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AN INTEGRABILITY CRITERION FOR A PROJECTIVE LIMIT

OF BANACH DISTRIBUTIONS

FERNAND PELLETIER

Abstract. We give an integrability criterion for a projective limit of Banach

distributions on a Fréchet manifold which is a projective limit of Banach man-
ifolds. This leads to a result of integrability of projective limit of involutive

bundles on a projective sequence of Banach manifolds. This can be seen as a

version of Frobenius Theorem in Fréchet setting. As consequence, we obtain
a version of the third Lie theorem for a Fréchet-Lie group which is a submer-

sive projective limit of Banach Lie groups. We also give an application to a

sequence of prolongations of a Banach Lie algebroid.
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projective limit of Banach Lie algebroids, Fréchet bundles, integrability of pro-
jective limit of Banach distributions, sequence of prolongations of a Banach Lie
algebroid, uniformly bounded endomorphisms of a Fréchet space.

1. introduction

In classical differential geometry, a distribution on a smooth manifold M , is an
assignment ∆ : x 7→ ∆x ⊂ TxM on M , where ∆x is a subspace of TxM . This
distribution is integrable if, for any x ∈ M , there exists an immersed submanifold
f : L → M such that x ∈ f(L) and for any z ∈ L, we have Tf(TzL) = ∆f(z).
On the other hand, ∆ is called involutive if, for any vector fields X and Y on M
tangent to ∆, their Lie bracket [X,Y ] is also tangent to ∆.

On a finite dimensional manifold, when ∆ is a subbundle of TM , the classical
Frobenius Theorem gives an equivalence between integrability and involutivity. In
the other cases, the distribution is singular and, even under assumptions of smooth-
ness on ∆, in general, the involutivity is not a sufficient condition for integrability
(one needs some more additional local conditions). These problems were clarified
and resolved essentially in [20] and [19].

In the context of Banach manifolds, the Frobenius Theorem is again true for
distributions which are complemented subbundles in the tangent bundle (cf. [16]).
For singular Banach distributions closed and complemented (i.e. ∆x is a comple-
mented Banach subspace of TxM) we also have the integrability property under
some natural geometrical conditions (see [5] for instance). In a more general way,
weak Banach distributions ∆ (i.e. ∆x which is a Banach subspace of TxM not
necessary complemented), the integrability property is again true under some ad-
ditional geometrical assumptions (see [18] or [4] for more details).

The proof of this last results is essentially based on the existence of the flow of
a local vector field. In a more large infinite dimensional context as distributions on
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convenient manifolds or on locally convex manifolds, in general the local flow for
a vector field does not exist. Analog results exists in such previous settings: [12],
[13], [8], [21], [2], for instance. But essentially, all these integrability criteria are
proved under strong assumptions which, either need the existence of a family of
vector fields which are tangent and generate locally a distribution and, each one of
these vector fields have a local flow, or need the existence of an implicit function
theorem in such a setting.

The purpose of this paper is to give an integrability criterion for projective limit
of Banach distributions on a Fréchet manifold which is a projective limit of Banach
manifolds. The precise assumptions on the distribution are presented in assump-
tions (*) in Definition 2.1) and this criterion is formulated in a local way in Theorem
2.2 and in a global way in Theorem 2.3. These results are obtained under conditions
which permits to used a Theorem of existence and unicity of solution of ODE in
a Fréchet space proved in [17], and which can be reformulated in the context of
projective limit of Banach spaces (cf. Appendix C). Using such a Theorem, this
proof needs, in the one hand, an adaptation of some arguments used in the proof of
Theorem 1 in [18] for closed distributions on Banach manifolds, and on the other
hand, some properties of the Banach Lie group of ”uniformly bounded” automor-
phisms of a Fréchet space (cf. Appendix B). As application, this criterion permits
to obtain a kind of projective limit of ”Banach Frobenius theorem” for submersive
projective limit of involutive bundles on a submersive projective sequence of Banach
manifolds (cf. Theorem 2.4). By the way, as consequence, a submersive projective
limit of complemented Banach Lie subalgebras of a submersive projective limit of
Banach Lie group algebras is the Lie algebra of a Féchet Lie group (cf. Theorem
3.1). This result can be considered as a version of the third Lie Theorem for a
Fréchet-Lie group which is a submersive projective limit of Banach Lie groups. We
also give an application to a sequence of prolongations of a Banach Lie algebroid
(cf. Theorem 3.3). We complete these results, by an example of integrable Fréchet
distribution which is a projective limit of non integrable distributions but which
satisfies the assumptions (*).

This paper is organized as follows. The first paragraph of the next section
describes the context and the assumptions of this criterion of integrability used
in Theorem 2.2 and Theorem 2.3. In order to present these Theorems in a more
accessible way for a quick reading, the useful definitions and results take place
in Appendix A, and we formulate the assumptions with precise references to this
Appendix. Theorem 2.3 allows to show that, under some natural conditions, the
projective limit E of a submersive projective sequence of involutive subbundles Ei
of the tangent bundle TMi of a submersive projective sequence of Banach manifolds
(Mi)i∈N, is a Fréchet involutive and integrable subbundle of the tangent bundle TM
of the Fréchet manifold M = lim←−Mi.

A first application of these results, is the existence of a Féchet Lie group whose Lie
algebra is a submersive projective limit of complemented Banach Lie subalgebra of
the a submersive projective limit of Banach Lie groups Lie algebras (cf. Theorem
3.1 in § 3.1). In § 3.2, we give an application of Theorem 2.2 to a sequence of
prolongations of a Banach Lie algebroid (see [3]) and we end this paragraph by the
announced counter-example of Theorem 2.2 and Theorem 2.3.
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The proof of the basic Theorem 2.2 is located in §4.
All properties concerning the set of uniformly bounded endomorphisms of a Fréchet
space are developed in Appendix B. Also in a series of other Appendices, we expose
all the definitions and results needed in the statements of Theorems and in the proof
of Theorem 2.2.

2. An integrability criterion for a submersive projective limit of
Banach distributions

2.1. The criterion and its corollaries. The context needed in this section is
detailed in Appendix A.

Let
(
Mi, δ

j
i

)
j≥i

be a projective sequence Banach manifolds with projective limit

M = lim←−Mi
1. In order to give a criterion of integrability for projective limits

of local Banach bundles on M under some additional assumptions, we need to
introduce some notations.
Let ν (resp. µ) be a norm on a Banach space E (resp. M). We denote by ‖ ‖op the
associated norm on the linear space of continuous linear mappings L(E,M).
Then we have:

Definition 2.1. Let
(
Mi, δ

j
i

)
j≥i

be a projective sequence of Banach manifolds

where the maps δji are submersions and M = lim←−Mi its projective limit.

A closed distribution ∆ on M will be called a submersive projective limit of local
anchored bundles if the following property is satisfied:

(*) For any x = lim←−xi ∈M , there exists an open neighbourhood U = lim←−Ui of

x, a submersive projective sequence of anchored Banach bundles (Ei, πi, Ui, ρi)
2 3 4 fulfilling the following properties for any z = lim←−zi ∈ U :

1. lim←−ρi((Ei)zi) = ∆z, for any z ∈ U .

2. The kernel of (ρi)zi is complemented in (Ei)zi and the range of (ρi)zi
is closed, for all i ∈ N.

3. There exists a constant C > 0 and a Finsler norm || ||Ei (resp. || ||Mi)
on (Ei)|Ui (resp. TMi|Ui) such that:

∀i ∈ N, ||(ρi)zi ||
op
i ≤ C, ∀zi ∈ Ui.5

We have the following criterion of integrability:

Theorem 2.2. Let M be a projective limit of a submersive projective sequence
(Mi, δ

j
i )j≥i of Banach manifolds and ∆ be a local projective limit of local Banach

bundles on M . Assume that, under the property (*), there exists a Lie bracket [., .]i
on (Ei, πi, Ui, ρi) such that (Ei, πi, Ui, ρi, [., .]i) is a submersive projective sequence
of Banach Lie algebroids 6.
Then the distribution ∆ is integrable and the maximal integral manifold N through

1cf. section A.4
2 see: Definition A.13 and Notations A.12 for a submersive projective sequence of Banach

bundles
3 see: Definition A.15 for an anchored Banach bundle
4 a projective sequence of anchored bundle (Ei, πi,Mi, ρi) is a projective sequence of Banach

bundles which satisfies assumption (PSBLA 2) in Definition A.16
5 More precisely, ||(ρi)zi ||

op
i = sup{||(ρi)zi (u)||Mi , ||u||Ei ≤ 1}

6 cf. Definition A.16
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x = lim←−xi is a closed Fréchet submanifold of M which is a projective limit of the

set of maximal leaves Ni of ρi(Ei) through xi in Mi.

