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PROJECTIVE LIMIT OF A SEQUENCE OF COMPATIBLE WEAK
SYMPLECTIC FORMS ON A SEQUENCE OF BANACH BUNDLES
AND DARBOUX THEOREM

FERNAND PELLETIER

ABSTRACT. Given a projective sequence of Banach bundles, each one provided with
a of weak symplectic form, we look for conditions under which, the corresponding
sequence of weak symplectic forms gives rise to weak symplectic form on the projec-
tive limit bundle. Then we apply this results to the tangent bundle of a projective
limit of Banach manifolds. This naturally leads to ask about conditions under which
the Darboux Theorem is also true on the projective limit of Banach manifolds. We
will give some necessary and some sufficient conditions so that such a result is true.
Then we discuss why, in general, the Moser’s method can not work on projective
limit of Banach weak symplectic Banach manifolds without very strong conditions
like Kumar ’s results ([15]). In particular we give an analog result of Kumar’ s one
with weaker assumptions and we give an example for which such weaker conditions
are satisfied. More generally, we produce examples of projective sequence of weak
symplectic Banach manifolds on which the Darboux Theorem is true and an exam-
ple for which the Darboux Theorem is true on each manifold, but is not true on
the projective limit of these manifolds.

2010 MSC: 53D35, 55P35.
Keywords: Banach manifold, Fréchet manifold projective limit of Banach bundles, Fréchet man-
ifold, Fréchet bundles, weak symplectic form, sequence of compatible weak symplectic forms,
Darboux theorem, Moser’s method.

1. INTRODUCTION

In the Banach context, it is well known that a symplectic form can be strong or weak

(see Definition 1). The Darboux Theorem was firstly proved for strong symplectic Banach
manifolds by Weinstein ([25]). But Marsden ([19]) showed that the Darboux theorem
fails for a weak symplectic Banach manifold. However Bambusi [2] found necessary and
sufficient conditions for the validity of Darboux theorem for a weak symplectic manifold
modelled on a reflexive Banach space (Darbouz-Bambusi Theorem). The proofs of all
these versions of Darboux Theorem were all established by Moser’s method.
In a wider context like Fréchet or convenient manifolds, a symplectic form is always weak.
Recently, a new approach to differential geometry in Fréchet context was initiated and
developed by G. Galanis, C. T. J. Dodson, E. Vassiliou and their collaborators in terms
of projective limits of Banach manifolds (see [5] for a panorama of these results). In this
situation, P. Kumar, in [15], proves a version of Darboux Theorem, by Moser method,
for a projective sequence of weak symplectic manifolds which satisfy the assumptions of
the Darboux-Bambusi Theorem but under very strong added conditions on this sequence.
On the other hand, a metric approach of differential geometry on Fréchet manifold was
firstly introduced by Muller. This concept gives rise to Keller-differentiable calculus as
exposed in details by Glockner in [11]. In this way we can consider the so called bounded
Fréchet framework (cf. [21]) in which a classical implicit function Theorem is true and a
Theorem of existence of local flow can be proved (cf. [6]). In this context Eftekharinasab
in [7], proves a version of Darboux Theorem using Moser’s method too, and again under
very strong assumptions. In fact, when such a Fréchet manifold is also a projective limit
of Banach manifolds this result seems to recover Kumar’s result.

More generally we can look for conditions under which a family of weak symplectic
forms on a projective sequence of Banach bundles gives rise to a weak symplectic form on
the projective limit bundle: this is the first purpose of this paper.

Of course this result can be applied to projective limits of weak symplectic Banach
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manifolds. Thus, this naturally leads to the problem of the existence of a Darboux the-
orem on the projective limit of weak symplectic Banach manifolds which is the second
purpose of this paper.

