϕ which
has in general 2Nt solutions for any energy E. Introducing
ξ ≡ λϕ recasts Eq. (37) into a generalized eigenvalue
problem(

H − E V †

1 0

)(
ϕ
ξ

)
= λ−1

(
−V 0
0 1

)(
ϕ
ξ

)
. (38)

The inverse problem of Eq. (38) is finding the eigenvectors
and eigenenergies of propagating waves with a given wave
vector k:

H(k)ϕ = E(k)ϕ, (39)
H(k) = H + eikV † + e−ikV. (40)

This defines the band structure of the lead with the bands
Eα(k), found by stable numerical diagonalization of a her-
mitian matrix H(k). The generalized eigenvalue problem
Eq. (38), on the other hand, is not Hermitian, and there-
fore solving it in a numerically stable way is a nontrivial
problem that we address in Sec. IV.

An example of dispersion relation of a 3 sites lead is
shown in Fig. 4. Note that for a given value of k there
always are Nt eigenenergies (here 3). In contrast, for
a given E there are at most 2Nt different propagating
states. In the following, we suppose that we have found
the different solutions of Eq. (37) at a given energy E
using the algorithms discussed later in this review.

Solving the general eigenvalue problem Eq. (38) can be
rather subtle if one wants to do it in a robust way, in par-
ticular when the matrix V is not invertible. This problem
has been discussed in a number of publications (Fujimoto
and Hirose, 2003; Iwase et al., 2018; Khomyakov et al.,
2005; Krstić et al., 2002; Ono and Tsukamoto, 2016; Rung-
ger and Sanvito, 2008; Sanvito et al., 1999; Tsukamoto
et al., 2014, 2017) and will be investigated in details below
and in the next section. A close connection exists between
the lead problem (of interest here) and the problem of
calculating the properties of surfaces of metallic systems
that uses a closely connected construction (Allen, 1979a,b;
Lee and Joannopoulos, 1981a,b; Umerski, 1997)

B. Separation of propagating and evanescent modes

After one has solved the general eigenvalue problem
Eq. (38), the next step in the construction is to classify

−2 0 2

k

−1.0

−0.5

0.0

0.5

1.0

E
(k

)

FIG. 4 Example of a lead dispersion relation E(k) in a simple
situation where H(k) is a 3 × 3 matrix. For a given value of
k, H(k) always has 3 eigenvalues. However for a given energy
E, the number of different values of k such that E(k) = E
can be strictly smaller than 6 = 3 × 2. In this example
for, e.g., E = +0.75 there are only 2 × 2 values of k (2
with ∂E/∂k > 0 and 2 with ∂E/∂k < 0) which signifies the
existence of evanescent states.

the different solutions ϕα into propagating (p) and evanes-
cent (e) modes, according to the value of |λ|: propagating
for |λ| = 1 and evanescent for |λ| ≠ 1. Then, the propa-
gating modes are further subclassified into outgoing (+)
modes with positive velocity v = (1/ℏ)dE/dk > 0 and
incoming (-) modes with v < 0. For normalized modes
such that ϕ†ϕ = 1, the mode velocity can be computed
through Feynman-Hellman equation (see Appendix A for
its derivation)

v = iϕ† [λV † − λ−1V
]
ϕ (41)

Note that there is always the same number Np of incoming
and outgoing propagating channels. This comes from
the 2π-periodicity and the continuity of the bands E(k).
Indeed, a horizontal line at a given energy E must cross
each band an even number of times, with half of the
crossings at a positive slope and the other half with a
negative slope, hence the equal number of modes with
positive and negative velocities. For future convenience,
we renormalize the propagating modes so that they carry
unit velocity ±1. The same subclassification is applied to
the Ne evanescent modes: outgoing (+) for those decaying
at +∞ (|λ| < 1) and incoming (-) for the others (|λ| > 1).
The evanescent modes have zero velocities, and therefore
their normalization may be chosen arbitrarily. As for
propagating modes, the evanescent modes also appear in
pairs: if λ is a solution, then so is 1/λ∗. Since the total
number of incoming (or outgoing) modes is equal to the
number of sites in a unit cell, we have Nt = Np +Ne.

The last step of this section is to gather the eigenstates
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ϕα into a Nt × 2Nt matrix Φ: the column α of Φ is a
vector ϕα or,

Φnα = (ϕα)n. (42)

We further define the submatrices Φp+,
Φp−,Φe+,Φt+. . . as the subblocks of Φ containing
the corresponding modes. Similarly, we introduce
the 2Nt × 2Nt diagonal matrix Λ that contains the
eigenvalues λα on its diagonal. The submatrices Λp+,
Λp−,. . . are its restriction to the corresponding modes. In
some cases, we will exclude the modes that belong to the
kernel of the matrix V (i.e., such that V ϕα = 0) and we
note Φt̄+, Λt̄+ the corresponding matrices. We note Φo+
the matrix that only contains those modes belonging to
the kernel of V (V Φo+ = 0). Keeping track of which
modes are included in these matrices is central to all the
various proofs and formula that are derived later in this
article, so that we gather all these notations in Table I
for future reference.

These matrices will be important ingredients of the
construction of the scattering problem and allow one to
express many things in a compact form. For instance,
a general eigenstate of the lead Hamiltonian at a given
energy can be written as a superposition of all modes
which reads,

ϕ̂(j) = ΦΛjq. (43)

Here q is a vector of size 2Nt. Using the submatrices,
we can form less general states. For instance, a purely
propagating state takes the form,

ϕ̂(j) = Φp(Λp)jqp

= Φp+(Λp+)jqp+ + Φp−(Λp−)jqp− (44)

Using these matrices, Eq. (37) takes the form,

V Φ + (H − E)ΦΛ + V †ΦΛ2 = 0 (45)

C. Formulation of the Scattering problem as a set of linear
equations

We now turn to the scattering problem per se: we
connect the lead to a finite scattering region sr. The
total system is now semi-infinite and is described by the
Hamiltonian,

Ĥsys =


Hsr PT

srV
†

V Psr H V †

V H V †

V H V †

. . . . . . . . .

 (46)

where Hsr is the (big) Nsr ×Nsr Hamiltonian of the scat-
tering region. Without loss of generality, we have included

the first layer of the lead inside the scattering region. Also,
the multi-lead problem can be treated by using a larger
effective lead. The coupling of the lead to the scattering
region takes the specific form V Psr where the projector
Psr is a Nt × Nsr rectangular matrix with ones in the
diagonal and zeros everywhere else.

We wish to calculate the scattering states ψ̂ of Ĥsys.
We denote ψ̂ in the scattering region ψsr. In the lead,
the scattering states are formed by a combination of the
incoming and outgoing propagating modes as well as the
evanescent outgoing modes. The general form of ψ̂ in the
lead reads,

ψ̂(j) = Φt+(Λt+)jqt+ + Φp−(Λp−)jqp−, (47)

where the index j > 0 labels the different lead unit cells.
In other words, we seek wave functions of the form

ψ̂ =


ψsr

Φt+Λt+qt+ + Φp−Λp−qp−
Φt+(Λt+)2qt+ + Φp−(Λp−)2qp−

...

 (48)

The Schödinger equation Ĥsysψ̂ = Eψ̂ imposes a lin-
ear relations between the incoming and outgoing modes -
equivalent to the wave matching condition in the contin-
uum - so that,

qt+ = Stpqp− (49)

where Stp is the generalized scattering matrix. Stp is a
(Np +Ne) ×Np matrix which extends the usual definition
of the scattering matrix: it contains the outgoing propa-
gating states as well as the outgoing evanescent ones. The
usual scattering matrix S ≡ Spp is recovered by taking
the submatrix consisting of the Np rows corresponding
to outgoing propagating states.

Writing the Schödinger equation Ĥsysψ̂ = Eψ̂ in terms
of the decomposition Eq. (47), one arrives at a set of
linear equation for ψsr and Stp. Introducing the Nsr ×Np
matrix Ψsr whose different columns contains the differ-
ent solutions ψsr corresponding to the different incoming
propagating modes allows one to write the Schrödinger
equation in a compact form. Using Eq. (45), we arrive
at the following general formulation of the scattering
problem:(
Hsr − E PT

srV
†Φt+Λt+

V Psr −V Φt+

)(
Ψsr
Stp

)
=
(

−PT
srV

†Φp−Λp−
V Φp−

)
(50)

The problem is now formally reduced to solving a set of
(usually very sparse) linear equations, which can be done
very efficiently by various numerical packages.

D. Dealing with non-invertible hopping matrices

The linear system (50) becomes ill-conditioned when
the hopping matrix V is not invertible (Rungger and San-
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Symbol Modes included Size of the matrix Direction
Φp+ propagating Nt × Np outgoing
Λp+ propagating Np × Np outgoing
Φp− propagating Nt × Np incoming
Φe+ evanescent Nt × Ne decaying away
Φē+ evanescent except the λα = 0 modes Nt × Nē decaying away
Φt+ (Φp+|Φe+): propagating & evanescent Nt × Nt outgoing & decaying away
Φt̄+ (Φp+|Φē+): propagating & evanescent, except λα = 0 modes Nt × Nt̄ outgoing & decaying away
Φt− (Φp−|Φe+): propagating & evanescent Nt × Nt incoming & decaying away
Φt̄− (Φp−|Φē+): propagating & evanescent, except λα = 0 modes Nt × Nt̄ incoming & decaying away
Φo+ only the λα = 0 modes Nt × No -

TABLE I Notations for the different modes in the electrodes. The letters stand respectively for evanescent (e), propagating (p)
total (t), λα = 0 (o) and total without o modes (t̄). + (−) indicates propagation or decay away from (towards) the scattering
region. Nt = Np + Ne = Nt̄ + No and Ne = Nē + No. Note that the evanescent modes Φe− that are growing exponentially in
the lead region are never needed in the calculations. The notation (A|B) means stacking the columns of the B matrix on the
right of the columns of the A matrix.

vito, 2008), i.e., when there are modes such that V Φo,+ =
0. In that case, the columns

(
PT

srV
†Φo+Λo+,−V Φo+

)†

in the left hand side of Eq. (50) become identical to zero.
This is due to the fact that the Φo+-modes do not con-
tribute explicitly to the scattering wave function. Instead,
we should formulate the problem in terms of the modes
Φt̄+.

If this is done naively in Eq. (50), the matrix on the left-
hand side becomes rectangular, and the linear system is
thus overdetermined. We can however return to a square
matrix by introducing the singular value decomposition
of V = UADU

†
B where UA and UB are unitary matrices

and the diagonal matrix D contains Nt̄ non-zero singular
values. Defining A = UA

√
D, B = UB

√
D and reshaping

these matrices to keep only their non-zero part, we arrive
at

V = AB† (51)

where A and B are Nt ×Nt̄ matrices of orthogonal vectors.
With this decomposition we find

(
Hsr − E PT

srV
†Φt̄+Λt̄+

AB†Psr −AB†Φt̄+

)(
Ψsr
Stp

)
=
(

−PT
srV

†Φp−Λp−
AB†Φp−

)
.

(52)
Noticing that the last rows are multiplied by A, we find
that any solution of

(
Hsr − E PT

srV
†Φt̄+Λt̄+

B†Psr −B†Φt̄+

)(
Ψsr
Stp

)
=
(

−PT
srV

†Φp−Λp−
B†Φp−

)
.

(53)
is thus a valid solution of the scattering problem. Eq. (53)
is the most generic formulation of the scattering problem,
and we will use it in the majority of this review. The
name of the ΨS-approach derives from the fact that one
solves simultaneously for Ψsr and Stp.

E. Formulation of the bound state problem

Besides the states that hybridize with the continuum
spectrum of the leads, there can also be bound states that
decay in the leads. Those are usually outside of the leads
bands, but not necessarily (a trivial example being a non
connected system or different symmetries between the
scattering region and the leads). An important example of
bound states are the Andreev states that form in a normal
region sandwiched by superconducting leads. Another
example are the edge states at the boundary of topological
insulators.

The general form of ψ̂(j) for a bound state reads,

ψ̂(j) = Φe+(Λe+)jqe+ (54)

for j > 0 (in the lead) and ψsr in the scattering region.
With these notations and a bit of algebra described in
(Istas et al., 2018), the Schrödinger equation translates
into(

Hsr − E PT
srV

†Φe+Λe+
Λ∗

e+Φ†
e+V Psr −Λ∗

e+Φ†
e+V Φe+

)(
ψsr
qe+

)
= 0, (55)

The matrix Λe+ can contain zero diagonal elements, which
gives Eq. (55) spurious solutions at every energy E. We
then introduce the matrices Λē+, where we keep only
the non zero eigenvalues, as well as Φē+ and qē+, whose
columns corresponding to the zero eigenvalue have been
discarded, to obtain the correct formulation of the prob-
lem(

Hsr − E PT
srV

†Φē+Λē+
Λ∗

ē+Φ†
ē+V Psr −Λ∗

ē+Φ†
ē+V Φē+

)(
ψsr
qē+

)
= 0. (56)

Although Eq. (56) looks similar to Eq. (50) they are
structurally different: there is no source term of the right
hand side of Eq. (56) so that we cannot simply solve
a linear system. In the scattering problem, the energy
E is known and one seek the solutions at that given
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energy, here we must first find the values of E = EBS
for which the matrix on the left hand side of Eq. (56)
becomes singular. For such an energy value, one looks
for the corresponding kernel to find ψsr and qē+. Since
Φē+ and Λē+ depends on energy E, computing the bound
state energies amounts to finding the roots of a non-linear
function while computing the associated eigenstate is pure
linear algebra (Istas et al., 2018).

In the particular case of a semi-infinite wire with no
scattering region, Hsr is simply replaced by H, Psr by the
identity and ψsr = Φē+Λē+qē+. In that case, Eq. (56) can
be recast in the form,

V Φē+qē+ = 0 (57)

which implies that the matrix V Φē+ does not have full
rank.

F. Discrete symmetries and conservation laws

The scattering matrix S together with the definition of
the scattering modes Φ describe single energy properties
of an infinite system (46), and therefore it is constrained
by the symmetries of the Hamiltonian. Taking explicitly
these symmetries into account when solving for the leads
is necessary to obtain certain physical observables. For
instance, defining a spin-resolved conductance between
two normal leads requires keeping track of the spin degree
of freedom in the lead. Similarly, calculating the Andreev
conductance of a normal metal-superconductor junction
requires keeping track of the conserved electron/hole de-
gree of freedom in the normal lead. In the same spirit,
to compute topological invariants, one must take into
account the discrete symmetry class of the system. This
subsection discusses possible strategies to make use of the
symmetries in numerical calculations.

Because S is a map between the two vector spaces
spanned by the columns of Φp− and Φp+, it transforms
differently from linear operators. Specifically, applying
unitary transformations Φ′

p− = Φp−Up−, Φ′
p+ = Φp+Up+

transforms S into S′ = U†
p+SUp−. One strategy would be

to describe how the symmetry constraints apply to the
scattering matrix for an arbitrary choice of the basis Φ.
Instead, here we utilize the arbitrariness of this choice to
choose the symmetry-adapted basis where the action of
symmetries on S assumes a simple form, as implemented
in the Kwant package (Groth et al., 2014).

1. Conservation laws

Unitary symmetries are associated with conservation
laws such as the conservation of spin. As these con-
servation laws are associated with directly observable
quantities, they are relatively straightforward to take into
account. We consider a conserved quantity in a lead. It

is given by a Hermitian operator Â, that commutes with
the lead Hamiltonian. More specifically, we suppose that
Â takes the form of a block diagonal translationally in-
variant operator described by a matrix A inside one unit
cell:

Â =



. . .
0 A 0

0 A 0
0 A 0

. . .

 . (58)

It satisfies [H,A] = [V,A] = 0. For instance, the con-
servation of the spin along the z axis is implemented by
the choice of A = σz where the Pauli matrix σz acts in
the spin sector. The lead Hamiltonian leaves the eigen-
subspaces of Â decoupled, and therefore any lead mode
belongs to a single eigensubspace of Â. Let U i be an
orthonormal set of eigenvectors for the eigenvalue ai of
A:

A =
∑

i

U iaiU
i†, (59)

we can defined the lead problem projected onto the i-th
eigensubspace of Â in terms of the two matrices

Hi = U i†HU i (60)
Vi = U i†V U i (61)

with the number of degrees of freedom per unit cell equal
to the degeneracy of ai. Each of the sub-lead problem for
the symmetry sector i is then solved separately to obtain
the associated lead modes Φi. Then, we obtain the full
solution by just combining the Φi with the U i using,

Φ =
∑

i

U iΦi. (62)

2. Discrete symmetries

In addition to unitary symmetries that are associated
with conservation laws, Hamiltonians may possess some
of the discrete symmetries: time-reversal T , particle-hole
P, and sublattice or chiral symmetry C. These symme-
tries are antiunitary (T and P) and/or antisymmetries
(P and C). Antiunitary symmetries are defined as the
product of a unitary matrix with the complex conjugate
operator; they flip the sign of the momentum of prop-
agating modes. Antisymmetries anticommute with the
Hamiltonian instead of commuting with it; they change
the sign of the mode energy. These operators do not allow
a simultaneous eigendecomposition with the Hamiltonian
and require a separate treatment.

In the following, we focus on the case where the antiu-
nitary symmetry operators take a form where T 2 = ±1
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and P2 = ±1, and the chiral symmetry to a form such
that C2 = 1. It can indeed be shown (Varjas et al., 2018)
that it is always possible to construct such symmetries
(or more precisely a form where all the eigenvalues of T 2

and P2 are ±1 together with C2 = 1.)
To see why such a construction is possible and illustrate

how one can take advantage of symmetries practically,
let’s consider the example where only the time reversal
symmetry is present: T = UK where U is a unitary
matrix acting on the unit cell of the lead and K the com-
plex conjugation operator. One immediately obtains that
T 2 = Q ≡ U∗U , i.e., T 2 is a regular unitary symmetry
Q that commutes with the Hamiltonian as well as with
T . Let us diagonalize Q first and consider an eigenstate
q with eigenvalue eiq, i.e., Qq = eiqq. We find that T q
is also an eigenstate of Q with eigenvalue e−iq. If q = 0
or π then we have T 2q = ±q and the construction of
the new time-reversal operator T ′ is trivial in this sector:
T ′ = T . In all other situations, e−iq ≠ eiq and the two
states q and T q are orthogonal. Now, we define a new
unitary matrix R inside the space spanned by q and T q
by Rq = e−iqq and RT q = T q. From R, we can define a
new time-reversal operator T ′ = RT . This new operator
is obviously the product of a unitary matrix RU times K
and commutes with the Hamiltonian, hence it is a proper
time-reversal operator. It is easy to verify that it satisfies
T ′2q = q and T ′2T q = T q, i.e., that T ′2 = 1 which
proves our statement.

These discrete symmetries act on the Bloch Hamilto-
nian as follows:

T H(k)T −1 = H(−k), (63a)
PH(k)P−1 = −H(−k), (63b)
CH(k)C−1 = −H(k). (63c)

Since ℏv = ∂E/∂k, T and C flip the sign of v, while P
leaves it unchanged. It follows that T and C can be used
to define the outgoing modes from the incoming ones.

3. Construction of the lead modes using discrete symmetries

The strategy to take advantage of the discrete sym-
metries is to use the symmetries in the construction of
the modes. Whenever a discrete symmetry maps one
propagating mode onto another, we define one of the two
modes in the pair by applying the symmetry operator
to the other one. More precisely, we use the symmetries
(if present!) in the following order: if a conservation law
exists, it is used first, as described in the previous section.
Second we use T that allows one to define the outgoing
modes from the incoming ones. Third, only at E = 0, we
can use P which allows to define the modes with negative
−π < k < 0 from the mode with positive 0 < k < π. Last,
only at E = 0, the C symmetry provides the outgoing
mode from the incoming one.

