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PROJECTIVE LIMIT OF A SEQUENCE OF COMPATIBLE WEAK

SYMPLECTIC FORMS ON A SEQUENCE OF BANACH BUNDLES

AND DARBOUX THEOREM

FERNAND PELLETIER

Abstract. Given a projective sequence of Banach bundles, each one provided with
a of weak symplectic form, we look for conditions under which, the corresponding
sequence of weak symplectic forms gives rise to weak symplectic form on the projec-
tive limit bundle. Then we apply this results to the tangent bundle of a projective
limit of Banach manifolds. This naturally leads to ask about conditions under which
the Darboux Theorem is also true on the projective limit of Banach manifolds. We
will give some necessary and some sufficient conditions so that such a result is true.
Then we discuss why, in general, the Moser’s method can not work on projective
limit of Banach weak symplectic Banach manifolds without very strong conditions
like Kumar ’s results ([15]). In particular we give an analog result of Kumar’ s one
with weaker assumptions and we give an example for which such weaker conditions
are satisfied. More generally, we produce examples of projective sequence of weak
symplectic Banach manifolds on which the Darboux Theorem is true and an exam-
ple for which the Darboux Theorem is true on each manifold, but is not true on
the projective limit of these manifolds.

2010 MSC: 53D35, 55P35.
Keywords: Banach manifold, Fréchet manifold projective limit of Banach bundles, Fréchet man-
ifold, Fréchet bundles, weak symplectic form, sequence of compatible weak symplectic forms,
Darboux theorem, Moser’s method.

1. Introduction

In the Banach context, it is well known that a symplectic form can be strong or weak
(see Definition 1). The Darboux Theorem was firstly proved for strong symplectic Banach
manifolds by Weinstein ([25]). But Marsden ([19]) showed that the Darboux theorem
fails for a weak symplectic Banach manifold. However Bambusi [2] found necessary and
sufficient conditions for the validity of Darboux theorem for a weak symplectic manifold
modelled on a reflexive Banach space (Darboux-Bambusi Theorem). The proofs of all
these versions of Darboux Theorem were all established by Moser’s method.
In a wider context like Fréchet or convenient manifolds, a symplectic form is always weak.
Recently, a new approach to differential geometry in Fréchet context was initiated and
developed by G. Galanis, C. T. J. Dodson, E. Vassiliou and their collaborators in terms
of projective limits of Banach manifolds (see [5] for a panorama of these results). In this
situation, P. Kumar, in [15], proves a version of Darboux Theorem, by Moser method,
for a projective sequence of weak symplectic manifolds which satisfy the assumptions of
the Darboux-Bambusi Theorem but under very strong added conditions on this sequence.
On the other hand, a metric approach of differential geometry on Fréchet manifold was
firstly introduced by Muller. This concept gives rise to Keller-differentiable calculus as
exposed in details by Glockner in [11]. In this way we can consider the so called bounded
Fréchet framework (cf. [21]) in which a classical implicit function Theorem is true and a
Theorem of existence of local flow can be proved (cf. [6]). In this context Eftekharinasab
in [7], proves a version of Darboux Theorem using Moser’s method too, and again under
very strong assumptions. In fact, when such a Fréchet manifold is also a projective limit
of Banach manifolds this result seems to recover Kumar’s result.

More generally we can look for conditions under which a family of weak symplectic
forms on a projective sequence of Banach bundles gives rise to a weak symplectic form on
the projective limit bundle: this is the first purpose of this paper.

Of course this result can be applied to projective limits of weak symplectic Banach
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manifolds. Thus, this naturally leads to the problem of the existence of a Darboux the-
orem on the projective limit of weak symplectic Banach manifolds which is the second
purpose of this paper.

More precisely let
(
Ei, `ji

)
be a reductive1 projective sequence of Banach spaces and

(ωi)i∈N be a sequence of (linear) weak symplectic forms ωi on Ei. We say that (ωi)i∈N is
a sequence of compatible symplectic forms if each `i+1

i satisfies

ker `i+1
i ∩ (ker `i+1

i )⊥ = {0} and (`i+1
i )∗ωi = ωi+1 in restriction to(ker `i+1

i )⊥

where (ker `i+1
i )⊥ is the orthogonal of ker `i+1

i relatively to ωi+1 (cf. Defintion 5)

Now consider a reductive projective sequence of Banach bundles
(
Ei, λ

j
i

)
over a pro-

jective sequence
(
Mi, δ

j
i

)
of Banach manifolds and let (ωi)i∈N be a sequence of weak

symplectic forms ωi on Ei. We say that (ωi)i∈N is a sequence of compatible symplectic
forms if, for any xi ∈Mi and i ∈ N, the sequence ((ωi)xi)i∈N is a sequence of compatible

(linear) weak symplectic forms on the projective sequence
(
π−1
i (xi), (λ

j
i )xj

)
of Banach

spaces (cf. Definition 12)
In this context , we have (cf. Theorem 13 and Corollary 14):

Theorem 1. Consider a reductive2 projective sequence
(
Ei, λ

j
i

)
of Banach bundles over

a projective sequence of Banach manifolds
(
Mi, δ

j
i

)
.

(1) Let (ωi)i∈N be a sequence of compatible weak symplectic forms on
(
Ei, λ

j
i

)
. Then

ω = lim←−ωi is a well defined weak symplectic form on the Fréchet bundle E = lim←−Ei
over M = lim←−Mi.

(2) Conversely, let ω be a weak symplectic form on a projective limit bundles (E =
lim←−Ei, π = lim←−πi,M = lim←−Mi) of a submersive3 projective sequence of Banach

bundles
(
Ei, λ

j
i

)
. Assume that for each x = lim←−xi, the map (λi)x : π−1(x) →

π−1
i (xi) is a symplectic submersion 4. Then ω induces a weak symplectic 2-form ωi

on Ei which gives rise to a family of compatible weak symplectic forms. Moreover,
the 2-form on E defined by this sequence (ωi) is precisely the given 2-form ω.

(3) A 2-form ω on a Fréchet bundle, projective limit (E = lim←−Ei, π = lim←−πi,M =

lim←−Mi) of a submersive sequence of Banach fibre bundles
(
Ei, λ

j
i

)
is a weak sym-

plectic form if and only if there exists a sequence of compatible weak symplectic
forms (ωi)i∈N on Ei such that ω = lim←−ωi.

As corollary we obtain (cf. Theorem 15):

Theorem 2.

(1) Let
(
Mi, λ

j
i

)
be a reduced sequence of Banach manifolds and (ωi)i∈N a sequence

of compatible weak symplectic forms. Then ω = lim←−ωi is a weak symplectic form

on M = lim←−Mi

(2) Let ω be a 2-form on a projective limit M = lim←−Mi of a submersive sequence

of manifolds
(
Mi, δ

j
i

)
. Then ω is a weak symplectic form if and only if each

Txδi : TxM → TxiMi is symplectic submersion for each i ∈ N.

In the context of Theorem 2 Point (1), if a = lim←−ai ∈M and if for each i, there exists

a Darboux chart around each ai for ωi, it seems natural to ask if the same result is true
around a ∈ M = lim←−Mi for ω. We have the following sufficient conditions and necessary

conditions (cf. Theorm 25):

1i.e. `ji (Ej) is dense in Ei

2that is the projective sequence of typical fiber
(
Ei, λ

j
i

)
is a reduced projective sequence of Banach

spaces
3cf. Definition 53
4cf Definition 9
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Theorem 3. Let
(
Mi, δ

j
i

)
be a submersive projective sequence of Banach manifolds where

Mi is modeled on a reflexive Banach space Mi.

(1) Consider a sequence (ωi)i∈N of compatible symplectic forms ωi on Mi and let ω
be the symplectic form which is the projective limit of (ωi)i∈N on M = lim−→Mi.

Assume that the following property is satisfied:
(D): There exists a projective limit chart (U = lim←−Ui, φ = lim←−φi) around a ∈
M = lim←−Mi such that, for each ai = δi(a) ∈ Mi, then (Ui, φi) is a Darboux

chart around ai for ωi.
Then (U, φ) is a Darboux chart around a for ω.

(2) Let ω be a weak symplectic form on a submersive projective limit M = lim←−Mi such

that δi : M →Mi is a symplectic submersion. Assume that there exists a Darboux
chart (V, φ) around a in M .
If ωi is the symplectic form on Mi induced by ω, then there exists a projective limit
chart (U = lim←−Ui, φ = lim−→φi) around a such that the property (D) is satisfied.

In [2], Bambusi has proved a version of Darboux Theorem for a weak symplectic ω on a
Banach manifold M modelled on a reflexive Banach space M, around some point a ∈M ,
under the following ”Darboux-Bambusi assumptions”.

Denote by T̂xM the Banach space which is the completion of TxM provided with the

norm || ||ωx associated to some norm || || on TxM (cf section 2.1). The Banach space T̂xM
does not depend on this choice of || ||. Then ωx can be extended to a continuous bilinear

map ω̂x on TxM × T̂xM and ω[x becomes an isomorphism from TxM to (T̂xM)∗. We set

T̂M =
⋃
x∈M

T̂xM and T̂M
∗

=
⋃
x∈M

(T̂xM)∗.

Darboux-Bambusi assumptions

(i) There exists a neighbourhood U of a ∈ M such that T̂M |U is a trivial Banach

bundle whose typical fibre is the Banach space (T̂aM, || ||ωa);
(ii) via some trivialization, ω can be extended to a smooth field of continuous bilinear

forms on TM|U × T̂M |U 5.

Thus, again in the context of Theorem 2 Point (1), we can ask if there exists a Darboux
chart for ω = lim←−ωi on the projective limit M = lim←−Mi when each Mi satisfies Darboux-

Bambusi assumptions. Unfortunately in general the answer is negative (cf. Example 33).
About such a question, we explain under which type of conditions the Moser’s method
in the previous context can be applied 6. Finally, under (strong) sufficient conditions we
have (see Theorem 29 for a more precise statement):

Theorem 4. Let M = lim←−Mi be a submersive projective limit of reflexive Banach mani-

folds Mi and (ωi)i∈N a compatible sequence of symplectic forms (resp. ω a symplectic form
on M such that δi : M →Mi is a symplectic submersion).
Consider a point a = lim←−ai ∈M and assume that there exists chart (U = lim←−Ui, φ = lim←−φi)
around a with the following properties for all i ∈ N:

(1) the Darboux-Bambusi assumptions around ai = δi(a) are satisfied on Ui ;

(2) there exist Finsler norms || ||i on TMi|Ui
and || ||∗̂i on (T̂Mi)

∗
|Ui

such that: 7

∀xi = δi(x) ∈ Ui, ||((ωi)[xi)||
op
i ≤ K(x); 8 (1)

5from the skew-symmetry of ω and [2] Lemma 2.8 this assumption implies that ω[ gives rise to

bundle isomorphism from TM|U to (T̂M)∗|U (cf. section 2.1)
6Note that this discussion is analog to the same type of discussion in [23] in the context of direct

limit of weak symplectic manifolds
7cf. Definition 28
8|| ||op

i is the Finsler norm operator from TMi|Ui
to (T̂Mi)

∗
|Ui
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for some positive continuous function K on U

∀xi = δi(x) ∈ Ui, , ||(ωi − φ∗iΩi)[xi(Ei)||∗̂i ≤ C(x) (2)

for some positive continuous function C on U , where Ei is an Euler vector fields
on Mi

9 and Ωi = (φ−1
i )∗(ωi)a.

Under these assumptions, there exists a Darboux chart around a in M .

The assumptions of this theorem are weaker than that of those of Kumar’s Darboux The-
orem in [15] as show the Example 34 and Remark 35 .

Unfortunately, such results require such strong assumptions, that it seems that there
are no interesting applications apart basic or well-adapted examples.

We end this paper by some examples for which :

− the Darboux theorem is true on a projective limit of Banach manifolds;
− the Darboux-Bambusi Theorem assumptions are true on each Banach manifold

and we have a Darboux chart around some point on the projective limit;
− the Darboux-Bambusi Theorem assumptions are true on each Banach manifold

but we have no Darboux chart around some point in the projective limit;
− there exists a projective limit of compatible strong symplectic forms which satisfies

the assumptions of Theorem 4.

This work is self contained and and organized as follows :

� In section 2, we begin by a survey on known results on symplectic forms on a
Banach space (§2.1). Then we look for properties of a sequence of compatible
(linear) symplectic forms on a projective sequences of Banach spaces (§ 2.2). A
precise context of Theorem 1 (resp. Theorem 2) can be found in § 2.3 (resp. §2.4).
The proofs of all these results take place in §2.5.

� Section 3 is devoted to show that under the assumptions of Theorem 2, the
Darboux-Bambusi assumptions which are satisfied for a projective limit of weak
symplectic manifold are also valid on the projective limit in an natural adequat
sense. As preliminary for this purpose, the first subsection recall the Moser’s
method and the Darboux-Bambusi Theorem. In the next subsection, under as-
sumption of Theorem 1 Point (1), for such a projective limit of Banach bundles
which satisfy a generalization of Darboux-Bambusi Theorem assumptions, we
show that its projective limit has the same properties in an appropriate sense.

