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Abstract

The many-body GW formalism, for the calculation of ionization potentials or electronic

affinities, relies on the frequency-dependent dielectric function built from the electronic degrees

of freedom. Considering the case of water as a solvent treated within the polarizable continuum

model, we explore the impact of restricting the full frequency-dependence of the solvent

electronic dielectric response to a frequency-independent (ϵ∞) optical dielectric constant. For

solutes presenting small to large highest-occupied to lowest-unoccupied molecular orbital

energy gaps, we show that such a restriction induces errors no larger than a few percent on

the energy level shifts from the gas to the solvated phase. We further introduce a remarkably

accurate single-pole model for mimicking the effect of the full frequency dependence of the

water dielectric function in the visible-UV range. This allows a fully dynamical embedded GW

calculation with the only knowledge of the cavity reaction field calculated for the ϵ∞ optical

dielectric constant.
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1 Introduction

The renormalization of electronic excitations by a polarizable environment, such as an electrode, an

organic crystal or a solvent, plays an important role in many fields pertaining to physics, chemistry,

and biology. This is particularly true in the case of charged excitations, as described by direct

or inverse photoemission, where the reaction field from the environment can stabilize the added

charge by several electronvolts. The stabilization energy, labeled a polarization energy, depends on

the environment dielectric properties. The complexity of the environment, in many applications

of interest, initiated hybrid theoretical strategies, merging the quantum mechanical treatment of

a central active subsystem, with a simplified description of the environment response properties

described as a continuum or discrete (atomistic) medium.1,2

Originating in simple image models for the description of a charge facing a dielectric surface

or located inside a dielectric cavity,3,4 the polarizable continuum model (PCM) in its various

implementations has emerged as a very successful approach,2,5–11 in particular in the description of

solvated species for which more accurate but expensive atomistic simulations require averaging over

molecular dynamics trajectories. In the PCM approach, the solute is placed in a cavity carved into

an homogeneous medium characterized by its macroscopic dielectric function ϵ(ω) that depends

on general principles on the excitation frequency. Of importance for the following discussions,

two specific solvent dielectric constants can be introduced when it comes to study fast electronic

excitations, namely the static and optical dielectric constants labeled ϵ0 and ϵ∞, respectively. The

first one (e.g., ϵ0=78.35 for water) includes the slow ionic motions, while the second (ϵ∞=1.78

for water) only accounts for the fast electronic degrees of freedom. The use of different dielectric

constants in different frequency domains leads to the so-called non-equilibrium formalisms.7 In

practice, within this very simplified description of the frequency dependence of the dielectric

constant, ϵ0 is employed to renormalize the ground-state properties (charge density, one-body

molecular orbitals, etc.) while ϵ∞ is adopted for the solvent reaction to the fast electronic excitations

from the ground-state to an excited state.

The solvent is chosen to be mostly transparent (non-absorbing) in the energy range of the solute
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lowest electronic excitations of interest. As such, the poles of the solvent electronic susceptibility

are expected to be located at significantly higher energy. This may certainly justify the use of a

frequency-independent ϵ∞ optical dielectric constant defined from the static limit of the solvent

electronic susceptibility. The subscript ∞ really points to a frequency range significantly larger

than the typical ionic frequencies, even though smaller than the energy of the solvent electronic

susceptibility poles. Restricting the PCM dielectric response to the ϵ0 and ϵ∞ dielectric constants can

be improved by considering the full frequency-dependent ϵ(ω) macroscopic dielectric constant for

frequencies spanning the typical ionic to electronic time scales. This was introduced within a time-

dependent non-equilibrium dielectric response PCM approach.12–18 Concerning the solvent/solute

problem, the frequency dependence often relied on the Debye relaxation model for the solvent

degrees of freedom dynamics, interpolating between ϵ0 and ϵ∞.12,15–17 As such, the high-frequency

limit of the dielectric response was set to ϵ∞. In practice, and as shown in Fig. 1(a) (blue line)

for water as the solvent, the macroscopic optical dielectric function, the square of the refractive

index, shows significant variations with frequency in the visible-UV range, and ϵ∞=1.78 for water

corresponds to the low frequency limit response from the electronic degrees of freedom. In this

spirit, a fit to experimental measurements of the frequency-dependent dielectric function in the

visible-UV range was exploited for the time-dependent study of the reaction field close to metallic

nanoparticles treated as a continuous polarizable medium.18 Besides specific formulations of

the frequency-dependent macroscopic dielectric function, a general PCM approach with a fully

frequency-dependent solvent response matrix was introduced within an open quantum system theory

framework.19

As another issue, the comparison between the dynamics of the solvent and solute electronic

degrees of freedom leads to two limiting regimes. If the low lying poles of the solute electronic

susceptibility are located at much lower energy than that of the solvent, then the solvent electronic

response to the solute low-lying excitations can be considered to be instantaneous. This is called

the Born-Oppenheimer (BO) regime in the PCM literature.19–22 The opposite regime, where the

solvent electronic degrees of freedom are assumed to be slower than that of the solute, is called the
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self-consistent regime. Clearly, in cases where the decoupling of energy between the solute and

solvent electron dynamics cannot be made, none of these regime strictly applies. In particular, the

actual frequency dependence of the solvent optical dielectric response needs to be considered.

Already merged with the PCM formalism,23–25 the Green’s function GW many-body perturbation

theory,26 where G stands for the one-body Green’s function and W for the screened Coulomb

potential, has recently gained much popularity in quantum chemistry. Significant efforts have

been devoted to benchmark its accuracy for molecular systems as compared to quantum chemistry

techniques such as coupled-cluster approaches,27–39 together with much progress in developing

low-scaling implementations.40–54 Targeting the calculation of electronic energy levels, including

ionization potentials and electronic affinities, properly defined as charging energies, the GW

operator can be described as a non-local and dynamical self-energy term that includes exchange

and correlation effects. In particular, the screened Coulomb potential W(r, r′;ω) is fully dynamical,

accounting for the frequency dependence in the visible-UV range of the dielectric function ϵ(r, r′;ω).

As such, the GW formalism offers an obvious path to explore fully dynamical models of polarizable

environments, with in particular a macroscopic dielectric function originating from electronic

degrees of freedom that is not restricted to a single ϵ∞ dielectric constant, but is instead allowed to

depend on the excitation frequency in the visible-UV range.

Replacing the fully dynamical optical dielectric function of Fig. 1(a) by the frequency-independent

ϵ∞ constant, amounts to pushing the poles of the solvent electronic susceptibility to infinity. This

leads to the BO regime where the solvent electronic degrees of freedom are assumed to have a

much faster dynamics than that of the solute. Such an analysis is consistent with the conclusions

provided by Guido and coworkers in Ref. 19 concerning the early merging23 of the GW formalism

with a PCM optical dielectric function fixed to the ϵ∞ constant. Such an approximation of a much

faster solvent electrons dynamics is supposed to be valid when the solvent transition energies from

occupied to unoccupied states are located at significantly higher energy than the solute analogs.

Reintroducing the full frequency-dependence of the solvent optical dielectric response, as provided

in Fig. 1 for water, allows to tackle systems where solute and solvent electron dynamics are not

4



decoupled, including situations where the poles of the solute electronic susceptibility may be located

at higher energies than that of the solvent. Recently, a fully dynamical PCM has been introduced

and integrated with the GW formalism,25 but no comparison was made to an approach where the

frequency-dependent optical dielectric function is restricted to the ϵ∞ constant.