If a discrete symmetry coexists with a conservation
law Â, it must map an eigensubspace of Â onto another
eigensubspace of Â, possibly the same one (Varjas et al.,
2018). If different eigensubspaces are related by one or
more discrete symmetries, we define the modes Φ in one
of these subspaces by applying the discrete symmetry T ,
P , and/or C (in the order defined above) to the modes in
the other subspace.

When P2 = −1, its presence guarantees a Kramers-like
degeneracy of propagating modes with the same velocity
at E = 0 for the high symmetry momenta k = 0 and
k = π. We determine pair of modes related by particle-
hole symmetry at these momenta by selecting an arbitrary
mode ϕ, computing its particle-hole partner Pϕ, and
projecting the remaining modes at this momentum onto
the subspace orthogonal to this pair.

When P2 = 1 at a high symmetry momentum k = 0
or k = π and E = 0, we cannot use the strategy of
choosing the wave function of one mode in a pair by acting
with the symmetry on another mode. To implement
a symmetry-adapted basis in this case, we choose the
mode wave functions such that they are mapped by P
onto themselves. To do so, we compute the action of P
within the space of modes with the same velocity at a
high symmetry momentum: Ω = Φ†PΦ. Transforming
Φ → ΦΩ1/2 through a diagonalization of the Ω matrix
achieves the desired result ϕ = Pϕ at a high symmetry
momentum.

The combination of the presence/absence of different
symmetries gives rise to many possible scenarios for the
properties of the obtained scattering matrix using the
above construction (Fulga et al., 2012). As an example,
in the case where only time reversal symmetry is present,
without additional conservation law, one arrives at

Spp = T 2ST
pp (64)

Similarly the presence of the chiral symmetry alone leads
to,

Spp(E = 0) = T 2S†
pp (65)

. The presence of a global particle-hole symmetry
P = τxK present in the Bogoliubov-De-Gennes equa-
tion for superconductors (here τx is the Pauli matrix
acting in the Nambu electron-hole space) combined with
the conservation law A = τz (e.g., charge is conserved in
a non-superconducting lead) leads to the following useful
form for transport across superconducting systems,

Spp(E = 0) = P2S∗
pp. (66)

More complex situations may arise when combining sym-
metries in yet different ways.

G. Other related wave function approaches

There are many closely related ways one can calculate
the scattering wave functions and in this review, we have
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focused on the one used in the Kwant package (Groth
et al., 2014) developed by some of us. Historically, the
wave function approach was pioneered in the work of
(Ando, 1991) who integrated out the leads degrees of
freedom to obtain

[E−Hsr−PT
sr ΣPsr]Ψsr = PT

srV
†Φp−Λp−−PT

sr ΣΦp−. (67)

From the perspective of this review, the Ando approach
lies half way between the ΨS-approach and the Green
function approach. A natural derivation of this equation
will be done in Sec. V where we will introduce the self
energy matrix Σ(E). Variations of this technique has
been implemented by several groups in different contexts
such as metallic spintronics (Khomyakov et al., 2005) or
constrictions (Zhang et al., 2017).

IV. STABLE FORMULATION OF THE LEAD AND
SCATTERING PROBLEMS

The purpose of this section is to design a stable algo-
rithm to find the solutions of the generalized quadratic
equation (37) and construct the matrices Φ and Λ that
are needed for the scattering problem.

Quadratic equations like Eq. (37),

V Φ + λ(H − E)Φ + λ2V †Φ = 0 (68)

can be recast into generalized eigenvalue problems with
the simple change of variable ξ ≡ λΦ:(

H − E V †

1 0

)(
Φ
ξ

)
= λ−1

(
−V Φ
ξ

)
(69)

Note that we have formulated the eigenproblem in terms
of λ−1 since we are interested in |λ| ≤ 1, and eigensolvers
find large eigenvalues better than small ones. General
eigensolvers are not always stable however, and the rest
of this section is devoted to the derivation of a robust
formulation of the problem.

A. Simple case: V is invertible

In the simplest situation, the matrix V is invertible.
Multiplying the first line of Eq. (69) with V −1, we arrive
at an ordinary eigenproblem,(

−V −1(H − E) −V −1V †

1 0

)(
Φ
ξ

)
= λ−1

(
Φ
ξ

)
(70)

that can therefore be solved by usual linear algebra
routines. Although this case might appear to be
rather generic, there are many important examples, e.g.,
graphene, where the matrix V is not invertible.
B. Eigendecomposition in the general case

If the hopping matrix V is not full invertible, the ma-
trix on the left hand side of Eq. (69)) is singular, and
often is ill-conditioned. Moreover, solving the general-
ized eigenproblem (69) also yields the solutions Φo+ such
that V Φo+ = 0. In fact, every singular value of V gives
rise to an eigenvalue λ = 0 and λ = ∞ in the gener-
alized eigenproblem. However, the modes Φo+ do not
contribute to the scattering problem as we observed in
Sec. III.C. Computing them explicitly is thus unnecessary
and inefficient.

We can use the decomposition introduced in Eq. (51),
V = AB†, with A and B Nt ×Nt̄ matrices of orthogonal
vectors, to alleviate both problems. With this decomposi-
tion, we can now rewrite equation (68) into the following
form,

(E −H)(λΦ) = A(B†Φ) + λB(λA†Φ) (71)

which is naturally expressed in terms of the variables ΦA

and ΦB that we shall use from now on:

ΦA = λA†Φ , ΦB = B†Φ (72)

The next step is to express λΦ in terms of ΦA and ΦB.
Since E −H is not necessarily invertible, we first add a
self-energy like term +i(AA† +BB†)(λΦ) on both sides
of Eq. (71). This term shifts the eigenvalues of H away
from the real axis guaranteeing that the matrix E −H +
i(AA† + BB†) is always invertible except when H − E
and V have a joint zero eigenvector (or in other words
that there is a flat band at exactly the energy E). The
problem now reads,[

E −H + i(AA† +BB†)
]

(λΦ) =
(λB + iA)ΦA + (A+ iλB)ΦB . (73)

Introducing

GAB =
[
E −H + i(AA† +BB†)

]−1 (74)

we get,

λΦ = GAB(λB + iA)ΦA +GAB(A+ iλB)ΦB . (75)

Last, multiplying Eq. (75) by A†/λ and B†/λ we arrive
at a the following eigenvalue problem that only involves
ΦA and ΦB ,

(
A†GABB iA†GABB

−B†GABB 1 − iB†GABB

)(
ΦA

ΦB

)
= 1
λ

(
1 − iA†GABA −A†GABA
iB†GABA B†GABA

)(
ΦA

ΦB

)
(76)
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Eq. (76)) provides a stable generalized eigenproblem that
can be solved with standard linear algebra routine. Ad-
ditionally, this generalized eigenproblem (76) is smaller
than the one in Eq. (69): 2Nt̄ × 2Nt̄ instead of 2Nt × 2Nt.
Eq. (76)) is used in particular in the Kwant package(Groth
et al., 2014). Alternative techniques to reduce the eigen-
problem in the case of singular hopping matrices have
been developed in Refs. (Rungger and Sanvito, 2008; San-
Jose, 2021a).

C. Link with the scattering problem

Let us now go back to the scattering problem Eq. (50).
The scattering problem can be rewritten in term of the
ΦA and ΦB matrices only,(

Hsr − E PT
srBΦA,t+

AB†Psr −AΦB,t+

)(
Ψsr
Stp

)
=
(

−PT
srBΦA,p−
AΦB,p−

)
(77)

The left hand side Eq. (77) has some columns that are
purely zero in the case where V is not invertible. Indeed,
in this case, the corresponding ΦA vanishes while V Φ = 0
implies that AΦB = 0. To proceed, we simply remove
these columns from Eq. (77). The resulting matrix is
now rectangular, i.e., we have an over complete set of
equations. To restore a square matrix, we remove the A
matrices from the second line and arrive at,(
Hsr − E PT

srBΦA,̄t+
B†Psr −ΦB,̄t+

)(
Ψsr
St̄p

)
=
(

−PT
srBΦA,p−
ΦB,p−

)
(78)

Any solution of Eq. (78) automatically satisfies Eq. (77).
In a last step, we slightly modify Eq. (78) in order to
make the left hand side better conditioned for numerical
purposes. Indeed, one observes that in some situations
the columns of the matrix(

ΦA,ē+
ΦB,ē+

)
(79)

can be nearly linearly dependent due to the eigenvalue
problems (70) and (76) being non-Hermitian. In that
case the matrix of the left-hand side of Eq. (78) is ill-
conditioned (Wimmer, 2010). To avoid performing an
unstable eigenvalue decomposition, we use the general-
ized Schur decomposition (QZ decomposition) (Golub and
Van Loan, 1996) of the Eq. (76) instead. The transforma-
tion performs a joined decomposition of a pair of matrices
(matrix pencil) as (X,Y ) = (QSZ†, QTZ†), with ma-
trices Q and Z unitary and S and T upper triangular.
The diagonal entries of S and T are related to the eigen-
values of the generalized eigenproblem Xψ = λY ψ by
λi = Sii/Tii. In other words, the first vectors of the Z
matrix form an orthogonal basis in the eigensubspace
corresponding to the first eigenvalues appearing on the
diagonals of S and T . We then use standard LAPACK
functions to extract the eigenvectors corresponding to

FIG. 5 Different scenarios for the band structure E(k) that
give rise to degenerate eigenvalues λin for the mode eigenprob-
lem in Eqs. (70) and (76).

propagating modes from the Schur decomposition, as well
as an orthogonal basis corresponding to the evanescent
modes. This is equivalent, to performing a QR decompo-
sition of the wave functions of the evanescent modes, i.e.,
by reorthogonalizing the evanescent eigenstates:(

ΦA,ē+
ΦB,ē+

)
=
(
QA,ē+
QB,ē+

)
R, (80)

however it avoids an unstable step of obtaining the eigen-
vectors Φē+ from the eigenvalue problem Eq. (76). Fur-
thermore, obtaining a subset of the eigenvectors from
Schur does not introduce a computational overhead be-
cause the Schur decomposition is performed by LAPACK
as the first step of solving the generalized eigenvalue prob-
lem anyway. Using the orthogonal basis for the evanescent
states, we arrive at the following 2 × 3 block structure
which forms our final form of the scattering problem.(

Hsr − E PT
srBΦA,p̄+ PT

srBQA,ē+
B†Psr −ΦB,p̄+ −QB,ē+

) Ψsr
Spp
RSēp


=
(

−PT
srBΦA,p−
ΦB,p−

)
(81)

Practical calculations, for instance in the Kwant package,
are performed by numerically solving the linear system
Eq. (81).

D. Diagonalization of current operator and proper modes

The mode eigenproblems in Eqs. (70) and (76) may
have degenerate eigenvalues λin

(with n = 1, . . . , Ndeg,
where Ndeg is the degeneracy). In this case, any linear
superposition of eigenvectors is also an eigenvector, and
in general numerical algorithms will indeed return an
arbitrary superposition.

For propagating modes, λin = eik with real k, this
corresponds to a crossing or degeneracy of bands E(k)
at a given value of k. A couple of scenarios given rise to
this situation are shown in Fig. 5. This case needs special
treatment:

• In the derivation of the Landauer–Büttiker formula
in Sec. II.C we need to assume that the scatter-
ing states are orthogonal. This also requires that
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the lead eigenstates are orthogonal, and for lead
modes with the same k, this implies that ϕin need
to form an orthogonal set. Additionally, the deriva-
tion Landauer–Büttiker formula requires that the
lead modes diagonalize the current operator. This
follows automatically for modes corresponding to
different λi ̸= λj , (see App. B), but not for degen-
erate λin .

• For both Landauer–Büttiker and the definition of
retarded Green’s function in Sec. V.A we need to re-
liably separate in- and outgoing propagating modes.
To this end need the velocity of a numerically com-
puted mode to be continuous. This is also guaran-
teed by imposing the condition of modes ϕin

being
orthogonal and diagonalizing the current operator,
as both conditions are true away from the degener-
acy point and result in modes that are unique up
to a phase, if the velocities vin are all different.2

The algorithm is thus as follows: Let Φp,deg be the Nt ×
Ndeg matrix consisting of eigenvectors of Eqs. (70) and
(76) corresponding to the degenerate eigenvalue λin

with
|λin

| = 1. We first find an orthogonal basis for the space
spanned by the eigenvectors using a QR decomposition:

Φp,deg = Qp,degR . (82)
We then use this orthogonal basis to compute the Ndeg ×
Ndeg velocity matrix

V = iQ†
p,deg(λin

V † − λin
V )Qp,deg (83)

Being Hermitian, V c can be diagonalized with real eigen-
values as

U†VU =

vi1

. . .
viNdeg

 . (84)

Φ̄p,deg = Qp,degU then forms an orthogonal set of propa-
gating modes that diagonalizes the current operator, as
demanded by the requirements above. This procedure has
to be repeated for every cluster of degenerate eigenvalues
corresponding to a propagating mode.

V. GREEN’S FUNCTION FORMALISM FOR THE
QUANTUM PROBLEM

In the preceding sections, we have introduced quantum
transport from the point of view of the scattering ma-
trix formalism. The scattering matrix approach expresses

2 Note that this does not resolve the uniqueness of the modes for
the scenario sketched in Fig. 5(c) where there are modes with
equal velocities. However, any linear superposition of modes with
the same velocity is compatible with both the Landauer–Büttiker
and the Green’s function approach. Hence this does not pose a
problem.

the quantum transport problem as a waveguide problem
which is very appealing conceptually. In particular, it
provides a natural explanation for the quantization of
conductance. It is also a very effective formulation for
numerical purposes, since, as we have seen, it allows one
to map the problem to the solution of a (sparse) linear
problem. In this section, we introduce another, yet fully
equivalent, formalism in terms of Green’s functions. In
fact, the Green’s functions approach was introduced first
and was for a long time the preferred approach for numer-
ics through the celebrated “recursive Green’s function”
algorithm.

This section contains an introduction to the Green’s
function approach and to its connection with the scatter-
ing formalism. We focus here on the retarded Green’s
function which can be put in direct correspondence with
the scattering matrix: the retarded Green’s function pro-
vides the amplitude for the propagation between two
sites while the scattering matrix gives the amplitude for
the propagation between two lead modes. We defer to
Sec. VIII the derivation of the Non Equilibrium Greens
Function (NEGF) formalism that allows one to calculate
the actual physical observables from the knowledge of the
retarded Green’s function.

In Sec. V.A we first provide the general definitions of
Green’s functions. Since electron-electron interactions
are only considered at the mean-field level in this review,
we restrict ourselves to quadratic Hamiltonians for which
Green’s functions take a much simpler form. Sec. V.B
shows how the retarded Green’s function can be obtained
from the solution of a linear problem similar to the one
defined in the preceding sections for the scattering matrix.
We proceed in Sec. V.C and V.D with defining the self-
energy of a lead, an important concept of the Green’s
function approach. Very interestingly, we shall find that
the self-energy satisfies a self-consistent equation that
could allow one to calculate it without the construction of
the lead modes. In fact, self-energies are often calculated
this way. The relation between the retarded Green’s
function and the scattering matrix, known as the Fisher–
Lee relation, is worked out in Sec. V.E. We end with
Sec. V.F where we discuss general relations that unveil
common mathematical structures that occur in different
parts of the formalism.

A. Definitions of Green’s functions

The Fourier transform Ĝ(E) of the retarded Green
function takes the general formal form

Ĝ(E) =
∫
dtĜ(τ)eiEτ = lim

η→0

1̂
E + iη − Ĥsys

(85)

where the real-time retarded Green’s function is defined
as

Ĝ(τ) = iΘ(t)e−iĤsysτ . (86)
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Equivalently, one can define the retarded Green’s function
in energy directly as the solution of the following equation:

[(E + iη)1̂ − Ĥsys]Ĝ(E) = 1̂. (87)

Note that Eq. (87) does not have a unique solution and
one should remember the presence of the infinitely small
positive imaginary energy η > 0 to properly define the
retarded Green’s function. Computing Ĝ(E) is the central
problem of Green’s function based methods.

In the following, we follow a route very similar to the
one taken to define the scattering matrix. This allows us
to obtain the Green’s function as the solution of a set of
linear equations and also to obtain a direct connection
between the Green’s function and the scattering matrix
(referred as the Fisher–Lee relation). A different, more
traditional route makes no reference to the scattering
problem and makes use of the Dyson equation to calculate
the retarded Green’s function directly. This route will be
followed in the next section. It is completely equivalent
to the first.

B. General formulation as a linear problem

Having defined the retarded Green’s function, our first
task is to show that it can be obtained through the solu-
tion of a linear system very similar to the one that defines
the Scattering matrix. Let us define G(j, k) as the various
subblocks of Ĝ(E) on the different unit cells (we keep the
energy E as implicit). Remember that j > 0 corresponds
to the semi-infinite leads and j = 0 to the scattering
region. Let us further suppose that we are only interested
in G(j, 0) and mostly in Gsr ≡ G(0, 0). Writing explicitly
the block structure of Eq. (87) gives

[E + iη −Hsr]Gsr − PT
srV

†G(1, 0) = 1, (88)
−V PsrGsr + [E + iη −H]G(1, 0) − V †G(2, 0) = 0, (89)

−V G(j − 1, 0) + [E + iη −H]G(j, 0) − V †G(j + 1, 0) = 0
(90)

where the last equation holds for j > 1. Eq. (90) is in
fact identical to the equation found for Ψ(j) so that a
decomposition similar to Eq. (47) applies. To keep the
problem normalizable, only decaying and propagating
modes can contribute. However, the presence of the small
imaginary η means that also propagating modes now be-
come either decaying or growing exponentially away from
the scattering region. This can be seen by considering
λα = λα(E) = eikα(E) as a function of complex energy
and perform a Taylor expansion,

kα(E + iη) =kα(E) + i
dkα(E)
dE

η + O(η2)

=kα(E) + iη

ℏvα(E) + O(η2),
(91)

where vα = 1
ℏ

dE
dk is the velocity of the mode. Hence, all

outgoing propagating modes with vα > 0 become decaying
(η > 0 implies |eikα(E+iη)| < 1), and we can write

G(j, 0) = Φt+(Λt+)jGt+ (92)

where the matrix Gt+ sets the weight associated to the
corresponding modes. Note that the advanced Green’s
function GA = G† is defined by adding a small negative
contribution −iη to the energy E. The advanced Green’s
function would thus involve the incoming modes Φp− and
the evanescent modes Φe+ (which together form Φt− as
defined in Table I).

Following the same calculation as for the scattering
problem, we arrive at a linear problem similar to Eq. (50):(

E −Hsr −PT
srV

†Φt+Λt+
−V Psr V Φt+

)(
Gsr
Gt+

)
=
(

1
0

)
(93)

where the role of the “source” is now taken by the identity
matrix (in site space) instead of the different incoming
modes. Note that we can already now take the limit of
η → 0 in this finite matrix problem, as we already used
η to choose the contributing modes in the leads. If V is
non-invertible, we arrive in analogy to the wave function
in Eq. (53) at(

E −Hsr −PT
srV

†Φt̄+Λt̄+
−B†Psr B†Φt̄+

)(
Gsr
Gt̄+

)
=
(

1
0

)
. (94)

Both linear systems can be solved directly by standard
numerical methods.

C. Self-energy of the leads

Our next step to make contact with the standard formu-
lation of the Green’s function approach is to introduce the
self-energy of the lead, i.e., to eliminate the Gt̄+ matrix
in Eq. (94). From the second row of this equation, we
find

Gt̄+ = 1
B†Φt̄+

B†PsrGsr. (95)

The matrix B†Φt̄+ is invertible, unless the energy corre-
sponds to a bound state of the semi-infinite lead. This
can only happen for discrete values of the energy E. The
proof of this statement can be found in Appendix C.