The proof of Theorem takes place in section 4.

Now, we have the following consequences of Theorem 2.2:

Theorem 2.3. Let (Ei, πi,Mi, ρi, [., .]i) be a submersive projective sequence of split
Lie algebroids 7. Then we have:

1.
(
E := lim←−Ei, π := lim←−πi,M := lim←−Mi, ρ = lim←−ρi

)
is Fréchet anchored bun-

dle and ∆ = ρ(E) is a closed distribution on M
2 If (ρi) satisfies the condition (3) in Definition 2.1, then ∆ is integrable and

each leaf L of ∆ is a projective limit of leaves Li of ∆i.

Proof. The property (1) is a consequence of Proposition A.17. From this property,
it follows that locally ∆ satisfies assumption (1) and (2) of Definition 2.1 so if the
assumption (3) is satisfied, the result is a direct consequence of Theorem 2.2.

�

Theorem 2.4. Let
(
Mi, δ

j
i

)
j≥i

be a submersive projective sequence of Banach

manifold and (Ei, πi,Mi) an involutive subbundle of TMi where πi is the restriction

of the natural projection pMi
: TMi →Mi. Assume that the restriction Tδji : Ej →

Ei is a surjective bundle morphism for all i ∈ N and j ≥ i. Then (Ei, πi,Mi) is a
submersive projective sequence of Banach bundles, and (E = lim←−Ei, π = lim←−πi,M =

lim←−Mi) is an integrable Fréchet subbundle of TM whose each leaf L of E in M is

a projective limit of leaves Li of Ei in Mi

Proof. Since δji : Mj → Mi is a surjective submersion, so is Tδji : TMj → TMi. If

Tδji : Ej → Ei is a surjective morphism, this implies that Tδji is a submersion onto
Ei and so (Ei, πi,Mi) is a submersive projective sequence of Banach bundles. Let
ιi : Ei → TMi the natural inclusion and [ , ]i the restriction of Lie bracket of vector
fields to (local) sections of Ei. Then (Ei,Mi, ιi, [ , ]i) is a Banach Lie algebroid

and since Tδji ◦ ιj = ιi ◦ Tδji it follows that (Ei,Mi, ιi, [ , ]i) is a is a submersive
projective sequence of Banach Lie algebroids. Fix some x = lim←−xi ∈ M = lim←−Mi.

According to Theorem 2.3 we have only to show that the condition (3) of Definition
2.1 is satisfied by ιi.
Given any norm || ||Mi on TxiMi we denote by || ||Ei the induced norm on the fiber
{Ei}xi , then, for the associated norm operator we have ||{ιi}xi ||

op
i = 1. So all the

assumptions of Theorem 2.2 are satisfied which ends the proof.

�

3. Some applications and counter-example

3.1. Application to submersive projective sequence of Banach Lie groups.

Let
(
Gi, δ

j
i

)
j≥i

be a submersive projective sequence of Banach Lie groups where

Gi is modeled on Gi (cf. Definition A.7). We denote by L(Gi) the Lie algebra of

Gi. Then L(Gi) ≡ TeGi is isomorphic to Gi. If we set δ̄ji := Teδ
j
i , then each δ̄ji is

7cf. Definition A.16
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a surjective linear map from L(Gj) to L(Gi) whose kernel is complemented.
Consider a sequence hi of complemented Lie sub-algebra of L(Gi) such that the re-

striction of δ̄ji to hj is a continuous surjective map. Then (hi, δ̂
j
i )j≥i is a submersive

projective sequence of Banach Lie algebra and so h = lim←−hi is a Fréchet Lie algebra

(cf. [4] chapter 4). Now from classic results on Banach Lie groups (cf. [16]), by left
translation each hi gives rise to a complemented involutive subbundle of Hi of TGi
and the leaf Hi through the neutral ei in Gi has a structure of connected Banach
Lie group so that the inclusion ιi : Hi → Gi is a Banach Lie morphism. Note that
ii := Teiιi is nothing but else that the inclusion of hi in L(Gi) and which induces
the natural inclusion ι̂i of Hi in TGi.
Moreover, since (hi, δ̂

j
i )j≥i is a submersive projective sequence of Banach Lie alge-

bra and
(
Gi, δ

j
i

)
j≥i

be a submersive a projective sequence of Banach Lie groups, it

follows that (Hi, Gi, îi, [ , ]i)
8 is a submersive projective sequence of split Banach

Lie algebroids.
On the other hand, from Theorem A.9 the Lie algebra L(G) of G = lim←−Gi is

lim←−LGi and so h = lim←−hi is a closed complemented Lie subalgebra of L(G). As

in the context of Banach setting, by left translation, h gives rise to an involutive
Fréchet subbundle H of TG which is clearly the projective limit of the submersive

sequence (Hi, Gi, îi, [ , ]i). So from Theorem 2.4 by same arguments as in Banach
Lie groups, we obtain:

Theorem 3.1. Let G = lim←−Gi be the projective limit of a submersive sequence of

Banach Lie groups
(
Gi, δ

j
i

)
j≥i

and for each i ∈ N, consider a closed complemented

Banach Lie subalgebra hi of L(Gi). Assume that the restriction of δ̄ji to hj is a
continuous surjective map. Then there exists a Fréchet Lie group H in G such that
L(H) is isomorphic to h and H is the projective limit of (Hi, δ

j
i |Hj )j≥i.

Remark 3.2. The reader will also find an application of Theorem 2.2 in the proof
of Theorem 8.23 in [4] for submersive projective limit of a sequence of Banach
groupoids in [4] which is a kind of generalization of Theorem 3.1 to Lie groupoids
setting .

3.2. Application to sequences of prolongations of a Banach Lie algebroid
over a Banach manifold. Consider an anchored Banach bundle (A, π,M, ρ) with
typical fiber A. Let VA ⊂ TA be the vertical subbundle of pA : TA → A. If
Ax := π−1(x) is the fiber over x ∈M , according to [3], the prolongation TA of the
anchored Banach bundle (A, π,M, ρ) over A is the set

{(x, a, b, c), (x, b) ∈ Ax, (x, a, c) ∈ V(x,a)A}.

This set has a Banach vector bundle p̂ : TA → A structure over A with typical
fiber A× A and we have an anchor ρ̂ : TA → TA given by

ρ̂(x, a, b, c) = (x, a, ρx(b), c) ∈ T(x,a)A.

8here [ , ]i denote again the restriction to sections of Hi of the Lie bracket of vector fields on
Gi
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From now on, we fix a Banach Lie algebroid (A, π,M, ρ, [., .]A) such that the
typical fiber A of A is finite dimensional. By the way, we have a Banach Lie alge-
broid structure (TA, p̂,A, ρ̂, [., .]TA) (cf. [3] Corollary 44 )

We denote (A1, π1,A0, ρ1, [., .]1) the Banach Lie algebroid (A, π,M, ρ, [., .]A) over
a Banach manifold A0 = M . Thus we have the following commutative diagram:

A1
ρ1 //

π1

!!

TA0

pA0||
A0

(3.1)

According to the notations of Theorem 43 and Corollary 44 in [3], we set
A2 = TA1, ρ2 = ρ̂, [., .]2 = [., .]TA1

and π2 = p̂. Then we have the follow-
ing commutative diagram:

A2
ρ2 //

π2 !!