More precisely let (]Ei,ég ) be a reductive® projective sequence of Banach spaces and
(wi)ien be a sequence of (linear) weak symplectic fo_rms w; on E;. We say that (w;):en is
a sequence of compatible symplectic forms if each éﬁ"’l satisfies

ker 71 N (ker £71) = {0} and (€:7')*w; = wiy1 in restriction to(ker £+
where (ker £:71)* is the orthogonal of ker £:! relatively to w;t+1 (cf. Defintion 5)

Now consider a reductive projective sequence of Banach bundles (Ei, )\{) over a pro-
jective sequence (Mi,sz ) of Banach manifolds and let (w;)ien be a sequence of weak
symplectic forms w; on E;. We say that (w;):en is a sequence of compatible symplectic
forms if, for any x; € M; and i € N, the sequence ((wi)z;);cy 15 2 sequence of compatible
(linear) weak symplectic forms on the projective sequence (m; ), (M)z;) of Banach
spaces (cf. Definition 12)

In this context , we have (cf. Theorem 13 and Corollary 14):

Theorem 1. Consider a reductive® projective sequence (EZ-7 )\{) of Banach bundles over
a projective sequence of Banach manifolds (M,', 65) .

(1) Let (wi)ien be a sequence of compatible weak symplectic forms on (Ej, )\{) Then
w= @wi is a well defined weak symplectic form on the Fréchet bundle E = @EZ
over M = l&an

(2) Conversely, let w be a weak symplectic form on a projective limit bundles (E =
I'&nEi,w = @ﬂi,M = @Ml) of a submersive® projective sequence of Banach
bundles(Ei,)\z). Assume that for each x = 1.&1.1‘1', the map (N\i)z : 7 Hz) —
7%_1 (x;) is a symplectic submersion *. Then w induces a weak symplectic 2-form w;
on E; which gives rise to a family of compatible weak symplectic forms. Moreover,
the 2-form on E defined by this sequence (w;) is precisely the given 2-form w.

(3) A 2-form w on a Fréchet bundle, projective limit (E = @Ei,w = Liéﬂm,M =
lglM,) of a submersive sequence of Banach fibre bundles (Ei7 /\Z) is a weak sym-
plectic form if and only if there exists a sequence of compatible weak symplectic
forms (w;)ien on E; such that w = l&nwl

As corollary we obtain (cf. Theorem 15):

Theorem 2.

(1) Let (Ml,)\f) be a reduced sequence of Banach manifolds and (w;)ien a sequence
of compatible weak symplectic forms. Then w = @wi is a weak symplectic form
on M = I&IMZ

(2) Let w be a 2-form on a projective limit M = l&le of a submersive sequence

of manifolds (M”éf) Then w is a weak symplectic form if and only if each
Trdi : ToM — Ty, M; is symplectic submersion for each i € N.

In the context of Theorem 2 Point (1), if a = l’&lai € M and if for each i, there exists
a Darboux chart around each a; for w;, it seems natural to ask if the same result is true
around a € M = @Ml for w. We have the following sufficient conditions and necessary
conditions (cf. Theorm 25):

lie. Z'Z (E;) is dense in E;

2that is the projective sequence of typical fiber (]Eqﬂ,7 A

17) is a reduced projective sequence of Banach
spaces
3¢f. Definition 53

4¢f Definition 9
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Theorem 3. Let (M,-, 55) be a submersive projective sequence of Banach manifolds where
M; is modeled on a reflexive Banach space M.

(1) Consider a sequence (w;)ien of compatible symplectic forms w; on M; and let w
be the symplectic form which is the projective limit of (w;)ien on M = h_n}Ml
Assume that the following property is satisfied:

(D): There exists a projective limit chart (U = ImU;, ¢ = @1431) around a €
M = @Ml such that, for each a; = §;(a) € M;, then (Us, ¢s) is a Darboux
chart around a; for w;.

Then (U, ¢) is a Darbouz chart around a for w.

(2) Let w be a weak symplectic form on a submersive projective limit M = limM; such
that 0; : M — M, is a symplectic submersion. Assume that there exists a Darboux
chart (V, @) around a in M.