Inserting (95) into the first row of Eq. (94), we arrive
at [

E −Hsr − PT
sr Σ(E)Psr

]
Gsr = 1, (96)

i.e., the retarded Green’s function is simply given by the
inverse of the scattering region Hamiltonian to which one
has added a self-energy term Σ = Σ(E). Here we have
introduced the self-energy as

Σ = V †Φt̄+Λt̄+
1

B†Φt̄+
B†. (97)
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The above equation can be simplified further by noticing
that 1

B†Φt̄+
B†Φt̄+ = 1 and 1

B†Φt̄+
B†Φo+ = 0. Hence,

1
B†Φt̄+

B† = 1t̄×tΦ−1
t+ (98)

with

1t̄×t =



Nt̄︷ ︸︸ ︷
1 0 0 · · ·

No︷ ︸︸ ︷
0 · · ·

0 1 0
...

0 0 1
... . . .

.

 (99)

In other words, 1
B†Φt̄+

B† is equal to the first Nt̄ rows of
Φ−1

t+ . Since Φt̄+Λt̄+1t̄×t = Φt+Λt+, we thus find

Σ = V †Φt+Λt+(Φt+)−1 (100)

Note that Eq. (100) is valid for both invertible and non-
invertible hopping matrices.

The retarded Green’s function G(i, j) has the asymp-
totic behavior (92) of only outgoing modes in the lead.
The advanced Green’s function G†(i, j) can be obtained
in the same fashion, but now with an asymptotic behavior
of only incoming modes in the lead. From this we find

Σ† = V †Φt−Λt−(Φt−)−1. (101)

Let us now consider the surface Green’s function Glead
of a standalone semi-infinite lead (i.e., before it is con-
nected to the scattering region). By surface, we mean the
diagonal part of the Green’s function on the last unit cell.
No additional calculation is required to obtain Glead, it is
a particular case of Eq. (96) where Hsr is replaced with
H:

[E −H − Σ]Glead = 1, (102)

or alternatively can be defined as a linear system similar
to Eq. (93). Our last goal for this subsection is to show
that Glead and the self-energy Σ are very simply related.

Using Eq. (45) one can rewrite the Eq. (100) above as

ΣΦt+Λt+ = (E −H)Φt+Λt+,−V Φt+ (103)

from which one gets

Φt+Λt+ = GleadV Φt+, (104)

and eventually at the sought-after connection,

Σ = V †GleadV. (105)

Eq. (105) can be seen as a generalization of the Fermi
golden rule. Its importance stems from the fact that
we now have a closed set of equations (96), (102) and
(105) that does not make use of the mode decomposition
in terms of Φt+ and Λt+, hence can be amenable to

calculations through a different class of algorithms. From
this perspective, one can see Eq. (104) as an eigenvector
problem for the matrix GleadV which provides an implicit
definition for Φt+ and Λt+. In this review we have chosen
to emphasize the “constructive approach” that starts
from the scattering problem, and construct the Green
function approach as its consequence. The alternative
approach when one first defines the Green’s function is
fully equivalent.

D. Properties of the linewidth Γ

Let’s introduce the linewidth matrix Γ that plays an
important role in the Green’s function formalism. It is a
Hermitian matrix defined as

Γ = i
[
Σ − Σ†] . (106)

Multiplying the above equation by Φ†
t+ (Φt+) on the left

(right), we find using Eq. (100) that

Φ†
t+ΓΦt+ = i

[
Φ†

t+V
†Φt+Λt+ − Λ∗

t+Φ†
t+V Φt+

]
. (107)

We recognize the expressions for the velocity calculated
in Eqs. (B5), (B6), (B7) and (B10) from which it follows
that Φ†

p+ΓΦp+ = 1, while all the other blocks vanish
Φ†

p+ΓΦe+ = Φ†
e+ΓΦp+ = Φ†

e+ΓΦe+ = 0. Introducing the
diagonal matrix 1p whose diagonal entries are unity for
the propagating p sector and zero for the evanescent e
sector, we therefore arrive at the very compact expression,

Γ = (Φ†
t+)−11p(Φt+)−1, (108)

from which one can directly get

Γ = ΓΦt+Φ†
t+Γ = ΓΦp+Φ†

p+Γ , (109)

where the last equality follows from ΓΦe+ = 0, as evident
from Eq. (108). Similar expressions can be obtained
for incoming modes. Indeed, they satisfy Σ†(E)Φt− =
V †Φt−Λt−. Following the same route as above, and using
Eq. (B11) one arrives at

Γ = (Φ†
t−)−11p(Φt−)−1, (110)

from which one can directly get

Γ = ΓΦt−Φ†
t−Γ = ΓΦp−Φ†

p−Γ. (111)

Eqs. (109) and (111) are central for showing the equiva-
lence of the Green’s function and scattering wave function
approach.

E. Fisher–Lee relation

The Landauer–Büttiker formula derived in Sec. II.C
relates the conductance to the intuitive scattering formal-
ism. In the following section we derive an expression that
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demonstrates the equivalence of the scattering approach to
the Green’s function formalisms, originally demonstrated
in (Fisher and Lee, 1981).

From the second row of Eq. (53), we find

St̄p = 1
B†Φt̄+

B† (PsrΨsr − Φp−)

= 1t̄×tΦ−1
t+ (PsrΨsr − Φp−) .

(112)

Inserting this into the first row of Eq. (53) we then arrive
at an equation for the wave function Ψsr,

(E −Hsr − PT
sr ΣPsr)Ψsr = PT

sr
(
V †Φp−Λp− − ΣΦp−

)
,

(113)
where we used Eq. (97). In Eq. (113), we recognize
the Ando mixed wavefunction approach introduced in
Sec. III.G.

From Eq. (96) we know that Gsr =(
E −Hsr − PT

sr ΣPsr
)−1. Additionally, from Eq. (101) we

have Σ†(E)Φp− = V †Φp−Λp−. Hence,

Ψsr = iGsrP
T
sr ΓΦp−. (114)

Inserting this identity back into Eq. (112), we find

St̄p = 1t̄×tΦ−1
t+
[
iPsrGsrP

T
sr Γ − 1

]
Φp−. (115)

Equation (115) is a generalization of the original Fisher–
Lee relations that connect the retarded Green’s function
to the scattering matrix. If we restrict the scattering
matrix to only propagating modes, we can use the fact
that Φ†

p+Γ = 1p×tΦ−1
t+ to simplify this expression further

to obtain

Spp = Φ†
p+
[
iΓPsrGsrP

T
sr Γ − Γ

]
Φp−. (116)

F. Common underlying structure of the site elimination
problem

The Fisher–Lee relation is a particular example of a
family of relations. In this subsection, we identify common
mathematical patterns in the different algebraic routes
that have been followed so far. This subsection does not
contain new material but rather offer a global point of
view on various operations and algorithms that might
look disconnected at first sight.

Our starting point is a general tight-binding equation
that connects two subsystems 1 and 2. It corresponds
to one line of the Schrödinger equation written in block
form and is therefore under-determined,

H11Ψ1 +H12Ψ2 = 0, (117)

where H11 is a square matrix (that incorporates the energy
E for concision) and H12 is rectangular. Since we cannot
fully solve it, we will rather express the value of some
variables in terms of others.

The first step is to write a low-rank representation
of H12 using, e.g., a singular value decomposition. H12
factorizes as H12 = AB† and we further introduce ΨA =
A†Ψ1, ΨB = B†Ψ2. It is straightforward to find that
these two vectors are related through,

ΨA = −A† 1
H11

AΨB (118)

To continue, we want to choose a “double” basis on which
we will decompose ΨA and ΨB . We refer to the first basis
as “known” and the second one as “unknown”, we will see
some concrete examples below. The different vectors of
these bases are stacked together so that the block matrix

Φ =
(

Φkn
A Φun

A

Φkn
B Φun

B

)
(119)

forms a basis for the vector (ΨA,ΨB)T . Now searching for
the solution of Eq. (117) of the form ΨA/B = Φun

A/BS −
Φkn

A/B where the S matrix is some sort of generalized
scattering matrix, we arrive at(

H11 AΦun
B

−A† Φun
A

)(
Ψ1
S

)
=
(
AΦkn

B

Φkn
A

)
. (120)

Eq. (120) is very general and accounts for many familiar
situations depending on how one splits the system and
which basis is used for the decomposition between known
and unknown states.

The first example is for the actual scattering matrix
of the system. In that case Ψ2 refers to the leads, the
“unknown” basis corresponds to the output states and the
“known” to the input. However Eq. (120) is not limited
to this case. For instance, choosing Φun

A = Φkn
B = Id

and Φun
B = Φkn

A = 0, we arrive at Σ = BSB† where
Σ is the self-energy due to subsystem 1 on the sites of
subsystem 2. A third example is the transfer matrix M
of the system. Suppose that we equip the space spanned
by ΨA and ΨB with a left/right block structure (this
structure might actually correspond to parts of subsystem
2 situated on the left and on the right of subsystem 1,
but this definition is more general). Then we choose
Φkn

A = Φun
B = 1L ⊕ 0R and Φun

A = Φkn
B = 0L ⊕ 1R, where

1L/R (0L/R) is the identity (null) matrix acting on the
left/right. The obtained S from this partition is actually
the transfer matrix M of the system. More examples
could be constructed in the same way. For instance,
one may define virtual modes that are eigenstates of the
current operator. The associated virtual leads would allow
one to split the study of the system into two (or more)
regions that are recombined at the end. This could be
advantageous when one part of the system needs to be
updated more often than the other (e.g., the disordered
part for statistics) or in the presence of a bottleneck in
the system (e.g., a quantum point contact). A possible
choice for this is Φun

A = Φkn
A = Id and Φun

B = −Φkn
B = iId.
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The above construction has the advantage to automat-
ically provide the Fisher–Lee relations between different
objects. Indeed, the knowledge of S allows one to compute

A†H−1
11 A = −

(
Φun

A S − Φkn
A

) (
Φun

B S − Φkn
B

)−1
, (121)

and in return the knowledge of A†H−1
11 A allows one to

compute S in a potentially different basis,

S =
(
Φun

A +A†H−1
11 AΦun

B

)−1 (Φkn
A +A†H−1

11 AΦkn
B

)
.

(122)
Inserting Eq. (121) with S and Φ into Eq. (122) for a
different splitting S′ and Φ′ provides a cumbersome yet
fully explicit “Fisher–Lee” relation between S and S′.

VI. NUMERICAL ALGORITHMS

We have now introduced two equivalent formalisms,
the ΨS scattering wavefunction and the Green function
formalism. The initially infinite eigenvector problem
Ĥsysψ̂ = EΨ̂ has been cast onto a finite linear prob-
lem of the form Ax = b where A is a large sparse matrix.
Solving this problem numerically amounts to doing some
sort of Gaussian elimination for which there are various
strategies.

In this section, we go through the main algorithms
that have been developed to solve the quantum transport
problem. In Sec. VI.A we comment on how to solve the
lead problem that enters into the linear system. Sec. VI.B
discusses using direct sparse solvers to solve a general
quantum transport problem, and why these solvers are
often the method of choice. Sec. VI.C introduces the
Dyson equation, an effective tool for practical calcula-
tions of the retarded Green’s function, and the basis of
many Green’s function-based algorithms. Sec. VI.D uses
it for explaining the original recursive Green’s function
algorithm and its extensions. We end this section with a
broader discussion, in VI.E of a wide range of algorithms
used in quantum transport including those that do not
fully fit within the Green’s function or the scattering
matrix approach.

A. The lead problem

All the central formulas of this review, such Eq. (53)
for computing the scattering wave function or Eqs. (96)
and (100) to compute the Green’s function, rely on first
computing the lead modes.

If a lead has a simple structure it may be possible to
determine the corresponding ϕ and λ analytically. One
such example is a square lattice with only a single orbital
(Datta, 1995). In the general case however, it is necessary
to follow the procedure outlined in Sec. IV. In particular,
this involves solving the (generalized) eigenproblems in

Eqs. (70) and (76), as well as the singular value decom-
position of the matrix V . For each of these problems
there are standard routines in LAPACK (Anderson et al.,
1999). Several implementations of LAPACK and BLAS
also allow for parallelization through OpenMP.

Solving the (generalized) eigenproblem of a dense ma-
trix with LAPACK yields all eigenvalues and -vectors.
Recent works have employed contour-integral methods to
only compute eigenvalues close in a finite region around
the unit circle, an approach that also is amenable to
parallelization (Iwase et al., 2017, 2018; Laux, 2012).

Before using eigenproblems to compute lead modes was
established, the self-energy or surface Green’s function of
the lead was often computed iteratively (Lopez Sancho
et al., 1985). In this approach, repeated doubling of the
lead unit cell gives a fast convergence towards a truly
semi-infinite lead (this scheme is related to the recursive
Green’s function method described in Sec. VI.D). However,
it requires the introduction of a small but finite imaginary
part η to the energy E → E+ iη. Hence, it requires some
fine tuning to perform the calculations with high accuracy
(Velev and Butler, 2004).

B. Solving the linear system of Eq. (53)

Eq. (53) (and (94) for the Green’s function) are typically
sparse linear systems of equations. The direct, numerical
solution of sparse linear systems has been studied exten-
sively in the past decades (for a comprehensive review see
(Davis, 2006; Davis et al., 2016)). For the solution of the
quantum transport problem, we can heavily lean on these
developments. In fact, there are several publicly avail-
able software packages of direct solvers, such as MUMPS
(Amestoy et al., 2019, 2001), UMFPACK (Davis, 2004),
or SuperLU (Li, 2005).

The crucial step in solving a sparse system of linear
equations is a sparse LU -decomposition of the coefficient
matrix. The time and memory required for this task
depends directly on the number of non-zeros in the factors
L and U . It is known that fill-in, i.e., additional non-zeros
in L and U compared to the original coefficient matrix,
depends crucially on the order of decomposition, and thus
on the ordering of the coefficient matrix (Davis et al.,
2016). Many different heuristic algorithms for finding
fill-in-reducing orderings have been developed, such as
approximate minimum degree ordering (Amestoy et al.,
1996) or nested dissection (George, 1973; Lipton et al.,
1979). Several of these heuristic algorithms are distributed
with the direct sparse solver packages mentioned above,
or are available as separate software packages, such as
Metis (Karypis and Kumar, 1998) or SCOTCH (Pellegrini
and Roman, 1996).

Out of these, nested dissection is particularly interest-
ing for sparse linear systems arising from a real-space
discretization. For example, it has been shown (George,
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1973) for a two-dimensional M × M square grid that
solving the linear system of equations takes O(M3) op-
erations and O(M2 log(M)) storage, a scaling that has
been shown to be optimal (Hoffman et al., 1973). For
comparison, the traditional recursive Green’s function
algorithm needs O(M4) operations and O(M3) storage
for the same problem (see Sec. VI.D). In fact, for practical
examples, using direct sparse solvers was shown to be
significantly faster than the recursive Green’s function
algorithm (Boykin et al., 2008; Luisier, 2008), and scaling
more favorably (Groth et al., 2014).

We derived Eqs. (67) and (96) by eliminating parts
of the unknowns in Eqs. (53) and (94). It may seem
advantageous to solve these smaller linear systems instead.
However, the self-energy Σ entering these equations can
diverge (see Sec. V.C), although the original systems are
well-behaved. It is thus advantageous to rather solve
Eqs. (53) and (94), as direct sparse solvers use pivoting to
enhance numerical stability. If only a part of the solution
is needed, it can be advantageous to use sparse methods to
compute a Schur complement directly (Lin et al., 2022).

Historically, dedicated solvers have been developed to
solve the quantum transport problem. However, for a
general problem – with arbitrary structure – direct sparse
solvers are superior to dedicated solvers in terms of numer-
ical stability, flexibility and efficiency, given the amount
of research in that field. Hence, a direct sparse solver
often is the method of choice, e.g., in Kwant (Groth et al.,
2014). Still, taking into account the explicit structure of
a specific problem can be advantageous and reduce, e.g.,
memory requirements or overhead, and in the following
we review such approaches.

C. Dyson equation and the gluing sequence

The set of equations (96), (102) and (105) is very ap-
pealing because it reduces the task of finding the inverse of
a infinite matrix to the inverse of a finite one (96) together
with the self-consistent equations (102) and (105).

We now introduce Dyson equation, which provides a
practical route for such a calculation. We do not consider
here the original Dyson equation of quantum field theory,
but a much weaker form that rather belongs to linear
algebra. In this section we switch to notations that use
Gothic letters such as H or G. A matrix H may refer
to the actual Hamiltonian matrix H but more likely will
refer to a sub-block of certain matrix elements of it. For
instance, it may be the Hamiltonian matrix of certain
sites in the absence of certain hopping matrix elements.
Many such matrices need to be considered in an actual
algorithm.

Suppose that we split an Hamiltonian H into two parts
H = H0 + H1 (usually referred to as the unperturbed
Hamiltonian and the perturbation) and want to calculate
the Green’s function G = 1/(E−H). We further suppose

FIG. 6 Schematic of the “gluing sequence” that uses the Dyson
equation to incorporate new matrix elements (symbolized by
the dotted black lines) into the calculation. The first step
of the calculation involves only the (green) “connected” sites
that are directly affected by the new matrix elements. In the
second and last steps, one updates the Green’s function for
the blue sites, a subset of all the possible sites. the interest of
Dyson equation stems from the fact that only the blue and
green sites are involved in the calculation.

that G0 = 1/(E − H0) is already known. Elementary
algebra shows that

G = G0 +G0H1G = G0 +GH1G0 (123)

(as proved by multiplying Eq. (123) by E−H). Equation
(123) is known as the Dyson equation. Its power originates
from the fact that one can often choose the matrixH1 such
that (H1)mn ̸= 0 only for a small number of “connected”
sites m,n. The Dyson equation projected onto these
connected sites gives a closed set of equations. Hence, it
is not necessary to invert the (potentially infinite) matrix
E −H but a much smaller version.

In particular, the Dyson equation can be used in a three
step process to “glue” together two parts of a system
that are initially disconnected, see a cartoon in Fig. 6.
Introducing the superscript C (green sites) and D (blue
and orange sites) for the corresponding connected and
disconnected blocks (i.e., sites belonging or not to the
group of connected sites), one finds that Eq. (123) takes
a closed form for the CC block,

GCC = GCC
0 +GCC

0 H1G
CC (124)

Solving Eq (124) amounts to inverting a matrix whose
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FIG. 7 Illustration of the concept of self-energy for the system
shown in Fig. 6. After integrating out the lower part of Fig. 6,
there remains the upper part of the system (upper panel)
connected to a self-energy term (lower panel) to be added to
the Hamiltonian.

size is given only by the number of connected sites,

GCC = 1/[(GCC
0 )−1 −H1]. (125)

Once GCC has been computed for the connected sites,
one can solve Dyson equation for the CD block,

GCD = GCD
0 +GCCH1G

CD
0 . (126)

through a simple matrix product. Last, one solves Dyson
equation for the DD block

GDD = GDD
0 +GDC

0 H1G
CD. (127)

Together, the three equations (124) (126) and (127) form
the three steps of a gluing sequence (Kazymyrenko and
Waintal, 2008) that allow to progressively introduce new
non zero matrix elements and update the elements of
G accordingly. Note that Eqs. (126) and (127) can be
restricted to only compute the Green’s function in parts of
the D sector: For example, to compute the conductance,
only the Green’s function at the leads is sufficient as
seen in Eq. (116). In the example of Fig. 6 this could
mean that only the blue sites will be considered in the D
sector so that a large number of (orange) sites need not
be considered in the calculation.