TA1

pA1

||

Tπ1

##
A1

ρ1 //

π1 ""

TA0

pA0{{
A0

(3.2)

Fix some x ∈ A0 and a norm || ||0 (resp.|| ||1) on the fiber TxA0 ≡ A0 (resp.
Ax = π−1

1 (x) ≡ A1). Since the fiber T(x,a)A1 (resp. T(x,a)A1) is isomorphic to
A1 × A1 (resp. A0 × A1), it follows that sup{|| ||1 , || ||1} (resp. sup{|| ||0 , || ||1}
gives rise to a norm on T(x,a)A1 (resp. T(x,a)A1). Then for the associated operator
norm || ||op we have

||(ρ2)(x,a)||op ≤ sup(||(ρ1)x||op, 1)(3.3)

By induction, for i ≥ 1, again according to notations of Theorem 43 and Corol-
lary 44 in [3] , we we set
Ai+1 = TAiAi, ρi+1 = ρ̂i, [., .]i+1 = [., .]TAiAi and πi+1 = p̂ and, as before, we

have the following commutative diagrams:

Ai+1

ρi+1 //

πi+1 !!

TAi
pA

}}

Tπi

$$
Ai

ρi //

πi ""

TAi−1

pAi−1zz
Ai−1

(3.4)

Also, by same arguments as for (3.3) we obtain:

||(ρi+1)(x,a1,...,ai+1)||op ≤ sup(||(ρi)(x,a1,...,ai)||
op, 1)(3.5)

It follows that we have a submersive projective sequence of Banach Lie alge-
broids (Ai,Ai−1, ρi, [., .]i) over a submersive projective sequence of Banach mani-
folds (Ai)i∈N which satisfies the assumptions of Theorem 2.2. Thus, we obtain:
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Theorem 3.3. Under the previous context,

(A = lim←−i≥1Ai,M = lim←−j≥0Aj , ρ = lim←−i≥1ρi, [., .] = lim←−i≥1[., .]i)

is a Fréchet Lie algebroid on the Fréchet manifold M and the distribution ρ(A)
is integrable. Each leaf L is a projective limit of a sequence of leaves of type (Li)
defined by induction in the following way:
L1 is a leaf of ρ1(A1) and if Li is a leaf of ρi(Ai) then Li+1 = (Ai)|Li .

3.3. A counter-example. In this subsection we give an Example of an integrable
distribution on a Fréchet bundle over a finite dimensional manifold which satisfies
the assumptions (*) in Definition 2.1 but is a projective limit of a submersive se-
quence of Banach not integrable distributions.

Let E = M × Rm the trivial bundle over a manifold M of dimension n. The
set Jk(E) of the k-jets of sections of E over M is a finite dimensional manifold
which is a vector bundle πk : Jk(E) → M and whose typical fiber is is the space
k∏
j=0

Ljsym (Rn,Rm) where Ljsym (Rn,Rm) is the space of continuous j-linear symmet-

ric mappings Rn → Rm. Then each projection πlk : J l (E) → Jk (E) defined, for
l ≥ k, by

πlk
[
jl (s) (x)

]
= jk (s) (x)

is a smooth surjection.

Proposition 3.4. ([4])
(
Jk (E) , πlk

)
is a submersive projective sequence of Banach

vector bundles and the projective limit

J∞ (E) = lim←−J
k (E)

can be endowed with a structure of Fréchet vector bundle whose fiber is isomorphic

to the Fréchet space

∞∏
j=0

Ljsym (Rn,Rm).

Let s be a section of π on a neighbourhood U of x ∈ M . For ξ = jk (s) (x) ∈
Jk (E), the n-dimensional subspace R (s, x) of TξJ

k (E) equals to the tangent space
at ξ to the submanifold jk (s) (U) ⊂ Jk (π) is called an R-plane.

The Cartan subspace Ck (E) of TξJ
k (E) is the linear subspace spanned by

all R-planes R (s′, x) such that jk (s′) (x) = ξ. So it is the hull of the union of(
jk (s)

)
∗ (x) (TxM) where s is any local section of π around de x.

The set of Cartan subspaces defines a smooth distribution on Jk (π) called Car-
tan distribution and denoted by Ck. Then Ck is a regular contact distribution and
so is not integrable (cf. [14]). We have a projective limit of a submersive sequence
of bundles (Ck, Tπlk, jk(E)) whose projective limit C = lim←−C

k is called the Cartan

distribution on J∞ (E). In fact C is integrable (cf. [14]). Note that since Ck is a
subbundle of TJk(E), from the proof of Theorem 2.4, the condition (3) of Defini-
tion 2.1 is satisfied.
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4. Proof of Theorem 2.2

Fix some x ∈ M . According to the property (*) and the Definition 2.1, we can

choose a submersive projective sequence of charts
(
Ui, δ

j
i |Uj

)
j≥i

and a submersive

projective sequence of Banach bundles (Ei, λ
j
i )j≥i, such that:

– U = lim←−Ui is an open neighbourhood of x in M ;

– if x = lim←−(xi), each Ui is the contractile domain of a chart (Ui, φi) around

xi in Mi and (U = lim←−(Ui), φ = lim←−(φi)) is a projective limit chart in M

around x.
– the projective sequence of Banach bundles (Ei, λ

j
i )j≥i satisfies the assump-

tion (*) on U .

Step 1: The kernel of ρx is complemented.
There exists a trivialization τi : Ei → Ui × Ei which satisfies the compatibility
condition:

(δji × λ
j
i ) ◦ τj = τi ◦ λji(4.1)

where (Ei, λji )j≥i is the projective sequence of Banach spaces on which (Ei, λ
j
i )j≥i

is modeled.
Under these conditions, without loss of generality we may assume that, for each
i ∈ N, we have

– xi ≡ 0 ∈Mi;
– Ui is an open subset of Mi and so TUi = Ui ×Mi;
– Ei = Ui × Ei.

The projection δji at point xj ≡ 0 (resp. λji in restriction to the fiber of Ej over

xj ≡ 0) is denoted by dji (resp. `ji ). The morphism ρi in restriction to the fiber
Ei over xi ≡ 0 is denoted by ri and ρx is denoted by r, so that r = lim←−ri. Now,

according to the context of Assumption 1 in Definition 2.1, we have the following
result:

Lemma 4.1. There exists a decomposition E = ker r ⊕ F′ with the following prop-
erty:
if (ν′n) (resp. (µn) is the gradation on F′ (resp. (µn) on M) induced by the norm
|| ||Ei (resp. || ||Mi) on (Ei)xi (resp. TxiMi), then the restriction of r to F′ is a
closed uniformly bounded operator according to these gradations 9.

Proof. of Lemma 4.1

At first, in such a context we have Txjδ
j
i ≡ dji and the following compatibility

condition:

dji ◦ rj = ri ◦ `ji .(4.2)

We set Fi = ri(Ei) for all i ∈ N. From Definition 2.1 assumption 1, Fi is a
Banach subspace of Ei and there exists a decomposition Ei = ker ri⊕F′i. Thus the
restriction r′i of ri to F′i is an isomorphism onto Fi. Now, from (4.2), we have

∀(i, j) ∈ N2 : j > i, dji ◦ r
′
j = r′i ◦ `

j
i .

9cf. Appendix B
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But since each r′i is an isomorphism, the restriction (`ji )
′ of `ji to F′j takes values

in F′i for all (i, j) ∈ N2 such that j ≥ i. Moreover, as δji is surjective, according

to (4.2) again, this implies that dji (Fj) = Fi and so `ji (F′j) = F′i. Since (Ei, `ji )j≥i
is a projective sequence, this implies that (F′i, (`

j
i )
′)j≥i is a surjective projective

sequence. The vector space F′ = lim←−F
′
i is then a Fréchet subspace of E.

On the other hand, let (`ji )
′′

be the restriction of `ji to ker rj . Always from (4.2),
we have

∀(i, j) ∈ N2 : j > i, (`ji )
′′
(ker rj) ⊂ ker ri.