� The discussion on the problem of existence of Darboux charts on a limit of reduced
projective sequence of Banach manifolds is exposed in section 4.

� The proof of Theorem 4 takes place in section 5.
� Examples and contre-example about the existence of a projective limit of Darboux

charts are given in section 6.
� Finally we end this paper by a series of Appendices which sumrize all the defini-

tions and properties on projective limits needed in this paper.

2. Projective limit of a compatible sequence of weak symplectic forms on a
projective sequence of Banach bundle

2.1. Symplectic forms on Banach space. In this section we recall some well known
results on linear symplectic forms on a Banach space (cf. for instance [23]):

Definition 1. Let E be a Banach space. A bilinear form ω is said to be weakly non
degenerate if (∀Y ∈ E, ω (X,Y ) = 0) =⇒ X = 0.

Classically, to ω is associated the linear map

ω[ : E −→ E∗ defined by
(
ω[(X)

)
(Y ) = ω (X,Y ) , : ∀Y ∈ E.

9cf. section 5.1 after Definition 28
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Clearly, ω is weakly non degenerate if and only if ω[ is injective.
The 2-form ω is called strongly nondegenerate if ω[ is an isomorphism.

A fundamental result in finite dimensional linear symplectic space is the following:
If ω is a symplectic form on a finite dimensional vector space E, there exists a vector

space L and an isomorphism A : E→ L⊕ L∗ such that ω = A∗ωL where

ωL((u, η), (v, ξ) =< η, v > − < ξ, u > (3)

This result is in direct relation with the notion of Lagangian subspace which is a funda-
mental tool in the finite dimensional symplectic framework.

In the Banach framework, let ω be a weak symplectic form on a Banach space.
A subspace F is isotropic if ω(u, v) = 0 for all u, v ∈ F. An isotropic subspace is always

closed.
If F⊥ω = {w ∈ E : ∀u ∈ F, ω(u, v) = 0 } is the orthogonal symplectic space of F, then F is
isotropic if and only if F ⊂ F⊥ω and is maximal isotropic if F = F⊥ω . Unfortunately, in the
Banach framework, a maximal isotropic subspace L can be not supplemented. Following
Weinstein’s terminology ([25]), an isotropic space L is called a Lagrangian space if there
exists an isotropic space L′ such that E = L⊕ L′. Since ω is strong non degenerate, this
implies that L and L′ are maximal isotropic and then are Lagrangian spaces (see [25]).

Unfortunately, in general, for a given symplectic structure, Lagrangian subspaces need
not exist (cf. [12]). Even for a strong symplectic structure on Banach space which is
not Hilbertizable, the non existence of Lagrangian subspaces is an open problem to our
knowledge. Following [25], a symplectic form ω on a Banach space E is a Darboux (linear)
form if there exists a Banach space L and an isomorphism A : E → L ⊕ L∗ such that
ω = A∗ωL where ωL is defined in (3). Note that in this case E must be reflexive.

Let E be a Banach space provided with a norm || ||. We consider a symplectic form

ω on E and let ω[ : E → E∗ be the associated bounded linear operator. Following [2]

and [14], on E, we consider the norm ||u||ω = ||ω[(u)||∗ where || ||∗ is the canonical norm

on E∗ associated to || ||. Of course, we have ||u||ω ≤ ||ω[||op.||u|| (where ||ω[||op is the

norm of the operator ω[) and so the inclusion of the normed space (E, || ||ω) in (E, || ||)
is continuous. We denote by Ê the Banach space which is the completion of (E, || ||ω).

Since ω[ is an isometry from (E, || ||ω) to its range in E∗, we can extend ω[ to a bounded

operator ω̂[ from Ê to E∗. Assume that E is reflexive. Therefore ω̂[ is an isometry between

Ê and E∗ ([2] Lemma 2.7). Moreover, ω[ can be seen as a bounded linear operator from

E to Ê∗ and is in fact an isomorphism ([2] Lemma 2.8). Note that since Ê∗ is reflexive,

this implies that Ê is also reflexive.

Remark 2. If || ||′ is an equivalent norm of || || on E, then the corresponding (|| ||′)∗
and || ||∗ are also equivalent norm on E∗ and so || ||′ω and || ||ω are equivalent norms on

E and so the completion Ê depends only on ω and the Banach structure on E defined by
equivalent norms.

2.2. Case of projective limit of Banach spaces. Let ω be a skew-symmetric bilinear
form on a Banach space E and K a Banach subspace of E. Recall that the ω-orthogonal
subspace K⊥ω is defined by

K⊥ω = {x ∈ E, : ∀y ∈ K, ω(x, y) = 0}.

When there is no ambiguity this set is simply denoted K⊥. Note that since ω is skew-
symmetric K⊥ = {x ∈ E : ∀y ∈ K, ω(y, x) = 0} and so (K⊥)⊥ = K.

If K0 = {ξ ∈ E∗ : ∀u ∈ K, ξ(u) = 0} is the annihilator of K, then K⊥ = (ω[)−1(K0).
Given two Banach subspaces K and K′ of E, the following relations are classical:

– If K ⊂ K′ then K′⊥ ⊂ K⊥ and, in particular, for any subspace K, E⊥ ⊂ K⊥ .

– (K + K′)⊥ = K⊥ ∩K′⊥.

– (K ∩K′)⊥ = K⊥ + K′⊥.
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Let ω (resp. ω′) be a skew-symmetric bilinear form on a Banach space E (resp. E′)
and ` : E → E′ a continuous linear map. By analogy with the terminology for Finsler
geometry (cf. [1]) we introduce

Definition 3. We say that ` is a weak isometry between ω and ω′ if `(E) is dense in E′
and we have:

ker ` ∩ (ker `)⊥ = {0} and `∗ω′ = ω in restriction to (ker `)⊥ (4)

Note that the condition ”ker ` ∩ (ker `)⊥ = {0}” is equivalent to the condition ”the
restriction of ω to (ker `)⊥ is non degenerate”.

Proposition 4. Let ω (resp. ω′) be a weak skew symmetric form on a Banach space E
(resp. E′) and let ` : E → E′ be a continuous linear map. We set K = (ker `) and denote
by ω the restriction of ω to K⊥. We have the following properties:

(1) If ` is a weak isometry between ω and ω′, then ω and ω′|`(E) are non degenerate,

and ker `∗ω′ = ker `.
(2) If ω and ω are non degenerate, ` is a weak isometry between ω and ω′ if and

only if `∗ω′ = ω on (ker `)⊥ and, in this case, the restriction of ω′ to `(E) is non
degenerate.

(3) Let ω′′ be a skew symmetric bilinear form on a Banach space E′′ and `′ : E′ → E′′
a continuous linear map. If ` (resp. `′) is a weak isometry between ω and ω′

(resp. ω′ and ω′′) then `′ ◦ ` is a weak isometry between ω and ω′′.

Note that if ` is a weak symplectic isometry between ω and ω′, the restriction ` of ` to
(ker `)⊥ is an isomorphism and

`
∗
ω′ = `∗ω′|(ker `)⊥ = ω|(ker `)⊥ (5)

Proof (1) We have ω(u, v) = 0 for all v ∈ K⊥ if and only if u belongs K ∩ K⊥ which

implies that ω is non degenerate. Since ` is an isomorphism, from (5), it follows that ω′|`(E)

is non degenerate. Now, v belongs to ker(`∗(ω′))[ if and only if ω′(`(u), `(v)) = 0, ∀v, if
and only if `(u) = 0.

(2) Assume ω and ω are non degenerate. We must show that E = K ⊕ K⊥. But
(K ⊕ K⊥)⊥ = K⊥ ∩ K = {0} and since ω is non degenerate, it follows that {0}⊥ = E =
K⊕K⊥, which ends the proof of Point (2) according to relation (5).

(3) Under the assumptions of Point (3), we have E = ker `⊕ (ker `)⊥ and E′ = ker `′ ⊕
(ker `′)⊥. Now, since the inclusion of `(E) in E′ is continuous, if K′ := ker `′ ∩ `(E), then

(K′)⊥ = (ker `′)⊥∩`(E) and so `(E) = K′⊕ (K′)⊥. Let ` be the restriction of ` to (ker `)⊥;

it is is an isomorphism onto (K′)⊥. If K = `
−1

(K′) and H = `
−1

((K′)⊥) then (ker `)⊥ =

K⊕H. By construction, ker `′◦` = ker `⊕K and we have (ker `⊕K)⊥ = (ker `)⊥∩K⊥ = H.

Indeed H is contained in (ker `)⊥, H = `
−1

((K′)⊥) and (`
−1

)∗(ω|(ker `)⊥) = ω′|`(E), this

implies that H is the orthogonal of K in (ker `)⊥. Now, the restriction `′ ◦ ` of `′ ◦ ` to

(ker(`′ ◦ `))⊥ = H is an isomorphism. Consider for any (u, v) ∈ H2
we have:

ω(u, v) = ω′(`(u), `(u)) = ω′′(`′ ◦ `(u), `′ ◦ `(v)).

So the proof is completed.
�

Definition 5. Let
(
Ei, `ji

)
be a reductive10 projective sequence Banach spaces and (ωi)i∈N

be a sequence of (linear) weak symplectic forms ωi on Ei. We say that (ωi)i∈N is a sequence
of compatible symplectic forms if each `i+1

i is a weak isometry between ωi+1 and ωi, for
all i ∈ N

We then have the following property:

10cf. Definition 41
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Proposition 6. Let (ωi)i∈N be a sequence of compatible symplectic forms on a reduced

projective sequence
(
Ei, `ji

)
. Then if u = lim←−ui and v = lim←−vi in E = lim←−Ei,

ω(u, v) = lim←−ωi(ui, vi)

defines a weak symplectic 2-form on E.

This Proposition is based on the following technical Lemma which can be easily proved
by induction

Lemma 7. Let E be a projective limit of a reductive projective sequence
(
Ei, `ji

)
. Assume

that, for all (i, j) ∈ N2 such that j ≥ i, the kernel of `ji is supplemented.

(1) For each i ∈ N and each j ≥ i we have a decomposition

Ej = Eji ⊕ Eji+1 ⊕ · · · ⊕ Ejj−1 ⊕ ker `jj−1 (6)

with the following properties for all j ≥ i
(a) ker `jl = Ejl+1 ⊕ · · · ⊕ Ejj−2 ⊕ ker `jj−1;

(b) the restriction of (`′)jl of `jl to (Eji ⊕ · · · ⊕ Ejl ) is injective with dense range
in El;

(c) `jl (E
j
h) is dense in Elh for all i ≤ h ≤ l, is dense in ker `ll−1 for h = l and

`jl (E
j
h) = {0} for l < h ≤ j − 1.

(2) Let `i : E→ Ei the canonical projection. Then E = ker `i⊕F′i and the restriction `′i
of ` to E′i is a continuous map injective map into Ei with dense range. Moreover, if
|| ||i is a norm on Ei, then νi = || ||i◦`i is a semi-norm on E and the restriction of
νi to F′i is a norm and in this case, `′i is an isometry. In particular, the completion
F′i of F′i is isomorphic to Ei.

(3) We set Ki = ker `ii−1 for i ≥ 1 and K0 = E0. If E′j =

j∏
l=0

Kl, then there exist

bounding maps κji : E′j → E′i with dense range, so that
(
E′i, κji

)
is a reduced

projective sequence. If E′ = lim←−E
′
i there exists an injective continuous linear map

lim←−θi : E→ E′ with dense range where θi is an injective linear map from Ei into

E′i with dense range. Moreover, if
(
Ei, `ji

)
if a surjective projective sequence, then

each θi, i ∈ N and θ are isomorphisms.

Remark 8.

(1) From the properties of the sequence
(
`ji
)

and Proposition 4 (3), if (ωi)i∈N is a

sequence of compatible weak symplectic 2-forms, then `ji is a weak isometry between
ωj and ωi, for all i ∈ N and all j ≥ i.

(2) Consider the assumptions of Proposition 6. If
(
Ei, `ji

)
is a ILB sequence (cf.

Appendix B), we have ker `ji = {0} for all j ≥ i and i ∈ N. Thus (ωi)i∈N is
a sequence of compatible symplectic forms on this projective system if and only
if, for all j ≥ i and i ∈ N, then ωj = (λji )

∗ωi, and ω0 is symplectic. But in

general, if for some pair (i, j), ker `ji 6= {0}, the condition ωj = (`ji )
∗ωi implies

that E⊥j 6= {0} and so this does not implies that ωj is symplectic.

(3) In Proposition 6, when
(
Ei, `ji

)
is a surjective 11 projective sequence, the symplectic

form ω on E has the property that the induced form on ker `i is symplectic and so
we have E = ker `i ⊕ (ker `i)

⊥ where (ker `i)
⊥ is the orthogonal of ker `i (relative

to ω).

As in finite dimension, we introduce:

Definition 9. Let E = lim←−Ei a projective limit of a surjective projective sequence
(
Ei, `ji

)
.

Consider a (weak) symplectic form ω on E such that E = ker `i ⊕ (ker `i)
⊥. We will say

that `i is a symplectic submersion.