An alternative way for using the Dyson equation is to
“integrate out” some of the sites present in the system,
which we now illustrate. To this end, we will use an
additional structure, namely the fact that the two different
parts of Fig. 6 (as separated by the dotted lines) are
unconnected before H1 connect them. In other words
GCC

0 is block diagonal in this upper/lower (denoted as
up/lo, respectively) block substructure while H1 is purely
block off-diagonal:

GCC
0 =

(
G

up
0 0
0 Glo

0

)
(128)

H1 =
(

0 V†

V 0

)
(129)

With this additional structure Eq. (125) takes the form

GCC
0 =

(
(Gup

0 )−1 −V†

−V
(
Glo

0
)−1

)−1

. (130)

Using (Gup
0 )−1 = E − Hup and using the block inverse

formula we find

Gup = 1
E −Hup − Σlo(E) (131)

where the self-energy Σlo(E) is given by,

Σlo(E) = V†Glo
0 V. (132)

In other words, the lower part has been condensed into a
self-energy term within the Hamiltonian of the upper part.
In contrast to the Hamiltonian, however, the self-energy
is a dense matrix (that connects all the green sites of the
lower part together), is non-Hermitian and depends on the
energy (schematically shown in Fig. 7). The self-energy
approach can be used to “decimate” the sites one after
the other until one is left with only the sites of interests
(Pastawski and Medina, 2001). However, one should keep
in mind an important point in the definition of the re-
tarded Green’s functions: for infinite systems, the matrix
elements of the Green’s functions are smooth functions of
the energy. For finite systems they are however essentially
the sum of Dirac functions positioned at the eigenener-
gies of the system, and therefore ill-defined numerically.
Hence, the decimation is usually performed starting from
a semi-infinite lead. Alternatively, one can calculate the
Green’s function slightly away from the real axis but that
leads to algorithms that require extrapolation and are not
very robust.

Finally, we note that the Dyson equation can be used
to recover some of the important equations derived earlier.
We consider the case where H1 is the part of the Hamil-
tonian matrix that connects the lead to the scattering
region. G0 is the Green function of the disconnected scat-
tering region + lead system. Then Gup

0 = (E − Hsr)−1,
Glo = Glead, and V = V Psr. With this, Eq. (130) can be
recasted as (

E −Hsr −PT
srV

†

−V Psr G−1
lead

)
GCC = 1 (133)

which we recognize as Eq. (96) before block-matrix inver-
sion. Hence, we see that we can recover the definition
of the self-energy without any prior knowledge of the
lead modes. In fact, this derivation is even more gen-
eral since it does not explicitly assume that the lead has
translational symmetry.
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D. The recursive Green’s function (RGF) algorithm and its
extensions

The RGF algorithm plays an important role in quantum
transport as one of the first available numerical technique
that was developed first in one dimension (Lee and Fisher,
1981; Thouless and Kirkpatrick, 1981) and then extended
to quasi-one dimension (MacKinnon, 1985) for addressing
disordered systems and later to ballistic multi-terminal
systems (Baranger et al., 1991). Here we step away from
the historical formulations and explain the RGF algorithm
in a slightly more general way in terms of the gluing
sequence of the preceding section.

Fig. 8 shows a schematic of the recursive Green’s Func-
tion algorithm (RGF) for a rectangular sample of width
W and length L. One first needs to calculate the Green’s
function of the translationally invariant semi-infinite elec-
trode. These matrix elements need only be computed
for the last slice of sites (the so called surface Green’s
function), and can be computed with one of the methods
explained in Sec. VI.A.

Once one has the electrode surface Green’s function,
RGF simply uses the gluing sequence to iteratively add
one slice after the other of the scattering region from left
to right. When all slices have been added, finally the right
electrode is glued to the system. The overall complexity
of RGF scales as W 3L as can be seen from the equations
of the gluing sequence (one W ×W matrix inversion per
slice added). It is therefore very efficient for systems that
are close to being one-dimensional L ≫ W .

The original RGF algorithm has been generalized to
different strategies for a parallel implementation (Drou-
velis et al., 2006) and adding slices of different shapes in
an optimized way. This can be done using algorithms
for analyzing the connectivity graph of the Hamiltonian
matrix (Lima et al., 2018; Mason et al., 2011; Mou et al.,
2011; Wimmer and Richter, 2009), using minimum slices
with just a single site (Kazymyrenko and Waintal, 2008)
or circular slicing (Thorgilsson et al., 2014). These more
recent algorithms have the advantage of being easy to
deploy on multi-terminal systems, arbitrary geometries
and lattices but have a scaling similar to RGF. Other
approaches take advantage of a structure of the problem,
such as some parts of the device being defect free, to speed
up the calculation (Teichert et al., 2017). (Metalidis and
Bruno, 2005) extends RGF to calculate other quantities
than the transmission probability such as the local density
of states.

For systems whose different dimensions are of similar
sizes (L ≈ W ), an efficient way to build the system is to
use the nested dissection algorithm (Kuzmin et al., 2013;
Li et al., 2008). In nested dissection one recursively dou-
ble the system size by using the gluing sequence according
to the schematic of Fig. 9. For a L × L square system,
the computing time reduces to L3 which is parametrically
faster than the L4 of RGF. However, implementing the

FIG. 8 Schematic of one step of the original recursive Green’s
Function (RGF) algorithm. the gluing sequence is used itera-
tively to add new sites slice by slice. The site coloring is the
same as in Fig. 6

nested dissection algorithm in a stable way is not easy
as it implies gluing blocks that are not connected to the
electrodes (hence finite with badly conditioned Green’s
functions, see the discussion above). It can thus be ben-
eficial to use one of the existing direct sparse solvers as
discussed in Sec. VI.B.

There have been many algorithms related to RGF that
all rely on some form of the gluing sequence. Those in-
clude the modular Green’s function algorithm (Rotter
et al., 2003, 2000), the (parallel) patchwork algorithm
(Costa Girão and Meunier, 2013) or matching methods
(Bergeron et al., 2005) that glue together various pre-
calculated subparts of the system. Other applications
include multiscale modeling (Calogero et al., 2019) where
a central part of the system is described accurately within
DFT while the periphery is modeled by a parametrized
tight-binding model.

A very closely related class of algorithm uses “decima-
tion” to integrate out sites that are not of direct interest.
The sites integrated out appear through self-energy terms.
Despite being apparently different, these algorithms are
very close to RGF kind of algorithms. Early algorithms
include (Grosso et al., 1989; Pastawski and Medina, 2001).

E. Other approaches beyond this review, discussion.

In the early days of RGF, another competing algorithm
was written in terms of the transfer matrix that relates the
wave-function in one layer to the next (Usuki et al., 1995).
The transfer matrix algorithm requires to be stabilized
against accumulation of errors as it does not naturally
preserve unitarity (Usuki et al., 1994). It has been mostly
abandoned in favor of RGF.

The RGF class of algorithms have a computational
effort that scales as L3d−2. These algorithms are very
efficient in one dimension of for very elongated systems.
For systems where all dimensions have similar sizes, ap-
proached based on nested dissection are parametrically
faster and in practice outperform RGF for L ≥ 100 (Groth



26

FIG. 9 Schematic of one step of the nested dissection algo-
rithm. The gluing sequence is used to recursively double the
size of a L × L square system to a 2L × 2L system. The site
coloring is the same as in Fig. 6

et al., 2014). In two dimensions a calculation of a squared
system of 106 sites takes less than 1 hour on a single core,
making 2D calculations easily tractable.

In three dimensions, the situation is more complex since
it is difficult to calculate systems large enough for the
calculations not to be dominated by finite size effects. An
alternating idea to RGF kind of calculations is to use a
different starting point: instead of starting from vacuum
and adding sites layers by layers, one may start from a
pristine material and use Dyson equation to modify a
finite number of Hamiltonian matrix elements (Ostrovsky
et al., 2010; Settnes et al., 2015). This approach allows
one to start directly in the thermodynamic limit hence
address difficult 2D or 3D systems. In some simple cases,
the pristine Green’s function may be obtain analytically
through complex contour integration (Ostrovsky et al.,
2010; Schelter et al., 2011; Settnes et al., 2015). The
method has been generalized by (Istas et al., 2019) to
arbitrary pristine systems by a numerical calculation of
the poles and residues of the problem.

When the current is forced to go through a small con-
striction with very few propagating channel, one may
take advantage of this fact to build an effective quasi-1D
problem that is much faster to solve (Darancet et al.,
2009, 2010) even if the original electrodes are fully 3D.

For quantities that are mostly local such as the elec-
tronic density, local density of states or the conductivity
(as opposed to the full conductance of a device that is
essentially global), linear scaling methods such as the
Kernel Polynomial Method (KPM) can be very efficient
(Weiße et al., 2006). Linear scaling methods for transport
have been recently reviewed in (Fan et al., 2021).

This review has focused on discrete models. In some
specific cases, it is also possible to perform wave-matching
directly in the continuum (Crawford and Brouwer, 2002;
Szafer and Stone, 1989; Usuki et al., 1994) or by treat-
ing part of the system (e.g., the leads) directly in the
continuum (Lent and Kirkner, 1990).

Last, let us mention two alternative techniques that
are slightly different from the mainstream approach. The
Complex Absorbing Potential (CAP) technique can be
used to bypass solving the lead problem by including a
finite part of the lead in the calculation in presence of a
smoothly varying complex potential (Driscoll and Varga,
2008). In the Contact Block Reduction (CBR) approach,
one approximates the Green’s function of the isolated
scattering region part by selecting only a finite fraction
of the eigenstates of the closed system (Mamaluy et al.,
2003).

VII. PHYSICAL OBSERVABLES IN THE
LANDAUER-BÜTTIKER APPROACH

So far, we have been concerned solely with one-body
quantum mechanics. We now turn to expressing the out-
of-equilibrium observables, such as the conductance, in
terms of the solution of the quantum mechanical problem,
i.e., we now incorporate statistical physics.

Introducing the destruction cn (creation c†
n) operators

on site n, we are now considering Hamiltonians in second-
quantized form,

H =
∑
nm

Ĥnmc
†
ncm. (134)

where the matrices Ĥ correspond to the various infinite
matrices of the one-body problem.

A. Many-body steady states

The solutions of the scattering problem ψ̂(E) computed
in Sec. III.C together with the bound states from Sec. III.E
form a complete basis of single-particle wave functions of
the Hamiltonian (46).

Because we focus on time-independent quantum trans-
port, we limit our consideration to steady many-body
states, where each of the single particle states has a spe-
cific occupation number fαE . Requiring additionally that
the fermion occupation numbers are uncorrelated, we
obtain the general form of the density matrix of such
states

ρ =
∏
αE

(
[1 − fα(E)](1 − Ψ†

αEΨαE) + fα(E)Ψ†
αEΨαE

)
,

(135)

ΨαE =
∑

n

ψ̂αE,ncn. (136)
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The single particle density matrix for such a state is

⟨c†
ncm⟩ =

∑
α

∫
dE

2π ψ̂
∗
αE,nψ̂αE,mfα(E) (137)

where we remember that the density of state of the one
dimensional channels has been already incorporated (up
to the factor 2π) in the normalization of the wave function.
Indeed, we normalize the states to carry unit current and
in one dimension the velocity (1/ℏ)dE/dk is the inverse
of the density of state. When the sites n,m belong to the
scattering region, we arrive at

⟨c†
ncm⟩ =

∑
α

∫
dE

2π (Ψ∗
sr)nα(Ψsr)mαfα(E) (138)

which is expressed in terms of quantities that we learned
to calculate. We narrow our scope further and consider
one particularly important class of steady states where
each of the leads has fixed chemical potential voltage µa

and temperature Θa. Then the modes ψ̂αE incoming from
the lead a have an occupation number given by the Fermi
distribution of that lead

fa(E) = 1
eβa(E−µa) + 1 , (139)

with β = 1/kbΘ. It is worth noting that, although such a
steady state is not a thermal state (the different leads can
have different temperatures and/or chemical potentials),
Eq. (135) is the thermal state of the effective nonlocal
Hamiltonian Heff ,

ρ = 1
Z
e−Heff , Heff =

∑
αE

βa(E − µa)Ψ†
αEΨαE . (140)

This form makes it explicit that the Wick theorem is
applicable to this density matrix. (Z is the partition
function that ensures normalization).

B. Landauer formula and its generalizations

All the observable quantities follow from the solution
of the scattering problem, namely from the quantities Φ,
Λ, Stp, Ψsr. The most important object is the scattering
matrix S = Spp between propagating modes. We use the
abbreviated notation Sαβ = [Spp]αβ for the corresponding
matrix elements between channel α and β. Below we
review the formulae used for the most common observables
calculated in quantum transport.

1. Electric current and conductance

In analogy to the derivation of Eq. (13), the out-of-
equilibrium current that flows through lead a reads,

Ia = e

h

∑
b

∫
dE

∑
α∈a,β∈b

|Sα,β |2 [fb(E) − fa(E)] . (141)

Here, we use the convention that current Ia > 0 means
current flowing towards the scattering region and the
electron charge is −e with e > 0. Using the unitarity of
the scattering matrix S, this expression can be rewritten
as

Ia = e

h

∑
b

∫
dE gab(E) fb(E) , (142)

where gab(E) is defined as

gab(E) =
∑

α∈a,β∈b

(|Sα,β |2 − δα,βδa,b) . (143)

For a ̸= b, gab(E) is the total transmission from lead b
to lead a. gaa(E) is negative, with |gaa(E)| equal to the
total transmission from lead a to all other leads b.

While Eq. (142) is now very well established and has
been validated in particular by the observation of the
quantization of conductance in quantum point contacts,
several other formula were initially proposed (Büttiker
et al., 1985).

When all the leads have equal temperatures and the
voltage applied Va are small µa = EF − eVa, we get in
linear response,

Ia =
∑

b

GabVb , (144)

with the conductance matrix defined as,

Gab = e2

h

∫
dEgab(E) ∂f

∂E
(E) . (145)

At zero temperature, this expression further reduces to
what is known as the multi-terminal Landauer formula
(Büttiker, 1986).

Gab = −e2

h
gab(EF ) . (146)

The Nleads × Nleads conductance matrix Gab satisfies
current conservation,

∑
a Gab = 0. Additionally gauge

invariance requires that adding a constant to all voltages
does not change currents, therefore

∑
b Gab = 0. In other

words the vector 1 = (1, 1, . . . , 1)T is both a left and a
right eigenvector of the Gab matrix with eigenvalue zero.
Note that both relations are due to the unitarity of the
scattering matrix S.

A commonly occurring measurement technique of mul-
titerminal samples is to send a current between two elec-
trodes, while measuring all the possible voltage differences.
In particular, the four terminal resistance is

Rab,cd = Va − Vb

I
, (147)

with Va and Vb corresponding to Ic = −Id = I, and all
the other currents equal to 0. The four terminal resis-
tance can correspond to longitudinal or Hall resistance
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depending on the measurement configuration. For c = a
and d = b it corresponds to a two-terminal resistance.
Because the conductance matrix has a zero eigenvalue,
straightforward inversion of Eq. (144) to calculate Rab,cd

is impossible. A possible workaround is eliminating a sin-
gle row (the corresponding current can be calculated at a
later stage using current conservation) and a column (this
is equivalent to fixing the voltage on the corresponding
terminal to 0) of the conductance matrix and invert the
truncated conductance matrix. An alternative solution
is to use our knowledge of the zero eigenvector of G to
construct the resistance matrix as a pseudoinverse. In-
troducing the projector P = 11T /Nleads onto the kernel
of G, one can simply shift the matrix G by an arbitrary
constant a ̸= 0 times P to make it invertible. This allows
one to define the voltage V as,

V = (G − aP)−1I . (148)

Indeed, when the vector I satisfies current conservation
(i.e., PI = 0), Eq.(148) implies that the average of V
vanishes (i.e., PV = 0 since, i.e., PG = 0) and it follows
that V satisfies I = GV .

Note that the conductance matrix from Eq. (144) only
takes into account the device described by the scattering
region. In an experiment, the device will be connected to
electric lines that have a resistance that can be comparable
to the one of the device. In that situation, reconstructing
the conductance matrix needs additional care as one needs
to embed it inside a classical electric circuit. This can
be further complicated if nonlinear effects start to play a
role.

2. Conductance in normal/superconductor hybrids

If one grounded superconducting electrode is present
in the system, the conductance can still be described
with the scattering formalism using the Bogoliubov-De
Gennes wave function (see also Sec. IX.E). In this case,
charges may enter the superconductor in Cooper pairs
resulting in Andreev reflection a process when an incoming
electron e converts into an outgoing hole h in the same
lead via Andreev reflection, or in a different lead via
crossed Andreev reflection.

The current in a normal lead a is then given as (Lam-
bert, 1991)

Ia = e

h

∑
b

∫
dEgab(E) [fb(E) − fS(E)] , (149)

where the summation is over all normal leads b, fS(E)
the Fermi-Dirac distribution function of the grounded
superconductor, energy E is defined with respect to the
Fermi level of the superconductor, and

gab(E) =
∑

α∈a,β∈b

|Sαe,βe|2 − |Sαh,βe|2 − δαe,βeδa,b . (150)

This conductance matrix is only valid for the normal leads,
and alone does not exhibit current conservation. The
reason for this is the presence of the superconductor, that
not only allows current in the quasi-particle continuum
but also in the Cooper pair condensate.

In typical experiments, bias voltages are on the order
of the superconducting gap. Since the conductance of a
normal/superconductor hybrid changes drastically over
this energy scale (Blonder et al., 1982), conductance is
usually not considered in linear response in this case.
Instead, it is obtained by taking the derivative of Eq. (149)
with respect to the voltage Vb. In the limit of temperatures
much lower than the superconducting gap, the Fermi-
Dirac distribution is well-approximated by a step function
and we find

dIa

dVb
= −e2

h
gab(−eVb) . (151)

Cases with more than one superconducting lead are
beyond the scope of this review. Then, currents can
flow in equilibrium (DC Josephson effect) and voltage
differences can lead to time-dependence (AC Josephson
effect, multiple Andreev reflection (Averin and Bardas,
1995)).

3. Thermoelectric effects

Equation (142) can also be used to calculate Seebeck
effects by introducing temperature gradients (Sivan and
Imry, 1986). In the limit of small gradients, kBΘa =
kBΘav + kBδΘa, we find

Ia =
∑

b

GS
ab δΘb , (152)

with the Seebeck conductance matrix defined as

GS
ab = e

hΘav
g

(1)
ab , (153)

where we have introduced

g
(n)
ab =

∫
dE gab(E)

(
− ∂f

∂E

)
(E)(E − EF )n . (154)

At low temperatures Θav, the expression simplifies after
a Bohr-Sommerfeld expansion to

GS
ab = eπ2k2

BΘav

3h
∂gab

∂E
(EF ) . (155)

In analogy with the charge current, one can further intro-
duce the heat current as the energy flowing in the lead,
counted from the chemical potential,

IH
a = − 1

h

∑
b

∫
dE gab(E)(E − µa) [fb(E) − fa(E)] .

(156)
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Here we use sign conventions such that IH
a > 0 means

heat flowing towards the scattering region. In the limit
of small bias voltages, one gets the Peltier effect

IH
a =

∑
b

GP
ab Vb (157)

with the Peltier conductance matrix defined as

GP
ab = e

h
g

(1)
ab = ΘavGS

ab . (158)

The direct correspondence with the Seebeck effect is a
consequence of the thermodynamic Onsager relations.
Last, in the limit of small temperature gradients, we get

IH
a =

∑
b

GH
ab δΘb , (159)

with the Heat conductance matrix defined as,

GH
ab = 1

hΘav
g

(2)
ab . (160)

In the limit of small temperature, the Heat conductance
simplifies into

GH
ab = −π2k2

BΘav

3h gab(EF ) . (161)

We note that in this limit, we recover
GH

ab

ΘavGab
= π2k2

B

3e2 , (162)

the (mesoscopic version of the) Wiedemann-Franz law.