By same argument, it implies that (ker ri, (`
j
i )
′′
)j≥i is a projective sequence and

ker r = lim←− ker ri. Moreover, since Ei = ker ri ⊕ F′i, it follows that E = ker r ⊕ F′

and also the restriction r′ of r to F′ is obtained as r′ = lim←−r
′
i and r′ is an injective

continuous operator r′ : F′ → M whose range is the closed subspace F = lim←−Fi. It

remains to show that r′ is uniformly bounded.
According to the context of assumption 2 of Definition 2.1, there exists a constant
C > 0 and, for each i ∈ N, we have a norm ‖ ‖Ei on Ei and a norm ‖ ‖Mi on Mi

such that ‖ri‖op
i ≤ C. As F′i is a closed Banach subspace of Ei, it follows that for

the induced norm on F′i we have

∀i ∈ N, ||r′i||
op
i ≤ C.(4.3)

Set `i = lim←−`
j
i and di = lim←−d

j
i . By construction we have `i(F′) = F′i and di(M) =

Mi. The norm ‖ ‖Ei on Ei induces a norm ‖ ‖F′i on the Banach subspace F′i and

we get a natural gradation (ν′i) on F′ given by ν′i(u) = ||`i(u)||F′i (cf. Appendix B
(B.1)). In the same way, the norm ‖ ‖Mi induces a gradation (µi) on M given by
µi(v) = ||di(v)||Mi . Now (4.3) implies that r′ is uniformly bounded and r′(F′) =
r(E) = ∆x is closed by assumption. Therefore, the proof of Lemma 4.1 is complete.

�

Step 2: There exists a neighbourhood V ⊂ U of x such that the map ρ′ = ρ|U×F′

takes values in IHb(F′,M)10 and is K-Lipschitz on V for some K > 0.

Since Ei = Ui×Ei, it follows that E = U ×E and so ρ : E → TU can be seen as
a smooth map from U into H(E,M). Let ρ′ be the restriction of ρ to U ×F′ and so
consider ρ′ as a smooth map from U to H(F′,M). From the definition of a Finsler
norm, Assumption 2 in Definition 2.1 and Lemma 4.1, the map x 7→ ρ′x takes value
in Hb(F′,M).

Lemma 4.2. There exists a neighbourhood V1 ⊂ V of 0 such that the map ρ′ :
V1 → Hb(F′,M) is a Lipschitz map, that is:

there exists K > 0 such that

µ̂opi (ρ′z − ρ′x) ≤ Kµ̂i(z − z′), ∀(z, z′) ∈ V 2
1

11

Proof. of Lemma 4.2 Let (ν̂′i)i∈N (resp. (µ̂i)i∈N) be the canonical increasing gra-
dation associated to the gradation (ν′i)i∈N on M (resp. (µ̂i)i∈N) (cf. Appendix (B
B.1)). Since the map x 7→ ρ′x is a smooth map from U to Hb(F′,M) it follows

10cf. Appendix B
11cf. Remark B.2
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that for each x the differential map dxρ
′ is a continuous linear map from M to the

Banach space Hb(F′,M) and so there exists i0 ∈ N and a constant Ax > 0 such
that

(4.4) ‖dxρ′(u)‖∞ ≤ Ax ν̂′i0(u)

for all u ∈ F′ and so

(4.5) ‖dxρ′(u)‖∞ ≤ Ax ν̂′i(u)

for all u ∈ F′ and and i ≥ i0 and according to Remark B.2 we set

(4.6) ||dxρ′||opi := sup{µ̂i(dxρ′(u)) : ν̂′i(u) ≤ 1} ≤ Ax, ∀i ≥ i0
On the other hand, for 1 ≤ i < i0 we set Cix = ||dxρ′||opi . Then dxρ

′ belongs to
Hb (M,Hb(F′,M)) for all x ∈ U since we have

||dxρ′||∞ := sup
i∈N
||dxρ′||opi ≤ sup{Ax, C1

x, · · · , Ci0−1
x }.

We set C = ||d0ρ
′||∞. By continuity, there exists an open neighbourhood V1 of 0

such that

(4.7) ||dxρ′||∞ ≤ 2C

By choosing K = 2C, from the definition of ||dxρ′||∞ it implies the announced
result.

�

Step 3: Local flow of the vector field Xu = ρ′(u).
Consider a neighbourhood V as announced in step 2. As δi is a surjective map,
Vi = δi(V ) is an open set of Ui and so we have V = lim←−Vi. For each u ∈ F′, let

Xu = ρ′(u) be the vector field on V . If u = lim←−ui with ui ∈ F′i, then Xui = ρ′i(ui)

is a vector field on Vi and Xu = lim←−Xui . Now since ρ′ takes values in IHb(F′,M),

from our assumption, there exists a constant C > 0 such that ||(ρ′i)zi ||
op
i ≤ C for

all zi ∈ Vi. Therefore, if u belongs to F′ and ui = λi(u), then ‖Xui‖Mi ≤ C‖u‖Ei
and, from Lemma 4.2 and definition of µ̂op

i we have

∀ (xi, x
′
i) ∈ (δi(V ))

2
, ‖Xui(xi)−Xui(x

′
i)‖Mi ≤ K‖ui‖Ei ||xi − x′i||Mi .(4.8)

Now, recall that we have provided F′ and M with seminorms (ν̂′n) and (µ̂n) respec-
tively defined by

νn(u) = ‖λi(u)‖Ei and µn(x) = ‖δi(x)‖Mi .

Since δi(Xu)(x) = Xui(δi(x)) and in this way, from (4.8), for all n ∈ N, we have

∀(x, x′) ∈ V 2, µn(Xu(x)−Xu(x′)) ≤ Kνn(u)µn(x− x′).(4.9)

Therefore, Xu satisfies the assumption of Corollary C.2. Let ε > 0 such that the
pseudo-ball

BM(0, 2ε) = {x ∈M, : µ̂ni(x) < 2ε, 1 ≤ i ≤ k}
is contained in V and set

C1 := max
1≤i≤k

{Kνni(u)} = K max
1≤i≤k

νni(u);

C2 := sup
x∈BM(0,ε)

{
max

1≤i≤k
µni(X(x))

}
≤ C max

1≤i≤k
νni(u).
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By application of Corollary C.2, for any u such that max
1≤i≤k

νni(u) ≤ 1, there exists

α > 0 such that

αe2αK ≤ ε

2C
,

such that the local flow Flut is defined on the pseudo-ball BM(0, ε) for all t ∈ [−α, α]
for all u which satisfied the previous inequality

Note that for any s ∈ R we have Xsu = sXu. Therefore, from the classical
properties of a flow of a vector field,

there exists η > 0 such that the local flow Flut is defined on [−1, 1], for all u in
the open pseudo-ball

BF′(0, η) :=
{
u ∈ F, : ν′ni(u) ≤ η, 1 ≤ i ≤ k

}
.

(cf. for instance proof of Corollary 4.2 in [5]).
We set BMi(0, ε) = δi(BM(0, ε)). Then Xui is a vector field on Vi = δi(V ) and
Fluit := δi ◦ (Flut ) ◦ δi is the local flow of Xui which is defined on BMi(0, ε) for all
t ∈ [−1, 1] and Fluit (xi) belongs to Vi for all xi ∈ BMi(0, ε) and t ∈ [−1, 1] and,
from (4.10), we have

(4.10) Flut = lim←−Fluit .

Step 4: Existence of an integral manifold.

Since (Ei, πi, Ui, ρi, [., .]i) is a Banach Lie algebroid, the Lie bracket [Xui , Xu′i
] is

tangent to ∆i and so by Definition 3.2 and Lemma 3.6 in [18] we have

∀t ∈ [−1, 1], (T Fluit )((∆i)xi) = (∆i)Fl
ui
t (xi)

.

Therefore, according to the notations used at the end of step 3, for each i ∈ N, we
set:

∀ui ∈ BF′i(0, η) = λi(BF′(0, η)), Φi(ui) = (Flui1 )(0);

∀u ∈ BF′(0, η), Φ(u) = (Flu1 )(0); .

Lemma 4.3. Φ = lim←−Φi is smooth and there exists 0 < η′ ≤ η such that the

restriction of Φ to BF′(0, η
′) is injective and TuΦ belongs to IHb(F′,M) for all

u ∈ BF′(0, η
′).