11that is each `ji is surjective
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Remark 10. In the context of Definition 9, the restriction of `i to (ker `i)
⊥ is an iso-

morphism onto Ei and so we have a well symplectic form ωi on Ei such that ω = `∗iωi in
restriction to (ker `i)

⊥. Thus this definition is analog to the notion of isometric submersion
between Finsler manifolds in finite dimension introduced in [1].

We have the following type of converse of Proposition 6 :

Proposition 11. Let
(
Ei, `ji

)
be a surjective projective sequence of Banach space and

E = lim←−Ei. If ω is a symplectic form on E such that `i : E → Ei is a symplectic

submersion for all i ∈ N, then ω induces a symplectic form ωi on Ei. Moreover, (ωi)i∈N
is a sequence of compatible symplectic forms and the projective limit associated to this
sequence is precisely ω.

Proof Since for j ≥ i, `i = `ji ◦ `j this implies ker `i = ker `j ⊕ (`′)−1
j (ker `ji ). Thus we

have ker `j ⊂ ker `i and so (ker `i)
⊥ ⊂ (ker `j)

⊥. As we have seen previously, there exists
a (unique) symplectic form ωj on Ej such that ω = `∗jωj on (ker `j)

⊥. Since for any j ∈ N,

the restriction `′j to (ker `j)
⊥ is an isomorphism onto Ej , we have:

ωj(uj , vj) = ω(`′j(u
′
j), `

′
j(v
′
j)) for all u′j , v

′
j ∈ (ker `j)

⊥ with uj = `′j(u
′
j) and vj = `′j(v

′
j).

But since (ker `i)
⊥ ⊂ (ker `j)

⊥, it follows that, for any u′i, v
′
i ∈ (ker `i)

⊥, we have

ω(`′i(u
′
i), `

′
i(v
′
i)) = ω(`ji ◦ `

′
j(u
′
i), `

j
i ◦ `

′
j(v
′
i))

= (`ji )
∗ω(`′j(u

′
i), `

′
j(v
′
i).

Thus we obtain

(ωj) = (`ji )
∗ωi on `′j

(
(ker `i)

⊥
)
.

The proof will be completed if we show that `′j
(
(ker `i)

⊥) = (ker `ji )
⊥. But this results

follows from `′j(ker `i) = ker `ji .
�

2.3. Case of projective sequence of Banach bundles.

Definition 12. Let
(
Ei, λ

j
i

)
be a projective sequence of Banach bundles over a projective

sequence
(
Mi, δ

j
i

)
of manifolds and let (ωi)i∈N be a sequence of weak symplectic forms ωi

on Ei. If Ei is the typical fibre of Ei, assume that the following properties are satisfied:

(RPSBS): The sequence
(
Ei, λji

)
is a reduced projective sequence of Banach spaces.

We say that (ωi)i∈N is a sequence of compatible symplectic forms if the sequence ((ωi)xi)i∈N
is a sequence of compatible (linear) weak symplectic forms on the projective sequence(
π−1
i (xi), (λ

j
i )xj

)
of Banach spaces.

Under the context of this Definition, we have

Theorem 13. Consider a projective sequence
(
Ei, λ

j
i

)
of Banach bundles over a projective

sequence of Banach manifolds
(
Mi, δ

j
i

)
which satisfies the assumption (RPSBS).

(1) Let (ωi)i∈N be a sequence of compatible weak symplectic forms on
(
Ei, λ

j
i

)
. Then

ω = lim←−ωi is a well defined weak symplectic form on the Fréchet bundle E = lim←−Ei
over M = lim←−Mi.

(2) Conversely, let ω be a weak symplectic form on a projective limit bundles (E =
lim←−Ei, π = lim←−πi,M = lim←−Mi) of a submersive12 projective sequence of Banach

bundles (Ei, πi,Mi). Assume that for each x = lim←−xi, the map (λi)x : π−1(x) →
π−1
i (xi) is a submersion. Then ω induces a weak symplectic 2-form ωi on Ei

which gives rise to a family of compatible weak symplectic forms. Moreover, the
2-form on E defined by this sequence (ωi)i∈N is precisely the given 2-form ω.

We obtain directly the following Corollary:

12cf. Definition 53
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Corollary 14. A 2-form ω on a Fréchet bundle, projective limit (E = lim←−Ei, π =

lim←−πi,M = lim←−Mi) of a submersive sequence of Banach fibre bundles
(
Ei, λ

j
i

)
is a weak

symplectic form if and only if there exists a sequence of compatible weak symplectic forms
(ωi)i∈N on Ei such that ω = lim←−ωi.

Note that Theorem 1 in the introduction is Theorem 13 joined with Corollary 14.

2.4. Case of projective limit of weak symplectic Banach manifolds. By applica-
tion of Theorem 13 when Ei is the tangent bundle TMi of a Banach manifold Mi, we
obtain the following Theorem which is exactly Theorem 2 in the introduction:

Theorem 15.

(1) Let
(
Mi, λ

j
i

)
be a reduced sequence of Banach manifolds and (ωi)i∈N a sequence

of compatible weak symplectic forms. Then ω = lim←−ωi is a weak symplectic form

on M = lim←−Mi

(2) Let ω be a 2-form on a projective limit M = lim←−Mi of a submersive sequence

of manifolds
(
Mi, δ

j
i

)
. Then ω is a weak symplectic form if and only if each

Txδi : TxM → TxiMi is a symplectic submersion for each i ∈ N.

Remark 16.

(1) Given a submersive sequence
(
Mi, δ

j
i

)
of manifolds and a weak symplectic form ωi

on each Mi, each map δji : Mj →Mi is a symplectic submersion if the restriction

of ωj is a symplectic form on each fibre of δji and on the orthogonal symplectic of

the vertical bundle of δji we have ωj = (δji )
∗ωi.

(2) Let M = lim←−Mi be a projective limit of a submersive sequence
(
Mi, δ

j
i

)
of mani-

folds and ω a weak symplectic form on M . We say that the canonical projection
δi : M →Mi is a symplectic submersion if the restriction of ω to each fibre δ−1(xi)
is a symplectic form and δ∗i ωi = ω on the orthogonal bundle of the vertical bundle
of δi.

2.5. Proofs of results.

Proof [Proof of Theorem 13] From Proposition 6, we know that ω is well defined. Now
ω is a smooth 2-form since it is a projective limit of smooth 2 forms, which ends the proof
of (1).
Now let ω be a weak symplectic form on a projective limit bundle (E = lim←−Ei, π =

lim←−πi,M = lim←−Mi) which satisfies the assumptions of (2). Given some x = lim←−xi ∈
M , since (λi)x : π−1(x) → π−1

i (xi) is a symplectic submersion of symplectic spaces,

the restriction (λi)
′ of λi to ker(λi)

⊥
x is an isomorphism on π−1

i (xi) and so (ωi)xi =
{[(λi)x]−1}∗(ωx)| ker(λi)⊥x

is a symplectic form on π−1
i (xi). It remains to show that xi 7→

ωxi is smooth.
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Fix some x = lim←−xi ∈M . There exists φ(U)×E with the following commutative diagram

π−1(U)
τ //

��

λi

%%

φ(U)× E
δi×λi

&&

��

π−1
i (Ui)

τi //

��

φi(Ui)× Ei

��

U
φ //

δi

%%

φ(U)

δi

&&
Ui

φi // φi(Ui)

(7)

Let Ω be the symplectic form on φ(U)×E such that ω = τ∗Ω. According to Proposition 54,
kerλi is a sub-bundle of E. Now, since ω is a smooth symplectic form and the orthogonal
ker(λi)

⊥
z is a supplemented space of ker(λi)z for all z ∈ M , it follows that ker(λi)

⊥
z is

a Banach sub-bunlde of E and so the Diagram (7) have the more precise version, after
shrinking U if necessary:

π−1(U)
τ //

��

λi

%%

φ(U)×Ki ×Hi
δi×λi

''

��

π−1
i (Ui)

τi //

��

φi(Ui)× Ei

��

U
φ //

δi

%%

φ(U)

δi

((
Ui

φi // φi(Ui)

(8)

where Ki is the Kernel of λi and Hi is the orthogonal of Ki relative to Ωφ(x) over φ(x).

Since the restriction λi
′

of λi to Hi is an isomorphism onto Ei and so δi × λi
′

is an

isomorphism from φ(U) × Hi onto φ(U) × Ei. Thus, (Ωi) = [δi × λi
′
]∗
(
(Ω)|φ(U)×Hi

)
is a

symplectic form on φi(Ui)× Ei) and so ωi = τ∗i (Ω) is a smooth symplectic form.
The end of the proof follows from Proposition 11.

�
Proof [Proof of Corollary 15] According to the assumption of this Corollary, after ap-

plying Theorem 13, the proof will be completed if we prove that the 2-form ω defined
by the closed 2-form ωi is also closed and if ω is a closed 2-form on the projective limit
M = lim←−Mi (each induced 2 form ωi induced on Mi is closed). Under the notations of the

proof of Theorem 13, we have

: Ei = Mi and E = M;

: λji = Tδji , `
j
i = δji , λi = Tδi;

: τi = Tφi, τ = Tφ.
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We can apply the context of Lemma 7 and so if M′i = ker δji , then Mn is isomorphic to
n∏
i=0

M′i and so M ≡
∞∏
i=0

M′i. According to Diagram 8 in our context, we have

π−1(U)
τ //

��

λi

  

φ(U)×
∏
l>i

M′l ×
i∏
l=0

M′l

δi×λi

&&

��

π−1
i (Ui)

τi //

��

φi(Ui)×
i∏
l=0

M′l

��

U
φ //

δi

%%

φ(U)

δi

))
Ui

φi // φi(Ui)

(9)

and φ(U) is an open set in

∞∏
i=0

M′i and φi(Ui) is an open set of

i∏
l=0

M′l. Thus, φi(Ui) is of

type

i∏
l=0

U ′l where U ′l is an open set of M′i and φ(U) is of type

∞∏
l=0

U ′l where U ′l is an open

set of M′l and with only a finite number of l ≥ i for which Ul 6= M′l.

(1) Assume that ω is a projective limit of the sequence (ωi)i∈N. As in the proof of The-
orem 13 let Ωi be the form on φi(Ui) induced by ωi and we denote by Ω the symplectic
form on φ(U) induced by ω according to the context of Diagram 9. If ιl be the natural

inclusion of U ′l in

i∏
l=0

M′l, we set Ωl = ι∗iΩi for l ≥ i. Note that Ωl does not depend on the

choice of the integer i ≥ l. As Ωi is closed , it follows that Ωl is closed. Note that each
subbundle U ′l × E′l is the tangent bundle of U ′l . But, from the construction of ω ( and so
Ω ), if X1 and X2 are vector fields on φ(U) which are tangent to U ′l1 and U ′l2 respectively,

we have Ω(X1, X2) = 0 if l1 6= l2 and Ω(X1, X2) = Ωl(X1, X2) if = l2 = l1 = l. This
implies that Ω is closed.

(2) Assume that ω is a symplectic form such that Txδi : TxM → TxiMi is a symplectic
submersion. Then from Theorem 6 (2), ω induces a non degenerate 2-form ωi on Mi.

Again let Ω (resp. Ωi) be the 2-form on φ(U) (resp. φi(Ui)) according to the context
of Diagram 9. We must show that each Ωi is closed. Since Ω is the projective limit of
the sequence (Ωi)i∈N, according to Theorem 13 (2). Thus, as previously, if X1 and X2 are
vector fields on φ(U) which are tangent to U ′l1 and U ′l2 respectively, we have Ω(X1, X2) = 0

if l1 6= l2 and Ω(X1, X2) = Ωl(X1, X2) if = l2 = l1 = l. Thus Ωi = ι∗iΩ if ιi is the natural
inclusion of φi(Ui) in φ(U). It follows that each ωi is closed.

�

3. Weak symplectic forms on a submersive projective sequence of reflexive
Banach bundles and Darboux-Bambusi assumption

3.1. Moser’s method and Darboux-Bambusi Theorem. We recall the following gen-
eralization of Moser’s Lemma (see [23]).

Let M be a manifold modeled on a reflexive Banach space M. Consider a weak sym-
plectic form ω on M . Then ω[ : TM → T ∗M is an injective bundle morphism. According

to section 2.1, we denote by T̂xM the Banach space which is the completion of TxM
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provided with the norm || ||ωx associated to some norm || || on TxM . The Banach space

T̂xM does not depend on this choice. Then ωx can be extended to a continuous bilinear

map ω̂x on TxM × T̂xM and ω[x becomes an isomorphism from TxM to (T̂xM)∗. We set

T̂M =
⋃
x∈M

T̂xM and T̂M
∗

=
⋃
x∈M

(T̂xM)∗.

Theorem 17 (Moser’s Lemma). Let ω be a weak symplectic form on a Banach manifold
M modeled on a reflexive Banach space M. Assume that we have the following properties:

(i) There exists a neighbourhood U of x0 ∈ M such that T̂M |U is a trivial Banach

bundle whose typical fibre is the Banach space (T̂x0M, || ||ωx0
);

(ii) via a trivialization, ω can be extended to a smooth field of continuous bilinear
forms on

TM|U × T̂M |U .