In a recent work,55 the authors merged the GW formalism with a dynamical treatment of

the environment degrees of freedom in a fully ab initio QM/QM’ scheme. These developments

allowed in particular to scrutinize the accuracy of the instantaneous environment electrons response

approximation.56 Considering a molecular system immersed in its parent molecular crystal, that is

a situation where there is no decoupling of energy between the “solute” and “solvent” electronic

degrees of freedom, the error associated with treating the environment in the BO limit was shown

to induce errors no larger than 10% for the polarization energy associated with frontier orbitals

or the energy gap. Such an ab initio and dynamical treatment of the environment stands as a

generalization of previous QM/MMpol implementations23,57–61 based on semi-empirical and low-

frequency descriptions of the environment dielectric properties in the optical range.62–64

In the present study, we explore explicitly the effect of considering the full frequency dependence

of the optical dielectric constant of water as a solvent described by the PCM. More explicitly, we

calculate the GW ionization potential and electronic affinities of solvated molecules, switching on

and off the frequency-dependence of the optical macroscopic dielectric constant of water. For a

large set of molecules showing very different highest-occupied to lowest-unoccupied molecular

orbital (HOMO-LUMO) energy gaps, we show that treating the solvent in the BO limit does not

induce errors larger than a few percent on the polarization energy. We further introduce a simple

pole-model for the solvent electronic dielectric response that accurately reproduces the effect of

considering the full dynamics of the solvent electronic degrees of freedom, while only requiring the

calculation of the PCM reaction field associated with the ϵ∞ optical dielectric constant.
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2 Theory

We start this theory section with a brief outline of the specific GW features and flavors that will

be used hereafter to support strategies for merging with a polarizable environment. Broader and

extensive descriptions of the Hedin’s formalism can be found elsewhere, as we refer the reader to

either seminal articles26,65–69 or more recent books or reviews.70–76 We will keep our demonstration

to the quantities relevant to the present work.

2.1 The GW formalism

A standard GW calculation starts from an input time ordered Green’s function G(r, r′;ω), built upon

{εn, ϕn} Kohn-Sham eigenstates, and constructs the dynamical GW exchange-correlation self-energy

operator defined as

Σ(r, r′; E) =
i

2π

∫
dω eiηωG(r, r′; E + ω)W(r, r′;ω), (1)

with η a positive infinitesimal. The dynamically screened Coulomb potential W(r, r′;ω) comes

instead of the bare Coulomb potential v(r, r′) that would lead to the Hartree-Fock exact exchange

Gv operator. As the self-energy is dynamical, performing a GW calculation in a polarizable or

dielectric environment relies straightforwardly on the relation between W(r, r′;ω) and the inverse

dielectric function ϵ−1(r, r′;ω):

W(r, r′;ω) =
∫

dr′′ ϵ−1(r, r′′;ω) v(r′′, r′)

= ϵ−1(ω) · v,
(2)

where we introduce the · product to indicate composition over the space variables of two adjacent

linear operators, i.e. the result of their successive application as defined by the matrix product of

their matrix representations. Since the GW formalism tackles the study of electronic correlation

effects, we emphasize that the dielectric function ϵ−1(ω) considered here shall only account for the
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electronic degrees of freedom, justifying below the notation ϵopt where “opt” stands for optical. In

contrast, the effect of the slow ionic degrees of freedom was accounted for at the Density Functional

Theory (DFT) level, e.g., generating initial DFT@PCM Kohn-Sham states with a dielectric constant

of ϵ0 = 78.35 for water as the solvent.77

Alternatively, one can define W(r, r′;ω) through the electronic susceptibility χ(r, r′;ω):

W(ω) = v + v · χ(ω) · v, (3)

which is itself related to the free susceptibility χ0(r, r′;ω):

χ(ω) = χ0(ω) + χ0(ω) · v · χ(ω), (4)

adopting the Random Phase Approximation (RPA). All the above quantities are dynamical, and

require in particular the knowledge of the full dynamics of ϵ−1
opt(r, r′;ω). As such, merging with low

frequency limit models such as PCM cannot be made straightforwardly as taking ϵ∞ = ϵopt(ω→ 0)

for the environment would lead to the wrong high frequency limit for W(r, r′;ω).

The difficulties brought by the frequency dependence within the GW self-energy of eq 1 were

circumvented by Hedin26 through the introduction of the so-called Coulomb-hole (COH) plus

screened-exchange (SEX) static approximation:

ΣSEX(r, r′) = −
occ∑

i

ϕi(r) ϕ∗i (r′) W(r, r′;ω = 0) (5)

ΣCOH(r, r′) =
1
2

∑
n

ϕn(r) ϕ∗n(r′)
[
W(r, r′;ω = 0) − v(r, r′)

]
, (6)

requiring only the low-frequency W(ω→ 0) limit of the screened Coulomb potential, or equivalently

of the susceptibility χ(ω → 0) . An elegant and simple way to recover the static COHSEX

approximation is to consider that the system’s electron density reacts immediately to any perturbation
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within the GW equations response functions 3 and 4.55 In this case, the dynamical response of the

system may be described by a simple pole model tailored to reproduce this low frequency limit:

χΩp
(r, r′;ω) = χ(r, r′;ω = 0) × f (ω;Ωp) (7)

with

f (ω;Ωp) =
Ωp

2

[
1

ω + Ωp − iη
−

1
ω −Ωp + iη

]
, (8)

and Ωp a unique pole energy for simplicity. Such an expression has the correct static limit and

time-ordering structure in the energy plane. The static COHSEX self energy 5+6, is recovered by

taking the pole energy Ωp to infinity after performing the energy integration in eq 1. We will exploit

here below the same strategy in order to merge the standard PCM model, described by a single

ϵopt(ω→ 0) dielectric constant, within a fully dynamical GW formalism for the central subsystem.

We will also further explore the possibility to efficiently account for the solvent dynamics through

such a simple pole model but with a finite Ωp pole energy.

2.2 Embedding the GW equations

2.2.1 General considerations

We start with a partition of the system into the solute S and the solvent (i.e., environment) E, and

assume independent contributions of the solute and solvent free susceptibilities χS
0 and χE

0 to the free

susceptibility χ0 of the full system. This assumption is fully justified in the case of non-overlapping

wave-functions between subsystems S and E. In such case, the screened Coulomb potential can be

obtained through:

W−1(ω) = v−1 −
(
χS

0 (ω) + χE
0 (ω)

)
= ṽ−1(ω) − χS

0 (ω),
(9)
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with the frequency dependent screened Coulomb interactions ṽ(ω) defined through the Woodbury

identity:

ṽ =
(

v−1 − χE
0 (ω)

)−1

= v + v · χE(ω) · v,
(10)

and χE(ω) is the interacting susceptibility of the environment, or solvent, in the absence of the solute

χE(ω)−1 = χE
0 (ω)−1 − v. (11)

For clarity in the following equations, we will write

vreac(ω) = v · χE(ω) · v (12)

the reaction potential of the solvent induced by the solute: qualitatively, a change of the solute

charge density induces a change in the solvent charge density proportional to χE · v that in return

exerts a reaction potential on the solute via v. Finally, the solution to eq 9 can be decomposed in

W(ω) = ṽ(ω) + ṽ(ω) · χ̃(ω) · ṽ(ω) (13)

and

χ̃(ω) = χS
0 (ω) + χS

0 (ω) · ṽ(ω) · χ̃(ω), (14)

which follows the ingredients of a standard isolated GW calculation, but where χ̃(ω) is the interacting

susceptibility of the solute obtained with the frequency dependent Coulomb interactions that have

been screened through the solvent reaction potential.
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2.2.2 Dynamical PCM models

The dynamical cavity reaction field vreac(ω) can be seen as the result of a frequency-dependent PCM

model associated with the frequency-dependent ϵopt(ω) solvent optical dielectric constant. The PCM

formalism can thus be straightforwardly generalized to a fully dynamical scheme, recalculating

the cavity reaction fields for each frequency involved in the energy-quadrature used to evaluate the

self-energy (see eq 1). In our approach combining the contour-deformation scheme with the analytic

continuation of the screened Coulomb potential (see Technical details section 2.3),78 this means

recalculating the cavity charges for typically twelve imaginary frequencies. Since the dielectric

constant is real along the imaginary axis, the standard continuity equations on the cavity surface9,23

can be applied without modifications.