Recall that, for each i ∈ N, BF′i(0, η
′)) is an open ball in F′i and δi(V ) is open

neighbourhood of 0 ∈Mi. From Lemma 4.3, since Φ is injective and each differen-
tial map TuΦ is injective, it follows that the same is true for each Φi : BFi(0, η

′))→
δi(V ). Thus we can apply the proof of Theorem 1 in [18] for Φi. By the way,
Ui = Φi(BF′i(0, η

′)) is an integral manifold of ρi(F′i) and (Ui,Φ−1
i ) is a (global) chart

for this integral manifold modeled on F′i. As Φ = lim←−Φi, BF′(0, η
′) = lim←−BF′i(0, η

′))

Φi ◦ λji = δji ◦ Φj for all j ≥ i, it follows that (Ui, δji )j≥i is a surjective projective
sequence and so U = lim←−Ui is a Fréchet manifold modeled on F′. This last result

clearly ends the proof of Theorem 2.2.
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Proof. of Lemma 4.3
According to step 3, Φi is well defined on BF′i(0, η) and Φ = lim←−Φi.

Now, for every x ∈ V , ρ′x belongs to IHb(F′,M) and so is injective; after shrinking
V , if necessary, there exists some M > 0 such that

∀x ∈ V, ‖ρ′x‖∞ ≤M.(4.11)

Now, by construction, we have T0Φ(u) = ρ′0(u) and so T0Φ is injective.

Claim 4.1. The map u 7→ TuΦ is a smooth map from B′(0, η) to Hb(F′,M).

Proof. of Claim 4.1
We will use some argument of the proof of Lemma 2.12 of [18]. We fix the index i
and, for any y ∈ BF′i(0, ε), v ∈ F′i we set

: Xv(y) = ρ′i(y, v)

: ϕ(t, v) = FlXvt (0)
: A(t) = ∂1ρ

′
i(ϕ(t, v), v) (partial derivative relative to the first variable)

: B(t) = ρ′i(ϕ(t, v), .)

Note that A and B are smooth fields on [0, 1] of operators in L(Mi,Mi) and
L(F′i,Mi) respectively. Therefore the differential equation

Ṡ = A ◦ S +B

has a unique solution St with initial condition S0 = 0 given by

St =

∫ t

0

Gt−s ◦B(s)ds(4.12)

where Gt is the unique solution of

Ġ = A ◦G

with initial condition G0 = IdM. Given by

Gt = IdM +

∫ t

0

A ◦Gsds.(4.13)

Under these notations, from [6], Chapter X § 7, we have ∂2ϕ(t, v)(.) = St .

On the one hand, from the choice of ε, ϕ(t, v) belongs to Vi and so from (4.7),
we have ‖A(t)‖op

i ≤ K for any t ∈ [−1, 1] and from (4.11) we have ‖B(t)‖op
i ≤ M .

Thus from (4.13), using Gronwal equality, we obtain

‖Gt‖op
i ≤ e

K ,

And so from (4.12) we get

‖St‖op
i ≤MeK

This implies that

‖∂2ϕ(t, v)‖op
i ≤MeK .

We set M1 = MeK . Since Φi(ui) = ϕ(1, ui) it follows that:

‖TuiΦ(vi)‖Mi ≤M1‖vi‖Ei(4.14)

from (4.14) we obtain:
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µi(TuΦ(v)) ≤M1νi(v).(4.15)

But, since TuΦ(F′) = ∆Φ(u) ⊂ {Φ(u)}×M, it follows that the map u 7→ TuΦ can be
considered as a continuous linear map from F′ to M which takes values inHb(F′,M).
Now as each Φi is a smooth map form BFi(0, η

′)) to δi(V ) and Φ = lim←−Φi, this imply

that Phi is a smooth map on BF′(0, η
′)) = lim←−BF′i(0, η

′)) to V = lim←−δi(V ) which

ends the proof of the Claim.
�

End of the proof of Lemma 4.2.
At first, from the Claim 4.1, the map u 7→ TuΦ takes values in the Banach space
Hb(F′,M), as in step 2 for ρ, we can show that this map is Lipschitz map on
BF′(0, η) for η small enough. As T0Φ = ρ′0, from Proposition B.4, it follows that,
again for η small enough, TΦ is injective on BF(0, η′), and we have (cf. (4.14) )

∀u ∈ BF(0, η′), ∀v ∈ F′ µi(TuΦ(v)) ≤M1νi(v)(4.16)

using the fact that the range of TuΦ is always closed for u ∈ BF′(0, η
′). Moreover,

for u ∈ BF′(0, η
′), as for the relation (B.5) in the proof of Proposition B.4, we

obtain:

1

`u
νi(v) ≤ µi(TuΦ(v))) ≤ `u.νn(v)(4.17)

for all i ∈ N, where `u = ‖TuΦ‖∞ ≤M1.
Finally we obtain:

∀i ∈ N,
1

M1
νi(v) ≤ µi(TuΦ(v)) ≤M1.νi(u)(4.18)

Suppose that, for any 0 ≤ η′ ≤ η, the restriction of each Φi to BF′i(0, η) is not

injective. Consider any pair (u, v) ∈ [BF′(0, η)]2 such that u 6= v but Φ(u) = Φ(v),
we set h = v − u. For any α ∈ M∗, we consider the smooth curve cα : [0, 1] → R
defined by:

cα(t) =< α, (Φ(u+ th)− Φ(u)) > .

Of course, we have ċα(t) =< α, Tu+thΦ(h) >.
Denote by ]u, v[ the set of points {w = u + th, t ∈]0, 1[}. As we have cα(0) =
cα(1) = 0, from Rolle’s Theorem, there exists uα ∈]u, v[ such that

< α, δl(TuαΦ(h)) >= 0(4.19)

Note that, for any t ∈ R, this relation is also true for any th. From our assumption,
it follows that, for each k ∈ N \ {0}, there exists uk and vk in BF(0, ηk ) so that
uk 6= vk but with Φ(uk) = Φ(vk). So from the previous argument, for any α ∈M∗,
we have

< α, (Tuα,kΦ(hk)) >= 0(4.20)

for some uα,k ∈]uk, vk[ and hk = vk − uk. From (4.20), for any i ∈ N, any t ∈ R
and any αi ∈M∗i , if α = δ∗i (αi), we have:

| < α, T0Φ(thk) > | = | < αi, δi([T0Φ−TuαΦ](thk)) > | = | < αi, [T0Φi−Tδi(uα)Φi](λi(thk))|
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Denote by ‖.‖M∗i the canonical norm on M∗i associated to ‖.‖Mi . Then from (4.20)
and since u 7→ TuΦ is K1-Lipschitz on B′(0, η) (for some constant K1) we obtain:

| < α, T0Φ(thk) > | ≤ (||αi||M
∗
i .K1.||δi(uα)||Mi ||.||λi(thk)||Ei

≤ (||αi||M
∗
i .K1.||λi(thk)||Ei η

k
.

(4.21)

Since uk 6= vk, there must exist at least one integer i ∈ N such that λi(hk) 6= 0.

Thus, by taking t =
uk − vk

νi((uk − vk))
in (4.21), we may assume t = 1 and ‖λi(hk)‖Ei =

1 In this way, for this choice of hk, we have a 1-form β̄k,i on the linear space
generated by λi(hk) in F′i such that < β̄k,i, λi(hk) >= 1 and with (‖β̄k,i‖Ei)∗ = 1.
From the Hahn-Banach Theorem, we can extend this linear form to a form βk,i ∈M∗i
such that < βk,i, λi(hk) >= 1 and (‖βk,i‖Ei)∗ = 1. But since each T0Φ is injective,
this implies that T0Φi is injective and so the adjoint T ∗0 Φi is surjective. This implies
that there exists αk,i ∈M∗i such that T ∗0 Φi(αk,i) = βk,i. Thus from (4.21) we obtain

1 = | < βk,i, λi(hk) > | = | < αk,i, T0Φi(λi(hk)) > |
= | < δ∗i αk,i, T0Φ(hk) > | ≤ ‖αk,i‖M

∗
iK1

η

k
(4.22)

But, on the other hand since the operation ”adjoint” is an isometry, from (4.18) we
have

1

M1
‖αk,i‖M

∗
i ≤ ‖T ∗0 Φαk,i‖M

∗
i = 1(4.23)

which gives a contradiction with (4.22) for k large enough.
�

Appendix A. Projective limits

A.1. Projective limits of topological spaces.