Consider a family {ωt}0≤t≤1 of closed 2-forms, smoothly depending on t, with the
following properties:

– ω0 = ω and ∀t ∈ [0, 1] , ωtx0
= ωx0 ;

– ωt can be extended to a smooth field of continuous bilinear forms on TM|U ×
T̂M |U .

Then there exists a neighbourhood V of x0 such that each ωt is a symplectic form on V
and there exists a family {Ft}0≤t≤1 of diffeomorphisms Ft from a neighbourhood V0 ⊂ V
of x0 to a neighbourhood Ft(V0) ⊂ V of x0 such that F0 = Id and F ∗t ω

t = ω, for all
0 ≤ t ≤ 1.

Proof [sketch for more details see [23]] Without loss of generality, we may assume that

U is an open neighbourhood of 0 in M and T̂M |U = U × M̂. Therefore, U × M̂ is a trivial

Banach bundle modeled on the Banach space (M̂, || ||ω0). Since ω can be extended to a

non-degenerate skew symmetric bilinear form (again denoted ω) on U × (M× M̂) then ω[

is a Banach bundle isomorphism from U ×M to U × M̂∗.
We set ω̇t = d

dt
ωt. Since each ωt is closed for 0 ≤ t ≤ 1, we have :

dω̇t =
d

dt
(dωt) = 0

and so ω̇t is closed. After shrinking U if necessary, from the Poincaré Lemma, there exists
a 1-form αt on U such that ω̇t = dαt for all 0 ≤ t ≤ 1. In fact αt can be given by

αtx =

∫ 1

0

s.(ω̇tsx)[(x)ds.

Since at x = 0, (ωtx0
)[ is an isomorphism from M to M̂∗, there exists a neighbourhood V

of 0 such that (ωtx)[ is an isomorphism from M to M̂∗ for all x ∈ V and 0 ≤ t ≤ 1. In

particular, ωt is a symplectic form on V . Moreover x 7→ (ω̇tx)[ is smooth and takes values

in L(M, M̂∗). We set Xt
x := −((ωtx)[)−1(αtx). It is a well defined time dependent vector

field and let Flt be the flow generated by Xt defined on some neighbourhood V0 ⊂ V of
0. As for all t ∈ [0, 1], ω̇tx0

= 0, then Xt
x0

= 0. Thus, for all t ∈ [0, 1], Ft(x0) = x0 . As
classically, we have

d

dt
Fl∗t ω

t = Fl∗t (LXtωt) + Fl∗t
d

dt
ωt = Fl∗t (−dαt + ω̇t) = 0.

Thus Fl∗t ω
t = ω. �

Now as a Corollary of Theorem 17, we obtain the Bambusi’s version of Darboux The-
orem ([2], Theorem 2.1).

Theorem 18 ( Darboux-Bambusi Theorem). Let ω be a weak symplectic form on a Ba-
nach manifold M modeled on a reflexive Banach space M. Assume that the assumptions
(i) and (ii) of Theorem 17 are satisfied. Then there exists a chart (V, F ) around x0 such
that F ∗ω0 = ω where ω0 is the constant form on F (V ) defined by (F−1)∗ωx0 .
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Definition 19. The chart (V, F ) in Theorem 18 will be called a Darboux chart around
x0.

3.2. Projective sequence of weak symplectic bundle reflexive Banach bundle
with Darboux-Bambusi assumptions.
Let E = lim←−Ei be a projective limit of a projective sequence of reflexive Banach spaces(
Ei, λji

)
. We can provide each Banach space Ei with a norm ‖ ‖i such that ||λi+1

i ||
op
i ≤ 1

for i ∈ N.
We consider a sequence (ωi)i∈N of weak symplectic forms on Ei and let ω[i : Ei → E∗i be

the associated bounded linear operator. According to notations in Remark 2, we consider
the norm ||u||ωi = ||ω[i (u)||∗i where || ||∗i is the canonical norm on E∗i associated to || ||i. We
have seen that the inclusion of the Banach space (E, || ||i) in the normed space (Ei, || ||ωi)

is continuous and we have denoted by Êi the Banach space which is the completion of

(Ei, || ||ωi). Recall that from Remark 2, the Banach space Êi does not depend on the

choice of the norm || ||i on Ei. According to section 2.1 (before Remark 2), ω[i can be

extended to a symplectic submersion between Êi and E∗i . Moreover, ω[i is an isomorphism

from Ei to Ê∗i .

Lemma 20.

(1) The sequence (Ê∗i )i∈N is a projective sequence of Banach spaces and so Ê∗ = lim←−Ê
∗
i

is well defined. Moreover, if λji is surjective and its kernel is split, then the bonding

map λ̂ji = Ê∗j → Ê∗i also satisfies this assumption.

(2) The projective limit ω[ = lim←−ω
[
i is well defined and is an isomorphism from E to

Ê∗

Proof (1) It is sufficient to show that λji and ω[i give rise to a map λ̂ji from Ê∗j into Ê∗i

and if λji is surjective and with a split kernel so is λ̂ji . Indeed since ω[i is an isomorphism

from Ei to Ê∗i , the bonding map λ̂ji = ω[i ◦ λji ◦ (ω[i )
−1 satisfied the announced properties

in (1).
(2) is obvious.

�

Now we consider a reduced projective sequence (Ei, πi,Mi) of Banach vector bundles
where the typical fibre Ei is reflexive. The projective limit E = lim←−Ei has a structure

Fréchet bundle over M = lim←−Mi with typical fibre E = lim←−Ei (cf. Proposition 50).

Consider a sequence (ωi)i∈N of compatible weak symplectic forms ωi on Ei. According

to the previous notations, since Ei is reflexive, we denote by (Êi)xi the Banach space
which is the completion of (Ei)xi provided with the norm || ||(ω

i
)xi

. Then (ωi)xi can be

extended to a continuous bilinear map (ω̂i)xi on (Ei)xi × (Êi)xi and (ωi)
[
xi becomes an

isomorphism from (Ei)xi to (Êixi). We set

Êi =
⋃

xi∈Mi

(Êi
∗
)xi , Êi

∗
=

⋃
xi∈Mi

(Êi
∗
)xi

According to the assumption of Theorem 18 we introduce the following terminology:

Definition 21. Let (Ei, πi,Mi) be a reduced projective sequence of Banach bundles whose
typical fibre Ei is reflexive. Consider a sequence (ωi)i∈N of compatible weak symplectic
forms ωi on Ei. We say that the sequence (ωi)i∈N satisfies the Bambusi-Darboux assump-
tion around a ∈M if there exists a projective limit chart U = lim←−Ui around a such that:

(i): for each i ∈ N, (Êi)|Ui
is a trivial Banach bundle;

(ii) : for each i ∈ N, ωi can be extended to a smooth field of continuous bilinear

forms on (Ei)|Ui
× (Êi)|Ui

.

Under these assumptions we have:
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Proposition 22. Consider a sequence (ωi)i∈N of compatible symplectic forms ωi on Ei
which satisfies the Bambusi-Darboux assumption around a ∈ M . Then we have the fol-
lowing properties:

(1) The projective limit (Ê∗)|U = lim←−(Êi
∗
)|Ui

is well defined and is a trivial Fréchet

bundle with typical fibre Ê = lim←−Êi.

(2) The sequence
(
ω[i

)
of isomorphisms from Ei|Ui

to (Êi
∗
)|Ui

induces an isomor-

phism from E|U to (Ê∗)|U .

Proof (1) From our assumptions, for each i, we have a sequence of trivializations

τ̂i : (Êi)|Ui
→ Ui×Êi. Thus we obtain a sequence τ̂−1

i : Ui×Ê∗i → (Ê∗i )|Ui
of isomorphisms

of trivial bundles. Now, from the proof of Lemma 20, we have the bonding map λ̂ii : Ê∗j
→ Ê∗i and by restriction to Uj we have a bonding map δji : Uj → Ui. So we get a bundle

morphism δji × λ̂ii from Uj × Ê∗j to Ui × Ê∗i . Now the map

τ̂−1
i ◦ (δji × λ̂ii) ◦ τ̂j

is a bonding map for the projective sequence of trivial bundles
(

(Êi
∗
)|Ui

)
. Therefore the

projective limits τ̂ = lim←−τ̂i and Ê∗|U = lim←−(Êi
∗
)|Ui

are well defined and τ̂ is a Fréchet

isomorphism bundle from U × Ê∗ to Ê∗|U , which ends the proof of (1).

(2) At first, from Proposition 6, then ω = lim←−ωi is a 2-form on E. From our assumption,

since for each i ∈ N we can extend ωi to a bilinear onto (Ei)|Ui
× (Êi)|Ui

, this implies

that ω[i is an isomorphism from (Ei)|Ui
to (Êi

∗
)|Ui

. Consider the sequence of bonding

maps

(
λ̂ii

)
i∈N

for the projective sequence
(

(Ê∗)|Ui

)
previously defined. Then we have

the following commutative diagram:

Uj × Ej
τ−1
j //

δ
j
i×`

j
i

��

(Ej)|Uj

ω[
j //

`
j
i

��

(Ê∗j )|Uj

τ̂j //

̂̀j
i

��

Uj × Ê∗j

δ
j
i×̂̀ji
��

Ui × Ei
τ−1
i

// (Ei)|Ui
ω[
i

// (Ê∗i )|Ui τ̂i

// Ui × Ê∗i

It follows that the projective limit ω[ = lim←−ω
[
i is well defined and is an isomorphism from

E|U to (Ê∗)|U . �

4. Problem of existence of Darboux charts on a strong reduced projective
sequence of Banach manifolds

4.1. Conditions of existence of Darboux charts. Let
(
Mi, δ

j
i

)
be a submersive or

reductive projective sequence of Banach manifolds where Mi is modeled on a Banach space
Mi. We first apply the previous results for Ei = TMi.

Theorem 23.

(1) Consider a sequence (ωi)i∈N of compatible weak symplectic forms ωi on Mi. Then,

for each x ∈ M , the projective limit ω[x = lim←−(ωi)
[
xi is well defined and is an

isomorphism from TxM to (T̂xM)∗. Moreover ωx(u, v) = ω[x(u)(v) defines a
smooth weak symplectic form on M .

(2) Let ω be a symplectic form on a submersive projective limit manifold M = lim←−Mi.

For all i ∈ N, assume that the canonical projection δi : M → Mi is a symplectic
submersion. Then there exists a symplectic form ωi on Mi such that δ∗i ωi = ω in
restriction to (ker δi)

⊥ and the sequence (ωi)i∈N is a sequence of compatible weak
symplectic forms such that the weak symplectic form which is the projective limit
of (ωi)i∈N on M is exactly ω.
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Proof (1) Since ω(u, v) = ω[(u)(v), by application of Proposition 22 to Ei = TMi, we
obtain that ω is non degenerate. The proof of that ω is closed is formally the same as in
the proof of Corollary 15 (1).
(2) is a direct consequence of Corollary 15 (2).

�
As in the Banach context, we introduce the notion of Darboux chart:

Definition 24. Let ω be a weak symplectic form on the direct limit M = lim←−Mi. We say

that a chart (V, ψ) around x0 is a Darboux chart if ψ∗ω0 = ω where ω0 is the constant
form on ψ(U) defined by (ψ−1)∗ωx0 .

We have the following necessary conditions and sufficient conditions of existence of
Darboux charts on a submersive projective sequence of Banach manifolds (cf. Theorem
3):

Theorem 25. Let
(
Mi, δ

j
i

)
be a submersive or decreasing projective sequence of Banach

manifolds where Mi is modeled on a reflexive Banach space Mi.

(1) Consider a sequence (ωi)i∈N of compatible symplectic forms ωi on Mi and let ω
be the symplectic form which is the projective limit of (ωi)i∈N on M = lim−→Mi.

Assume that the following property is satisfied:
(D): There exists a projective limit chart (U = lim←−Ui, φ = lim←−φi) around x0

such that, for each ai = δi(a) ∈Mi, then (Ui, φi) is a Darboux chart around
ai for ωi.

Then (U, φ) is a Darboux chart around a for ω.
(2) Let ω be a weak symplectic form on a submersive projective limit M = lim←−Mi such

that δi : M →Mi is a symplectic submersion. Assume that there exists a Darboux
chart (V, φ) around a in M .
If ωi is the symplectic form on Mi induced by ω, then there exists a projective limit
chart (U = lim←−Ui, φ = lim−→φi) around a such that the property (D) is satisfied.

Proof (1) Assume that the assumption (D) is true and that
(
Mi, δ

j
i

)
is a reduced

projective sequence of Banach manifolds. We fix some a ∈ M . We consider a projective
limit chart (U = lim←−Ui, φ = lim←−φi) around a such that, if ai = δi(a) ∈ Ui, then (Ui, φi) is

a Darboux chart around ai for ωi. Now we have the following commutative diagram:

π−1(U)
Tφ //

��

Tδi

%%

φ(U)×M
δ̄i×δ̄i

&&

��

π−1
i (Ui)

Tφi //

��

φi(Ui)×Mi

��

U
φ //

δi

%%

φ(U)

δ̄i

''
Ui

φi // φi(Ui)

(10)

According to this diagram and modulo the diffeomorphisms φ and φi, we may assume
that

– U is an open neighbourhood of a ≡ 0 ∈ M, and Ui is a neighbourhood of 0 ∈ Mi;
– ω is a smooth 2-form on U and ωi is a constant 2-form on Ui.