The frequency dependence of the water macroscopic optical dielectric constant was recently

parametrized under the form of damped harmonic oscillators reproducing faithfully available exper-

imental data.79 The resulting frequency-dependent optical dielectric constant ϵopt(ω) is represented

in Fig. 1(a) along the real-axis (blue line) and along the imaginary-axis (green line). We further

plot the related [1/ϵopt(ω) − 1] along the imaginary axis (green line, Fig. 1(b)) and along the real

axis (blue line, Fig. 1(c)). As inferred from eqs 2 and 3, this quantity is more closely related to the

susceptibility χ entering the reaction field:

ϵopt(ω)−1 = 1 + v · χ(ω). (15)

In particular, ϵopt(ω)−1 and χ(ω) share the same pole structure.

The fit of Ref. 79 relies on damped oscillators. This is a difficulty since the resulting susceptibil-

ity, or related ϵopt(ω)−1 inverse macroscopic dielectric constant, does not offer the proper symmetry

along the real and imaginary-frequency axes. We bypass this problem by showing in Fig. 1 that a

simple single-pole model with proper symmetry:

10



Figure 1: (a) Real-part of the macroscopic optical dielectric constant of water (ϵopt) along the
real (blue line) and imaginary (green line) frequency axes [from Ref. 79]. The ω = 0 limit
allows to recover the ϵ∞ = 1.78 optical dielectric constant. The dashed purple line represents the
dielectric constant at imaginary frequencies, as obtained with the one-pole plasmon-pole model
(PPM) described in the main text (eq 16). (b) Plot of [1/ϵopt(iω) − 1] from Ref. 79 (green line)
and corresponding single-pole functional fit with a pole located at Ωp=21 eV (dashed purple line).
The red dashed line represents the limit case where Ωp is pushed to infinity. (c) Real-part of
[1/ϵopt(ω) − 1] from Ref. 79 (blue line) and using the single-pole functional fit with a pole at 21 eV
and a 0.5 eV broadening (dashed purple line).
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dynamical PCM(ω):

ϵopt(ω)−1 = 1 +
(
ϵ−1
∞ − 1

)
× f (ω;Ωp) (16)

offers an accurate approximation to the full fit along the imaginary axis, fixing the pole energy at

Ωp=21 eV. The resulting [1/ϵopt(ω) − 1] function (dashed purple line, Fig. 1(b)) follows closely the

original fit along the imaginary axis. A similar agreement is found for the related ϵopt(ω) function

(dashed purple line, Fig. 1(a)). Even though not needed for our analytic continuation scheme applied

to frontier orbitals, we show in Fig. 1(c) that the single-pole fit is accurate at low energy along the

real-energy axis. As shown in the Supporting Information (SI, Figs. S1 and S2), a more accurate fit,

allowing for several poles, does not change the resulting polarization energies by more than a very

few meV. Such a scheme, and the related polarization energies, represent our reference dynamical

PCM calculations and will be labeled PCM(ω).

Fully dynamical PCM calculations, requiring to recalculate the cavity reaction fields at several

frequencies, increase the complexity and computational cost as compared to the BO limit (fast

solvent electron dynamics) where only the ϵ∞ optical dielectric constant needs to be considered.

We now introduce a seemingly severe approximation by modeling the dynamics of the non-local

susceptibility as follows:

plasmon-pole model solvent (PCMPP):

χE
Ωp

(r, r′;ω) = χE
PCM(r, r′;ω = 0) × f (ω;Ωp). (17)

While the fit of the experimental macroscopic ϵopt(ω)−1 function by a single-pole function (eq

16) represents just a properly symmetrized representation of a frequency-dependent scalar, the latter

approximation is much more questionable since it introduces a decoupling between the real-space
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and frequency degrees of freedom. On formal grounds, the solvent susceptibility reads:

χE(r, r′;ω) =
poles∑

n

[
An(r, r′)
ω −Ωn + iη

−
An(r, r′)
ω + Ωn − iη

]
,

with An(r, r′) = ρn(r)ρn(r′) and where the Ωn are the RPA transition energies and ρn(r) the corre-

sponding transition densities. Clearly, the spatial and frequency degrees of freedom are entangled.

The decoupling of the spatial and frequency degrees of freedom for the solvent susceptibility extends

to the reaction field vreac(ω) = v · χE(ω) · v. As such, the reaction field at finite frequency can be

straightforwardly obtained by multiplying the static reaction field by the dynamical factor f (ω,ΩP).

This is a dramatic simplification since only the low-frequency limit of the reaction fields needs to be

calculated as in a standard PCM calculation. A similar approach was recently proposed to improve

on the static COHSEX approximation for calculating the IP and EA of molecular systems.80 Our ap-

proach is less ambitious as we only intend to capture the dynamics of the environment susceptibility.

The solute electrons correlation energy is in our case treated at the fully dynamical GW level.

The validation of this plasmon-pole approximation for the solvent susceptibility, as compared to

the dynamical PCM approach where the reaction fields are explicitly recalculated for each ϵopt(ω)

value, represents one of the main goal of this paper. This approach will be labeled PCMPP in what

follows, where PP stands for plasmon-pole.

2.2.3 The static COHSEX PCM model: Ωp → ∞

To connect to PCM calculations that neglect the frequency dependence of the optical dielectric

constant, and in order to explore the consequences of such an approximation as compared to the

fully dynamical PCM, we now turn to GW@PCM calculations in the BO limit, namely assuming

that the solvent degrees of freedom react instantaneously to any excitation on the solute. As shown

recently in a fully ab initio QM/QM’ implementation of embedded GW calculations,55 this can

be very simply obtained from eq 17 by bringing the Ωp frequency to infinity after performing the

frequency integration that defines the GW self-energy (eq 1). This leads to the so-called static
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Coulomb-Hole plus Screened-Exchange (COHSEX) decomposition of the reaction field as briefly

described now. More details can be found in Ref. 55.

We focus on the correlation-only ΣC(E) self-energy, leaving aside the bare exchange contribution,

with:

ΣC(E) =
i

2π

∫
dω eiηωG(E + ω)

[
W(ω) − v

]
, (18)

where the space variables are omitted for the sake of compactness. This equation can be rewritten

in terms of the embedded Coulomb interactions and reaction field as

ΣC(E) =
i

2π

∫
dω eiηωG(E + ω)

[
W(ω) − ṽ(ω)

]
+

i
2π

∫
dω eiηωG(E + ω)vreac(ω).

(19)

It turns out that, beyond its similarity with the usual formulation 18, the first term of eq 19 brings

a contribution to the self energy that can be computed using only the low frequency limit of ṽ(ω).