Definition A.1. A projective sequence of topological spaces is a sequence((
Xi, δ

j
i

))
(i,j)∈N2, j≥i

where

(PSTS 1): For all i ∈ N, Xi is a topological space;

(PSTS 2): For all (i, j) ∈ N2 such that j ≥ i, δji : Xj → Xi is a continuous
map;

(PSTS 3): For all i ∈ N, δii = IdXi ;

(PSTS 4): For all (i, j, k) ∈ N3 such that k ≥ j ≥ i, δji ◦ δkj = δki .

Notation A.2. For the sake of simplicity, the projective sequence
((
Xi, δ

j
i

))
(i,j)∈N2, j≥i

will be denoted by
(
Xi, δ

j
i

)
j≥i

.

Remark A.3. Since we have a countable sequence
(
Xi, δ

j
i

)
j≥i

of topological spaces,

according to the properties of bonding maps, the sequence
(
δji

)
j≥i

is well defined

by the sequence of bonding maps
(
δi+1
i

)
i∈N.
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An element (xi)i∈N of the product
∏
i∈N

Xi is called a thread if, for all j ≥ i,

δji (xj) = xi.

Definition A.4. The set X = lim←−Xi of all threads, endowed with the finest topology

for which all the projections δi : X → Xi are continuous, is called the projective

limit of the sequence
(
Xi, δ

j
i

)
j≥i

.

A basis of the topology of X is constituted by the subsets (δi)
−1

(Ui) where Ui
is an open subset of Xi (and so δi is open whenever δi is surjective).

Definition A.5. Let
(
Xi, δ

j
i

)
j≥i

and
(
Yi, γ

j
i

)
j≥i

be two projective sequences whose

respective projective limits are X and Y .
A sequence (fi)i∈N of continuous mappings fi : Xi → Yi, satisfying, for all

(i, j) ∈ N2, j ≥ i, the coherence condition

γji ◦ fj = fi ◦ δji
is called a projective sequence of mappings.

The projective limit of this sequence is the mapping

f : X → Y
(xi)i∈N 7→ (fi (xi))i∈N

The mapping f is continuous if all the fi are continuous (cf. [1]).

A.2. Projective limits of Banach spaces. According to [7], a projective se-

quence
(
Ei, δji

)
j≥i

of Banach spaces is a projective sequence of topological spaces(
Ei, δji

)
j≥i

such that the bonding maps δji are continuous linear maps.

A.3. Projective limits of differentiable maps. The following proposition (cf.
[9], Lemma 1.2 and [4], Chapter 4) is essential

Proposition A.6. Let
(
Ei, δji

)
j≥i

be a projective sequence of Banach spaces whose

projective limit is the Fréchet space F = lim←−Ei and (fi : Ei → Ei)i∈N a projective

sequence of differentiable maps whose projective limit is f = lim←−fi. Then the fol-

lowing conditions hold:

(1) f is smooth in the convenient sense (cf. [15])
(2) For all x = (xi)i∈N, dfx = lim←−(dfi)xi .

(3) df = lim←−dfi.

A.4. Projective limits of Banach manifolds and Banach Lie groups.

Definition A.7. [9] The projective sequence
(
Mi, δ

j
i

)
j≥i

is called projective se-

quence of Banach manifolds if

(PSBM 1): Mi is a manifold modeled on the Banach space Mi;
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(PSBM 2): we have a projective sequence of Banach spaces
(
Mi, δ

j
i

)
j≥i

such

that:
(PSBM 3): for all x = (xi) ∈ M = lim←−Mi, there exists a projective

sequence of local charts (Ui, φi)i∈N such that xi ∈ Ui where one has the
relation

φi ◦ δji = δji ◦ φj ;
(PSBM 4): U = lim←−Ui is a non empty open set in M .

Under the assumptions (PSBM 1) and (PSBM 2) in Definition A.7, the as-
sumptions (PSBM 3)] and (PSBM 4) around x ∈ M are called the projective
limit chart property around x ∈M and (U = lim←−Ui, φ = lim←−φi) is called a projective

limit chart.
The projective limit M = lim←−Mi has a structure of Fréchet manifold modeled

on the Fréchet space M = lim←−Mi and is called a PLB-manifold . The differentiable

structure is defined via the charts (U = lim←−Ui, φ = lim←−φi):

• φ is a homeomorphism (as projective limit of homeomorphisms) ;

• for any pair (U = lim←−Ui, φ = lim←−φi) and (V = lim←−Vi, ψ = lim←−ψi) of such

charts, the associated transition map
(
ψ ◦ φ−1

)
|φ(U)

= lim←−

((
ψi ◦ (φi)

−1
)
|φi(Ui)

)
is a smooth diffeomorphism (in the convenient sense) between appropriate open
sets of Fréchet space M.

Definition A.8. [9]
(
Gi, δ

j
i

)
j≥i

is a projective sequence of Banach Lie groups

where Gi is modeled on Gi if , for all i ∈ N, there exists a chart (Ui, φi) around the
unity eiin Gi such that:

(PLBLG 1): ∀(i, j) ∈ N2 : j ≥ i, δji (Uj) ⊂ Ui;
(PLBLG 2): there exists a projective sequence of Banach spaces

(
Gi, δji

)
j≥i

such that:

∀(i, j) ∈ N2 : j ≥ i, δji ◦ φj = φj ◦ δji ;
(PLBLG 3): lim←−φi(Ui) is a non empty open set of G and lim←−Ui is open in

G according to the projective limit topology.

A projective sequence of Banach Lie groups
(
Gi, δ

j
i

)
j≥i

is submersive if each δji

is a surjective submersion.

Theorem A.9. [9] Let G = lim←−Gi be a the projective limit of a sequence of Banach

Lie groups
(
Gi, δ

j
i

)
j≥i

. Then we have the following properties:

(1) G is a Fréchet Lie group.
(2) If L(Gi) is the Lie algebra of Gi then L(G) = lim←−LGi.

(3) If expGi is the exponential map for Gi, then expG = lim←− expGi is the expo-

nential map of the Fréchet Lie group G.
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A.5. Projective limits of Banach vector bundles. Let
(
Mi, δ

j
i

)
j≥i

be a pro-

jective sequence of Banach manifolds where each manifold Mi is modeled on the
Banach space Mi.
For any integer i, let (Ei, πi,Mi) be the Banach vector bundle whose typical fiber
is the Banach vector space Ei.

Definition A.10.
(

(Ei, πi,Mi),
(
ξji , δ

j
i

))
j≥i

, where ξji : Ej → Ei is a morphism

of vector bundles, is called a projective sequence of Banach vector bundles on the

projective sequence of manifolds
(
Mi, δ

j
i

)
j≥i

if there exists a projective sequence of

Banach spaces
(
Ei, λji

)
j≥i

such that:

for all (xi), we have a projective sequence of trivializations (Ui, τi) of (Ei, πi,Mi),

where τi : (πi)
−1

(Ui) → Ui × Ei are local diffeomorphisms, where Ui is an open
neighbourhood of xi in Mi) and where U = lim←−Ui is a non empty open set in M

and, for all (i, j) ∈ N2 such that j ≥ i, the following compatibility condition is
satisfied

(PLBVB):
(
δji × λ

j
i

)
◦ τj = τi ◦ ξji .

With the previous notations, (U = lim←−Ui, τ = lim←−τi) is called a projective bundle

chart limit . The triple of projective limits (E = lim←−Ei, π = lim←−πi,M = lim←−Mi)) is

called a projective limit of Banach bundles or PLB-bundle for short.

The following proposition generalizes the result of [10] about the projective limit
of tangent bundles to Banach manifolds (cf. [7] and [4]).

Proposition A.11. Let
(

(Ei, πi,Mi),
(
ξji , δ

j
i

))
j≥i

be a projective sequence of Ba-

nach vector bundles.

Then
(

lim←−Ei, lim←−πi, lim←−Mi

)
is a Fréchet vector bundle.

Notation A.12. For the sake of simplicity, the projective sequence
(

(Ei, πi,Mi),
(
ξji , δ

j
i

))
j≥i

will be denoted by(Ei, πi,Mi).