If w; is the symplectic form on M; induced by w, then there exists a projective limit
chart (U = limU;, ¢ = hg(;ﬁl) around a such that the property (D) is satisfied.

In [2], Bambusi has proved a version of Darboux Theorem for a weak symplectic w on a
Banach manifold M modelled on a reflexive Banach space M, around some point a € M,
under the following ”Darbouz-Bambusi assumptions”.

Denote by fcl\\/l the Banach space which is the completion of T, M provided with the

norm || ||w, associated to some norm || || on T M (cf section 2.1). The Banach space T M
does not depend on this choice of || ||. Then w, can be extended to a continuous bilinear

map w,; on Ty M X m and wi becomes an isomorphism from 7, M to (m/[)* ‘We set
TM = |J T.M and TM = | J (T-M)".
xzeM xeM

Darboux-Bambusi assumptions

(i) There exists a neighbourhood U of a € M such that mw s a trivial Banach

bundle whose typical fibre is the Banach space (fl]\\/[, | wa);
(ii) wia some trivialization, w can be extended to a smooth field of continuous bilinear
forms on TMy X TM|U5.

Thus, again in the context of Theorem 2 Point (1), we can ask if there exists a Darboux
chart for w = limw; on the projective limit M = @Ml when each M; satisfies Darboux-
Bambusi assumptions. Unfortunately in general the answer is negative (cf. Example 33).
About such a question, we explain under which type of conditions the Moser’s method
in the previous context can be applied ®. Finally, under (strong) sufficient conditions we
have (see Theorem 29 for a more precise statement):

Theorem 4. Let M = limM,; be a submersive projective limit of reflexive Banach mani-
folds M; and (w;)ien a compatible sequence of symplectic forms (resp. w a symplectic form
on M such that §; : M — M; is a symplectic submersion,).

Consider a point a = I'Lnai € M and assume that there exists chart (U = Li&lUi, ¢ = l&nqﬁ,)
around a with the following properties for all i € N:

(1) the Darbouz-Bambusi assumptions around a; = d;(a) are satisfied on U; ;
(2) there exist Finsler norms || ||; on TM;y, and || ||; on (T'M;)}y, such that: 7

Vai = dix) € Ui, (Wil < K(a);® (1)

5from the skew-symmetry of w and [2] Lemma 2.8 this assumption implies that w? gives rise to
bundle isomorphism from T M|y to (f]\\/[)\*u (cf. section 2.1)

SNote that this discussion is analog to the same type of discussion in [23] in the context of direct
limit of weak symplectic manifolds

7¢f. Definition 28

81 1ee

is the Finsler norm operator from T'M; |y, to (J{I\Z)l*u
7
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for some positive continuous function K on U
Va; = 8i(x) € Ui, , ||(ws — 67 Q)2 (B[} < C(x) (2)

for some positive continuous function C' on U, where E; is an Euler vector fields
on M;° and Q; = (gzﬁi_l)*(wi)a.

Under these assumptions, there exists a Darboux chart around a in M.

The assumptions of this theorem are weaker than that of those of Kumar’s Darboux The-
orem in [15] as show the Example 34 and Remark 35 .

Unfortunately, such results require such strong assumptions, that it seems that there
are no interesting applications apart basic or well-adapted examples.

We end this paper by some examples for which :

This

the Darboux theorem is true on a projective limit of Banach manifolds;

the Darboux-Bambusi Theorem assumptions are true on each Banach manifold
and we have a Darboux chart around some point on the projective limit;

the Darboux-Bambusi Theorem assumptions are true on each Banach manifold
but we have no Darboux chart around some point in the projective limit;

there exists a projective limit of compatible strong symplectic forms which satisfies
the assumptions of Theorem 4.

work is self contained and and organized as follows :

In section 2, we begin by a survey on known results on symplectic forms on a
Banach space (§2.1). Then we look for properties of a sequence of compatible
(linear) symplectic forms on a projective sequences of Banach spaces (§ 2.2). A
precise context of Theorem 1 (resp. Theorem 2) can be found in § 2.3 (resp. §2.4).
The proofs of all these results take place in §2.5.