4. Spin currents

A Landauer formula can also be derived for spin cur-
rents. It can be used to calculate, e.g., the spin torque
exerted on a magnetic layer by an injected current (Bor-
lenghi et al., 2011; Waintal et al., 2000). The definition of
the spin current, which provides an explicit link between
spin current and spin torque, is obtained from the continu-
ity equation of the current (Waintal and Brouwer, 2002).
Introducing the vector of Pauli matrices σ⃗ = (σx, σy, σz)T ,
the spin current I⃗ flowing through a surface Σ takes the
form ∝

∫
r⃗∈Σ dr⃗ Im

∑
ηη′ Ψη(r⃗)σ⃗ηη′∇⃗Ψη′(r⃗) where Ψη(r⃗)

is the wave function for the spin component η. In other
words, the spin current is formally equivalent to the charge
current with an addition of Pauli matrices in its definition.
In the limit of zero temperature and small bias voltages,
the spin current takes the form

I⃗a =
∑

b

G⃗ab Vb , (163)

where the spin conductance matrix G⃗ab between non-
magnetic leads a and b takes the form

G⃗ab = e

4π
∑

ηη′η′′

∑
α∈a,β∈b

σ⃗ηη′Sαη′,βη′′(EF )S∗
αη,βη′′(EF ) .

(164)

Here, the scattering matrix is defined for states with a
well-defined spin component η, i.e., this expression is only
applicable to leads where spin is a conserved quantity.
Spin currents, being transfer of spin quanta ℏ per unit
time, have the dimensions of energy.

Note that in contrast to charge current, there is no
conservation of spin current in a magnetic system. Hence,
it may be needed to calculate the spin current inside the
system as well as in the lead. This can be done using
Eq. (138). There is also no “Gauge invariance” so that
spin current can flow in the system at equilibrium. In the
absence of spin-orbit coupling, such a spin current can
be identified with magnetic exchange interaction (Bruno,
1995; Waintal and Brouwer, 2002).

5. Injectivities and Emissivities

Two secondary concepts of the Landauer-Büttiker for-
malism are the emissivity and the injectivity (Buttiker,
1993; Büttiker, 1995). The injectivity ∂⟨c†

ncn⟩/∂µa ex-
presses how much the electronic density ⟨c†

ncn⟩ varies
when one raises the chemical potential µa of lead a. The
emissivity ∂Ia/∂(Hsr)nn is the variation of current Ia

upon a change of electric potential (Hsr)nn. These two
concepts arise naturally when one extends quantum trans-
port to AC regimes or non-linear regimes to introduce
a minimum treatment of the effect of electron-electron
interactions, see the discussion around Eq. (230).

The injectivity arises naturally in the formalism and
reads at zero temperature,

∂⟨c†
ncn⟩
∂µa

= 1
2π
∑
α∈a

|Ψsr(µα)|2nα , (165)

where the scattering wave function Ψsr is calculated at
E = µα. Other generalizations can be obtained from
Eq. (138) in a straightforward manner.

To obtain the emissivity, one differentiates Eq. (50) and
arrives at the following linear system,(

Hsr − E PT
srV

†Φt+Λt+
V Psr −V Φt+

)( ∂Ψsr
∂(Hsr)nm

∂Stp
∂(Hsr)nm

)
=
(

−ΞΨsr
0

)
(166)

that must be solved numerically. Here, the matrix Ξ is
defined as Ξij = δinδjm. Equation (166) can be used to
implement automatic differentiation schemes in quantum
transport calculations. Eq. (166) has the same structure
as Eq. (93) from which it follows that the emissivity
can also be obtained from the knowledge of the Green
function,

∂Ψsr

∂(Hsr)nm
= GsrΞΨsr (167)

∂Stp

∂(Hsr)nm
= Gt+ΞΨsr (168)
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C. Quantum noise

The observables defined in the preceding sections are
all one-body observables, i.e., mean observables. Another
class of important observables are the quantum fluctu-
ations around the mean and in particular the quantum
fluctuation of the current (Blanter and Buttiker, 2000).
The general expression of the noise correlation S̄ab(ω)
between lead a and b (noise power when a = b) at finite
frequency ω reads,

S̄ab(ω) = e2

h

∑
c,d

∑
γ∈c,δ∈d

∫
dE

Acd
γδ(a,E,E + ℏω)Adc

δγ(b, E + ℏω,E)
{fc(E)[1 − fd(E + ℏω)] + fd(E + ℏω)[1 − fc(E)]}

(169)

where Acd
γδ(a,E,E′) is defined in terms of the scattering

matrix as,

Acd
γδ(a,E,E′) = δacδadδγδ −

∑
α∈a

S∗
αγ(E)Sαδ(E′) (170)

Eq. (169) has a number of simplified forms, notably at
zero frequency, small bias, zero temperatures, etc. We
refer to (Blanter and Buttiker, 2000) for a comprehensive
review. See also the next section for a simple route for
deriving such formula.

VIII. PHYSICAL OBSERVABLES: THE
NON-EQUILIBRIUM GREEN’S FUNCTION APPROACH

In this section, we take an alternative, yet equivalent,
route compared to the one in the preceding section to
calculate out-of-equilibrium physical observables such as
the electric conductance from the solution of the quantum
mechanical problem. While, in the preceding section, the
latter was expressed in terms of the scattering matrix and
scattering states, here quantum propagation is encoded
in the retarded Green’s function.

The connection from the retarded Green’s function
to the physical observable is done through the so-called
Keldysh formalism (Keldysh, 1964). As we do not con-
sider electron-electron interactions, but simpler quadratic
Hamiltonians, the Keldysh formalism considerably simpli-
fies into what is often known as NEGF (Non Equilibrium
Green Function’s) formalism (Caroli et al., 1971; Meir
and Wingreen, 1992). NEGF is mathematically equiva-
lent to the Landauer-Büttiker approach. It is perhaps
less intuitive but has the advantage that once a few basic
equations have been established, everything follows from
straightforward algebra.

A. Keldysh formalism in a nutshell

In this subsection, we summarize the main definitions
and results of the Keldysh formalism that will be needed.
We refer the reader to textbooks such as (Rammer and
Smith, 1986; Stefanucci and van Leeuwen, 2013) for the
derivation of the results that we state here without proofs.

The Keldysh formalism introduces two independent
Green’s functions, the “lesser” (<) and “greater” (>)
Green’s functions

Ĝ<
nm(τ) = i⟨c†

me
iHτ cne

−iHτ ⟩, (171)
Ĝ>

nm(τ) = −i⟨eiHτ cne
−iHτ c†

m⟩. (172)

These Green’s functions are very convenient since at τ = 0
they correspond directly to the observables (e.g., density
or current) of interest. From these two Green’s functions,
one may construct the “time-ordered” (T ) , “anti-time
ordered” (T̄ ), “retarded” (R) and “advanced” (A) Green’s
functions as,

ĜT
nm(τ) = θ(τ)Ĝ>

nm(τ) + θ(−τ)Ĝ<
nm(τ), (173)

ĜT̄
nm(τ) = θ(τ)Ĝ<

nm(τ) + θ(−τ)Ĝ>
nm(τ), (174)

ĜR
nm(τ) = θ(τ)Ĝ>

nm(τ) − θ(τ)Ĝ<
nm(τ), (175)

ĜA
nm(τ) = θ(−τ)Ĝ<

nm(τ) − θ(−τ)Ĝ>
nm(τ). (176)

Note that, in the preceding sections, we encountered
only one type of Green’s function, the retarded Green’s
function, and the subscript R has been omitted. These
Green’s functions are linearly dependent. Below, we will
focus on the Green’s functions Ĝ<, ĜR and ĜA using the
fact that Ĝ< = ĜT − ĜR = ĜT̄ + ĜA as can be proven
trivially from the above definitions.

In this review, we only consider many-body Hamilto-
nians H restricted to be quadratic in the destruction cn

and creation c†
n operators on site n,

H =
∑
nm

Ĥnmc
†
ncm. (177)

The equivalence between the definition of the retarded
Green’s function used in the preceding sections and the
one in Eq. (175) is not entirely trivial and indeed valid
only for quadratic Hamiltonians. In the following, we
make use of this simplification.

In the Keldysh formalism, these Green’s functions nat-
urally appear in the form of a 2 × 2 matrix associated
with the so-called Keldysh contour,

Ĝnm(τ) =
(
ĜT

nm(τ) Ĝ<
nm(τ)

Ĝ>
nm(τ) ĜT̄

nm(τ)

)
. (178)

Since this review is concerned with d.c. quantum transport
(i.e., time-independent Hamiltonians), we’ll work chiefly
in energy representation,

Ĝnm(E) =
∫
dτĜnm(τ)eiEτ . (179)
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Now that we have defined the mathematical objects
of interest, we can state the very few results from non-
equilibrium many-body theory that will be needed to
establish the basic equations of quantum transport. The
equations of motion read∑

p

(
Eδmp − Ĥmp 0

0 Eδmp − Ĥmp

)
Ĝpn(E) =

(
δmn 0

0 δmn

)
,

(180)

or in compact notations,(
E − Ĥ 0

0 E − Ĥ

)
Ĝ(E) =

(
1 0
0 1

)
. (181)

Splitting the Hamiltonian matrix Ĥ into an “unperturbed”
matrix Ĥ0 and a “perturbation” Ŵ ,

Ĥ = Ĥ0 + Ŵ , (182)

and denoting Ĝ0(E) the Green’s function associated with
Ĥ0, one can write a form of Dyson equation (Rammer
and Smith, 1986; Stefanucci and van Leeuwen, 2013) as

Ĝ(E) = Ĝ0(E) + Ĝ0(E)
(
Ŵ 0
0 −Ŵ

)
Ĝ(E), (183)

and also

Ĝ(E) = Ĝ0(E) + Ĝ(E)
(
Ŵ 0
0 −Ŵ

)
Ĝ0(E). (184)

Note that the partition of Ĥ into Ĥ0 and Ŵ is arbitrary,
although in what follows the Ŵ matrix will contain the
matrix elements that connect the leads to the scattering
region and Ĥ0 the rest of the Hamiltonian. Identifying
the different components of the 2 × 2 Dyson equation
Eq. (183), one may write

ĜR = ĜR
0 + ĜR

0 Ŵ ĜR, (185)
ĜA = ĜA

0 + ĜA
0 Ŵ ĜA, (186)

Ĝ< = Ĝ<
0 + ĜR

0 Ŵ Ĝ< + Ĝ<
0 Ŵ ĜA. (187)

The first equation (or equivalently the second one) en-
codes the quantum mechanics and forms a close set of
equations for the retarded Green’s function alone. The
third equation encodes the statistical physics. Similarly,
Eq. (184) leads to

ĜR = ĜR
0 + ĜRŴ ĜR

0 , (188)
ĜA = ĜA

0 + ĜAŴ ĜA
0 , (189)

Ĝ< = Ĝ<
0 + ĜRŴ Ĝ<

0 + Ĝ<Ŵ ĜA
0 . (190)

For a system at thermal equilibrium, one has

Ĝ<(E) = −f(E)
[
ĜR(E) − ĜA(E)

]
, (191)

which completes the basic formalism that we shall need
in this section.

B. Main NEGF equation

Within the NEGF formalism, computing out-of-
equilibrium amounts to performing two tasks. First
one computes the retarded Green’s function (i.e., solve
the quantum mechanical problem) using, e.g., any algo-
rithm from Sec. VI . Second, one must compute the lesser
Green’s function (i.e., the observables). In this subsection,
we derive the main result of NEGF that relates the lesser
Green’s function to the retarded one in the context of
quantum transport. The derivation is a generalization
of the original work by Caroli et al. (Caroli et al., 1971).
These results have later been generalized and popularized
by Wingreen and Meir (Meir and Wingreen, 1992).

We start by splitting and applying the Dyson equation
to Ĥsys. The perturbation Ŵ contains the matrix ele-
ments that connect the leads to the scattering region. Ĥ0
contains the Hamiltonian of the disconnected elements of
the system: the semi-infinite leads and the isolated scat-
tering region. Let us write Dyson equation in block form
where the block index indicates the lead (a = 1, 2, . . . )
or the scattering region (0). By construction, the discon-
nected Green’s functions (Ĝ0)kl = δkl(Ĝ0)l are diagonal
with respect to the block index. Eq. (187) for the scatter-
ing region block G<

sr = Ĝ<
00 reads

Ĝ<
sr = (Ĝ<

0 )0 + (ĜR
0 )0Ŵ0aĜ

<
a0 + (Ĝ<

0 )0Ŵ0aĜ
A
a0, (192)

with an implicit summation over leads a > 0. Note that
in the rest of this section we have absorbed the projection
matrices Psr into Ŵ , such that, e.g., Ŵa0 = VaPsr, where
Va is the hopping matrix of lead a. Multiplying Eq. (192)
on the left by E+ iη−Hsr and using [E−Hsr](Ĝ<

0 )0 = 0
and [E −Hsr](ĜR

0 )0 = 1 we obtain

[E −Hsr]G<
sr = Ŵ0aĜ

<
a0. (193)

To close the above equation, we write Eq. (187) and (190)
for the a0 and 0a blocks respectively,

Ĝ<
a0 = (ĜR

0 )aŴa0G
<
sr + (Ĝ<

0 )aŴa0G
A
sr, (194)

Ĝ<
0a = GR

srŴ0a(Ĝ<
0 )a +G<

srŴ0a(ĜA
0 )a. (195)

Inserting Eq. (194) into (193), we arrive at[
E −Hsr − Ŵ0a(ĜR

0 )aŴa0

]
G<

sr = Ŵ0a(Ĝ<
0 )aŴa0G

A
sr.

(196)
We recognize Eq. (96) on the left hand side, so that,

G<
sr = GR

srŴ0a(Ĝ<
0 )aŴa0G

A
sr. (197)

To conclude, we use Eq. (191) supposing each lead to
remain at equilibrium with its Fermi function fa(E). We
arrive at the main result of NEGF theory,

G<
sr(E) = GR

sr(E)Σ<
sr(E)GA

sr(E), (198)
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with the lesser self-energy Σ<
sr defined as

Σ<
sr(E) = −

∑
a

fa(E)
[
ΣR

a (E) − ΣA
a (E)

]
, (199)

where

ΣR
a = Ŵ0a(ĜR

0 )aŴa0 (200)

is the partial contribution to the retarded self-energy
ΣR(E) =

∑
a ΣR

a . Since GA
sr = (GR

sr)† and ΣA
a = (ΣR

a )†,
we can equivalently write Eq. (199) as

Σ<
sr(E) = i

∑
a

fa(E)Γa(E) , (201)

using definition of the linewidth (106) for lead a, Γa =
i(ΣR

a − ΣA
a ).

Eq. (198) provides a direct expression of the Lesser
Green’s function in terms of the Retarded one and
the occupation function in the leads. From there, one
can directly calculate physical observables as ⟨c†

mcn⟩ =
−iG<

nm(τ = 0) which leads to the one-body density ma-
trix,

⟨c†
mcn⟩ = −i

∫
dE

2π (G<
sr)nm(E), (202)

which generalizes the concept of local density of states to
off-diagonal observables and out-of-equilibrium situations.

Inserting Eq. (111) into Eqs. (201) and (198) as well as
using Eq. (114) one can relate the lesser Green’s function
to the scattering wave-functions; one arrives at (Gaury
et al., 2014; Wimmer, 2010)

G<
sr(E)nm = i

∑
a

fa(E)
∑
α∈a

Ψsr(E)nαΨ∗
sr(E)mα. (203)

At equilibrium, this equation simplifies into G<
sr(E) =

iΨsr(E)Ψ†
sr(E)f(E) which can be derived straightfor-

wardly using the definition of G< (Stefanucci and van
Leeuwen, 2013).

It is worth noting that there is a subtle point in the
derivation above: the limit η → 0 has to be taken at the
end of the calculation, not at the beginning, whenever the
energy E matches a bound states of the system, owing
to the emergence of (diverging) Dirac functions at these
energies. It follows that, strictly speaking, one should add
the bound states contributions to Eq. (198) or (203) which
only contain contributions from the scattering states. For
example, Eq. (203) then reads

G<
sr(E)nm = i

∑
a

fa(E)
∑
α∈a

Ψsr(E)nαΨ∗
sr(E)mα

+ i
∑

j

fj(E)δ(E − Ej) (Ψsr)nj (Ψ∗
sr)mj ,

(204)

where the index j now labels bound states at energy Ej

with corresponding wave function (Ψsr)nj . These con-
tributions are usually omitted because (i) they do not
contribute to transport properties and (ii) the filling factor
fi(E) depends on the history of the system and must be
decided based on physics not described within our frame-
work (Stefanucci and van Leeuwen, 2013). These bound
states may play a role nevertheless in certain situations
(Profumo et al., 2015).

At equilibrium, the expression for G<
sr can be simplified.

To do so, we use relation for the Retarded and Advanced
Green’s function obtained by (i) multiplying the equation
GR

sr(E−Hsr−ΣR) = 1 by GA
sr on the right, (ii) multiplying

its Hermitian conjugate (E − Hsr − ΣA)GA
sr = 1 by GR

sr
on the left and (iii) subtracting the second equation from
the first. One arrives at

GR
sr[ΣR − ΣA]GA

sr = GR
sr −GA

sr. (205)

Inserting Eq. (205) into Eq. (198), we get

G<
sr = −f(E)[GR

sr −GA
sr], (206)

recovering Eq. (191). Calculating the number of electrons
on one site at equilibrium using Eq. (202), we get back
the usual expression in terms of the local density of state:

⟨c†
ncn⟩ = −

∫
dE

π
f(E)Im(GR

sr)nn(E). (207)

C. Landauer formula within NEGF

Let us now define the current flowing towards the scat-
tering region and establish the Green’s function version
of the Landauer formula. Introducing the total num-
ber of electrons in the scattering region Qsr(t) = ⟨Q⟩
with Q =

∑
n∈sr c

†
ncn, the evolution of Q (in Heisenberg

representation) ∂Q/∂t = i[H,Q] provides the continuity
equation

∂Qsr

∂t
=
∑

a

Ia(t) . (208)

In steady state, i.e., time-independent current flow Ia(t) =
Ia, we find the current Ia from lead a towards the scat-
tering region as

Ia = e

h

∫
dE Tr[G<

a0Ŵ0a − Ŵa0G
<
0a]. (209)

Using Eq. (194), Eq.(195) and the definitions of the self
energies we get

Ia = e

h

∫
dE Tr

[
G<

sr(ΣR
a − ΣA

a ) − (GR
sr −GA

sr)Σ<
a

]
.

(210)
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Further using Eqs. (205) and Eq. (201), we finally arrive
at

Ia = e

h

∑
b

∫
dE Tr

[
GR

srΓbG
A
srΓa

]
[fb(E) − fa(E)] .

(211)
This equation is often (somewhat abusively) referred to
as the Landauer formula. It automatically satisfies two
important requirements: the absence of incoming currents
at equilibrium (note that there may be persistent currents
inside the scattering region), and the global conservation
of current

∑
a Ia = 0.

To conclude this section, we end with the proof that
Eq. (211) is indeed equivalent to the (original) scatter-
ing matrix version of the Landauer formula. Inserting
Eq. (109) and Eq. (111) in Eq. (211) and using the invari-
ance of the trace under cyclic permutation, we get

Tr
[
GR

srΓbG
A
srΓa

]
= Tr

[
GR

srΓbΦb
p−Φ†b

p−ΓbG
A
srΓaΦa

p+Φ†a
p+Γa

]
= Tr

[(
iΦ†a

p+ΓaG
R
srΓbΦb

p−

)(
−iΦ†b

p−ΓbG
A
srΓaΦa

p+

)]
= Tr

[
Sab(Sab)†] ,

(212)

where the Φa(b)
p+ matrix is restricted to the modes of lead

a (b). we have introduced a new object Sab,

Sab = iΦ†a
p+ΓaG

R
srΓbΦb

p− . (213)

From the Fisher-Lee relation (116), we can indeed identify

Sab = Sab
pp, (214)

i.e., the scattering matrix between lead a and lead b,
restricted to the propagating channels, concluding our
of equivalence between the scattering approach and the
NEGF approach. Note that in the sum of Eq. (211) only
b ̸= a contribute, and hence Eq. (212) is valid only for
a ̸= b, i.e., describes transmission from lead b to a.