Definition A.13. A sequence (Ei, πi,Mi) is called a submersive projective sequence

of Banach vector bundles if
(
Mi, δ

j
i )j≥i

)
is a submersive projective sequence of

Banach manifolds and if around each x ∈ M = lim←−Mi, there exists a projective

limit chart bundle (U = lim←−Ui, τ = lim←−τi) such that for all i ∈ N, we have a

decomposition Ei+1 = ker λ̄i+1
i ⊕ E′i such that the condition (PLBVB) is true.

The projective limit (E, π,M) of a sequence of Banach vector bundles (Ei, πi,Mi)
is called a submersive projective limit of Banach bundles or submersive PLB-bundle
for short.

Now, we have the following result:

Proposition A.14. Let (Ei, πi,Mi) be a submersive projective sequence of Banach

bundles. Then, for each i ∈ N, the maps δi = lim←−δ
j
i j≥i

: M → Mi and ξi =

lim←−ξ
j
i j≥i

: E → Ei are submersions.



18 FERNAND PELLETIER

A.6. Projective limit of Banach Lie algebroids.

Definition A.15. Let π : E →M be a Banach bundle.

(1) an anchor is a vector bundle morphism ρ : E → TM and (E, ρ) is called
an anchored bundle

(2) An almost Lie bracket [., .]E on an anchored bundle E is a sheaf of anti-
symmetric bilinear maps

[., .]EU : Γ (EU )× Γ (EU )→ Γ (EU )

for any open set U ⊆M and which satisfies the following properties
(AL 1) the Leibniz identity:

∀ (a1, a2) ∈ Γ (EU )
2
,∀f ∈ C∞(M), [a1, fa2]EU = f.[a1, a2]EU + df(ρ(a1)).a2.

(AL 2) For any open set U ⊆M and any (a1, a2) ∈ Γ(EU )2, the map

(a1, a2) 7→ [a1, a2]EU

only depends on the 1-jets of a1 and a2.
(3) An anchored bundle (E, ρ) provided with an almost Lie bracket [., .]E which

satisfies the Jacobi identity

[[a1, a2]E , a3]E + [[a2, a3]E , a1]E + [[a3, a1]E , a2]E = 0

∀ (a1, a2a3) ∈ Γ (EU )
3

is called a Lie algebroid.

Definition A.16. (Ei, πi,Mi, ρi, [., .]i) is called a submersive projective sequence
of split Lie algebroids if

(PSBLA 1):
(
Ei, ξ

j
i

)
j≥i

is a submersive projective sequence of Banach vec-

tor bundles (πi : Ei → Mi)i∈N over the projective sequence of manifolds(
Mi, δ

j
i

)
j≥i

;

(PSBLA 2): For all (i, j) ∈ N2 such that j ≥ i, one has

ρi ◦ ξji = Tδji ◦ ρj
(PSBLA 3): For all (i, j) ∈ N2 such that j ≥ i, one has

ξji ([., .]j) = [ξji (.), ξ
j
i (.)]i

(PSBLA 4): For all i ∈ N and xi ∈M the kernel ker(ρi)xi is complemented
in the fiber Exi .

Proposition A.17. ([4]) Let (Ei, πi,Mi, ρi, [., .]i) be a submersive projective se-

quence of split Lie algebroids. Then
(
E := lim←−Ei, π := lim←−πi,M := lim←−Mi, ρ = lim←−ρi

)
is Fréchet anchored bundle and ∆ = ρ(E) is a closed distribution on E

Remark A.18. Under the assomptions of Proposition A.17 , unfortunately [., .] =
lim←−[., .]i does not define a Lie bracket on the set of all local sections of (E, π,M) but

only on sections which are projective limits of sections of (Ei, πi,Mi). Therefore
(E, π,M, ρ, [., .]) does not have a Fréchet Lie algebroid structure in general.
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Appendix B. The Banach space Hb (F1,F2)

Any Fréchet space F can be realized as the limit of a surjective projective se-
quence of Banach spaces (Bn, λmn )m≥n. Following [7], 2.3, we can identify F with
the projective limit of the sequenceB̂n = {x = (xi) ∈

∏
0≤i≤n

Bi : ∀j ≥ i, xi = λji (xj) }, λ̂
m
n = (λnn, . . . , λ

m
n )


m≥n

.

We denote by λn : F→ Bn and λ̂n : F→ B̂n the canonical surjective projections.
Let (|| ||n)n∈N be a sequence where || ||n is a norm on Bn. In this way,

|̂| ||n = sup
0≤i≤n

|| ||i

defines a norm on B̂n. Then

ν̂n = |̂| ||n ◦ λ̂n (resp. νn = || ||n ◦ λn)(B.1)

is the semi-norm on F associated to the sequence (|̂| ||n) (resp.(|| ||n)). Moreover,
we have ν̂n = max

0≤i≤n
νi and the topology of F is defined by (ν̂n) or (νn).

Let (F1, ν
1
n) (resp. (F2, ν

2
n)) be a graded Fréchet space.

Recall that a linear map L : F1 → F2 is continuous if

∀n ∈ N,∃kn ∈ N,∃Cn > 0 : ∀x ∈ F1, ν
n
2 (L.x) ≤ Cnνkn1 (x) .

The space L (F1,F2) of continuous linear maps between both these Fréchet spaces
generally drops out of the Fréchet category. Indeed, L (F1,F2) is a Hausdorff locally
convex topological vector space whose topology is defined by the family of semi-
norms {pn,B}:

pn,B (L) = sup
x∈B

{
ν2
n (L.x)

}
where n ∈ N and B is any bounded subset of F1. This topology is not metrizable
since the family {pn,B} is not countable.
So L (F1,F2) will be replaced, under certain assumptions, by a projective limit of
appropriate functional spaces as introduced in [10].

We denote by L (Bn1 ,Bn2 ) the space of linear continuous maps (or equivalently
bounded linear maps because Bn1 and Bn2 are normed spaces). We then have the
following result ([7], Theorem 2.3.10).

Theorem B.1. The space of all continuous linear maps between F1 and F2 which
can be represented as projective limits

H (F1,F2) =

{
(Ln) ∈

∏
n∈N
L (Bn1 ,Bn2 ) : lim←−Ln exists

}

is a Fréchet space.
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For this sequence (Ln)n∈N of linear maps, for any integer 0 ≤ n ≤ m, the
following commutative diagram:

Bn1 oo
(δ1)mn

Ln

��

Bm1
Lm

��
Bn2 oo

(δ2)mn Bm2
On H (F1,F2), the topology can be defined by the sequence of seminorms pn given
by

pn (L) = max
0≤k≤n

sup
{
ν2
k (L.x) , x ∈ F1, ν

1
k(x) = 1

}
so that (H (F1,F2) , pn) is a graded Fréchet space.

Remark B.2. For l ∈ {1, 2} , given a gradation
(
νln
)

on a Fréchet space Fl, let
Bnl be the associated local Banach space and δnl : Fl → Bnl the canonical projection.
The quotient norm ν̃ln associated to νln is defined by

ν̃ln(δn(z)) = sup{νln(y) : δn(y) = δn(z)}.(B.2)

We denote by (ν̃2
n)op the corresponding operator norm on L(Bn1 ,Bn2 ).

If L = lim←−Ln where Ln : Bn1 → Bn2 , then we have

(ν̃2
n)op(L) = sup{ν̃2

n(Ln.x), x ∈ Bn1 ν̃1
n(x) ≤ 1} = sup{ν2

n(L.x), x ∈ F1, ν
1(x) ≤ 1}.

This implies that

pn(L) = max
0≤i≤n

(ν̃2
i )op(Ln).

Definition B.3. Let (F1, ν
1
n) and (F2, ν

2
n) be graded Fréchet spaces. A linear map

L : F1 → F2 is called a uniformly bounded operator, if

∃C > 0 : ∀n ∈ N, νn(L(x)) ≤ Cµn(x).

We denote by Hb (F1,F2) the set of uniformly bounded operators. Of course
Hb (F1,F2) is contained in H (F1,F2) and L ∈ H (F1,F2) belongs to Hb (F1,F2) if
and only if ||L||∞ := sup

n∈N
pn(L) <∞ and so

Hb (F1,F2) = [H (F1,F2)]b := {L ∈ H (F1,F2) : ||L||∞ <∞}

When F = F1 = F2 and ν1
n = ν2

n for all n ∈ N, the set H (F,F) (resp. Hb (F,F)) is
simply denoted by H (F) (resp. Hb (F)).