This is thanks to the contribution of W(ω)− ṽ(ω) poles coming from the solvent dynamics vanishing

as Ωp → ∞. Thanks to that, and as detailed in appendix A, we can write:

lim
Ωp→∞

i
2π

∫
dω eiηωG(E + ω)

[
W(ω) − ṽ(ω)

]
=

i
2π

∫
dω eiηωG(E + ω)

[
W̃(ω) − ṽ(0)

] (20)

with

W̃(ω)−1 = ṽ(0)−1 − χS
0 (ω). (21)

Remains thus only the contribution from the finite frequency poles of the solute, that appears as

re-normalized within the static limit of the solvent. The direct contribution of the poles of the
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environment response comes from the second term of eq 19:

i
2π

∫
dω eiηωG(r, r′; E + ω) vreac(r, r′;ω)

= −

occ∑
i

ϕi(r)ϕ∗i (r′)vreac(r, r′;ω = 0)

+
1
2

∑
n

ϕn(r)ϕ∗n(r′)vreac(r, r′;ω = 0)

(22)

where (i) runs over occupied states only. The first line takes the form of a screened-exchange-

like contribution to the reaction field, the second one is the analog of the Coulomb-hole (COH)

contribution. Using directly the static reaction field vreac(ω = 0) without the pole structure coming

from f (ω;Ωp) leads to the SEX contribution only, leaving aside the COH term. As shown below,

this second term is crucial when looking at the polarization energy associated with individual energy

levels.

We finally have an expression that differentiates between indirect and direct solvent contributions

to the embedded GW quasiparticle self energy:

Static COHSEX PCM (BO limit):

ΣC(r, r′; E) =
i

2π

∫
dω eiηωG(r, r′; E + ω)

[
W̃(r, r′;ω) − ṽ(r, r′; 0)

]
−

occ∑
i

ϕi(r)ϕ∗i (r′) vreac(r, r′;ω = 0)

+
1
2

∑
n

ϕn(r)ϕ∗n(r′) vreac(r, r′;ω = 0).

(23)

The last two lines can be regarded as perturbative corrections to the gas phase self-energy. However,

the first line integral also differs from its gas phase analog through the renormalization of the

screened Coulomb and bare Coulomb potential by the static reaction field. Each term gives rise to a

contribution to the polarization energy through the impact of the PCM on the correlation energy.

15



Overall, the polarization energy reads:

Pn = ε
GW@PCM
n − ε

GW@gas
n

where εGW@PCM
n and εGW@gas

n are respectively the embedded (PCM) and gas phase quasiparticle

energies. We emphasize again that in a GW@PCM calculation, the input Kohn-Sham eigenstates

are calculated at the DFT@PCM(ϵ0) level.

2.3 Technical details

Our calculations are performed with the beDeft (beyond-DFT) package52,78 implementing the GW

and Bethe-Salpeter equation (BSE) formalisms using Gaussian basis sets and Coulomb-fitting

(RI-V) resolution-of-the-identity.81–83 The correlation part of the self-energy is calculated adopting

a contour-deformation scheme with an integration performed along the imaginary-frequency axis,

completed by residues involving the value of the screened Coulomb potential along the real-axis.

The values of W along the real-energy axis can be accurately obtained by analytic continuation, a

scheme much more stable than the direct analytic continuation of the full GW self-energy.78 GW

calculations are performed at the partially-self-consistent evGW level where quasiparticle energies

are reinjected self-consistently in the construction of the solute Green’s function G and independent-

particle susceptibility χ0. We adopt the def2-TZVP basis set84 together with the corresponding

def2-TZVP-RIFIT auxiliary basis set.85 Input Kohn-Sham eigenstates are generated using the PBE0

functional.86,87

Our integral-equation-formalism (IEF)9 PCM formulation is described in Ref. 23, where the

reaction field is obtained through a double layer potential version of the formalism: the reaction

field vreac corresponds to the potential experienced by the solute coming from the surface charges

and surface dipoles induced on the cavity walls. This double layer potential has the merit of

handling correctly solute charge spilling out of the cavity, which turns out to be an important point

when considering virtual states. As in the standard (IEF)-PCM framework, the model depends

16



implicitly on the solvent dielectric constant through the continuity equations at the cavity boundaries.

Moreover, vreac is calculated in the auxiliary basis {P} used to describe charge density variations

in our Coulomb-fitting scheme. Namely, we calculate vreac(P,Q;ω) matrix elements which can be

interpreted as the action on P of the reaction field associated with the surface charges and dipoles

generated by the Q charge density in the cavity for a given ϵopt(ω) macroscopic dielectric constant.

Once the reaction-field matrix is obtained in the auxiliary basis, its action on any Kohn-Sham state

is straightforward. In particular, there is no need to recalculate the reaction field components at each

GW iteration in the case of a self-consistent GW scheme.

Input Kohn-Sham eigenstates are generated with the Orca package88 that implements the C-

PCM version10 of the PCM approach. Embedded DFT calculations with the water environment

are thus performed using the ϵ0=78.355 dielectric constant. As such, all GW calculations with

the PCM environment start with the same DFT@PCM(ϵ0) eigenstates. The differences between

the GW@PCMCOHSEX and dynamical PCM polarization energies can only stem from the way the

dynamical dependence of ϵopt(ω) is treated.

List of molecules: We study a large set of solvated molecules, starting with the adenine,

cytosine, thymine, and uracil nucleobases studied in a first implementation of the GW@PCM

formalism in the standard static PCM limit.23 Furthermore, as studied in the first merging of

the Bethe-Salpeter equation (BSE) with the PCM,89 we select acrolein and indigo, the push-

pull p-nitro-aniline (PNA) molecule in its planar and rotated (perpendicular) conformation, the

donor–acceptor benzene/TCNE complex, and the 4-Nitropyridine N-oxide organic probe commonly

used to assess solvent polarities. Geometries are taken from Refs. 23,89. Finally, acetaldehyde,

ethanol, formaldehyde, and water molecule and hexamer clusters are selected to offer a large range

of HOMO-LUMO gaps, from 5.66 eV for indigo, 13.14 eV for formaldehyde, to 16.21 eV for the

water monomer at the evGW@PBE0/def2-TZVP (gas phase) level. Selecting such a large spread of

HOMO-LUMO gaps is expected to serve as a test of the BO approximation (faster solvent electron

dynamics) since such an approximation may be expected to be more robust if the gap of the solute

is much smaller than that of the solvent. The water cluster geometries are taken from Refs. 90,91
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while the acetaldehyde, ethanol, and formaldehyde molecules are relaxed at the B3LYP/def2-TZVP

level.

3 Results and discussions

3.1 Accuracy of the PCMPP simplified dynamical scheme

We first compare in Fig. 2 the error associated with the simplified plasmon-pole GW@PCMPP

approach where only the low-frequency reaction field is needed [see eq 17]. The error is calcu-

lated with respect to the fully dynamical GW@PCM(ω) calculations [see eq 16] that requires the

recalculation of the reaction field at each needed frequency.

Figure 2: Error (meV) on the GW@PCM quasiparticle energies associated with the simplified
(plasmon-pole) dynamical PCMPP approach (eq 17 with Ωp=21 eV). The error is taken with respect
to the fully dynamical PCM(ω) approach, for which the PCM reaction fields are recalculated at each
needed frequency. Errors for occupied and virtual energy levels are represented with blue-filled and
red-empty diamonds, respectively.