D. Higher-order observables

The observables defined in the preceding sections are
all one-body observables (except for the quantum noise),
i.e., quadratic in the creation/destruction operators. To
calculate higher-order observables, one can make use of
the fact that, even though the system is out of equilibrium,
the density matrix is the exponential of a (highly non-
local) quadratic Hamiltonian, see Eq.(140). It follows
that Wick theorem applies, allowing expression of, e.g.,
quartic terms in terms of quadratic ones,

⟨c†
n(t)cm(t) c†

p(t′)cq(t′)⟩ = (215)
⟨c†

n(t)cm(t)⟩ ⟨c†
p(t′)cq(t′)⟩ + ⟨c†

n(t)cq(t′)⟩⟨cm(t)c†
p(t′)⟩,

i.e., in terms of sum of products of Lesser and Greater
Green’s functions. This approach can be used directly
to calculate quantities such as shot noise (Gaury and
Waintal, 2016).

The same approach can be used to derive expressions re-
lating higher-order observables to the scattering wavefunc-
tion. For this, one uses the following dictionary (Gaury
et al., 2014) :

[G<(τ)]nm = i
∑

α

∫
dE

2π (Ψsr)nα(Ψ∗
sr)mαe

−iEτfα(E),

(216)
and

[G>(τ)]nm = −i
∑

α

∫
dE

2π (Ψsr)nα(Ψ∗
sr)mαe

−iEτ [1−fα(E)].

(217)
Note that likewise, the retarded Green’s function can be
expressed as

[GR(τ)]nm = −iθ(τ)
∑

α

∫
dE

2π (Ψsr)nα(Ψ∗
sr)mαe

−iEτ .

(218)

IX. SELECTED APPLICATIONS TO MODEL SYSTEMS

We have now completed the technical part of this re-
view where we presented the mathematical formalisms
and the associated algorithms used to make actual nu-
merical calculations. We are left to discuss how these
techniques are used for real world applications. Numerical
quantum transport calculations are by now very common
in a wide variety of fields ranging from molecular elec-
tronics through spintronics to nanoelectronics. They are
applied in the study of devices made of semiconductors,
graphene, topological materials, superconductors, and
various combinations thereof. We shall not attempt to
review all these applications but will confine ourselves to
selecting a few examples that we find either important or
illustrative. Such a choice is necessarily subjective.

A. A hierarchy of discrete models

The first step in this regard is to select the appropriate
level of modeling for the Hamiltonian of the scattering
region as well as of the (semi-infinite) electrodes and of
the system-electrode interface. There exists a hierarchy
of discrete Hamiltonians that can be used to describe a
system, and physicists must select an appropriate level
of modeling, requiring a tradeoff between accuracy and
numerical tractability. Fig. II shows a schematic of this hi-
erarchy. At the bottom are calculations performed entirely
within the framework of density functional theory. In the
absence of strong electronic correlations, DFT provides
an accurate description of the system from first principles
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Discretized k · p Hamiltonians

Tight-binding models (TBM)

Semi-empirical tight-binding models
(SE-TBM)
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lf-
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te

nt First principles tight-binding models
(FP-TBM)

Density functional theory (DFT)

TABLE II Schematic of the different levels of modeling used
in numerical quantum transport, see text.

and has de facto become the reference approach to the cal-
culation of realistic materials. However, strictly speaking,
the Kohn-Sham equations of DFT are valid for the ground
state of the system and often need to be corrected to prop-
erly account for dynamical properties such as the band
gap. Next come the First Principle Tight-Binding Models
(FP-TBM) where a DFT calculation is followed by the pro-
jection of the corresponding (self-consistent) Hamiltonian
onto a set of localized states such as maximally localized
Wannier functions. Semi-Empirical Tight-Binding Models
(SE-TBM) are also models that are derived from a DFT
calculation. However, in contrast to FP-TBM where the
model is constructed in a systematic way, the SE-TBM are
parametrized and then fitted to properly reproduce the
DFT calculations (typically the band structure) and/or
experimentally known properties of the material (such as
the band gap). The orbitals and terms in the Hamilto-
nian included in the SE-TBM are typically dictated by
symmetry and physics considerations. When the Tight-
Binding Model (TBM) is not tightly bound to a first
principle calculation, we simply call it a general TBM.
These TBM’s can be studied from a purely theoretical
perspective or in situations where a simple model is suffi-
cient to account for the physics. These model systems can
also come from the discretization of a continuum model
such as k.p model or a simple effective mass model. All
these models describe essentially the quantum mechanics
of the conducting electrons of the system.

Another important ingredient is the electromagnetic
and in particular electrostatic environment in which these
electrons propagate. In fact, the electrostatic energy
is usually the largest energy of the problem. In first
principle calculations, the electrostatic problem is solved
self-consistently with the quantum mechanical one. In
model systems (general TBM and k · p models) one often
assumes that the electric potential is known and has a
simple form.

In this section and the next, we will give a few selected
examples to illustrate the use of computational quantum
transport. In the remaining part of this section, we focus
on “model” systems (the two upper types of models in
Fig. II) while the next section will focus on more “realistic”
models (the three lower levels in Fig. II).

B. Applications to the two-dimensional electron gas

1. The early days: Disordered systems and Anderson localization

An important application of numerics to quantum trans-
port is the study of the effect of static disorder on conduc-
tance as well as of the associated Anderson localization
phenomena. This is perhaps the historically first applica-
tion of the techniques described in this review and also
one of the most successful ones.

The model is the discretized effective mass Schrödinger
equation Eq. (22) in the presence of static disorder. In
two dimensions the model reads

Ψn+1,m + Ψn−1,m + Ψn,m+1 + Ψn,m−1

+ Vn,mΨn,m = EΨn,m, (219)

where the potential Vn,m takes different random values
on different sites. Typically, one chooses Vn,m randomly
with a flat distribution Vn,m ∈ [−W/2,W/2] where the
parameter W is the strength of the disorder. In a seminal
paper, the “gang of four” (Abrahams et al., 1979) had pre-
dicted that the conductance g(W,L) (where L is the size
of the sample) followed a simple scaling law from which
one could predict the insulating or metallic behavior of
the sample. The scaling hypothesis, which was supported
by theoretical arguments both in the strong and weak dis-
order regimes, was that the function β ≡ ∂ log g/∂ logL
was a function of g only (i.e., ∃f, β(L,W ) = f [g(W,L)] ).
One of the most striking conclusions of the scaling theory
was that in three dimensions there was a critical value of
disorder associated to a metal-insulator transition, but
in one and two dimensions the system was always an
insulator in the sense that the conductance would become
vanishingly small in the L → ∞ limit.

While the scaling hypothesis was plausible, it was
merely a hypothesis. It was put on firm grounds in a series
of works combining numerical calculations with finite-size
scaling analysis. These calculations were pioneered by
(Pichard and Sarma, 1981a,b) who, however, wrongly
concluded the existence of a metal-insulator transition
in two dimensions. Subsequent more precise numerics
(MacKinnon and Kramer, 1981) could indeed confirm
the finite-size scaling hypothesis, as shown in Fig. 10. A
large activity followed in the following decade with the
study of the effect of various parameters such as spin-orbit
coupling, magnetic field, type of disorder, as reviewed in
(Kramer and MacKinnon, 1993).
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FIG. 10 Scaling function β(g) computed numerically for a 2D
(triangles) and 3D (pluses) tight-binding model, confirming
the scaling hypothesis. From (MacKinnon and Kramer, 1981).

Besides the Anderson localization regime, numerics
have also been used to study the quantum corrections to
the classical limit in the diffusive regime. An early work
in this direction is the study of the universal conductance
fluctuations (Stone, 1985). More recent applications in-
clude simulations of diffusive metal-superconductor junc-
tions (Marmorkos et al., 1993a) or disproving of the con-
jecture of the existence of a two-parameter scaling regime
in a system with partially broken time reversal symmetry
(Schomerus and Beenakker, 2000).

2. Ballistic systems and Quantum billiards

In the early nineties, the opposite, ballistic regime (no
disorder) attracted wide interest in the context of “quan-
tum billiards”. Quantum billiards consist of a high mobil-
ity two-dimensional electron gas (typically GaAs/GaAlAs
heterostructures) where a billiard is patterned using elec-
trostatic gates deposited on top of the heterostructure.
A study of such billiards (also known as quantum dots
in the regimes where they are almost closed and charg-
ing energy plays an important role) was performed in
(Jalabert et al., 1990) using the recursive Green’s func-
tion algorithm. 4-terminal (X-shaped) and 3-terminal
(T-shape) ballistic junctions were studied in (Baranger
et al., 1991; Sols et al., 1989). One of the successes of these
ballistic calculations was the finding that the statistics of
the height of the resonances (in the almost closed regime)

FIG. 11 Left: Numerically computed weak localization cor-
rection to the conductance for a chaotic stadium billiard (top)
and an integrable circular billiard (bottom). Solid lines corre-
spond to specular scattering at the boundary, other lines to a
situation with disorder at the boundary. Right: Correspond-
ing experimental data obtained by averaging over 48 billiards
defined in a high-quality GaAs electron gas. The lineshape
in the chaotic case is Lorentzian and for the integrable bil-
liard triangular, in agreements with simulation. Adapted from
(Chang et al., 1994).

matched the Porter-Thomas distribution prediction of
random matrix theory (Jalabert et al., 1992). Numerics
also clarified weak localization, i.e., the interference con-
tribution to the magneto-conductance (Baranger et al.,
1993). Numerics could in particular clearly distinguish the
difference in behavior between the magneto-conductance
of integrable and chaotic billiards: a chaotic billiard gives
rise to a Lorentzian lineshape for the magnetoconduc-
tance, whereas an integrable billiard features a triangular
lineshape, as shown in the left panels of Fig. 11. This pre-
diction was soon confirmed experimentally (Chang et al.,
1994), shown in the right panels of Fig. 11. In billiards
where there exists a short straight path between the en-
trance and the exit, the observation of Fano resonances
(Göres et al., 2000) was also well reproduced in numerics
(Clerk et al., 2001). A review of quantum billiards can be
found in (Alhassid, 2000). Some recent ballistic devices
focus on building electronic interferometers analogous
to those known in optics (Bäuerle et al., 2018). Those
systems can also be simulated both with (Kazymyrenko
and Waintal, 2008) (quantum Hall regime) and without
(Bautze et al., 2014) magnetic field.

3. Scanning gate microscopy

In a scanning gate microscope, one measures how the
conductance through a constriction (“a quantum point
contact”) is affected by a conducting tip that scans the
surface of the heterostructure. Numerical simulations are
very handy for these systems as the signal is highly de-
pendent on any residual disorder as well as on the sample
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geometry. Numerics were shown to correctly capture the
experimental observation, at least on a qualitative level
(Kozikov et al., 2013; Steinacher et al., 2018). Combined
with machine learning techniques, numerical calculations
can be used to unveil the underlying disorder potential
seen by the electrons (Percebois and Weinmann, 2021).

C. Quantum transport in graphene

1. Single pz-orbital tight-binding model

The discovery of graphene triggered a very large number
of numerical studies that is far beyond the scope of the
present review (Peres, 2010). Many of these works use a
simple next-nearest neighbor model

t
∑

j=N(i)

Ψj = EΨi, (220)

where the site i sits on the hexagonal lattice of graphene
and the sum over j = N(i) stands for the three neighbors
j of site i. The value t = 2.7 eV is the hopping integral
between two neighboring pz orbitals. Recursive Green’s
Function algorithms were adapted from the square lat-
tice to the hexagonal case of graphene (Lewenkopf and
Mucciolo, 2013). They were used very early to check the
prediction that the conductivity of pristine graphene at
the Dirac point was 4e2/(πh) while its Fano factor had
the same value 1/3 as in a diffusive wire (Tworzydło et al.,
2006) due to transport through evanescent states in the
limit of wide samples. These predictions were later ob-
served experimentally (Danneau et al., 2008). Recursive
Green’s function calculations were also used extensively to
study the effect of disorder which makes the conductivity
dependent on the disorder strength and correlation length
(Lewenkopf et al., 2008) or to assess the regime of validity
of, e.g., semi-classical Boltzmann approaches (Kłos and
Zozoulenko, 2010).

2. Massless Dirac equation

At low energy, pristine graphene is described by 2 inde-
pendent relativistic Weyl (massless Dirac) equations

HD = vF

(
0 px − ipy

px + ipy 0

)
(221)

corresponding to two different valleys K and K’, where
the 2×2 structure arises from graphene having two atoms
per unit cell. Relativistic equations of this type play an
important role in modern condensed matter physics as
they arise in a number of topological materials, either
in the bulk or for the description of their surface states
(Wehling et al., 2014).

Attempts to simulate only one of the two valleys (for
instance in order to distinguish between intervalley and

intravalley scattering) with any discretization scheme
faces the so-called “fermion doubling” problem: in any
tight-binding model, Dirac points always come in pairs
(Nielsen and Ninomiya, 1981; Susskind, 1977).

This problem can be circumvented by borrowing solu-
tions from the lattice gauge theory (Stacey, 1982), such
as by evaluating finite differences on a lattice that is dis-
placed symmetrically from the original lattice (Tworzydło
et al., 2008) or by adding a small term which breaks
the time-reversal symmetry (Habib et al., 2015; Hong
et al., 2012) or k-space discretization (Bardarson et al.,
2007). See (Pacholski et al., 2021) for a recent discussion
of various ways of addressing Fermion doubling. Similar
approaches can be used for other Dirac-like systems such
as 3D Weyl semi-metals (Sbierski et al., 2014)

D. Quantum Spin Hall

Topological materials are attracting a lot of attention
and have prompted many numerical studies of their trans-
port properties. Reviews of these materials can be found
in (Bansil et al., 2016; Hasan and Kane, 2010; Qi and
Zhang, 2011). Computational methods have been useful
in particular for 2D models where large systems can be
studied.

1. Kane-Mele model

One of the most important models of topological in-
sulators is the Kane-Mele model that describes a two-
dimensional quantum spin Hall insulator (Kane and Mele,
2005a,b). This model corresponds to a single orbital model
for graphene Eq. (220) to which one adds a spin-orbit
coupling term of strength λ. The tight-binding equation
reads

t
∑

j=N(i)

Ψj + iλ
∑

j=N ′′(i)

νijσzΨj = EΨi, (222)

where Ψi = (Ψi↑,Ψi↓) is a two component spinor, σz

a Pauli matrix, N(i) [resp. N ′′(i)] stands for the [resp.
second] nearest neighbors of i, and νij = −1 (resp. νij =
1) for clockwise (resp. counter-clockwise) hoppings. The
spin-orbit term opens an energy gap in the spectrum.
Inside this gap are topologically protected chiral states
that appear at the edge the system.

In actual pristine graphene, the value of λ is expected
to be very small in the 10 µeV range (Konschuh et al.,
2010). Various strategies have been designed to engineer
higher values of λ including depositing heavy adatoms on
top of graphene (Kochan et al., 2017; Weeks et al., 2011).
Simulations of devices based on quantum spin Hall effect
have shown interesting behavior or thermoelectric effects
(Chang et al., 2014a; Shevtsov et al., 2012a) or electric
switches (Shevtsov et al., 2012b).
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2. Bernevig-Hughes-Zhang model

A second important model that leads to a quantum spin
Hall phase is the Bernevig-Hughes-Zhang (BHZ) model
(Bernevig et al., 2006). The BHZ Hamiltonian is a four
band model that reads

H = C +Mσ0τ0 −B(p2
x + p2

y)σ0τz

−D(p2
x + p2

y)σ0τ0 +A(pxσzτx − pyσzτy), (223)

where σa and τa, a ∈ {0, x, y, z} are Pauli matrices (or
the identity matrix for a = 0) that act, respectively, on
the spin degree of freedom or an extra orbital degree of
freedom. The interest for the BHZ model stems from
the fact that it arises naturally as an effective 2D model
for a quantum well made in inverted semi-conductor het-
erostructures such as HgTe/HgCdTe. The parameters
A,B,C,D and M are material-specific and depend on
heterostructure geometry parameters such as well thick-
ness. Discretized versions of the BHZ model are a natural
playground for numerical transport calculations in devices
(Akhmerov et al., 2009). In particular, the presence of dis-
order has been shown to stabilize a “topological Anderson
insulator” phase (Li et al., 2009).

E. Mesoscopic superconductivity

It is natural to apply computational quantum transport
methods to Mesoscopic superconductivity problems and
this has been done in this field since the early days. A nat-
ural framework to do so is the mean field Bogoliubov De
Gennes (BdG) method (de Gennes, 1996) that extends an
initial normal (non-superconducting) Hamiltonian H to a
larger Hilbert space with a 2 × 2 Nambu block structure
with an “electron” and a “hole” sector:

HBdG =
(
H ∆
∆† −H∗

)
. (224)

The underlying normal HamiltonianH can be either in the
continuum or already discretized into some tight-binding
model Hamiltonian (Zhu, 2016) so that the technique can
be applied to a wide class of devices where some part
becomes superconducting. The anti-symmetric matrix ∆
accounts for the superconducting pairing. For conven-
tional s-wave superconductors, ∆ is a diagonal matrix
∆nm = ∆nδnm where |∆n| is the local superconducting
gap on site n. Using various forms of off-diagonal ∆,
it is also possible to account for more exotic pairings
such as p-wave or d-wave superconductivity (Asano et al.,
2006). In principle ∆ must be calculated self-consistently
from the mean-field treatment of the effective (attractive)
electron-electron interaction. However, in some situations
(such as a bulk superconductor in contact with a small
mesoscopic region) it is sufficient to consider ∆n to be
equal to its bulk value inside the superconductor and zero

FIG. 12 Numerical simulation of a 300 × 300 tight-binding
model for a disordered normal metal, in series with a super-
conductor (inset). The histograms give the modal distribution
for reflection of an electron, with mode number 1 indicating
normal incidence. The top two panels give the distribution
of reflected holes (in the absence and presence of a magnetic
field B), the bottom panel of reflected electrons (for B = 0).
The arrow indicates the ensemble-averaged height of the giant
backscattering peak for Andreev reflection, predicted from
theory. From (Beenakker et al., 1995).

.

in the normal part. This approximation is often used in
practice.

1. Andreev reflection

In the presence of a single superconductor (or several at
the same electrochemical potential) and normal electrodes,
the superconductor acts as an “Andreev mirror” that
reflects electrons into holes. The conductance of such a
system can be obtained through a simple extension of the
Landauer formula (Lambert, 1991). In the simple case
where the superconducting gap is much smaller than the
Fermi energy and one considers voltage biases smaller
than the gap, it is sufficient to study solely the scattering
matrix of the normal part of the system and infer the
properties of the full normal-superconducting system from
it (Beenakker et al., 1995; Marmorkos et al., 1993b). For
example, (Beenakker et al., 1995) showed that Andreev
reflection gives rise to an enhancement of Andreev back-
scattering even in disordered systems, as shown in Fig. 12.
In more general situations, one simulates the full BdG
Hamiltonian (Fuchs et al., 2021; Haugen et al., 2010)
with a fixed gap or even the full self-consistent problem
with models inherited from first principle calculations
(Wang et al., 2012). Recent applications include the search
for Majorana bound states in semiconducting nanowires
proximitized with a superconductor (Akhmerov et al.,
2011; Laeven et al., 2020).
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2. Supercurrents

Another important question that can be considered
is the current-phase relation for the supercurrent that
can flow in-between two superconductors (Golubov et al.,
2004). This is not strictly speaking quantum transport
since the supercurrent actually flows at equilibrium.