Now if x = lim←−xi ∈ U , u = lim←−ui and v = lim←−vi, since ωi is constant on Ui it follows

that (ωi)xi(ui, vi) is independent of xi ∈ Ui; so the value

ωx(u, v) = lim←−(ωi)xi(ui, vi)

is independent of the point x, which ends the proof of (1).
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(2) Let ω be a weak symplectic form on M = lim←−Mi such that, for all i ∈ N, δi :

M → Mi is a symplectic submersion. Assume that we have a Darboux chart (U =
lim←−Ui, φ = lim−→φi) around a for ω. Fix some i ∈ N. In the context of Diagram(10), we have

M ≡ Ki ×Gi where Ki is the kernel of T0δi and Gi is the orthogonal of Ki in Mi ≡ T0M
(cf. Diagram(7) with, for all i ∈ N, Ei = TMi). Thus again, modulo the diffeomorphisms
φ and φi, we may assume that

– a ≡ 0 ∈ U ⊂ Ki ×Gi , ai ≡ 0 ∈ Ui ⊂ Mi;
– ω is a constant 2-form on U and ωi is a smooth 2-form on Ui.

Recall that the restriction of δi to Gi is an isomorphism onto Mi, thus we may also
assume that Gi = Mi. In this way, we have δ∗i ωi = ω in restriction to Gi = Mi. Thus,
with our identification, ωi is nothing but the restriction of ω to Ui ×Mi and so ωi is a
constant 2-form on Ui whose value is fixed by the restriction of ω to Mi. �

4.2. Problem of existence of Darboux chart in general. In this subsection, we will
explain why, even in the context of a submersive projective sequence of weak symplectic
Banach manifolds which satisfies the assumption of Theorem 18 , in general, there does
not exist any Darboux chart for the induced symplectic form on the projective limit.

Let
(
Mi, δ

j
i )
)

be a projective sequence of Banach manifolds where Mi is modeled on
a reflexive Banach space Mi. Consider a sequence (ωi)i∈N of compatible weak symplectic

forms on Mi. Since Mi is reflexive, we denote by T̂xiMi the Banach space which is the
completion of TxiMi provided with the norm || ||(ωi)xi

. Then (ωi)xi can be extended to

a continuous bilinear map (ω̂i)xi on TxiMi × T̂xiMi and (ωi)
[
xi becomes an isomorphism

from TxiMi to (T̂xiMi)
∗. We set

T̂Mi =
⋃

xi∈Mi

T̂xiMi, T̂Mi

∗
=

⋃
xi∈Mi

(T̂xiMi)
∗.

Then by application of Proposition 22, we have:

Proposition 26. Let
(
Mi, δ

j
i

)
be a reduced projective sequence of Banach manifolds whose

model is a reflexive Banach space Mi. Consider a sequence (ωi) of compatible weak sym-
plectic forms ωi on Mi. Assume that there exists a limit chart (U = lim←−Ui, φ = lim←−φi)
around a ∈M = lim←−Mi such that we have the following assumptions: 13

(i) (T̂Mi)|Ui
is a trivial Banach bundle.

(ii) ωi can be extended to a smooth field of continuous bilinear forms on (TMi)|Ui
×

(T̂Mi)|Ui
for all i ∈ N.

Then (T̂M
∗
)|U is a trivial bundle. If ω is the symplectic form defined by the sequence

(ωi)i∈N, then the morphism

ω[ : TM → T ∗M

induces an isomorphism from TM|U to (T̂M)∗|U .

Note that the context of Proposition 26 covers the particular framework of projective
limit of strong symplectic Banach manifolds (Mi, ωi).

We will expose which arguments are needed to prove a Darboux theorem in the context
of reduced projective sequence of Banach manifolds under the assumptions of Proposition
26. In fact, we point out the problems that arise in establishing the existence of a Darboux
chart by Moser’s method.

Case 1. Assume that M = lim←−Mi is a reduced projective limit.

Fix some point a = lim←−ai ∈M . In the context on Proposition 26, on the projective limit

chart (U, φ) around a, we can replace U by φ(U), ω by φ∗ω on the open subset φ(U) of

13These assumptions correspond to the Bambusi-Darboux assumptions in Definition 21
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the Fréchet space M. Thus, if ω0 is the constant form on U defined by ωa, we consider
the 1-parameter family

ωt = ω0 + tω, with ω = ω − ω0.

Since ωt is closed and M is a Fréchet space, by [13] Lemma 33.20, there exists a neigh-
bourhood V ⊂ U of a and a 1-form α on V such that dα = ω which is given by

αx :=

∫ 1

0

s.ωsx(x, )ds. (11)

Now, for all 0 ≤ t ≤ 1, ωta is an isomorphism from TaM ≡ M onto T̂aM ≡ M̂∗. In the
Banach context, using the fact that the set of invertible operators is open in the set of
operators, after restricting V , we may assume that (ωt)[ is a field of isomorphisms from

M to M̂∗. Unfortunately, this result is not true in the Fréchet setting. Therefore, the
classical proof does not work in this way in general.

Case 2. Assume that M = lim←−Mi is submersive projective limit.

According to Theorem 23, assume that the canonical projection δi : M → Mi is a sym-
plectic submersion, for all i ∈ M. Then ω induces a symplectic form ωi on Mi. Therefore,
for each i, let αi be the 1-form induced by α on φi(Ui ∩ V ). Then we have ωi = dαi and
also

(αi)xi =

∫ 1

0

s.(ωi)sxi(xi, )ds (12)

where ω̄i = ωi−ω0
i is associated to the 1-parameter family ωti = ωi + tω̄i. We are exactly

in the context of the proof of Theorem 17 and so the local flow FlXi
t of Xt

i = ((ωti)
[)−1(αi)

is a local diffeomorphism from a neighbourhood Wi of ai in Vi and, in this way, we build a
Darboux chart around ai in Mi. Therefore, after restricting each Wi, if necessary, assume
that:

(PLDC): (projective limit Darboux chart) We have a projective sequence of such
open sets (Wi)n∈N, then on W = lim←−Wi, the family of local diffeomorphisms

F t = lim←−F
t
i is defined on W .

Recall that ω[ = lim←−ω
[
i and ω[ is an isomorphism. Thus according to the previous nota-

tions, we have a time dependent vector field

Xt = ((ωt)[)−1(α)

and again, we have LXtωt = 0. Of course, if the (PLDC) assumption on (Wn)n∈N is

true, then Xt = lim←−X
t
i . So we obtain a Darboux chart as in the Banach context.

Remark 27. In fact, under the assumption (PLDC), the flow Flt is the local flow (at

time t ∈ [0, 1]) of Xt = lim−→X
t
i where Xt

i = ((ωtn)[)−1(αi) (with the previous notations).

Unfortunately, according to Remark 45, outside particularity special cases, the ”Darboux
chart” assumption is not true in general, since, in general,⋂

j≥i

δji (Wj)

is not an open neighbourhood of a.

5. Proof of Theorem 4

We begin by a more precise version of Theorem 4. However we need some preliminaries
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5.1. Preliminaries and results.

Definition 28.

(1) Let E be a Banach space, M be a Banach manifold and E = M × E be the trivial
bundle over M . A function || || : E → R is a Finsler structure on E if

i) for each x ∈M , the map u 7→ ||u||x := ||(x, u)|| is a norm which defines the
topology of E;

ii) given x0 ∈ M , and k ≥ 1, there exists a neighbourhood U of x0 in M such
that

∀x ∈ U, ∀u ∈ E, 1

k
||u||x0 ≤ ||u||x ≤ k||u||x0 .

(2) A Banach bundle π : E →M with typical fibre E. A map || || : E → R is called a
Finsler norm on E, if for any x ∈M , there exists a trivilization Φ : E|U → U ×E
over an open neighbourhood U of x such that || ||◦Φ is a Finsler structure on U×E.

If M is a Banach manifold modeled on M, given a chart (U, φ) on M , a trivialization
Φ : E|U → U × E, and a norm ‖ ‖ on E, then we get a canonical Finsler norm on U × E,
(again denoted ‖ ‖), and so via Φ we can provide E|U with an associated Finsler norm.

Consider a submersive projective sequence (Ei, πi,Mi) of Banach bundle. For each x =
lim←−xi ∈ M = lim←−Mi, there exists a projective chart bundle limit (U = lim←−Ui, φ = lim←−φi)
and a trivialisation (U,Φ = lim←−Φi) of E = lim←−Ei over U where Φi is a trivialization of Ei

over Ui. If we identify Ei with the fiber (Ei)xi then Φi is an isomorphism from (Ei)|Ui
.

Given a sequence of norms ((|| ||i)xi)i∈N on (Ei)xi by the previous argument, we obtain
an associated Finsler norm || ||i on (Ei)|Ui

.
Under the assumptions of Proposition 26, given a sequence of norms ((|| ||i)ai)i∈N on
TaiMi, as in section 2.1, we denote simply by || ||i the family od associated Finsler metric
on TM|Ui

. Also, can consider the family of norms (|| ||(ωi)ai
) on TaiMi which gives

rise a family of norm (|| ||∗̂(ωi)ai
) on T̂aiMi

∗
. Thus the bundle (T̂Mi)

∗
|U is provided with

an associated Finsler norm denoted simply || ||∗̂i . Recall that on the set of morphisms

ηi : TMi|U → (T̂Mi)
∗
|U we have an operator norm

||ηi||op
i = sup{||ηi(v)||∗̂i : ||v||i ≤ 1}

The vector field EM characterized by

EM(f)(x) =
d

dt |t=0
f(etx)14

is the Euler vector field on M (in a classical sense). For any chart (U, φ) in M then
E = φ−1

∗ (EM) is called an an Euler vector field on U . We will always consider such local
Euler vector fields.

Here is a precise version of Theorem 4:

Theorem 29. Let M = lim←−Mi be a submersive projective limit of reflexive Banach mani-

folds Mi and (ωi)i∈N a compatible sequence of symplectic forms (resp. ω a symplectic form
on M such that δi : M →Mi is a symplectic submersion).
Assume that there exists a chart (U = lim←−Ui, φ = lim←−φi) around a and sequence of norms

(|| ||ai)i∈N on TaiMi such that, for all i ∈ N, we have:

(DB) The Darboux-Bambusi assumptions are satisfied on Ui.
(SN) if (|| ||op

i ) is the sequence of Finsler norms operator associated to (|| ||i)i∈N on

TMi|Ui
and

(
(|| ||∗̂i )

)
i∈N

on (T̂Mi)
∗
|Ui

, there exists a continuous positive map K

on U such that

∀xi ∈ Ui, ||((ωi)[xi)||
op
i ≤ K(x);

14the same is true for any locally convex topological vector space
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(EN) consider the Euler vector field Ei = φ−1
∗ (EMi) on Ui then there exists a continuous

positive map C on U such

∀xi ∈ Ui, ||(ωi − φ∗iΩi)[xi(Ei)||
∗̂
i
≤ C(x)

where Ωi is the constant 2-form on φi(Ui) defined by (φ−1
i )∗ ((ωi)ai)

Then there exists a Darboux chart around a.

5.2. Proof of Theorem 29. For the sake of simplicity, since there will have non ambi-
guity in this proof, the Finsler norm || ||∗̂i will be simply denoted || ||∗i .

The context of Theorem 4 and Theorem 29 is exactly the case 2 exposed in section
4.2 with the following assumptions :

(i) there exists a limit chart (U = lim←−Ui, φ = lim←−φi) around a such that (T̂Mi)|Ui
is

a trivial Banach bundle.
(ii) ωi can be extended to a smooth field of continuous bilinear forms on (TMi)|Ui

×
(T̂Mi)|Ui

for all i ∈ N.
(iii)

∃K(x) > 0 : ∀xi = δi(x) ∈ Ui, ∀i ∈ N, ||((ωi)[xi)||
op
i ≤ K(x); (13)

∃C(x) > 0 : ∀xi = δi(x) ∈ Ui, ∀i ∈ N, ||(ωi − φ∗iΩi)[xi(Ei)||∗i ≤ C(x) (14)

Thus, according Proposition 26, (T̂M
∗
)|U = lim←−(T̂Mi)

∗
|Ui

is a trivial bundle and ω =

lim←−ωi and the morphism

ω[ : TM → T ∗M

induces an isomorphism from TM|U to (T̂M
∗
)|U .

Since the problem is local, without loss of generality, we can assume that Mi = Ui
(resp. M = U) and is an open set of Mi and (resp. M) and a = 0 ∈ M. By the way we

have TMi = Ui×Mi and (T̂Mi)
∗
|Ui

= Ui×M̂i

∗
. In this context, xi 7→ ((ωi)

[
xi) is a smooth

map from Ui to GL(Mi, M̂i) and xi 7→ ((ωi)
[
xi)
−1 is a smooth map from Ui to GL(M̂i,Mi).