Spanning the occupied and virtual energy levels over a large energy window for the full set

of molecules, we observe that decoupling the spatial and frequency degrees of freedom in the

PCMPP approach leads to remarkably small errors of the order of a very few meVs. Such an error

is seen to increase for virtual states with positive energy (above the vacuum level). However, the

increase in error is shown in the SI (Fig. S3) to correlate with the spilling of the associated one-body
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Table 1: HOMO and LUMO PCM polarization energies P@PCM(ω) as given by the fully dy-
namical GW@PCM(ω) approach. The polarization energies associated with the GW@PCMPP and
GW@PCMCOHSEX are given as differences (∆P@PCMPP and ∆P@PCMCOHSEX) with respect to the
P@PCM(ω) reference. All energies are given in eV. Spilling values (spill.) express the amount of
each state density leaking outside of the PCM cavity (in %). Mean values are provided for each
quantity. We separate the case of water monomer and hexamers when taking the averages in relation
with the large spilling of the associated LUMOs.

HOMO LUMO
spill. P@PCM(ω) ∆P@PCMPP ∆P@PCMCOHSEX spill. P@PCM(ω) ∆P@PCMPP ∆P@PCMCOHSEX

Acetaldehyde 0.8 1.137 -0.0013 -0.059 1.6 -1.194 -0.0018 -0.053
Acroleine 0.7 1.058 -0.0012 -0.054 1.6 -1.035 -0.0022 -0.056
Adenine 0.6 0.741 -0.0018 -0.060 1.2 -1.061 -0.0017 -0.045
Benzene-TCNE 0.6 1.124 -0.0020 -0.054 0.5 -0.570 -0.0010 -0.028
Cytosine 0.7 0.839 -0.0019 -0.063 1.2 -0.875 -0.0018 -0.059
Ethanol 2.1 0.916 -0.0026 -0.087 2.2 -1.361 -0.0019 -0.057
Formaldehyde 0.8 1.344 -0.0014 -0.070 2.7 -1.205 -0.0024 -0.070
Indigo 0.6 0.677 -0.0017 -0.051 0.7 -0.840 -0.0014 -0.035
PNAperp 0.7 1.400 -0.0017 -0.057 0.6 -1.104 -0.0009 -0.029
PNAplan 0.6 1.120 -0.0019 -0.064 0.6 -1.159 -0.0008 -0.027
Probe 0.4 1.043 -0.0014 -0.052 0.6 -0.773 -0.0008 -0.027
Thymine 0.6 1.102 -0.0016 -0.055 1.1 -0.762 -0.0017 -0.042
Uracil 0.7 1.177 -0.0019 -0.061 1.2 -0.766 -0.0018 -0.045
mean val. 0.8 1.052 -0.0017 -0.061 1.2 -0.977 -0.0016 -0.044
Water 0.6 1.491 -0.0015 -0.074 29.2 -1.338 -0.0067 -0.211
(H2O)6 book 0.5 0.787 -0.0012 -0.050 22.5 -1.187 -0.0082 -0.190
(H2O)6 cage 0.5 0.916 -0.0011 -0.053 20.6 -1.106 -0.0076 -0.178
(H2O)6 prism 0.6 0.854 -0.0013 -0.050 19.1 -1.062 -0.0077 -0.173
(H2O)6 ring 0.5 1.079 -0.0013 -0.054 24.6 -1.445 -0.0086 -0.205
mean val. 0.5 1.025 -0.0013 -0.056 23.2 -1.228 -0.0078 -0.192
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wavefunction outside the cavity, namely a situation where the PCM approximation becomes more

questionable.

The fully dynamical GW@PCM(ω) polarization energies for the HOMO and LUMO energies

are reported in Table 1. The polarization energy per level is rather stable around 1 eV in absolute

value. This leads to a gap closing of ∼2 eV from the gas phase to the solvated phase. The errors

induced by the PCMPP scheme are shown to amount to about 1-2 meV, except for the water monomer

and hexamer LUMO levels where it increases to ∼7-8 meV, in relation with the very large associated

spilling.

The accuracy of the GW@PCMPP approximation is very remarkable. This indicates that

standard PCM calculations, relying only on the knowledge of the low-frequency reaction field, can

be easily extended to include the effect of the dynamics of the solvent electronic degrees of freedom.

Furthermore, and as shown in the SI (Fig. S2), the polarization energy varies rather weakly with the

value of the pole energy, with a shift of the order of the meV for a shift of Ωp of the order of the eV.

This indicates that a very precise determination of Ωp is not a central issue, provided that the low

and high frequency limits of [1/ϵopt(ω) − 1], or equivalently χE(ω), are satisfied.

Along that line, we note that the water pole energy value (Ωp = 21 eV) is close to the classical

plasma frequency Ωplasmon =
√

4πn (a.u.) with n the electron density. For water, Ωplasmon amounts

indeed to 19.2 eV, accounting for the 8 valence electrons per water molecule, or 21.5 eV including

the oxygen 1s electrons. The rather large stability of the polarization energy with respect to the

plasmon frequency suggests that selecting the classical plasma frequency may be a simple and

accurate strategy in the case of solvents for which no sufficient experimental data for ϵopt(ω) in the

full visible-UV range are available. Such a strategy can also be retrieved by plugging a one-pole

model into the f-sum rule.66

To provide some understanding of the accuracy of the single-plasmon-pole model for χE(r, r′;ω)

(eq 17), we note that in the simple Born model of a unit charge at the center of a spherical cavity of
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radius R, the polarization energy is directly related to [1/ϵopt − 1] through:

P =
e2

2R

[
1
ϵopt
− 1
]

In the case of a non-spherical cavity, a similar relation holds for the integral of the induced surface

charge on the cavity : ∫
Γ

σ(x) dx =
[

1
ϵopt
− 1
]

Q

with Q the charge in the cavity inducing the distribution σ(x) of surface charges in the simplest

single-layer IEF approach to PCM.9,23 These two observations shed light on the fact that the

effect of the solvent on the monopole of the solute charge redistribution, associated with the

photoemission charging process, is directly proportional to f (ω,Ωp). As such, factoring out the

frequency dependence of the response in eq 17 mostly amounts to neglecting the form factor of the

cavity and the higher order multipolar (dipole, etc.) contributions from the reaction field.

3.2 Accuracy of the PCMCOHSEX scheme

Even though including the full dynamics of the solvent electrons can be performed at no cost as

compared to standard PCM calculations in the BO limit, we now explore the accuracy of the

GW@PCMCOHSEX approach. The reference is again the fully dynamical GW@PCM(ω) calculation.

The error is represented in Fig. 3 for occupied and unoccupied energy levels over a large energy

window for the full set of solutes. The error is further provided in Table 1 for the HOMO and

LUMO levels.

Analyzing Fig. 3, the error is found to be of the order of -50 meV for occupied states and

unoccupied states below the vacuum level. With an absolute polarization energy of the order of the

electronvolt (in absolute value), this represents a deviation of about 5%. This is significantly larger

than the error associated with the dynamical PCMPP scheme. Whether such an error should be

considered as moderate or large clearly depends on the required accuracy for the problem of interest.

For states above the vacuum level, the error can be much larger, with again a clear correlation of the
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Figure 3: Error (meV) on the GW@PCM quasiparticle energies associated with the PCMCOHSEX

approach. The error is taken with respect to the fully dynamical PCM(ω) approach for which the
PCM reaction fields are recalculated at each needed frequency. Errors for occupied and virtual
energy levels are represented with blue-filled and red-empty diamonds, respectively.

error with the spilling outside the cavity (see SI Fig. S3). For such states, the PCM approximation

becomes questionable independently of the treatment of environment electronic degrees of freedom

dynamics.