Section 3 is devoted to show that under the assumptions of Theorem 2, the
Darboux-Bambusi assumptions which are satisfied for a projective limit of weak
symplectic manifold are also valid on the projective limit in an natural adequat
sense. As preliminary for this purpose, the first subsection recall the Moser’s
method and the Darboux-Bambusi Theorem. In the next subsection, under as-
sumption of Theorem 1 Point (1), for such a projective limit of Banach bundles
which satisfy a generalization of Darboux-Bambusi Theorem assumptions, we
show that its projective limit has the same properties in an appropriate sense.
The discussion on the problem of existence of Darboux charts on a limit of reduced
projective sequence of Banach manifolds is exposed in section 4.

The proof of Theorem 4 takes place in section 5.

Examples and contre-example about the existence of a projective limit of Darboux
charts are given in section 6.

Finally we end this paper by a series of Appendices which sumrize all the defini-
tions and properties on projective limits needed in this paper.

2. PROJECTIVE LIMIT OF A COMPATIBLE SEQUENCE OF WEAK SYMPLECTIC FORMS ON A

PROJECTIVE SEQUENCE OF BANACH BUNDLE

2.1. Symplectic forms on Banach space. In this section we recall some well known
results on linear symplectic forms on a Banach space (cf. for instance [23]):

Definition 1. Let E be a Banach space. A bilinear form w is said to be weakly non
degenerate if (VY € E, w(X,Y)=0) = X =0.

Classically, to w is associated the linear map

wb

: E — E* defined by (wb(X)) Y)=w(X,Y), : VY €E.

9¢f. section 5.1 after Definition 28



PROJECTIVE LIMIT OF A SEQUENCE OF COMPATIBLE WEAK SYMPLECTIC FORMS ON A SEQUENCE OF BANACH BUNDLES AND DARBOUX Tt

Clearly, w is weakly non degenerate if and only if w” is injective.
The 2-form w is called strongly nondegenerate if W’ is an isomorphism.

A fundamental result in finite dimensional linear symplectic space is the following:
If w is a symplectic form on a finite dimensional vector space E, there exists a vector
space L and an isomorphism A : E — L @ L* such that w = A*w, where

w, ((u,n), (v,) =<n,v>—<&u> (3)

This result is in direct relation with the notion of Lagangian subspace which is a funda-
mental tool in the finite dimensional symplectic framework.

In the Banach framework, let w be a weak symplectic form on a Banach space.

A subspace F is isotropic if w(u,v) = 0 for all u,v € F. An isotropic subspace is always
closed.
IfFte = {w € E :Yu € F, w(u,v) = 0 } is the orthogonal symplectic space of I, then F is
isotropic if and only if F C F4« and is mazimal isotropic if F = F+«. Unfortunately, in the
Banach framework, a maximal isotropic subspace L can be not supplemented. Following
Weinstein’s terminology ([25]), an isotropic space L is called a Lagrangian space if there
exists an isotropic space L’ such that E = L ® L. Since w is strong non degenerate, this
implies that I and " are maximal isotropic and then are Lagrangian spaces (see [25]).

Unfortunately, in general, for a given symplectic structure, Lagrangian subspaces need
not exist (cf. [12]). Even for a strong symplectic structure on Banach space which is
not Hilbertizable, the non existence of Lagrangian subspaces is an open problem to our
knowledge. Following [25], a symplectic form w on a Banach space E is a Darbouz (linear)
form if there exists a Banach space L. and an isomorphism A : E — L & L such that
w = A%wr, where wr is defined in (3). Note that in this case E must be reflexive.