Numerical calculations of supercurrents are particularly
useful for the self-consistent problem which is usually dif-
ficult to address analytically. There are many examples of
such calculations including (Black-Schaffer and Doniach,
2008; Levy Yeyati et al., 1995; Nikolić et al., 2001)

An interesting aspect of superconducting devices is
that when the different superconducting electrodes do
not share the same electrochemical potential, the problem
becomes effectively time-dependent even though the initial
formulation is not. For instance, a DC voltage Vb across a
superconducting-normal-superconducting junction gives
rise to an AC current at frequency 2eVb/h – this is the
AC Josephson effect. To simulate such problems, one
need to leave the DC framework of this article and uses
time-dependent techniques (Cuevas et al., 1996; Perfetto
et al., 2009; Stefanucci et al., 2010; Weston and Waintal,
2016).

3. Search for Majorana bound states in nanowires

Majorana bound states (MBSs) are the simplest exam-
ple of non-Abelian anyons (Nayak et al., 2008). They
have been predicted to be realized for instance in
one-dimensional hybrid superconducting/semiconducting
nanowire. The simplest model describing such a system
is the Bogoliubov-de Gennes Hamiltonian

H =
(
p2

x

2m − µ+ V (x) + αR

ℏ
pxσy

)
τz + EZσxτ0 + ∆τx,

(225)
where σi (τi) are Pauli matrices in spin (electron-hole)
space, i = 0, x, y, z. px is the momentum along the
nanowire, m the effective mass of the semiconductor,
µ the global chemical potential, and V (x) a potential
induced for example by external gates, allowing to change
the electron density in different parts of the wire and
defining a tunnel barrier. αR is the strength of Rashba
spin-orbit coupling in the semiconductor, EZ the Zeeman
splitting induced by an external magnetic field along the
nanowire, and ∆ the induced superconducting gap. This
model exhibits MBSs when E2

Z > (µ − Vwire)2 + ∆2, in
a region with potential Vwire (Lutchyn et al., 2010; Oreg
et al., 2010). Arising through topological phase transition,
the appearance of a MBS is always accompanied by a gap
closing at the transition point.

Many transport simulations rely on this simple model,
but it has also been extended to higher spatial dimensions,
including additional physical effects such as the orbital
effects of a magnetic field (Nijholt and Akhmerov, 2016),

a more realistic modeling of the proximity effect (Antipov
et al., 2018; Reeg et al., 2018), and including all these
effects together with electrostatic simulations (Winkler
et al., 2019).

Experimental and theoretical work in this field is nu-
merous, and previous experimental results are nowadays
discussed controversially. Here we only highlight selected
work employing numerical transport simulations that
shaped the understanding in this field: MBSs are states
at zero-energy, and give rise to a zero-bias peak in trans-
port. However, the particular appearance may depend on
device details. Moreover, zero-bias peaks are not specific
to MBSs. Numerical transport simulations have been
crucial in shaping the understanding of these aspects.

Early work focused on studying the appearance of the
zero-bias peak in different device geometries (Prada et al.,
2012; Rainis et al., 2013). It was also shown that the gap
closing accompanying the appearance of MBS may not be
visible in transport measurements (Pientka et al., 2012;
Stanescu et al., 2012).

Numerical transport simulations have been essential in
shaping the understanding that zero-bias peaks are not
a smoking-gun signature of MBSs. Early work showed
that disorder can lead to trivial low-lying Andreev bound
states giving rise to zero-bias peaks in the conductance
(Liu et al., 2012; Pikulin et al., 2012; Rainis et al., 2013).
Fig. 13 shows one example of such zero-bias peaks stick-
ing to zero energy even in a trivial system. Later, it was
shown that even in the absence of disorder particular
Andreev bound states can appear very similar to MBS
(Liu et al., 2017), mimicking for example quantized con-
ductance signatures (Moore et al., 2018), that previously
were considered a smoking gun. Even more, it was shown
that any local measurement signal associated with MBSs
can be mimicked by trivial states (Vuik et al., 2019). For
this reason, new measurement paradigms have been pro-
posed, in particular non-local measurements to detect the
topological phase transition (Danon et al., 2020; Rosdahl
et al., 2018).

F. Spintronics

Quantum transport numerics is also used widely in
spintronics. The techniques can be used for mainstream
metallic multilayers (Borlenghi et al., 2011) but have
been particularly popular in semiconducting spintronics
(Fabian et al., 2007).

A typical Hamiltonian considered in model calculations
includes a Rashba spin-orbit coupling term of strength α
and ferromagnetic regions with an exchange coupling J
and a magnetization oriented around m⃗:

H = 1
2M (p2

x + p2
y) + α(pyσx − pxσy)

+J(r⃗)m⃗ · σ⃗. (226)
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FIG. 13 Numerical simulation of a two-dimensional version
of Eq.(225) for a nanowire including a tunnel barrier and
disorder. The differential conductance is shown for a single
disorder realization as a function of bias voltage V and Zeeman
splitting EZ due to a parallel magnetic field. The system is
in the trivial regime, but still exhibits a conductance peak
pinned to zero voltage (green circles) that could be mistaken
for a Majorana bound state. The two panels correspond to
two parameter regimes. From (Pikulin et al., 2012).

This type of models can be used to study a variety of phe-
nomena such as the spin Hall effect for electrons (Nikolić
et al., 2006) or holes (Hankiewicz et al., 2005).

Spintronics studies are not limited to 2D but also in-
clude various 3D calculations such as, e.g., 3D topological
insulators (Chang et al., 2014b).

G. Self-consistent quantum-electrostatic simulations of
nanoelectronics

The model calculations discussed previously assume a
known Hamiltonian, i.e., that the electric potential seen
by the conducting electrons is an input of the model. This
level of modeling is sufficient in many situations but suffers
from a number of limitations: the chosen potential may
be unrealistic, the relations between the electric potential
and, e.g., the voltage applied to electrostatic gate may be
unknown, or they may ignore important effects such as
edge state reconstruction or non-linear corrections to the
conductance. The next level in modeling thus consists
in calculating the electric potential self-consistently by
solving the quantum problem (the focus of this review)
together with the Poisson equation. Below, we review the
main aspects of the self-consistent problem.

1. Formulation of the self-consistent problem

The self-consistent problem is formulated as a set of
three equations that account, respectively, for quantum
mechanics, statistical physics, and electrostatics. We de-
note the electric potential as U and for simplicity suppose
that the tight-binding model is formulated in real space

(otherwise U has to be replaced by the corresponding ma-
trix elements in the quantum problem). We write H0 for
the tight-binding Hamiltonian without electric potential
and ΨαE for the scattering state in mode α and energy
E (ignoring for simplicity possible bound states present
in the system). The problem reads

[H0 − eU ] ΨαE = EΨαE , (227)

n =
∫
dE

2π
∑

α

|ΨαE |2fα(E), (228)

∇⃗ · (ϵ∇⃗U) = en+ en0, (229)

where Eq. (227) is the scattering problem formulated
at the beginning of this review. Eq. (228) relates
the electronic density n to the local density of states
|ΨαE |2/(2π) in a non-equilibrium situation where dif-
ferent leads may have different chemical potentials or
temperatures. Eq. (229) is the Poisson equation in a (pos-
sibly spatially dependent) dielectric constant ϵ, e is the
electron charge, and n0 an additional electronic density
due to, e.g., dopants.

The self-consistent quantum-electrostatic problem in
the presence of electrodes is a non-linear integro-
differential problem. Its solution is usually obtained by
some sort of iterative scheme. One starts with an ini-
tial electronic density, calculates the potential from the
Poisson equation, then solves the quantum problem to
recalculate the density. This sequence is iterated until
convergence. Many techniques have been developed to
obtain better convergence properties for such schemes.
We refer to (Armagnat et al., 2019) for an entrance point
to the corresponding literature. Besides the convergence
of the self-consistent loop, the calculation of the density
itself, Eq. (228) can be computationally intensive. To
accelerate the computation, it is useful to separate the
density into the sum an equilibrium contribution and an
out-of-equilibrium one. The calculation of the equilibrium
density can be accelerated using integration in the com-
plex plane (Karrasch et al., 2010; Ozaki, 2007) while the
integration of the out-of-equilibrium contribution spans a
small range of energies close to the Fermi energy (Sanvito,
2011).

The importance of taking into account electrostatics
can be illustrated by the non-linear part of the current-
voltage characteristics I(V ) of a device (Christen and
Büttiker, 1996). Let us write g2 for the second-order
contribution such that I(V ) = gV + g2V

2 + O(V 3). The
non-interacting Landauer theory then gives g2 = 1

2
∂g

∂EF

with g2(B) = g2(−B) in presence of magnetic field. When
taking electrostatics into account, one needs to calculate
the emissivity ∂ni

∂V (change of density due to the bias
voltage, also known as Landauer dipole), then compute
the change of potential ∂Ui

∂nj
due to the change of density

nj (through Poisson equation), then finally compute the
injectivity, i.e., the change of conductance ∂g

∂Ui
due to the
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change of potential. One arrives at

g2 = 1
2
∂g

∂EF
+
∑

ij

∂g

∂Ui

∂Ui

∂nj

∂nj

∂V
, (230)

where the second terms is entirely due to electron-
electron interactions (Angers et al., 2007; Hernández and
Lewenkopf, 2013; Polianski and Büttiker, 2007). In par-
ticular the antisymmetric part g2(B) − g2(−B) vanishes
in the absence of this term.

2. Examples of applications

Quantum transport within the self-consistent quantum
electrostatic model has been studied in many situations.
(Self-consistent calculations within the density functional
theory framework will be discussed in the next section.)
They are particularly important for the quantum Hall
effect as the electrostatic interaction leads to a recon-
struction of the edge states into compressible and incom-
pressible stripes (Armagnat et al., 2019; Armagnat and
Waintal, 2020; Sahasrabudhe et al., 2018), as shown in
Fig. 14. The technique has also been applied to address
silicon devices including quantum dots (Gao et al., 2014)
and transistors (Khan et al., 2007; Lake et al., 1997; Ni-
quet et al., 2014). Other calculations have focused on
semiconductor nanowires used in the search for Majo-
rana bound states (Antipov et al., 2018; Vuik et al., 2016;
Woods et al., 2018).

X. SELECTED APPLICATIONS TO REALISTIC SYSTEMS

In this section, we turn to a few applications of com-
putational quantum transport for “realistic” models, i.e.,
the DFT, FP-TBM and SE-TBM discussed in Fig. II.
Once again, we do not aim at being exhaustive, the cor-
responding literature being very large, but just point to
a few illustrative cases.

A. DFT models

First-principles density functional theory (DFT) can
provide predictive calculations in the absence of any prior
experimental data. The combined approach is often re-
ferred to as DFT + NEGF. There exist many reviews
and pedagogical materials that explain DFT in great de-
tail. We refer the interested reader to the articles that
accompany DFT software packages, a list of which can
be found towards the end of Sec. I.B.

1. Non-linear conductance in short junctions

We start with a use case where density functional theory
(DFT) is used to compute the non-linear current voltage

FIG. 14 Numerical calculation of the electron density (top)
and band structure (bottom) for a top gate-defined wire in
a two-dimensional electron gas in the quantum Hall regime.
The device is invariant by translation along y, the electrons
are confined by two gates along x with the magnetic field
applied along z. Blue lines correspond to a self-consistent
Thomas-Fermi calculation, orange lines to a full solution of
the Poisson-Schrödinger problem. Gray regions indicate the
compressible stripes while the white regions are incompressible.
Adapted from (Armagnat and Waintal, 2020).

characteristics of nanodevices. As we have seen in the pre-
ceding section, it is crucial to treat the electron-electron
interaction at least at the mean field level to calculate
non-linear corrections to the conductance. DFT calcu-
lations do that by design and have been used in many
situations (Sanvito, 2011).

Early calculations and later benchmarks focused on
short wires made of a few atoms, e.g., C, Al or Au (Brand-
byge et al., 2002; Lang, 1995; Palacios et al., 2002; Rocha
et al., 2006). The calculations soon extended to molecular
nanoelectronics (Di Ventra and Lang, 2001; Faleev et al.,
2005; Finch et al., 2009; Ke et al., 2004; Saha et al., 2010).
Despite the sensitivity of the conductance to the nature of
the molecule-electrode contact, it was found in (Di Ventra
et al., 2000) that the qualitative shape of the experimental
I − V characteristics could be recovered. Another topic
that attracted a strong interest is carbon nanotubes (Tay-
lor et al., 2001) as well as graphene-based devices with
either a transistor-like geometry (Areshkin and Nikolić,
2010; Ozaki et al., 2010; Papior et al., 2016) or multi-
terminal cross bar geometry (Botello-Méndez et al., 2011;
Habib and Lake, 2012; Saha and Nikolić, 2013). Possible
applications of these devices include DNA sensing using
nanopores in graphene (Saha et al., 2012b). Recent works
have extended the studies to other 2D materials such as
MoS2 (Garcia-Lekue et al., 2015)

Despite their widespread use, it should be noted that
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Scattering Region

HDFT

FIG. 15 (a) Schematic view of a magnetic tunnel junction
where 6 monolayers of MgO(001) insulating barrier are sand-
wiched between two semi-infinite Fe(001) leads. The junction
is infinite in the transverse direction, so that the depicted
supercell is periodically repeated in the direction transverse to
current flow from the left to the right Fe lead. (b) Electronic
band structure of a periodic Fe/MgO/Fe/MgO. . . Fe/MgO
lattice obtained by DFT calculations using LCAO basis (solid
line) versus those using full potential linearized augmented
plane-wave basis (circles). Panel (b) is adapted from (Waldron
et al., 2007).

these DFT techniques have serious limitations for the
study of small junctions. Perhaps the most important one
is that these techniques do not account for the ubiquitous
phenomena of Coulomb blockade. Another limitation
is that most studies ignore phonons and more generally
atomic displacements that may be triggered by the out-of-
equilibrium situation. In the presence of bound states, an
additional prescription must be given to determine their
occupations (Li et al., 2007). In some situations, it is im-
portant to properly account for the charge redistribution
rather deeply inside the electrodes (Mera et al., 2005).

2. Applications to spintronics

A very successful example of the DFT + NEGF ap-
proach is the theoretical prediction (Butler et al., 2001;
Mathon and Umerski, 2001) of the existence of a large
tunneling magneto-resistance of a Fe/MgO/Fe magnetic
tunnel junction. There, the coherent spin-polarized tun-
neling and the symmetry of electron wave functions plays
an essential role that can only be captured by quantum
transport calculations. This prediction has motivated
large experimental efforts (Yuasa et al., 2004) to fabricate
such devices. These magnetic tunnel junctions now play a
central role in both basic (Wang et al., 2011) and applied
(Locatelli et al., 2014) spintronics research.

Fig. 15a shows a schematic of a Fe-MgO-Fe junction
simulated in (Waldron et al., 2007). The system is sup-

posed to be invariant by translation along the direction
perpendicular to the junction (no disorder) so that the
transmission is calculated as a function of the transverse
momentum which must be integrated upon at the end of
the calculation. The Hamiltonian of the scattering region
was written in a linear combination of atomic orbitals
(LCAO). An accurate calculations requires as many as
10 000 orbitals for this calculation while the supercell
only contains a total of 24 atoms (Fe Mg and O). To
control this accuracy, one compares the LCAO calcula-
tion with a more accurate one done in a plane wave basis,
as illustrated in Fig. 15b. In addition to checking the
convergence of the calculation with the number of LCAO
orbitals, one must also obtain convergence of the momen-
tum integration which requires ∼ 104 momentum points
at zero bias (only ∼ 102 for the band structure, up to
∼ 105 at finite bias voltage, up to ∼ 107 for spin-torque
(Wang et al., 2008b)).

Later works tried to optimize the magneto-resistance of
the tunnel junction. It has been predicted, for instance,
that a few layers of graphene with Ni electrodes act as a
perfect spin filter (Karpan et al., 2007) with regimes show-
ing a negative differential resistance (Saha et al., 2012a)
at finite bias. Another line of work used DFT+NEGF
to address metallic magnetic systems (Schep et al., 1995;
Stiles and Zangwill, 2002). An important evolution of the
field has been the discovery of the phenomena of spin-
transfer torque in non-collinear systems. Spin torque has
enabled fully electric control of a magnetic configuration
(Ralph and Stiles, 2008). DFT studies of spin transfer
torque include (Ellis et al., 2017; Haney et al., 2007; Stiles
and Zangwill, 2002; Wang et al., 2008b). Recent studies
also capture a related effect, the spin orbit torque (Nikolić
et al., 2018).

B. First-principles tight-binding models (FP-TBM)

The direct DFT approach to quantum transport is
very computationally intensive. These calculations are
usually restricted to one-dimensional systems or quasi-
one-dimensional systems that are invariant by translation
along the perpendicular direction. For more complex ge-
ometries or in the presence of disorder (Ke et al., 2010;
Yan et al., 2017) one needs to develop effective models that
reduce the complexity. The FP-TBM approach projects
the DFT Hamiltonian onto a smaller basis set, typically
atomic or pseudo-atomic orbitals. FP-TBM are designed
to describe the physics in a finite energy window centered
around the Fermi level. We distinguish FP-TBM (where
there exists a systematic procedure to construct the basis
set) from the semi-empirical SE-TBM discussed in the
next subsection, where the construction is less systematic.
The systematic approach of FP-TBM methods is particu-
larly important when several bands get hybridized at the
Fermi level.
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Perhaps the most well-known FP-TBM basis are the
maximally localized Wannier functions which can be con-
structed out of Bloch wave functions (Marzari et al., 2012).
These orbitals are rather compact, retain the original sym-
metries of the bands and reproduce well the original DFT
results. A popular approach uses a plane wave code such
as VASP (Kresse and Joubert, 1999) followed by a projec-
tion on Wannier orbitals using, e.g., the code Wannier90
(Mostofi et al., 2008). An illustrative example is the case
of graphene. Using a minimal basis set of a single pz-
like orbital per site, (Fang and Kaxiras, 2016) find that
including hoppings up to the 8th neighbor (i.e., 400 pa-
rameters) is required to reproduce the bands predicted
by DFT. This can be contrasted with the single param-
eter model used in the preceding section. Examples of
quantum transport calculations performed with Wannier
functions include the calculation of the conductance of
disordered nanowires (Calzolari et al., 2004; Shelley et al.,
2011) and of single molecule junctions (Strange et al.,
2008; Thygesen and Jacobsen, 2005).

An alternative to Wannier function uses the linear-
muffin-tin-orbitals (LMTO) and its generalizations (An-
dersen and Saha-Dasgupta, 2000). Other FP-TBM in-
clude the quasiminimal basis orbitals (Wang et al., 2008a)
or predetermined basis of fixed localized wave functions
(Agapito et al., 2016a,b). All these techniques require par-
ticular care in the treatment of boundaries or interfaces
if the model is to be transferred to other geometries or
structures.

C. Semi-empirical tight-binding models (SE-TBM)

Continuing with the hierarchy of Hamiltonians, we now
consider semi-empirical tight-binding models (SE-TBM).
In this approach a set of relevant orbitals and couplings
is chosen a priori. The model is then fitted to ab-initio
data (e.g., often to reproduce the DFT band structure)
and/or to reproduce experimental data. SE-TBM models
can have up to hundreds of parameters. The simplest
SE-TBM models, with very few parameters, essentially
match the model Hamiltonians discussed in the preceding
section. The SE-TBM models are also closely connected
to the k · p models discussed in the next subsection.
The main difficulty in preparing SE-TBM for quantum
transport calculations is the same as the one discussed
in the preceding section for FP-TBM models: a proper
treatment of the boundaries of the device and the interface
between different materials. For instance, the description
of the interface between graphene and metallic contacts
can require as many as hundred parameters for a faithful
description (Barraza-Lopez, 2013; Papaconstantopoulos
and Mehl, 2003). The models are usually fitted with
classical least mean square optimization methods, but
recently machine learning approaches have started to be
used (Hegde and Bowen, 2017).