The systematically negative error indicates that the BO approximation underestimates the

polarization energy for the occupied levels but overestimates the correction for the virtual energy

levels. In other words, the static approximation leads to ionization potential and electronic affinities

in solution that are too large as compared to a fully dynamical PCM calculation. This leads

to a partial cancellation of error when considering the polarization energy associated with the

HOMO-LUMO gap, namely the closing in energy of the gap from the gas phase to the solvated

phase.

It is interesting to analyze the decomposition reported in eq 23 partitioning the polarization

energy in a SEX, COH and integral renormalization terms. This is represented in Fig. 4. For

the occupied states, the renormalization PDyn term is seen to be significantly smaller than the

perturbative PSEX and PCOH terms. In the limit of a reaction field very slowly varying over the

solute, it was further shown92 that the relation PSEX = −2PCOH should hold. This relation is only
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qualitatively verified in the present case.

Concerning the unoccupied levels, the screened-exchange PSEX contribution is much smaller, as

again justified in the limit of a smooth reaction field.55,92 The renormalization PDyn term is again

significantly smaller than the perturbative contribution PCOH that hardly changes from occupied to

unoccupied energy levels. As such, the COH-like term does not contribute much to the renormal-

ization of the HOMO-LUMO gap in solution as compared to the gas phase. Neglecting the COH

contribution can thus be qualitatively correct when considering the evolution of energy differences

between virtual and unoccupied levels, but fails for the absolute value of the ionization potential

and electronic affinities.

Figure 4: Decomposition of the polarization energy for (a) occupied and (b) unoccupied energy
levels. The PDyn, PSEX, PCOH correspond to the first, second and third-line contributions from eq 23,
respectively. Dashed lines indicate occupied state manifold average values.
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To conclude this exploration of the solvent electron dynamics, we observe that the error as-

sociated with the PCMCOHSEX scheme does not seem to correlate with the gap of the molecules

(given in the Table S1 of the SI). For sake of illustration, the errors associated, e.g., with the HOMO

polarization energies for indigo and benzene-TCNE, the two smallest gap molecules in the test set,

are not smaller than the ones associated with the water hexamers that display much larger gaps. For

the water solute in a water solvent, one may expect the BO approximation to become questionable

since there is no decoupling of energy between the solute and solvent electronic degrees of freedom.

However, clearly, the error does not seem to increase significantly.

Our results are in line with a previous QM/QM’ exploration of the embedded GW scheme,55

with an equivalent COHSEX-like treatment of the reaction field, showing that for fullerenes in a

fullerene environment, the approximation that the electrons in the environment react instantaneously

to an electronic excitation in the central subsystem would induce errors limited to a few percent

as well. Nevertheless, in the case of a metallic environment (a metallic nanotube), the error was

shown to increase to a few tenths of an eV for the polarization energy associated with the HOMO

and LUMO levels of a water molecule inside the tube. As such, the approximation of faster solvent

electrons seems rather robust, except in extreme situations where the solvent electronic degrees

of freedom are characterized by much smaller energies as compared to the solute. We emphasize

however that in any case, a fully dynamical model can be easily set up, with a cost similar to that

associated with a PCM approach where the reaction field is only required in the low-frequency

limit of the electronic dielectric response.

4 Conclusions

We have studied the impact on the electronic energy level polarization energies of considering

explicitly the frequency dependence of the optical dielectric constant of water as a solvent. By po-

larization energies, we mean the energy levels shifts from the gas phase to the solvated environment.

This study is performed at the GW@PCM level, with the GW operator depending explicitly on the
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ϵ−1
opt(r, r′;ω) inverse dielectric function through the screened Coulomb potential W. Such an explicit

frequency dependence offers an ideal playground to explore the impact of the dynamical nature

of the solvent optical dielectric response, relying further on a recent parametrization of ϵopt(ω) in

the visible-UV range for water.79 Accounting for the frequency dependence of the solvent optical

dielectric response goes beyond the approximation restricting ϵopt(ω) to its low frequency ϵ∞ value.

This restriction is expected to be valid only in the limit where the solvent electrons are assumed to

be much faster than that of the solute. Such a limit is labeled the Born-Oppeinheimer (BO) limit in

the PCM literature.

In the framework of GW@PCM calculations, the limit of instantaneous solvent electrons

response can be properly obtained by assuming that the solvent susceptibility χE(ω) present a pole

structure with poles brought to infinity. This yields the so-called static Screened-Exchange and

Coulomb-Hole contributions to the solvent reaction field. This static limit is compared to reference

dynamical PCM(ω) calculations where the cavity reaction fields are recalculated explicitly for each

needed frequency when building the GW self-energy integral. We observe that the BO limit leads

to errors of the order of -50 meV for the polarization energy associated with individual energy

levels. Due to cancellations of error between occupied and unoccupied levels polarization energies,

the error on the HOMO-LUMO gap of the solute is found to be smaller. We emphasize that using

directly the low frequency limit of the reaction field, without accounting for the pole structure

of the solvent susceptibility, leads to neglecting the Coulomb-hole contribution, with erroneous

polarization energies for individual energy levels.

Besides appraising the error associated with the instantaneous solvent electronic response limit,

we have introduced a very simple and accurate approach to dynamical solvents within a single

plasmon-pole model for the solvent electronic susceptibility. Such a formulation is approximate as

it decouples real-space and frequency degrees of freedom but is strictly valid for the monopolar

component of the reaction field. As a great advantage, only the low-frequency cavity reaction field

associated with the solvent electronic degrees of freedom needs to be calculated. Finite-frequency

reaction fields can further be obtained by simple rescaling. Remarkably, this approach, that we
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label GW@PCMPP offers an accuracy at the few meV level as compared to the reference PCM(ω)

calculations.

The water single-pole frequency (Ωp=21 eV) was obtained from the best fit of the available

experimental [1/ϵopt − 1] function. Such a value is close to the classical plasma frequency Ωplasmon =

√
4πn (a.u.) associated with water. Further, the GW@PCMPP polarization energies are rather

insensitive to the exact Ωp value, with a shift of about a meV for an eV change of Ωp. This suggests

that in cases where the full visible/UV ϵopt(ω) function is not known experimentally for a given

solvent, accurate fully dynamical calculations can still be straightforwardly conducted.

Finally, the merging of the GW formalism with the PCM opens the way to combining the

Bethe-Salpeter formalism (BSE)93 with the PCM for the study of optical excitations in systems

immersed in a polarizable environment.89,94 The BSE/PCM combination was shown in particular to

account simultaneously for linear-response and state-specific contributions to the solvatochromic

shifts.89 This is an important feature for excitations presenting a hybrid local (Frenkel) and charge-

transfer character. Even though the most common BSE implementations rely on the low frequency

limit W(ω → 0) of the screened Coulomb potential, dynamical implementations are being ex-

plored.93,95–102 The present study may facilitate the implementation of a dynamical BSE formalism

combined with a dynamical PCM for the environment.