Let E be a Banach space provided with a norm || ||. We consider a symplectic form
w on E and let w” : E — E* be the associated bounded linear operator. Following [2]
and [14], on E, we consider the norm ||u||, = ||w’(u)||* where || ||* is the canonical norm
on E* associated to || ||. Of course, we have ||ul|w < ||w”||°P.||u|| (where ||w’||°P is the
norm of the operator w”) and so the inclusion of the normed space (E, || ||) in (E,|| ||)
is continuous. We denote by E the Banach space which is the completion of (E, ] ||w)-
Since w’ 1s an isometry from (E, || ||w) to its range in E*, we can extend w” to a bounded
operator &’ from E to E*. Assume that E is reflezive. Therefore &’ is an isometry between
E and E* (2] Lemma 2.7). Moreover, w’ can be seen as a bounded linear operator from
E to E* and is in fact an isomorphism ([2] Lemma 2.8). Note that since E* is reflezive,
this implies that E is also reflexive.

Remark 2. If || || is an equivalent norm of || || on E, then the corresponding (|| ||')
and || ||* are also equivalent norm on E* and so || ||', and || || are equivalent norms on
E and so the completion E depends only on w and the Banach structure on E defined by
equivalent norms.

2.2. Case of projective limit of Banach spaces. Let w be a skew-symmetric bilinear
form on a Banach space E and K a Banach subspace of E. Recall that the w-orthogonal
subspace K+« is defined by

K' ={z €E, : Vy €K, w(z,y) =0}

When there is no ambiguity this set is simply denoted K*. Note that since w is skew-
symmetric K- = {z € E: Vy € K, w(y,z) = 0} and so (K*)* =K.
IfK° = {¢ €E*: Yu € K, &(u) = 0} is the annihilator of K, then K* = (w”)~!(K°).
Given two Banach subspaces K and K’ of E, the following relations are classical:

~ If K C K’ then K’ Cc K+ and, in particular, for any subspace K, E* ¢ K* .

- (K+K)* =K' nK'™*.

- (KNK)* =K +K'*.
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Let w (resp. w’) be a skew-symmetric bilinear form on a Banach space E (resp. E')
and ¢ : E — E’ a continuous linear map. By analogy with the terminology for Finsler
geometry (cf. [1]) we introduce

Definition 3. We say that £ is a weak isometry between w and w' if £(E) is dense in E'
and we have:

ker £ N (ker £)* = {0} and £*w’ = w in restriction to (ker €)™ (4)

Note that the condition "ker £ N (ker £)- = {0}” is equivalent to the condition ”the
restriction of w to (ker £)* is non degenerate”.

Proposition 4. Let w (resp. w') be a weak skew symmetric form on a Banach space E
(resp. E') and let £ : E — E' be a continuous linear map. We set K = (ker£) and denote
by @ the restriction of w to K+. We have the following properties:

(1) If £ is a weak isometry between w and W', then W and w"e(E) are non degenerate,
and ker £*w’ = ker £.

(2) If w and w are non degenerate, ¢ is a weak isometry between w and w' if and
only if £*w’ = w on (ker )1 and, in this case, the restriction of w' to £(E) is non
degenerate.

(3) Letw" be a skew symmetric bilinear form on a Banach space E” and ¢ : E' — E”
a continuous linear map. If £ (resp. {') is a weak isometry between w and W’
(resp. w' and w") then £’ o is a weak isometry between w and w" .

Note that if £ is a weak symplectic isometry between w and ', the restriction £ of ¢ to
(ker £)* is an isomorphism and

z*w/ = é*wf(ker L = w|(ker£)¢ (5)
Proof (1) We have w(u,v) = 0 for all v € K= if and only if u belongs K N K" which
implies that @ is non degenerate. Since £ is an isomorphism, from (5), it follows that wj,g,

is non degenerate. Now, v belongs to ker(¢*(w'))” if and only if w’(£(u), £(v)) = 0, Vv, if
and only if ¢(u) = 0.

(2) Assume w and @ are non degenerate. We must show that E = K @ K*. But
(K@ K*)*t = K* NK = {0} and since w is non degenerate, it follows that {0}* = E =
K @ K+, which ends the proof of Point (2) according to relation (5).