SE-TBM models are extremely popular and we cannot
do justice to the literature in this review. They have been
applied to MoS2 devices (Ridolfi et al., (2015), adatoms
on graphene (Weeks et al., 2011), graphene-hBN devices
(Marmolejo-Tejada et al., 2018), quantum dots (Luisier,
2014), 3D topological insulators Bi2Se3, Bi2Te3, Sb2Te3
(Liu et al., 2010), and many more. Let us also mention
the possibility to perform multiscale calculations where
critical parts of the system are described at the DFT level
while other parts use SE-TBM models (Calogero et al.,
2019).

1. Semiconductor devices

SE-TBM models for semiconductors go back to the
eighties with minimum next nearest-neighbor models ac-
counting for the s and p orbitals (Vogl et al., 1983). More
accurate models also include the d bands: (Boykin, 2009;
Carlo, 2003). Assuming that the hopping matrix ele-
ments only depend on the distance between atoms (Pa-
paconstantopoulos and Mehl, 2003), these models can be
parametrized as a function of atomic distance and then
used for an arbitrary atomic configuration. This is very
useful for semiconductor devices where stress can have
a significant effect on transport properties (Esseni et al.,
2017; Niquet et al., 2014). Another appealing aspect of
these models is that they can correct typical deficien-
cies of DFT approaches, e.g., the inability to correctly
predict the semi-conductor gap, by fitting the model to
experimental data.

2. Carbon based nanodevices

SE-TBM models are also extremely popular for model-
ing graphene nanoribons or carbon nanotube devices. It
was recognized early on that the simple nearest-neighbor
TBM for a single pz orbital Eq. (220) is often inaccurate:
it predicts perfectly flat bands in zigzag nanoribons as
well as a metallic (gapless) band structure for armchair
nanoribbons that are 3N + 2 carbon atoms wide. A more
accurate model uses second- and third-nearest-neighbor
hoppings (Reich et al., 2002). Equivalently, one may use
nearest-neighbor hoppings with more bands (Boykin et al.,
2011; Cresti et al., 2008). These additional bands are
also important when describing the spin-orbit interaction
(Konschuh et al., 2010). Again, the transport properties
across these carbon-based devices are very sensitive to
the accuracy of model and in particular the interfaces.
For instance, SE-TBM modeling (Léonard and Stewart,
2006) that did not properly address the interface be-
tween carbon nanotubes and the metallic Ohmic contact
could not predict the experimental findings quantitatively
(Franklin et al., 2012). Another example is the off current
of graphene nanoribbon transistors which varies by orders
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of magnitude upon moving from the simple single-orbital
pz-SETBH model to a more elaborate multi-orbital p/d-
SETBH model (Boykin et al., 2011). Similar conclusions
were drawn for the validity of simulations of non-local re-
sistances in graphene Hall bars (Marmolejo-Tejada et al.,
2018).

D. Discretized k · p Hamiltonians

We end our hierarchy of realistic models with k · p
Hamiltonians. The k·p Hamiltonians are low-energy effec-
tive theories valid in the vicinity of some high-symmetry
k-point. They describe the physics at large scale, not
at the atomic scale, which can be advantageous for the
simulation of large systems. There exists a large liter-
ature on the k · p method (Voon and Willatzen, 2009).
(Kormányos et al., 2015) describes the particular case of
two-dimensional transition metal dichalcogenide semicon-
ductors while (Marconcini and Macucci, 2011) focuses on
graphene. k · p Hamiltonians can account for magnetic
field as well as spin-orbit effects (Winkler, 2003).

In the simplest cases, k · p models often reduce to the
model Hamiltonians discussed in the preceding section.
For instance, the effective-mass approximation can be
thought as arising from developing the dispersion relation
around the Γ point of the conductance band of a III-
V semiconductor. In the case of graphene, the simple
tight-binding model Eq. (220) can be expanded around
the two points K and K ′ of the Brillouin zone which
leads to two copies of the 2D massless Dirac equation
Eq. (221). More complex examples arise in the description
of semi-conductors and in particular to account for the
p-character of their valence band. For instance, the 4 × 4
Luttinger Hamiltonian (Luttinger and Kohn, 1955),

H = 1
2m

[(
γ1 + 5

2γ2

)
p̂2 − 2γ2

(
p̂ · Ŝ

)2
]
, (231)

describes the heavy and light hole bands of semi-
conductors. Here m is the electron mass and Ŝ =
(Sx, Sy, Sz) is a vector of spin-3/2 operators. The di-
mensionless parameters γ1 and γ2 are material specific.
Prior to quantum transport calculations, these models
must be discretized using, e.g., finite differences. When
discretizing these models, particular care needs to be
taken to avoid spurious solutions, e.g., in 8 × 8 k · p semi-
conductor models (Foreman, 1997). Additionally, Dirac
materials are not amenable to regular discretization due
to the occurrence of the fermion doubling problem as
explained in Sec. IX.C.2. k · p models are often used for
quantum transport calculations such as (Shin, 2009; Wu
and Zhou, 2005). As for other models, special care must
be given to the treatment of boundaries and interfaces
(Burt, 1992) so that they are error prone when used for
confined structures such as quantum dots (Fu et al., 1998)
or thin films (Nechaev and Krasovskii, 2016).

XI. FINAL REMARKS

A. Simulation workflow

In practice, numerical simulations of quantum trans-
port devices are often carried out by approaching the
complete problem step by step. One starts by studying
the bulk Hamiltonian(s) for the material(s) under con-
sideration. Written in k-space, these Hamiltonians are
readily diagonalized and their spectrums provides useful
information such as the positions of gaps or Dirac points.

In a second step, one constructs electrodes of finite
width and analyzes them in isolation. The associated
k-space Hamiltonians provide information such as the
number of propagating modes in each electrode. Packages
such as KwantSpectrum (Kloss et al., 2021) provide tools
to facilitate this analysis.

It is only in a third step that one proceeds to treating
scattering problems that consist of a scattering region
with attached electrodes. It it often useful to start out
with subparts of the final device. For instance, in an
electronic interferometer that contains several quantum
point contacts, one could study the transport properties
of a system that contains a single quantum point contact
in order to calibrate the corresponding model. Another
example is the interface between two materials that could
be studied separately before being integrated into a larger
device. When the final device is very large, it can actually
be computationally advantageous to stop at this level
and concatenate the scattering matrices of the different
pieces numerically (following, e.g., (Rotter et al., 2000)).
In most cases, however, one proceeds, at last, to simulate
the entire device directly.

While in former times research groups relied on in-house
codes, nowadays in most cases one will want to take ad-
vantage of already existing solutions, at least as a starting
point or foundation. Out of the codes that are listed at
the end of Sec. I.B, the following three target quantum
transport specifically and are under active maintenance:
nextnano (Birner et al., 2007), Kwant (Groth et al., 2014),
and Quantica.jl (San-Jose, 2021b).

B. Outlook

Numerical calculations of quantum transport have be-
come an ubiquitous tool in many fields, from electrical
engineering to materials science and quantum nanoelec-
tronics. In this review, we focused on providing a com-
prehensive presentation of the two equivalent formalisms
used in this field, the scattering matrix approach and the
Green’s function approach, with an emphasis on explicitly
providing the links between the two. We also provided
an in-depth review of the different algorithms that have
been developed to perform actual calculations.

Many topics fall beyond the scope of this review. One
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is the simulation of time-dependent quantum transport
(Kloss et al., 2021; Krueckl and Richter, 2012; Stefanucci
and Almbladh, 2004), see (Gaury et al., 2014) for a review,
and its special case of finite-frequency transport or Flo-
quet scattering (Moskalets, 2012). Another major aspect
that we did not touch is the effect of electron-electron
interactions or the interaction of electrons with other de-
grees of freedom such as phonons or magnons. It is indeed
a very frustrating fact that even the simplest and most
common of these effects, for instance Coulomb blockade,
cannot be easily incorporated into the type of approach
presented in this review. The effects of decoherence are
also beyond the scope of this review.

In terms of applications, the range is so vast that we
could only point to a few examples. Our choice of topics
was necessarily subjective and biased by our own interests.

With regard to future work, much remains to be done
besides addressing the above points. One important as-
pect is improving the accuracy of predictions compared to
experiments (Chatzikyriakou et al., 2022). This requires
better models, efficient tools to address electrostatics,
solvers capable to handle large systems (in particular in
three dimensions), and close collaboration with experi-
mental teams with the goal of producing systematic data
sets dedicated to the calibration of models.
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Appendix A: Derivation of Feynman-Hellman equation for
the velocity

The Feynman-Hellman equation relates the velocity of a
mode to the average of the velocity operator. Considering
normalized modes,

ϕ†ϕ = 1 (A1)

we have
∂ϕ†

∂k
ϕ+ ϕ† ∂ϕ

∂k
= 0. (A2)

From E(k) = ϕ†H(k)ϕ we get,

v ≡ ∂E(k)
∂k

= ∂ϕ†

∂k
H(k)ϕ+ ϕ†H(k)∂ϕ

∂k
+ ϕ† ∂H(k)

∂k
ϕ

= E(k)
[
∂ϕ†

∂k
ϕ+ ϕ† ∂ϕ

∂k

]
+ ϕ† ∂H(k)

∂k
ϕ

= ϕ† ∂H(k)
∂k

ϕ

= iϕ† [λV † − λ−1V
]
ϕ (A3)

which is the Feynman-Hellman equation. Note that inside
the matrices Φ, the modes ϕ are renormalized to carry a
unit velocity v = ±1.

Appendix B: Properties of the leads modes.

In this appendix, we establish a few technical results
on the lead propagating and evanescent modes that are
needed in various proofs of the main text. We begin by
multiplying Eq. (37) by Φ†:

Φ†V Φ + Φ†(H − E)ΦΛ + Φ†V †Φ(Λ)2 = 0. (B1)

The complex conjugate of the above equation reads

(Λ∗)2Φ†V Φ + Λ∗Φ†(H − E)Φ + Φ†V †Φ = 0. (B2)

Now, multiplying Eq. (B1) by Λ∗ on the left and Eq. (B2)
by Λ on the right, we arrive after subtracting one equation
from the other at

[λ∗
α − (λ∗

α)2λβ ] Φ†V Φ
∣∣
αβ

= [−λ∗
α(λβ)2 + λβ ] Φ†V †Φ

∣∣
αβ
.

(B3)
which is valid for all types of modes, evanescent and/or
propagating.

1. Application to evanescent modes

If one of the two modes α or β is evanescent, we can
simplify Eq. (B3) by 1 − λ∗

αλβ ̸= 0 and arrive at

λ∗
α Φ†V Φ

∣∣
αβ

= λβ Φ†V †Φ
∣∣
αβ

(B4)

which can be written in matrix form as,

Λ∗
e+Φ†

e+V Φe+ = Φ†
e+V

†Φe+Λe+ (B5)

Similarly,

Λ∗
p+Φ†

p+V Φe+ = Φ†
p+V

†Φe+Λe+ (B6)

and

Λ∗
e+Φ†

e+V Φp+ = Φ†
e+V

†Φp+Λp+ (B7)
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2. Application to propagating modes

For propagating modes 1 − λ∗
αλβ vanishes whenever

λα = λβ = λ, i.e., the two modes α and β have the same
momentum. In that situation, we can form the velocity
matrix

iΦ†
p+
[
λV † − λ∗V

]
Φp+|αβ (B8)

where α and β lie inside the degenerate space. This matrix
is Hermitian hence can be diagonalized. The resulting
linear combination of propagating modes (for which we
abusively use the same notation), normalized to carry
unit velocities remain solutions of the mode equation and
further satisfy,

iΦ†
p+
[
λV † − λ∗V

]
Φp+|αβ = δαβ (B9)

from which we finally get,

Λ∗
p+Φ†

p+V Φp+ = Φ†
p+V

†Φp+Λp+ + i (B10)

A corresponding expression can be derived for incoming
modes. In that case, the sign of the current is opposite
and one arrives at,

Λ∗
p−Φ†

p−V Φp− = Φ†
p−V

†Φp−Λp− − i (B11)

Appendix C: Proof of invertibility of mode matrices

In this section, we discuss the relation between the rank
of Φt̄+ and the absence of bound state in the correspond-
ing semi-infinite lead.

Let us suppose that Φt̄+ is not full rank. It follows that
V Φt̄+ is not full rank neither, hence that there is a vector
c ̸= 0 such that V Φt̄+c = 0. On the other hand, we know
that the wave function

ψ(j) = Φt̄+Λj
t̄+c (C1)

is an eigenstate of the infinite lead, i.e., it satisfies the
infinite lead equation

V ψ(j − 1) + (H − E)ψ(j) + V †ψ(j + 1) = 0. (C2)

In addition, we now have V ϕ(0) = 0, which means that
ψ(j) also fulfills the boundary condition,

(H − E)ψ(1) + V †ψ(2) = 0. (C3)

In other words, ψ(j) is an eigenstate of the semi-infinite
lead.

Let us now decomposes the vector c into its propagating
and evanescent sector c = (cp+, cē+). Using Eq.(B5) and
Eq.(B10), we get,

c†Λ∗
t̄+Φ†

t̄+V Φt̄+c = c†Φ†
t̄+V

†Φt̄+Λt̄+c+ ic†
p+cp+ (C4)

and since V Φt̄+c = c†Φ†
t̄+V

† = 0, it follows that c†
p+cp+ =

0 hence,

cp+ = 0 (C5)

Hence, V Φt+c = 0 reduces to V Φe+cē+ = 0 which in turns
means that ψ(j) is a bound state solution of the semi-
infinite lead. This last paragraph is a technical way to
reflect the fact that the probability current of an eigenstate
of the semi-infinite lead must be zero everywhere - this is
current conservation - hence the propagating contribution
must vanish since we include only modes that propagate
along one direction.

Conversely, if there are no bound states at energy E,
then V Φt̄+ is full rank. Since V = AB†, V Φt̄+ being
full rank implies that B†Φt̄+ is full rank and since it is a
square matrix, it must therefore be invertible.

Appendix D: Scattering problem with non-orthogonal basis
set

This review has focused on tight-binding models with
an orthogonal basis set. However, non-orthogonal basis
sets appear naturally for basis sets used in Slater-Koster
tight-binding methods or density functional theory, as,
e.g., in (Junquera et al., 2001; Ozaki, 2003; Ozaki and
Kino, 2004; Papaconstantopoulos and Mehl, 2003). In
this case, different basis states |ni⟩ have finite overlap,
⟨ni|nj⟩ = Wij . Note that usually the overlap matrix is
denoted by the letter S which is already taken by a central
object of this review, the scattering matrix. Hence we
resort to W to denote the overlap matrix.

In this appendix we will argue how the main formu-
las presented in this review can be generalized to tight-
binding models with a non-orthogonal basis set with a
simple replacement rule. More explicit and extensive
derivations can be found in the literature, such as for the
Green’s function formalism in (Lohez and Lannoo, 1983)
and its non-equilibrium version in (Lake and Pandey,
2006).

The Schrödinger equation for the scattering system
with a non-orthogonal basis reads

Ĥsysψ̂ = EŴsysψ̂ (D1)

with the overlap matrix

Wsys =


Wsr PT

srW
†
V

WV Psr WH W †
V

WV WH W †
V

WV WH W †
V

. . . . . . . . .

 , (D2)

where W †
sr = Wsr and W †

H = WH by definition. Here we
have also assumed that the overlap matrix Wsys has the
same sparsity structure as the Hamiltonian Hsys, which
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can always be achieved by choosing the unit cell of the
leads appropriately.

Most of the results in this review are obtained by direct
manipulation of the Schrödinger equation Ĥsysψ̂ = Eψ̂.
To generalize to the case of a non-orthogonal basis, i.e.,
(D1), it is thus sufficient to replace

Hsr − E → Hsr − EWsr,

H − E → H − EWH , and
V → V − EWV

(D3)

in our main results such as Eq.(50).
The Bloch equation for the lead modes now reads

H(k)ϕ = E(k)W (k)ϕ (D4)

with W (k) = WV e
−ik + WH + W †

V e
ik. In analogy to

Appendix A, the expression of the velocity of a lead mode
is obtained by projecting the equation on ϕ† and taking

a derivative with respect to k. This yields

v = 1
ℏ
dE

dk
= i

w
ϕ†
[
λ(V † − EW †

V ) − λ−1(V − EWV )
]
ϕ,

(D5)
where w = ϕ†(λW †

V +WH +λ−1WV )ϕ, and again λ = eik.
In our derivations we used the convention that propagat-
ing modes are normalized such that v = 1. Hence, for the
case of a non-orthogonal basis set, we need to absorb both
v and w in the normalization of ϕ. With this convention,
the properties of the lead modes derived in Appendix B
hold with the replacement rules (D3), as they are again
obtained by direct manipulation of the Bloch equation in
the leads.

Hence, with the replacement rules (D3) the results
presented in this review can immediately be applied to
systems with a non-orthogonal basis set.
Appendix E: Notation
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Ĥsys / Ĝsys / ψ̂ Hamiltonian / Green’s function / Wave function of full (infinite) systems. The hat indicate an
infinite system while subscript specifies the system (infinite lead alone Hlead or semi-infinite
lead + scattering region Hsys.

Ĥlead / ϕ̂ Hamiltonian / Wave function of the full infinite lead.
Hsr / Gsr Hamiltonian / Green’s function of scattering region
H, V Hamiltonian and hopping matrix of lead
Σ Lead self-energy
H(k) Bloch Hamiltonian of the lead
Vj hopping in lead between j-th nearest neighbor cell (V = V1 + V2 + . . . )
Psr projection from lead to scattering region
Φ / ϕ matrix of translation eigenvectors (transverse modes) / vector of a single translation eigenvector.

The columns of Φ are made of the ϕ vectors.
Λ / λ matrix of translation eigenvalues / single eigenvalue
Λ̃ truncated Λ matrix where the vanishing diagonal elements have been disregarded.
p,± / e,± subscript indicating a propagating (p) / evanescent (e) mode, with ± indicating whether

it’s incoming (−, going toward the scattering region) or outgoing (+ going away from the
scattering region).

t subscript (t) indicating both propagating (p) and evanescent (e) modes.
t̄ subscript (t̄) similar to (t) but the modes λα = 0 are excluded. See Table I.
ē subscript (ē) similar to (e) but the modes λα = 0 are excluded. See Table I.
v velocity
J current
N number of modes or sites. Nt = Np +Ne is the number of sites in each unit cell of the lead.

Nsr is the number of sites of the scattering region.
V = AB decomposition of the lead hopping matrix
S scattering matrix
Stp Generalized scattering matrix containing both outgoing propagating and evanescent modes.
ψsr / Ψsr wave function in scattering region / wave function matrix: the columns of Ψsr are made of

the vectors ψsr
E, ε energy
M transfer matrix
T transmission
g conductance
Θ temperature
µ chemical potential
EF Fermi energy
λF Fermi wave length
Vb Bias voltage
f(E) Fermi function
Ia Electric current in lead a (counted positive when flowing towards the scattering region)
gab(E) Dimensionless conductance matrix between lead a and b
Gab Conductance matrix between lead a and b
r, t reflection and transmission matrices
Σ self-energy
P projector onto conservation law blocks
C, P, T chiral, particle-hole, and time-reversal symmetry
k k-vector
q vector of amplitudes of the different (propagating/evanescent) modes.
α, β, γ, δ Greek letters label mode index.
n,m latin letters label site index.
i, j labels the unit cells within a single lead
a, b, c, d labels different leads
cn and c†

n are the fermionic annihilation and creation operators on site n.
H is the second quantized Hamiltonian
Θ(τ) is the Heaviside function
τ is time.
η is a small imaginary energy
BS subscript, denote solutions of Eq. (56)
G, H are generic Green’s function and Hamiltonian matrices
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