Now each Finsler norm || ||i on Mi (resp. || ||∗i on M̂i

∗
) induces a seminorm νi on M

(resp. ν∗i on M̂∗). Since (ω[x) = lim←−((ωi)
[
xi) and ((ω[x)−1 = lim←−((ω[x)−1, according to our

assumptions, it follows that (ωi)
[
x) (resp. ((ωi)

[
x)−1) belongs to to GHb(M, M̂∗) (resp. to

GHb(M̂∗,M)) (cf. Appendix F).

But, for all t ∈ [0, 1], we have ωta = ωa so (ωta)[ belongs to GHb(M, M̂∗). By compactness

of [0, 1], as x 7→ (ωtx)[ is a smooth map from U toHb(M, M̂∗) and by a continuity argument,

from Proposition 58, we may assume that (ωtx)[ belongs to GHb(M, M̂∗) for all t ∈ [0, 1],

after shrinking U if necessary. Thus ((ωtx)[)−1 exists and belongs to GHb(M̂∗,M). Let

denote by || ||op
∞ the norm on GHb(M, M̂∗) and GHb(M̂∗,M). Thus if K = ||ω[0||op

∞ and

k = ||(ω[0)−1||op
∞ , again from Proposition 58, by a continuity argument, there exists an

open neighbourhood W = lim←−Wi of a ∈ U such that

||(ωtx)[||op
∞ ≤ 2K ∀x ∈W t ∈ [0, 1] (15)

(||((ωtx)[)−1||op
∞ ≤ 2k ∀x ∈W t ∈ [0, 1] (16)

On the other hand, from its definition, it follows that the sequence (Ei) is a projective
sequence of vector fields and it projective limit E = lim←−Ei is Euler vector field on M in the

classical sense. Since in our context have (φ∗iΩi)xi is simply (Ωi)xi = ωai for all xi ∈ Ui,
then (ωi − φ∗iΩi)[xi(Ei) is simply (ωi − Ωi)

[
xi(Ei) and so we get

lim←−(ωi − Ωi)
[
xi(Ei) = (ω − Ω)[x(E) (17)
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where obviously Ωx = lim←−(Ωi)xi = ωa for all x ∈ U .

On the other hand by same arguments used to obtain (15), it is clear that from (14), after
shrinking W if necessary, we get

||(ω − Ωi)
[
x(E)||∗∞ ≤ 2C ∀x ∈W (18)

Note that from the definition of Ei, in our context, we have Ei(xi) = xi and so E(x) = x.
Thus the relations (12) and (11) are respectively exactly

(αi)xi =

∫ 1

0

(ωi − Ωi)
[
sxi(Ei)ds; (19)

αx =

∫ 1

0

(ω − Ω)[sx(E)ds. (20)

Thus from (18), we have
||αx||∗∞ ≤ 2C, ∀x ∈W (21)

where || ||∗∞ is the norm for uniformly bounded elements of M̂∗.

According to Remark 27, the time dependent vector field Xt = ((ωt)[)−1(α) is defined
on a star-shaped open set W1 in W at 0. The following Lemma asserts that Xt satisfies
the assumption of Theorem 60 which ends the proof.

Lemma 30. We can choose the a star-shaped open set V of 0 ∈ U such that Xt is
Lipschitz on V that is:

there exists a a constant κ > such that νi(X
t
x −Xt

x′) ≤ κνi(x− x′)
for all x, x′ ∈ V, all t ∈ [0, 1] and all i ∈ N.

Proof Note that from (17), (19) and (20) it follows that

α = lim←−αi.
Since from (19) the map xi 7→ (αi)xi is smooth, this implies that x 7→ αx is a smooth

map from W1 to M̂∗ which is uniformly bounded from (21). Therefore this map is κ1-
Lipschitz for some κ1 > 0 (cf. [3]) on some star-shaped open W2 of 0 ∈W1 that is

ν∗i (αx − αx′) ≤ κ1νi(x− x′), ∀x, x′ ∈W2, ∀i ∈ N

From (16), by the same type of arguments for x 7→ ((ωtx)[)−1 we obtain that there exists
a star-shaped open neighbourhood of W3 of 0 ∈W1 such that this map is κ2-Lipschitz.

Taking in account (21), we obtain

νi(X
t
x −Xt

x′) ≤ νi
(

((ωtx)[)−1(αx)− ((ωtx′)
[)−1(αx)

)
+ νi

(
((ωtx′)

[)−1(αx − αx′)
)

≤ 2Cκ2νi(x− x′) + 2kκ1νi(x− x′)
for any t ∈ [0, 1] and any i ∈ N. This ends the proof by taking V = W3 and κ =

2Cκ2 + 2kκ1.
�

6. Examples and contre-example about the existence of a projective limit
of Darboux charts

Example 31 (Example of existence of Darboux chart around any point).
According to [23] section 4, the set Lpk(S1,M) of Sobolev loops of class Lkp has a Banach

structrue manifold and if where (M,ω) is a symplectic manifold, we can provide Lpk(S1,M)

with a weak symplectic form Ωk and around any γ ∈ Lpk(S1,M), we have a Darboux chart

(cf. [23] Theorem 32). Moreover, L2
k(S1,M) is a Hilbert space and Ωk is a strong symplectic

form. If we denote by L∞(S1,M) the set of smooth loops in M , we have L∞(S1,M) =
lim←−L

2
k(S1,M) and this space is a ILH-manifold. It is easy to see that the sequence of forms

(Ωk)k∈N are compatible and since the projective sequence
(
L2
k(S1,M)

)
k∈N is reduced, we

get a weak symplectic form Ω = lim←−Ωk on L∞(S1,M). In fact, Ω can be defined directly

in the same way as Ωk on each Lpk(S1,M).

When M = R2m, consider the canonical (linear) Darboux form ω on R2m. Then we have
a global Darboux chart for Ω on L∞(S1,R2m) (cf. [16]). Of course, since we also have a
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global Darboux chart on each L2
k(S1,R2m), we then get an example of projective limit of

Darboux charts.

Example 32 ( Existence of Darboux chart under Darboux-Bambusi assump-
tions). Let (Mi)i∈N be a sequence of Banach spaces. Consider the submersive projective

sequence of Banach spaces

(
Mi =

i∏
k=1

Mk

)
i∈N∗

of Banach spaces where δ̄ji : Mj → Mi is

the canonical projection. Then the projective limit M is the product

∞∏
k=1

Mk. On M the

projective limit topology is the product topology and it is also the topology of Fréchet
manifold.
Now, assume that on each Mk we have a weak symplectic form ωk such that, for some
ā = lim←−(a1, . . . , an) ∈ M, each symplectic form ωk satisfies the assumptions (i) and (ii) of

Theorem 17 at ak and for all k ∈ N∗. Then from this Theorem, around the point ak ∈ Mk,
we have a Darboux chart (Vk, Fk).

For any x̄n := (x1, . . . , xn) ∈ Mn and ūn := (u1, . . . , un), v̄n = (v1, . . . , vn) in Tx̄nMn we
define the 2 form

ω̄n(ūn, v̄n) :=

n∑
k=1

ωk(uk, vk).

Then ω̄n is also a weak symplectic form on Mn and it is easy to see that (V n, Fn) is
a Darboux chart for ω̄n around x̄n. Now it is clear that the sequence (ω̄n)n∈N of weak

symplectic forms are compatible and so give rise to a weak symplectic form ω̄ on M. Then
(V = lim←−V n, lim←−Fn) is a Darboux chart around ā := lim←−ān if V is an open set that is

V n = Mn for any n ∈ N execpt eventually for a finite subset J ⊂ N. Such a situation
occurs in the following contexts:

(1) ωk is a linear Darboux form on the Banach space Mk for all k ∈ N eventually
outside of finite set J (cf. section 2.1).

(2) ωk is a weak linear symplectic form on the reflexive Banach space Mk for all
k ∈ N∗ eventually outside of finite set J (cf. [4] Proposition B.3 Point (3))

(3) H is a separable infinite-dimensional real Hilbert space and we consider:
– Mk = H for each integer k ∈ N;
– Sk : H→ H is a compact operator with dense range, but proper subset of H,

which is self adjoint and positive15 (such an operator is injective)
– ω̂ a linear Darboux form on H and ωk = S∗k ω̂ for at most a finite number of

integers and otherwise Sk = IdH.

From the example produced in [19], we can obtain the following example for which there
is no Darboux chart on a submersive projective limit of symplectic Banach manifolds:

Example 33 (Non existence of Darboux chart). Let H be a separable infinite-
dimensional real Hilbert space endowed with its inner product < , >. If g is a weak
Riemannian metric on H, we may use the trivialization TH = H × H to define a weak
symplectic form ω in the following way ([19]):

2 ω(x,e)((u, v), (u′, v′)) = Dxgx(e, u).u′ −Dxgx(e, u′).u+ gx(v′, u)− gx(v, u′).

Then the operator ω[(x,e) : T(x,e)H×H→ T ∗(x,e)H×H can be written as a matrix of type

1

2

(
Γ(x,e) −g[x
g[x 0

)
(22)

Since g[x is always injective by assumption, it follows that ω[(x,e) is always injective and is

surjective if and only g[x is so. It follows that if Σ is the set of points x ∈ H where g[x is
not surjective, then the set of points (x, e) ∈ TH where ω(x,e) is not a strong symplectic

15such operators Sk exist since the Hilbert space H is separable and infinite-dimensional
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form is precisely Σ×H.

As at the end of the above Example, let S : H→ H be a compact operator with dense
range, but proper subset of H, which is self adjoint and positive. Given a fixed a ∈ H,
then Ax = ||x − a||2IdH + S is a smooth field of bounded operators of H which is an
isomorphism for all x 6= a and Aa(H) 6= H but Aa(H) is dense in H (cf. [19]). Then
gx(e, f) =< Ax(e), f > is a weak Riemaniann metric and the associated symplectic form
ω(x,e) is not a strong symplectic form if and only if (x, e) belongs to {a} ×H and, in this

case, the range of ω[(x,e) is dense in T ∗(x,e)(H×H) ≡ H×H.

For each k ∈ N∗ and any x ∈ H we set

(Ak)x = ||x− a

k
||2IdH + S.

We consider the Hilbert space Hn =
n∏
k=1

Hk where Hk = H and provided with the inner

product

< (x1, . . . , xn), (y1, . . . , yn) >n=

n∑
k=1

< xk, yk >

As in the previous example, we identify Hn with Hn×{0} in Hn+1. From now on, we will
use the notations introduced in Example 32.
For any x̄n = (x1, . . . , xn) ∈ Hn, we set

(`n)x̄n = ((A1)x1 , . . . , (An)xn) .

We denote by ḡn the Riemannian metric on Hn defined by

(ḡn)x̄n(ūn, v̄n) =< (`n)(x1,...,xn)(ūn), v̄n >n

for all ūn and v̄n in Hn. Thus we can consider the weak symplectic form ωn associated to
gn as above. Therefore the maximal open set on which ω̄n is a strong symplectic form is
the open set

Un = THn \
n⋃
k=1

({a
k
} ×

n∏
k=2

Hk)×Hn

By construction, for all j ≥ n and n ∈ N∗, we have

δjn ◦ (`j)δjn(x̄j)
= (`n)x̄n ◦ δ

j
n.

We set H = lim←−Hn. From all the above considerations, it follows that the sequence

(ω̄n)n∈N∗ is a family of compatible weak symplectic forms which induces a weak symplectic

form ω̄ on the Fréchet manifold TH ≡ H× H since, as in the general case, the cotangent
space T ∗(x̄,ū)(H× H) does not have a Fréchet structure, which implies that ω̄[ can not be
surjective.
Now, for each n ∈ N∗, as (0, 0) belongs to the open set Un, we have a Darboux chart

(V n, Fn) around (0, 0) ∈ THn from the classical Darboux Theorem for strong symplectic
Banach manifold (cf. [18] or [25] for instance). Since ω̄n is a strong symplectic form on

V n we must have V n ⊂ Un. But from the definition of Un, it follows that

δn1 (V n) ∩ TH1 ⊂ {(x, u) ∈ H×H : ||x|| < 1

n
}.

Therefore, according to Remark 45, the sequence (V n, Fn) is not a projective sequence of

charts and so there is no Darboux chart for ω̄ around (0, 0) ∈ TH.

.

Example 34 (Existence of Darboux chart under Theorem 29 assumptions).
We again consider an Hilbert space a separable infinite-dimensional real Hilbert space
endowed with its inner product < , > and for each k ∈ N∗ and any x ∈ H we set

(Λk)x =
1

k2
(||x||2S + IdH)
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where S is a compact operator with dense range, which is self adjoint and positive. Since
the set of GL(H) automorphisms of H is open in the Banach space L(H) of endomorphisms
of H, there exists a ball B(0, 2ηk) such that Λk(x) belongs to GL(H) and moreover such
that

||Λk(x)||op ≤ 2

k2

for all x ∈ B(a, 2ηk). Consider a smooth map θk : R+ → R+ such that θk(t) = t for
0 ≤ t ≤ ηk and θk(t) = 0 for t > 2ηk and we set

(Ak)x =
1

k2
(θk(||x||2)S + IdH)

Since |θ(t)| ≤ 2ηk for all t ∈ R+ we obtain

||Ak(x)||op ≤ 2

k2
. (23)

for all x ∈ H.