(3) Under the assumptions of Point (3), we have E = ker £ @ (ker £)* and B’ = ker ¢’ &
(ker ¢)*. Now, since the inclusion of £(E) in E' is continuous, if K’ := ker £’ N £(E), then
(K')* = (ker £)NL(E) and so £(E) = K’ @ (K')*. Let £ be the restriction of £ to (ker £)*;
it is is an isomorphism onto (K')*. If K = Zfl(K/) and H = 271((K')i) then (ker)* =
K@H. By construction, ker £ of = ker (&K and we have (ker (§K)* = (ker £)* Nk =1
Indeed T is contained in (kerf)*, H = 7 ' ((K)*) and (271)*(w|(kerl)L) = Wy, this
implies that H is the orthogonal of K in (ker£). Now, the restriction # o £ of £ o/ to
(ker(¢' o £))* = H is an isomorphism. Consider for any (u,v) € H’ we have:

w(u,v) = w' (l(u), L(uv)) = W' (¢ o £(u), o L(v)).
So the proof is completed.

d

Definition 5. Let (]Ei, éf) be a reductive'® projective sequence Banach spaces and (wi)ien
be a sequence of (linear) weak symplectic forms w; on E;. We say that (w;)ien is a sequence
of compatible symplectic forms if each éfrl is a weak isometry between wit+1 and w;, for
alli e N

We then have the following property:

10¢f, Definition 41
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Proposition 6. Let (wi)ieN be a sequence of compatible symplectic forms on a reduced
projective sequence (Ei, KZ) Then if u = mul and v = @wi nE= @Ei,

w(u,v) = @wi(ui,vi)
defines a weak symplectic 2-form on E.

This Proposition is based on the following technical Lemma which can be easily proved
by induction

Lemma 7. Let E be a projective limit of a reductive projective sequence (El,ﬁf) Assume
that, for all (i,7) € N? such that j > i, the kernel of EZ is supplemented.

(1) For eachi € N and each j > i we have a decomposition
E;=E!®E, & ®E_ @kert|_, (6)

with the following properties for all j > @

(a) kert] = IE{_H @@ E§72 & ker@?fl;

(b) the restriction of (¢')] of ] to (B} @ --- ®E]) is injective with dense range
mn El;

(c) #/(E}) is dense in B}, for alli < h <1, is dense in ker£i_y for h = | and
() ={0} forl<h<j—1.

(2) Lett; : E — E; the canonical projection. Then E = ker £;®F; and the restriction ¢;
of £ to E} is a continuous map injective map into E; with dense range. Moreover, if
[| i is @ norm on E;, then v; = || ||i0¥; is a semi-norm on E and the restriction of
v; to I} is a norm and in this case, £; is an isometry. In particular, the completion
T, of T} is isomorphic to E;.

J
(3) We set K; = keri_; fori > 1 and Ko = Eo. If E; = HKZ, then there exist
1=0
bounding maps ! : E; — Ej with dense range, so that (Ej,x]) is a reduced
projective sequence. If B = I&nE; there exists an injective continuous linear map
I'&nﬁi :E — E' with dense range where 0; is an injective linear map from E; into

E! with dense range. Moreover, if (Ez,ﬂf) if a surjective projective sequence, then

each 0;, i € N and 0 are isomorphisms.

Remark 8.

(1) From the properties of the sequence (63) and Proposition 4 (3), if (wi)ien is a
sequence of compatible weak symplectic 2-forms, then 63 is a weak isometry between
wj and w;, for alli € N and all j > 1.

(2) Consider the assumptions of Proposition 6. If (Ez,éf) is a ILB sequence (cf.
Appendiz B), we have ker#? = {0} for all j > i and i € N. Thus (w;)ien is
a sequence of compatible symplectic forms on this projective system if and only
if, for all j > i and i € N, then w; = ()\{)*wi, and wo is symplectic. But in
general, if for some pair (i,7), ker 7 # {0}, the condition w; = (£})*w; implies
that Ef # {0} and so this does not implies that w; is symplectic.