We denote by IHb (F1,F2) (resp. SHb (F1,F2)) the set of injective (resp. sur-
jective) operators of Hb (F1,F2) with closed range.

Proposition B.4. ([4])

(1) Each operator L ∈ H (F1,F2) has a closed range if and only if, for each
n ∈ N, the induced operator Ln : Bn1 → Bn2 has a closed range.

(2) IHb (F1,F2) is an open subset of Hb (F1,F2).
(3) SHb (F1,F2) is an open subset of Hb (F1,F2).

We will give the sketch of the proof of Point (2) since some arguments used in
this proof are also useful for the proof of Theorem 2.2:
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Proof. (2) Consider an injective operator L ∈ H (F1,F2). According to the repre-
sentation Fi = lim←−B

n
i as a projective limit of a Banach sequence (Bni , (δi)mn )m≥n,

we have a sequence of linear operators Ln : Bn1 → Bn2 such that L = lim←−Ln (cf.

Theorem B.1). Considering each

Fi = {(xn) ∈
∏
n∈N

Bni : ∀m ≥ n, xn = (δ2)mn (xm)},

if x = (xn) ∈ F1, then L(x) = (Ln(xn)) ∈ F2. Thus it is clear that L is injective if
and only if Ln is injective for all n ∈ N.

Now if L ∈ IHb (F1,F2), then Ln is an isomorphism from Bn1 onto its range and
so we have

1

`n
.ν̃1
n(x) ≤ ν̃2

n(Ln(x) ≤ `n.ν̃1
n(x)(B.3)

for all x ∈ Bn1 , all n ∈ N, where ν̃in is the quotient norm of νin on Bni for i ∈ 1, 2,
and

`n = (ν̃2
n)op(L) = sup{ ν̃

2
n(Ln(x))

ν̃1
n(x)

: ν̃1
n(x) 6= 0}.

Since δ2
n is the canonical projection of F2 on Bn2 and ν2

n ◦ δn = ν̃2
n, we obtain

1

`n
ν1
n(x) ≤ ν2

n(L(x)) ≤ `n.ν1
n(x)(B.4)

for all x ∈ F1 and n ∈ N. But we have `n ≤ ||L||∞ and we finally obtain

1

`
ν1
n(x) ≤ ν2

n(L(x)) ≤ `.ν1
n(x)(B.5)

for all x ∈ F1, all n ∈ N and where ` = ||L||∞.
Fix some L ∈ Hb (F1,F2) and set ` = ||L||∞, we consider the open set

W = {T ∈ Hb (F1,F2) , : ||T − L||∞ <
`

2
}

Fix some n ∈ N. For any x ∈ F1 and T ∈W , we have

ν1
n(x)− ν1

n(T (x)) ≤ ν1
n(T −L)(x) ≤ pn(T −L).ν1

n(x) ≤ ||T −L||∞.ν1
n(x) ≤ `

2
ν1
n(x).

This implies that

ν2
n(T (x)) ≥ `

2
ν1
n(x).(B.6)

Since (νin) is a separating sequence of semi-norms, it follows that T is injective.
Now taking in account inequality (B.6) and relation ν̃in = νin ◦ (δi)n, for T ∈W and
each n ∈ N, we have

ν̃2
n(Tn(x)) ≤ 3`

2
ν1
n(x) ≤ 3ν̃2

n(Tn(x))

for all x ∈ Bn1 . It follows that Tn is closed and so T is closed (cf. 1.). Finally, W
is an open neighbourhood of L contained in IHb (F1,F2), which ends the proof of
(2).

�

From this Proposition one can obtain:
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Theorem B.5. ([4])

(1) The Banach space Hb(F) has a Banach Lie algebra structure and the set
GHb(F) of uniformly bounded isomorphisms of F is open in Hb(F).

(2) GHb(F) has a structure of Banach Lie group whose Lie algebra is Hb(F).
(3) If F is identified with the projective lim←−B

n we denote by expn : L(Bn) →
GL(Bn), then we a have a well defined smooth map exp := lim←− expn :

Hb(F) → GHb(F) which is a diffeomorphism from an open set of 0 in
Hb(F) onto a neighbourhood of IdF.

Appendix C. A theorem of existence of ODE

The following result is in fact a reformulation in our context of Theorem 1 in
[17].

Theorem C.1. Let F a Fréchet space realized as the limit of a surjective sequence of
Banach spaces (Bn, λmn )m≥n whose topology is defined by the sequence of seminorms

(νn)n∈N. Let I be an open interval in R and U be an open set of I × F. Then U
is a surjective projective limit of open sets Un ⊂ I × Bn. Consider a smooth map
f = lim←−fn : U → F, projective limit of maps fn : Un → Bn12. Assume that for

every point (t, x) ∈ U , and every n ∈ N, there exists an integrable function Kn > 0
such that

(C.1) ∀ ((t, x), (t, x′)) ∈ U2, νn(f(t, x)− f(t, x′)) ≤ Kn(t)νn(x− x′).

and consider the differential equation:

(C.2) ẋ = φ (t, x) .

(1) For any (t0, x0) ∈ U , there exists α > 0 with Iα = [t0 − α, t0 + α] ⊂ I, an
open pseudo-ball V = B(x0, r) ⊂ U and a map Φ : Iα × Iα × V → F such
that

t 7→ Φ(t, τ, x)

is the unique solution of (C.2) with initial condition Φ(τ, τ, x) = x for all
x ∈ V .

(2) V is the projective limit of the open balls Vn of Bn. For each n ∈ N, the
curve t 7→ λn ◦ Φ(t, τ, λn(x)) is the unique solution γ : Iα → Bn of the
differential equation ẋn = φn (t, xn) with initial condition γ(τ) = λn(x).

From this theorem we obtain easily:

Corollary C.2. Let U = lim←−Un be an open subset of F and X = lim←−Xn : U → F
a projective limit of smooth maps Xn : Un → Bn. Assume that for every n ∈ N we
have

(C.3) ∀ ((t, x), (t, x′)) ∈ U2, νn(X(x)−X(x′)) ≤ Knνn(x− x′).

For x0 ∈ U , let B(x0, 2r) = {x ∈ F, : νni(x−x0) < 2r, 1 ≤ i ≤ k} be a pseudo-ball
contained in U . Let us set

: C1 = max1≤i≤kKni

12This means that we have: ∀m ≥ n, λmn ◦ fm = fn ◦ (IdR × λmn )



AN INTEGRABILITY CRITERION FOR A PROJECTIVE LIMIT OF BANACH DISTRIBUTIONS23

: C2 = sup
z∈B(x0,r)

{
max

1≤i≤k
νni(f(z))

}
.

Then for any α > 0 such that αe2αC1 ≤ r
2C2

, there exists a neighbourhood V =

B(x0, r) and a smooth map φα : Iα × V such that t 7→ φα(t, x) is the unique
solution of ẋ = X(x) defined on Iα with initial condition φα(0, x) = x. Moreover if
Vn = λn(V ), consider φαn : Iα×Vn → Bn defined by φαn = λn ◦φα; For each z ∈ Vn,
the map t 7→ φα(t, z) is the unique solution of the differential equation ẋn = Xn(xn)
defined on Iα with initial condition φα(0, z) = z

Remark C.3. If X = lim←−Xn is a smooth vector field defined on an open set

U = lim←−Un of F, which satisfies assumption (C.3), as classically, according to

Corollary C.2, the map FlXt := FlX(t, ) is the local flow of X that is FlXt fullfils
the properties of a 1-parameter group:

: FlX0 = IdV
: FlXt ◦FlXs = FlXs+t if s,t and s+ t belong to Iα.

In particular FlXt is a diffeomorphism from V onto it range and its inverse is FlX−t.

Moreover FlXnt = λn ◦ FlXt ◦λn is local flow of Xn = λn ◦ X ◦ λn and we have

FlXt = lim←−FlXnt .
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de Mathématiques (LAMA),Campus Scientifique, 73370 Le Bourget-du-Lac, France
Email address: fernand.pelletier@univ-smb.fr