Supporting Information Available

Supporting Information: (I) a multiple-pole fit of ϵ−1
opt(ω) as an improvement over equation 16 and in

(II) the error for selected polarization energies associated with the single-pole PCM(ω) approach

with respect to the multiple-fit values, considering several single-pole Ωp energies. In (III), we

evidence the correlation between the errors associated with the PCMPP and PCMCOHSEX schemes

and the spilling of the orbitals outside the cavity. In (IV), a Table compiling the Kohn-Sham and

various evGW@PCM gaps are provided for all molecules of the test set.
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A Appendix: Demonstration of equation 20

In order to tackle the limit Ωp → ∞ within eq 20, we first remark that the integral along a closed

contour C enclosing the two poles Ω1 and Ω2 of the following product:

∫
C

dω
1

ω −Ω1

1

ω −Ω2
=

2iπ

Ω2 −Ω1
+

2iπ

Ω1 −Ω2
= 0 (24)

is always null. We can use this property to rewrite the GW integral by considering only the residues

taken at the poles of G. Once we have such an expression, it becomes possible to take the limit

value of these residues when Ωp → ∞. Finally, we can revert the expression by casting the sum

over limit values of the residue as an integral of the form G(E + ω)
[
W̃(ω) − ṽ(0)

]
.

To start our demonstration, we first rewrite the term [W − ṽ] as ∆(+) + ∆(−), where ∆(+) regroup

all the poles of W − ṽ within the complex upper-plane while ∆(−) holds all the poles of the complex

lower-plane. Similarly, we split G into Gocc and Gvir with poles occupying also respectively the
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upper-plane and the lower-plane.

i

2π

∫ ∞

−∞

dω eiωηG(E + ω)
[
W(ω) − ṽ(ω)

]
=

i

2π

∫ ∞

−∞

dω eiωη
(
Gocc(E + ω) +Gvir(E + ω)

)
×
(
∆(+)(ω) + ∆(−)(ω)

)
.

(25)

We insist on the fact that all these sub-quantities have a 1/ω asymptotic behavior, with no constant

terms, as they are only composed of simple poles. Thus, expression 25 is clearly an integral over

products of simple poles. Using eq 24 as selection rule for which of these product residues to keep

after integration, we can now express the equation 20 as:

i

2π

∫ ∞

−∞

dω eiωηG(E + ω)
[
W(ω) − ṽ(ω)

]
= −
∑

i

Res(Gocc, εi)∆(−)(εi − E)

−
∑

k

Gvir(E + Ωk) Res(∆(+),Ωk).

(26)

Res( f , x) corresponds to the residue of the function f , associated to its pole x. We can then use eq

24 once again to rewrite the sum over k as a sum over the empty states a as:

∑
k

Gvir(E + Ωk) Res(∆(+),Ωk)

= −
∑

a

Res(Gvir, εa)∆(+)(εa − E),
(27)
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leading to an expression of eq 20 that involves only residues taken at the poles of G:

i

2π

∫ ∞

−∞

dω eiωηG(E + ω)
[
W(ω) − ṽ(ω)

]
= −
∑

i

Res(Gocc, εi)∆(−)(εi − E)

+
∑

a

Res(Gvir, εa)∆(+)(εa − E).

(28)

Now that we have an expression that requires only evaluation of ∆(+) and ∆(−) at finite value of ω,

we can explore their limit when Ωp → ∞. In order to do so, we remark that for any finite value ω,

we can write:

lim
Ωp→∞

W(ω) − ṽ(ω) = lim
Ωp→∞

ṽ(ω) · χ̃(ω) · ṽ(ω)

= ṽ(0) · χ̃(ω) · ṽ(0),
(29)

with χ̃(ω) also taken at the limit:

χ̃(ω) = χS
0 (ω) + χS

0 (ω) · ṽ(0) · χ̃(ω). (30)

Thus, we can write

lim
Ωp→∞

W(ω) − ṽ(ω) = W̃(ω) − ṽ(0), (31)

with

W̃(ω) = ṽ(0) + ṽ(0) · χS
0 (ω) · W̃(ω). (32)

The screened Coulomb integrals W̃ correspond thus to the screened PCM Coulomb integrals

obtained within the static limit of the solvent response, and renormalized by the dynamical solute

free susceptibility. We can then proceed as previously by separating W̃(ω)− ṽ(0) = ∆̃(+)(ω)+∆̃(−)(ω)
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into contributions of the upper and lower-plane poles. The equation 31 being true for all finite ω,

this implies that we now can make the identification:

lim
Ωp→∞

∆(+/−)(ω) = ∆̃(+/−)(ω). (33)

The limit values of ∆(+/−)(ω) can be re-injected into eq 28:

lim
Ωp→∞

i

2π

∫ ∞

−∞

dω eiωηG(E + ω)
[
W(ω) − ṽ(ω)

]
= −
∑

i

Res(Gocc, εi) ∆̃(−)(εi − E)

+
∑

a

Res(Gvir, εa) ∆̃(+)(εa − E).

(34)

It is now possible to revert the derivation starting from eq 34 and rewinding the steps 28 back to 25

to finally obtain that:

lim
Ωp→∞

i

2π

∫ ∞

−∞

dω eiωηG(E + ω)
[
W(ω) − ṽ(ω)

]
=

i

2π

∫ ∞

−∞

dω eiωηG(E + ω)
[
W̃(ω) − ṽ(0)

]
.

(35)

References

(1) Warshel, A.; Levitt, M. Theoretical studies of enzymic reactions: Dielectric, electrostatic and

steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Bio. 1976, 103,

227–249.

(2) Miertus̆, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. A

direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem.

Phys. 1981, 55, 117–129.

30



(3) Born, M. Volumen und Hydratationswärme der Ionen. Z. Phys. 1920, 1, 45.

(4) Jackson, J. Classical Electrodynamics; Wiley; 2nd edition, 1975; Chapter Multipoles, Elec-

trostatics of Macroscopic Media, Dielectrics.

(5) Klamt, A.; Schüürmann, G. COSMO: a new approach to dielectric screening in solvents with

explicit expressions for the screening energy and its gradient. J. Chem. Soc., Perkin Trans. 2

1993, 799–805.

(6) Cammi, R.; Tomasi, J. Analytical derivatives for molecular solutes. I. Hartree–Fock energy

first derivatives with respect to external parameters in the polarizable continuum model. J.

Chem. Phys. 1994, 100, 7495–7502.

(7) Cammi, R.; Tomasi, J. Nonequilibrium solvation theory for the polarizable continuum model:

A new formulation at the SCF level with application to the case of the frequency-dependent

linear electric response function. Int. J. Quant. Chem. 1995, 56, 465–474.

(8) Tomasi, J.; Persico, M. Molecular Interactions in Solution: An Overview of Methods Based

on Continuous Distributions of the Solvent. Chem. Rev. 1994, 94, 2027–2094.

(9) Cancès, E.; Mennucci, B.; Tomasi, J. A new integral equation formalism for the polarizable

continuum model: Theoretical background and applications to isotropic and anisotropic

dielectrics. J. Chem. Phys. 1997, 107, 3032–3041.

(10) Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in

Solution by a Conductor Solvent Model. J. Phys. Chem. A 1998, 102, 1995–2001.

(11) Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models.

Chem. Rev. 2005, 105, 2999–3094.

(12) Caricato, M.; Ingrosso, F.; Mennucci, B.; Tomasi, J. A time-dependent polarizable continuum

model: Theory and application. J. Chem. Phys. 2005, 122, 154501.

31



(13) Nguyen, P. D.; Ding, F.; Fischer, S. A.; Liang, W.; Li, X. Solvated First-Principles Excited-

State Charge-Transfer Dynamics with Time-Dependent Polarizable Continuum Model and

Solvent Dielectric Relaxation. J. Phys. Chem. Lett 2012, 3, 2898–2904.