Note since θk is smooth with compact support, there exist Ck > 0 such that ||dθk|| ≤ Ck
and so

||dθ(||x||2)||op ≤ 4Ckηk (24)

for all x ∈ H.

Now, on M = H×H provided with the inner product

< (x, x′), (y, y′) >=< x, x′ > + < y, y′ >

we consider the 1-form

(αk)(x,x′)(u, u
′) = (Ak)x(u)− (Ak)x′(u)

and we set ωk = dαk. Then we have
(ωk)(x,x′)((u, u

′), (v, v′)) =
1

2k2

(
(2dθk(||x||2) < x, u > S(v)+ < ((θ(||x||2)S + IdH)(v), u > − < ((θ(||x||2)S + IdH)(v), u >)

)
− 1

2k2

(
−2dθk(||x′||2) < x′, u′ > S(v′)+ < ((θ(||x′||2)S + IdH)(v′), u′ > − < ((θ(||x′||2)S + IdH)(u′), v′ >

)
It follows that (ωk)[x(u, u′) can be written as the matrix

1

2k2

( (
(2dθk(||x||2) < x, u > S( )+ < ((θ(||x||2)S + IdH)( ), u > − < ((θ(||x||2)S + IdH)(u), >)

)(
2dθk(||x′||2) < x′, u′ > S( )− < ((θ(||x′||2)S + IdH)( ), u′ > + < ((θ(||x′||2)S + IdH)(u′), >

)) .
(25)

According to (25), (23), and (24) since θk ≡ 0 for t > 2ηk and we obtain

||(ωk)[(x,x′)||op ≤ 1

k2
(2 + 4||S||opηk(Ck + 1)) (26)

Now, from the construction of Ak, for x = 0, (ωk)[(0,0) is an isomorphism. Thus, for ηk

small enough, it follows that (ωk)[(x,x′) is an isomorphism for all (x, x′) ∈ M and so ωk is
a strong symplectic form on M.

Note that if we choose a decreasing sequence (ηk) so is the sequence (Ck) and in this
way for any k ≥ 1 we get

||(ωk)[(x,x′)||op ≤ 1

k2
(2 + 4||S||opη1(C1 + 1)) (27)

for all (x, x′) ∈ M.
Again from (25), (23), and (24), since θk ≡ 0 for t > 2ηk and and if (ηk) is decreasing

we obtain

||(ωk)[x,y)(E(x, x′))− (ωk)[(00)(E(x, x′))||op ≤ 1

k2
||S||op(4η1)2(C1 + 1) (28)

for all (x, x′) ∈ M where E is the classical Euler vector fields on M.
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By analogy with Example 32, we consider the Hilbert space Mn =

n∏
k=1

Mk where

Mk = M for k = 1, . . . , n and provided with the inner product

< (x1, . . . , xn), (y1, . . . , yn) >n=

n∑
k=1

< xk, yk >

From now on, we will use analogous notations introduced in the previous Example 33. For
any x̄n = (x1, . . . , xn) ∈ Mn, here we set

(`n)x̄n = ((A1)x1 , . . . , (An)xn) .

We can consider the symplectic form ω̄n = (ω1, . . . ωn) on Mn where ωk is the symplectic
form on Mk associated to (`k) (as in Example 32) and we choose a decreasing sequence

(ηk). At point x̄n the linear map (ω̄n)[x̄n is the matrix of diagonal blocks (ωk)[xk . According
to (26), there exists K > 0 (independent of n) such that

||(ω̄n)[x̄n ||
op ≤

(
n∑
k=1

1

k2

)
K ≤ π2

6
K (29)

for all x̄n ∈ Mn.

On the other hand, denote by Ek the Euler vector fields on Mk then the Euler vector
field En on Mn is (E1, . . . ,En). Then by analog arguments, from (28), there exists a
C > 0 such that

||(ω̄n)[x̄n(Ēn(x̄n)− (ω̄n)[0̄(Ēn(x̄n)||op ≤ π2

6
C (30)

Now, as in the Example 32, if we set M = lim←−Mn it follows that the sequence (ω̄n)n∈N∗
is a family of compatible strong symplectic forms which induces a weak symplectic form ω̄
on the Fréchet manifold M . In particular, the assumptions of Proposition 26 are satisfied
around point 0̄ ∈ M for the global chart (M, Id). Moreover, according to (29) and (30),
on this chart, the assumptions (SN) and (EN) are satisfied. It follows that there exists

a Darboux chart around 0̄ ∈M which is a global chart.

Remark 35. In [15] the required conditions for a sequence of compatible weak symplectic
forms can be weakened. Precisely condition (2) is needed only for the sequence (αi) defined
by (12). So according to this Remark, it is easy to see that the example 34 satisfies the
other assumptions required in Theorem 5.1 in [15]. Now consider any finite sequences
of weak symplectic manifolds Banach manifold (M1, σ1), . . . , (Mp, σp) which satisfies the
Darboux-Bambusi Theorem assumptions around some points ai ∈Mi, i = 1, . . . , p but not
for a global chart (that is the associated vector field Xt

i given in the Moser’s method is not
defined on the whole manifold Mi for i = 1, . . . , p). For instance, one can take for Mi the
Sobolev Banach manifold of loops Lpk(S,M) where M is a finite dimensional symplectic

manifold and use Theorem 5.9 in [23]. Then by taking Mn =
∏k
i=1 Mi×Mn we can build

a projective sequence of weak symplectic Banach manifolds for which the assumptions of
Theorem 29 or Theorem 4 are satisfied but not the assumptions of Theorem 5.1 of [15]
since on each Mi the vector fields Xt

i is not globally defined on Mi. Also the condition (2)
in [15] for compatible sequences of weak symplectic form is not checked either.

Appendix A. Projective limits of topological spaces

Definition 36. A projective sequence of topological spaces is a sequence((
Xi, δ

j
i

))
(i,j)∈N2, j≥i where

(PSTS 1): For all i ∈ N, Xi is a topological space;

(PSTS 2): For all (i, j) ∈ N2 such that j ≥ i, δji : Xj → Xi is a continuous map;
(PSTS 3): For all i ∈ N, δii = IdXi ;

(PSTS 4): For all (i, j, k) ∈ N3 such that k ≥ j ≥ i, δji ◦ δ
k
j = δki .
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Notation 37. For the sake of simplicity, the projective sequence
((
Xi, δ

j
i

))
(i,j)∈N2, j≥i

will be denoted
(
Xi, δ

j
i

)
.

An element (xi)i∈N of the product
∏
i∈N

Xi is called a thread if, for all j ≥ i, δji (xj) = xi.

Definition 38. The set X = lim←−Xi of all threads, endowed with the finest topology for

which all the projections δi : X → Xi are continuous, is called the projective limit of the
sequence

(
Xi, δ

j
i

)
.

A basis of the topology of X is constituted by the subsets (δi)
−1 (Ui) where Ui is an

open subset of Xi (and so δi is open whenever δi is surjective).

Definition 39. Let
(
Xi, δ

j
i

)
and

(
Yi, γ

j
i

)
be two projective sequences whose respective

projective limits are X and Y .
A sequence (fi)i∈N of continuous mappings fi : Xi → Yi, satisfying, for all (i, j) ∈ N2,

j ≥ i, the coherence condition
γji ◦ fj = fi ◦ δji

is called a projective sequence of mappings.

The projective limit of this sequence is the mapping

f : X → Y
(xi)i∈N 7→ (fi (xi))i∈N

The mapping f is continuous if all the fi are continuous.

Appendix B. Projective limits of Banach spaces

Consider a projective sequence
(
Ei, δji

)
of Banach spaces.

Remark 40. Since we have a countable sequence of Banach spaces, according to the
properties of bonding maps, the sequence

(
δji
)

(i,j)∈N2, j≥i is well defined by the sequence of

bonding maps
(
δi+1
i

)
i∈N.

Fix some norm ‖ ‖i on Ei, for all i ∈ N. If x = lim←−xi, then pn(x) = max
0≤i≤n

‖xi‖i is a

semi-norm on the projective limit F = lim←−En which provides a structure of Fréchet space

on this vector space (see [5]).

Definition 41. A projective sequence
(
Ei, δji

)
of Banach spaces is called reduced if the

range of δi+1
i is dense for all i ∈ N.

Definition 42. Two projective sequences
(
Ei, δji

)
and

(
E′i, δ′ji

)
of Banach spaces are

called equivalent if there exist isometries Ai : Ei → E′i for all i ∈ N such that

δi+1
i = A−1

i ◦ δ
′i+1
i ◦Ai+1.

Of course, any projective sequence
(
Ei, δji

)
of Banach spaces is not reduced and, in

general, such a sequence is not equivalent to a reduced one. However, by replacing each

Ei by the closure E′i in Ei of δi+1
i (Ei+1) and δi+1

i by the restriction δ′
i+1
i of δi+1

i to E′i+1,

we produce a reduced sequence of Banach spaces
(
E′i, δ′

j
i

)
such that lim←−Ei = lim←−E

′
i.

Conversely, any Fréchet space provided with a countable family of semi-norms is topolog-
ically isomorphic to the projective limit of a reduced projective sequence.

A particular important case of projective limit of a reduced projective sequence of
Banach spaces corresponds to the case of a decreasing sequence:

E0 ⊃ E1 ⊃ · · · ⊃ Ei ⊃ Ei+1 ⊃ · · ·
fulfilling, for any i ∈ N, the properties:

(DecS 1): the inclusion ιi+1
i : Ei+1 → Ei is continuous;

(DecS 2): Ei+1 is dense in Ei.
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Then the projective limit lim←−Ei is the intersection
⋂
i∈N

Ei; it is called an inverse limit of

Banach spaces or ILB for short (cf. [22]). In fact, any Fréchet space is an ILB space (cf.
Appendix A).

Appendix C. Projective limits of differential maps

The following proposition (cf. [8], Lemma 1.2) is essential

Proposition 43. Let
(
Ei, δji

)
be a projective sequence of Banach spaces whose projec-

tive limit is the Fréchet space F = lim←−Ei and (fi : Ei → Ei)i∈N a projective sequence of

differential maps whose projective limit is f = lim←−fi. Then the following conditions hold:

(1) f is smooth in the convenient sense (cf. [13])
(2) For all x = (xi)i∈N, dfx = lim←−(dfi)xi .

(3) df = lim←−dfi.

Appendix D. Projective limits of Banach manifolds

Definition 44. The projective sequence
(
Mi, δ

j
i

)
j≥i is called projective sequence of Banach

manifolds if

(PSBM 1): Mi is a manifold modeled on the Banach space Mi;

(PSBM 2):
(
Mi, δ

j
i

)
j≥i

is a projective sequence of Banach spaces;

(PSBM 3): For all x = (xi) ∈ M = lim←−Mi, there exists a projective sequence of

local charts (Ui, ϕi)i∈N such that xi ∈ Ui where one has the relation

ϕi ◦ δji = δji ◦ ϕj ;

(PSBM 4): Under the previous assumptions if φ = lim←−Ui and U = lim←−Ui then φ(U)

is an open set of M = lim←−Mi.

Under the assumptions (PSBM 1) and (PSBM 2) in Definition 44, the assumptions
(PSBM 3)] and (PSBM 4) around x ∈ M is called the projective limit chart property
around x ∈M and (U = lim←−Ui, φ = lim←−φi) is called a projective limit chart.

The projective limit M = lim←−Mi has a structure of Fréchet manifold modeled on the

Fréchet space M = lim←−Mi and is called a PLB-manifold . The differentiable structure is

defined via the charts (U,ϕ) where ϕ = lim←−ϕi : U → (ϕi (Ui))i∈N .

ϕ is a homeomorphism (projective limit of homeomorphisms) and the charts chang-

ings
(
ψ ◦ ϕ−1

)
|ϕ(U)

= lim←−
((
ψi ◦ (ϕi)

−1)
|ϕi(Ui)

)
between open sets of Fréchet spaces are

smooth in the sense of convenient spaces.

Remark 45. If M is the projective limit of the sequence
(
Mi, δ

j
i

)
j≥i, then, as a set, M

can identified with {
(xi)i∈N ∈

∏
i∈N

Mi : ∀j ≥ i, xi = δji (xj)

}
.

Since each Mi is a topological space, we can provide
∏
i∈N

Mi with the product topology and

so, since each δji is continuous, it follows that M is a closed subset in
∏
i∈N

Mi which can

be provided with the induced topology generated by the open sets of type
∏
i∈N

Vi
⋂
M where

Vi is an open set of Mi for a finite number of indices i and otherwise Vi = Mi.
However, under the previous identification, as Fréchet manifold, the topology on M is not
this projective limit topology according to the assumption (PSBM 4). By the way, this
topology is generated by all the sets of projective limit of charts (U = lim←−Ui) where Ui is

a chart domain in Mi for all i ∈ N. Of course in general such set U is not an open set
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in the projective limit topology. In fact, if δi = lim←−j≥iδ
j
i then we have U =

⋂
i∈N

δ−1
i (Ui).