(3) In Proposition 6, when (Ei, ﬂf) is a surjective ! projective sequence, the symplectic
form w on E has the property that the induced form on ker ¢; is symplectic and so
we have B = ker £; @ (ker £;) where (ker £;)* is the orthogonal of ker £; (relative
tow).

As in finite dimension, we introduce:

Definition 9. LetE = ]zﬂlEz a projective limit of a surjective projective sequence (Ei, Zj).
Consider a (weak) symplectic form w on E such that B = ker £; & (ker £;)=. We will say
that ¢; is a symplectic submersion.

H¢hat is each ZZ is surjective
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Remark 10. In the context of Definition 9, the restriction of £; to (ker£;)* is an iso-
morphism onto E; and so we have a well symplectic form w; on E; such that w = £fw; in
restriction to (ker &-)J‘. Thus this definition is analog to the notion of isometric submersion
between Finsler manifolds in finite dimension introduced in [1].

We have the following type of converse of Proposition 6 :

Proposition 11. Let (IEUEZ) be a surjective projective sequence of Banach space and
E = @EZ If w is a symplectic form on E such that {; : E — E; is a symplectic
submersion for all i € N, then w induces a symplectic form w; on E;. Moreover, (w;)ien
18 a sequence of compatible symplectic forms and the projective limit associated to this
sequence is precisely w.

Proof Since for j > 4, £; = ¢] o ¢; this implies ker ¢; = ker ¢; & (¢')7* (ker £/). Thus we
have ker £; C ker£; and so (ker £;)* C (ker£;). As we have seen previously, there exists
a (unique) symplectic form w; on E; such that w = £jw; on (ker £;)*. Since for any j € N,
the restriction £} to (ker£;)" is an isomorphism onto E;, we have:

w;j(uj,v5) = w(l(u}), £5(v})) for all uj, v} € (ker £;)* with u; = £}(u}) and v; = £}(v}).

But since (ker ;) C (ker £;)*, it follows that, for any u},v; € (ker£;)*, we have
w(li(ui), 6(v))) = w(t] o € (ui), €] o £5(v}))
= (&))" w(l)(u), € (v)).
Thus we obtain
(ws) = (€])"ws on & ((er £)*) .
The proof will be completed if we show that £} ((ker Zi)J‘) = (ker#/)*. But this results

follows from ¢} (ker £;) = ker ¢}.
(]

2.3. Case of projective sequence of Banach bundles.

Definition 12. Let (Ei7 /\f) be a projective sequence of Banach bundles over a projective
sequence (Mi, 53) of manifolds and let (w;)ien be a sequence of weak symplectic forms w;
on E;. If E; is the typical fibre of E;, assume that the following properties are satisfied:

(RPSBS): The sequence (]EZ,)\?) is a reduced projective sequence of Banach spaces.

We say that (w;)ien is a sequence of compatible symplectic forms if the sequence ((wi)x;);en
is a sequence of compatible (linear) weak symplectic forms on the projective sequence
(m; ' (@i), (M)a;) of Banach spaces.

7

Under the context of this Definition, we have

Theorem 13. Consider a projective sequence (Ei, )\f) of Banach bundles over a projective
sequence of Banach manifolds (Mi7 55) which satisfies the assumption (RPSBS).

(1) Let (wi)ien be a sequence of compatible weak symplectic forms on (Ei, /\Z) Then
w= l’&nwi is a well defined weak symplectic form on the Fréchet bundle E = MEZ
over M = @MZ

(2) Conversely, let w be a weak symplectic form on a projective limit bundles (E =
LiLnEiﬂr = T&nm, M = anMz) of a submersive'? projective sequence of Banach
bundles (E;,mi, M;). Assume that for each x = l'&nxh the map (\i)s : ﬂfl(x) —
ﬁ[l(:ci) is a submersion. Then w induces a weak symplectic 2-form w; on E;

which gives rise to a family of compatible weak symplectic forms. Moreover, the
2-form on E defined by this sequence (w;)ien is precisely the given 2-form w.