(14) Liang, W.; Chapman, C. T.; Ding, F.; Li, X. Modeling Ultrafast Solvated Electronic Dynamics

Using Time-Dependent Density Functional Theory and Polarizable Continuum Model. J.

Phys. Chem. A 2012, 116, 1884–1890.

(15) Corni, S.; Pipolo, S.; Cammi, R. Equation of Motion for the Solvent Polarization Apparent

Charges in the Polarizable Continuum Model: Application to Real-Time TDDFT. J. Phys.

Chem. A 2015, 119, 5405–5416.

(16) Ding, F.; Lingerfelt, D. B.; Mennucci, B.; Li, X. Time-dependent non-equilibrium dielectric

response in QM/continuum approaches. J. Chem. Phys. 2015, 142, 034120.

(17) Gil, G.; Pipolo, S.; Delgado, A.; Rozzi, C. A.; Corni, S. Nonequilibrium Solvent Polarization

Effects in Real-Time Electronic Dynamics of Solute Molecules Subject to Time-Dependent

Electric Fields: A New Feature of the Polarizable Continuum Model. J. Chem. Theory

Comput. 2019, 15, 2306–2319.

(18) Dall’Osto, G.; Gil, G.; Pipolo, S.; Corni, S. Real-time dynamics of plasmonic resonances in

nanoparticles described by a boundary element method with generic dielectric function. J.

Chem. Phys. 2020, 153, 184114.

(19) Guido, C. A.; Rosa, M.; Cammi, R.; Corni, S. An open quantum system theory for polarizable

continuum models. J. Chem. Phys. 2020, 152, 174114.

(20) Kim, H. J.; Hynes, J. T. Equilibrium and nonequilibrium solvation and solute electronic

structure. III. Quantum theory. J. Chem. Phys. 1992, 96, 5088–5110.

(21) Kuznetsov, A. M. Role of high-frequency and low-frequency polarization of the medium in

32



the kinetics of electron transfer and thermodynamics of solvation. J. Chem. Phys. 1992, 96,

3337–3345.

(22) Marcus, R. A. Schroedinger equation for strongly interacting electron-transfer systems. J.

Phys. Chem. 1992, 96, 1753–1757.

(23) Duchemin, I.; Jacquemin, D.; Blase, X. Combining the GW formalism with the polarizable

continuum model: A state-specific non-equilibrium approach. J. Chem. Phys. 2016, 144,

164106.

(24) Kim, S.-J.; Lebègue, S.; Ringe, S.; Kim, H. GW Quasiparticle Energies and Bandgaps of

Two-Dimensional Materials Immersed in Water. J. Phys. Chem. Lett. 2022, 13, 7574–7582.

(25) Clary, J. M.; Del Ben, M.; Sundararaman, R.; Vigil-Fowler, D. Impact of solvation on the

GW quasiparticle spectra of molecules. J. App. Phys. 2023, 134, 085001.

(26) Hedin, L. New Method for Calculating the One-Particle Green’s Function with Application

to the Electron-Gas Problem. Phys. Rev. 1965, 139, A796–A823.

(27) Rostgaard, C.; Jacobsen, K. W.; Thygesen, K. S. Fully self-consistent GW calculations for

molecules. Phys. Rev. B 2010, 81, 085103.

(28) Blase, X.; Attaccalite, C.; Olevano, V. First-principles GW calculations for fullerenes, por-

phyrins, phtalocyanine, and other molecules of interest for organic photovoltaic applications.

Phys. Rev. B 2011, 83, 115103.

(29) Marom, N.; Caruso, F.; Ren, X.; Hofmann, O. T.; Körzdörfer, T.; Chelikowsky, J. R.;

Rubio, A.; Scheffler, M.; Rinke, P. Benchmark of GW methods for azabenzenes. Phys. Rev.

B 2012, 86, 245127.

(30) Bruneval, F.; Marques, M. A. L. Benchmarking the Starting Points of the GW Approximation

for Molecules. J. Chem. Theory Comput. 2013, 9, 324–329.

33



(31) van Setten, M. J.; Caruso, F.; Sharifzadeh, S.; Ren, X.; Scheffler, M.; Liu, F.; Lischner, J.;

Lin, L.; Deslippe, J. R.; Louie, S. G.; Yang, C.; Weigend, F.; Neaton, J. B.; Evers, F.; Rinke, P.

GW100: Benchmarking G0W0 for Molecular Systems. J. Chem. Theory Comput. 2015, 11,

5665–5687.

(32) Katharina Krause, M. E. H.; Klopper, W. Coupled-cluster reference values for the GW27 and

GW100 test sets for the assessment of GW methods. Mol. Phys. 2015, 113, 1952–1960.

(33) Knight, J. W.; Wang, X.; Gallandi, L.; Dolgounitcheva, O.; Ren, X.; Ortiz, J. V.; Rinke, P.;

Körzdörfer, T.; Marom, N. Accurate Ionization Potentials and Electron Affinities of Acceptor

Molecules III: A Benchmark of GW Methods. J. Chem. Theory Comput. 2016, 12, 615–626.

(34) Kaplan, F.; Harding, M. E.; Seiler, C.; Weigend, F.; Evers, F.; van Setten, M. J. Quasi-Particle

Self-Consistent GW for Molecules. J. Chem. Theory Comput. 2016, 12, 2528–2541.

(35) Rangel, T.; Hamed, S. M.; Bruneval, F.; Neaton, J. B. Evaluating the GW Approximation

with CCSD(T) for Charged Excitations Across the Oligoacenes. J. Chem. Theory Comput.

2016, 12, 2834–2842.

(36) Caruso, F.; Dauth, M.; van Setten, M. J.; Rinke, P. Benchmark of GW Approaches for the

GW100 Test Set. J. Chem. Theory Comput. 2016, 12, 5076–5087.

(37) Maggio, E.; Liu, P.; van Setten, M. J.; Kresse, G. GW100: A Plane Wave Perspective for

Small Molecules. J. Chem. Theory Comput. 2017, 13, 635–648.

(38) Govoni, M.; Galli, G. GW100: Comparison of Methods and Accuracy of Results Obtained

with the WEST Code. J. Chem. Theory Comput. 2018, 14, 1895–1909.

(39) Förster, A.; Visscher, L. GW100: A Slater-Type Orbital Perspective. J. Chem. Theory Comput.

2021, 17, 5080–5097.

(40) Rojas, H. N.; Godby, R. W.; Needs, R. J. Space-Time Method for Ab Initio Calculations

34



of Self-Energies and Dielectric Response Functions of Solids. Phys. Rev. Lett. 1995, 74,

1827–1830.

(41) Foerster, D.; Koval, P.; Sánchez-Portal, D. An O(N3) Implementation of Hedins GW Approx-

imation for Molecules. J. Chem. Phys 2011, 135, 074105.

(42) Neuhauser, D.; Gao, Y.; Arntsen, C.; Karshenas, C.; Rabani, E.; Baer, R. Breaking the Theo-

retical Scaling Limit for Predicting Quasiparticle Energies: The Stochastic GW Approach.

Phys. Rev. Lett. 2014, 113, 076402.

(43) Liu, P.; Kaltak, M.; Klimeš, J.; Kresse, G. Cubic scaling GW: Towards fast quasiparticle

calculations. Phys. Rev. B 2016, 94, 165109.
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