Without the assumption (PSBM 4),
⋂
i∈N

δ−1
i (Ui) could be reduced to a point.

The sequence
(
Mi, δ

j
i

)
j≥i is called reduced projective sequence of Banach manifolds if

the sequence
(
Mi, δ

j
i

)
is a reduced projective sequence of Banach spaces. Then δji (Mj) is

dense in Mi for all j ≥ i. We will say that
(
Mi, δ

j
i

)
is a reduced projective sequence and

M = lim←−Mi is a reduced PLB-manifold . This situation occurs when the bonding map δji is

a surjective submersion from Mj onto Mi for all j ≥ i. In this case, we say that
(
Mi, δ

j
i

)
is a surjective projective sequence and M = lim←−Mi is a surjective PLB-manifold . More

particular is the situation:

Definition 46. The sequence
(
Mi, δ

j
i

)
is called submersive projective sequence of Banach

manifolds if

(SPSBM 1): ∀(i, j) ∈ N2 : j ≥ i, δji : Mj →Mi is a surjective submersion;
(SPSBM 2): Around each x ∈ M = lim←−Mi, there exists a projective limit chart(

U = lim←−Ui, ϕ = lim←−ϕi
)

;

(SPSBM 3): For all i ∈ N, there exists a decomposition Mi = ker δ̄i+1
i ⊕M′i such

that the following diagram is commutative:

Ui+1

ϕi+1 //

δi+1
i

��

(ker δ̄i+1
i ×M′i)

δ̄i+1
i

��
Ui

ϕi // Mi

(31)

Such a chart is called a submersive projective limit chart around x.

The projective limit M = lim←−Mi of a submersive projective sequence
(
Mi, δ

j
i

)
is called

asubmersive projective limit of Banach manifolds or for short a submersive PLB-manifold .
In this case, we have the following results (cf. [3])

Proposition 47. Let
(
Mi, δ

j
i

)
be a surjective (resp. submersive) projective sequence.

Then, for each i ∈ N, the map δi : M →Mi is surjective (resp. is a submersion).

Under the assumptions of Proposition 47, in fact each δji : Mj → Mi is a surjective
submersion for all j ≥ i where (i, j) ∈ N2.

Another important situation of reduced PLB-manifold, is the case of ILB-manifold de-
fined as follows:

Definition 48. A PLB-manifold M = lim←−Mi is called ILB-manifold if

(ILBM 1): ∀i ∈ N, Mi+1 ⊂Mi;
(ILBM 2): ∀i ∈ N, δi+1

i : Mi+1 → Mi is the canonical inclusion which is a weak
immersion with dense range.

Note that this definition is stronger than the definition of ILB-manifold in the Omori’s

sense (see [22]) since we impose the condition (PSBM4). In this case, M =
⋂
i∈N

Mi.

Appendix E. Projective limits of Banach vector bundles

Let
(
Mi, δ

j
i

)
be a projective sequence of Banach manifolds where each manifold Mi is

modeled on the Banach space Mi.
For any integer i, let (Ei, πi,Mi) be the Banach vector bundle whose type fibre is the

Banach vector space Ei where
(
Ei, λji

)
is a projective sequence of Banach spaces.

Definition 49.
(
(Ei, πi,Mi),

(
f ji , δ

j
i

))
j≥i, where f ji : Ej → Ei is a morphism of vector

bundles, is called a projective sequence of Banach vector bundles on the projective sequence



28 FERNAND PELLETIER

of manifolds
(
Mi, δ

j
i

)
if for all (xi) there exists a projective sequence of trivializations

(Ui, τi) of (Ei, πi,Mi) , where τi : (πi)
−1 (Ui) → Ui × Ei are local diffeomorphisms, such

that xi ∈ Ui (open in Mi) and where U = lim←−Ui is a non empty open set in M where, for

all (i, j) ∈ N2 such that j ≥ i, we have the compatibility condition

(PLBVB):
(
δji × λ

j
i

)
◦ τj = τi ◦ f ji .

With the previous notations, (U = lim←−Ui, τ = lim←−τi) is called a projective bundle chart

limit The triple of projective limit (E = lim←−Ei, π = lim←−πi,M = lim←−Mi)) is called a pro-

jective limit of Banach bundles or PLB-bundle for short.

The following proposition generalizes the result of [10] about the projective limit of
tangent bundles to Banach manifolds.

Proposition 50. Let
(
(Ei, πi,Mi),

(
f ji , δ

j
i

))
j≥i be a projective sequence of Banach vector

bundles.

Then
(

lim←−Ei, lim←−πi, lim←−Mi

)
is a Fréchet vector bundle.

Remark that GL (E) cannot be endowed with a structure of Lie group. So it cannot
play the role of structural group. We then consider, as in [9], the generalized Lie group
H0 (E) = lim←−H

0
i (E) which is the projective limit of the Banach-Lie groups

H0
i (E) =

{
(h1, . . . , hi) ∈

i∏
j=1

GL (Ej) : λjk ◦ hj = hk ◦ λjk, for k ≤ j ≤ i

}
.

We then obtain the differentiability of the transition functions T.

Example 51. As a particular case of Proposition 50, we can consider the projective se-
quence of tangent bundles

(
(Ei, πi,Mi),

(
Tδji , δ

j
i

))
j≥i of a projective sequence of Banach

manifolds (Mi, δ
j
i ). Thus, if each Mi is modeled on the Banach space Mi,

(
lim←−TMi, lim←−πi, lim←−Mi

)
is a Fréchet vector bundle whose typical fibre is M = lim←−Mi with structural group H0 (M).

As we have already seen, this result was firstly proved in [10].

Notation 52. From now on and for the sake of simplicity, the projective sequence of
vector bundles

(
(Ei, πi,Mi),

(
f ji , δ

j
i

))
j≥i will be denoted (Ei, πi,Mi).

As in Appendix D, we introduce

Definition 53. A sequence (Ei, πi,Mi) is called a submersive projective sequence of Ba-
nach vector bundles if (Ei, π,Mi) is a submersive projective sequence of Banach manifolds
and if around each x ∈ M , there exists a projective limit chart bundle (U = lim←−Ui, τ =

lim←−τi) such that for all i ∈ N, we have a decomposition Ei+1 = ker λ̄i+1
i ⊕E′i such that the

condition (PLBVB) is true.

The projective limit (E, π,M) of a projective sequence of Banach vector bundles
(Ei, π,Mi) is called a submersive projective limit of Banach bundles or submersive PLB-
bundle for short.

Now, we have the following result whose proof is similar to Proposition 47:

Proposition 54. Let (Ei, πi,Mi) be a submersive projective sequence of Banach bundles.
Then, for each i ∈ N, the map λi : E → Ei is a submersion.

Appendix F. The Banach space Hb (F1,F2)

Let (F1, ν
1
n) (resp. (F2, ν

2
n)) be a graded Fréchet space.

Recall that a linear map L : F1 → F2 is continuous if

∀n ∈ N, ∃kn ∈ N,∃Cn > 0 : ∀x ∈ F1, ν
n
2 (L.x) ≤ Cnνkn1 (x) .
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The space L (F1,F2) of continuous linear maps between both these Fréchet spaces gen-
erally drops out of the Fréchet category. Indeed, L (F1,F2) is a Hausdorff locally convex
topological vector space whose topology is defined by the family of semi-norms {pn,B}:

pn,B (L) = sup
x∈B

{
ν2
n (L.x)

}
where n ∈ N and B is any bounded subset of F1. This topology is not metrizable since
the family {pn,B} is not countable.
So L (F1,F2) will be replaced, under certain assumptions, by a projective limit of appro-
priate functional spaces as introduced in [9].

We denote by L (Bn1 ,Bn2 ) the space of linear continuous maps (or equivalently bounded
linear maps because Bn1 and Bn2 are normed spaces). We then have the following result
([5], Theorem 2.3.10).

Theorem 55. The space of all continuous linear maps between F1 and F2 which can be
represented as projective limits

H (F1,F2) =

{
(Ln) ∈

∏
n∈N

L (Bn1 ,Bn2 ) : lim←−Ln exists

}
is a Fréchet space.

For this sequence (Ln)n∈N of linear maps, for any integer 0 ≤ n ≤ m, the following
diagram is commutative

Bn1 oo
(δ1)mn

Ln

��

Bm1

Lm

��
Bn2 oo

(δ2)mn Bm2
On H (F1,F2), the topology can be defined by the sequence of seminorms pn given by

pn (L) = max
0≤k≤n

sup
{
ν2
k (L.x) , x ∈ F1, ν

1
k(x) ≤ 1

}
so that (H (F1,F2) , pn) is a graded Fréchet space.

Remark 56. For l ∈ {1, 2} , given a graduation
(
νln
)

on a Fréchet space Fl, let Bnl be
the associated local Banach space and δnl : Fl → Bnl the canonical projection.
The quotient norm ν̃ln associated to νln is defined by

ν̃ln(δn(z)) = sup{νln(y) : δn(y) = δn(z)}. (32)

We denote by (ν̃2
n)op the corresponding operator norm on L(Bn1 ,Bn2 ).

If L = lim←−Ln where Ln : Bn1 → Bn2 , then we have

(ν̃2
n)op(Ln) = sup{ν̃2

n(Ln.x), x ∈ Bn1 ν̃1
n(x) ≤ 1} = sup{ν2

n(L.x), x ∈ F1, ν
1(x) ≤ 1}.

This implies that

pn(L) = max
0≤i≤n

(ν̃2
i )op(Ln).

Definition 57. Let (F1, ν
1
n) and (F2, ν

2
n) be graded Fréchet spaces. A linear map L : F1 →

F2 is called a uniformly bounded operator, if

∃C > O : ∀n ∈ N, νn(L(x)) ≤ Cµn(x).

We denote by Hb (F1,F2) the set of uniformly bounded operators. Of course Hb (F1,F2)
is contained inH (F1,F2) and L ∈ H (F1,F2) belongs toHb (F1,F2) if and only if sup

n∈N
pn(L) <

∞ and so

Hb (F1,F2) = [H (F1,F2)]b

that is the set of uniformly bounded elements of H (F1,F2), relative to the sequence of
semi-norms (pn).
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When F = F1 = F2 and ν1
n = ν2

n for all n ∈ N, the set H (F,F) (resp. Hb (F,F)) is
simply denoted H (F) (resp. Hb (F)).

We denote by IHb (F1,F2) (resp. SHb (F1,F2)) the set of injective (resp. surjective)
operators of Hb (F1,F2) with closed range.

Proposition 58. ([3])

(1) Each operator L ∈ H (F1,F2) has a closed range if and only if, for each n ∈ N,
the induced operator Ln : Bn1 → Bn2 has a closed range.

(2) IHb (F1,F2) is an open subset of Hb (F1,F2).
(3) SHb (F1,F2) is an open subset of Hb (F1,F2).

We are in situation to end this section by the following result:

Theorem 59. ([3])

(1) The Banach space Hb(F) has a Banach-Lie algebra structure and the set GHb(F)
of uniformly bounded isomorphisms of F is open in Hb(F).

(2) GHb(F) has a structure of Banach-Lie group whose Lie algebra is Hb(F).
(3) If F is identified with the projective lim←−B

n we denote by expn : L(Bn)→ GL(Bn),

then we a have a well defined smooth map exp := lim←− expn : Hb(F) → GHb(F)

which is a diffeomorphism from an open set of 0 ∈ Hb(F) onto a neighbourhood
of IdF.

Appendix G. A theorem of existence of ODE

The following result is in fact a reformulation in our context of Theorem 1 in [17].

Theorem 60. Let F a Fréchet space realized as the limit of a surjective projective sequence
of Banach spaces (Bn, λmn ) whose topology is defined by the sequence of seminorms (νn)n∈N.
Let I be an open interval in R and U be an open set of I × F. Then U is a surjective
projective limit of open sets Un ⊂ I × Bn. Consider a smooth map f = lim←−fn : U → F,

projective limit of maps fn : Un → Bn. 16 Assume that for every point (t, x)) ∈ U , and
every n ∈ N, there exists an integrable function Kn > 0 such that

∀
(
(t, x), (t, x′)

)
∈ U2, νn(f(t, x)− f(t, x′)) ≤ Kn(t)νn(x− x′). (33)

and consider the differential equation:

ẋ = f (t, x) . (34)

(1) For any (t0, x0) ∈ U , there exists α > 0 with Iα = [t0 − α, t0 + α] ⊂ I, an open
pseudo-ball V = B(x0, r) ⊂ U and a map Φ : Iα × Iα × V → F such that

t 7→ Φ(t, τ, x)

is the unique solution of (34) with initial condition Φ(τ, τ, x) = x for all x ∈ V .
(2) V is the projective limit of the open balls Vn of Bn. For each n ∈ N, the curve

t 7→ λn ◦ Φ(t, τ, λn(x)) is the unique solution γ : Iα → Bn of the differential
equation ẋn = φn (t, xn) with initial condition γ(τ) = λn(x).
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