We obtain directly the following Corollary:

12¢f, Definition 53
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Corollary 14. A 2-form w on a Fréchet bundle, projective limit (E = @Ei,n =
l'&mr“M = @Ml) of a submersive sequence of Banach fibre bundles (Ei7 )\f) is a weak
symplectic form if and only if there exists a sequence of compatible weak symplectic forms
(ws)ien on E; such that w = l&lwZ

Note that Theorem 1 in the introduction is Theorem 13 joined with Corollary 14.

2.4. Case of projective limit of weak symplectic Banach manifolds. By applica-
tion of Theorem 13 when E; is the tangent bundle T'M; of a Banach manifold M;, we
obtain the following Theorem which is exactly Theorem 2 in the introduction:

Theorem 15.

(1) Let (Ml,)\f) be a reduced sequence of Banach manifolds and (w;)ien a sequence
of compatible weak symplectic forms. Then w = @wi is a weak symplectic form
on M = lglMl

(2) Let w be a 2-form on a projective limit M = @Ml of a submersive sequence
of manifolds (M“(Sf) Then w is a weak symplectic form if and only if each
T26i : T M — Ty, M; is a symplectic submersion for each i € N.

Remark 16.

(1) Given a submersive sequence (Mi7 55) of manifolds and a weak symplectic form w;
on each M;, each map 5,? : M; — M; is a symplectic submersion if the restriction
of wj is a symplectic form on each fibre of 6{ and on the orthogonal symplectic of
the vertical bundle of & we have w; = (67)*w;.

(2) Let M = l&lMZ be a projective limit of a submersive sequence (Mz,(Sf) of mani-
folds and w a weak symplectic form on M. We say that the canonical projection
8+ M — M, is a symplectic submersion if the restriction of w to each fibre 6~ (x;)
s a symplectic form and §;w; = w on the orthogonal bundle of the vertical bundle

Of (51

2.5. Proofs of results.

Proof [Proof of Theorem 13] From Proposition 6, we know that w is well defined. Now
w is a smooth 2-form since it is a projective limit of smooth 2 forms, which ends the proof
of (1).
Now let w be a weak symplectic form on a projective limit bundle (E = l'&lEi,ﬂ =
l'&m’hM = @M,) which satisfies the assumptions of (2). Given some z = @ml €
M, since (\;), : 7 '(x) — m; '(x;) is a symplectic submersion of symplectic spaces,
the restriction (X\;)’ of A; to ker()\i)ﬁ; is an isomorphism on 71';1(3:1-) and so (wi)z; =
{[(Ai)z]fl}*(wz)‘ ker(x;)L 1S @ symplectic form on 77 (xz;). Tt remains to show that z; —
Wz, 1s smooth.

i
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Fix some z = limz; € M. There exists ¢(U) x E with the following commutative diagram

(V) : $(U) x E (7)
\ Sixx
m, (Usi) i ¢:(Us;) x E;
U ° $(U)
U o #:(Us)

Let €2 be the symplectic form on ¢(U) X E such that w = 7*Q. According to Proposition 54,
ker \; is a sub-bundle of E. Now, since w is a smooth symplectic form and the orthogonal
ker()\;)7 is a supplemented space of ker(\;), for all z € M, it follows that ker(\;)r is
a Banach sub-bunlde of F and so the Diagram (7) have the more precise version, after

shrinking U if necessary:

a1(U) - #(U) x K; x H; (8)
w7 (Uy) $:(Us) x E;
U ¢ l
Ui ¢Z(U’L

where K; is the Kernel of \; and H; is the orthogonal of K; relative to qu(w) over ¢(z).
Since the restriction )Ti/ of A\; to H; is an isomorphism onto E; and so d; x )\7, is an
isomorphism from ¢(U) x H; onto ¢(U) x E;. Thus, () = [6 x A/ () gy xm,;) is a
symplectic form on ¢;(U;) x E;) and so w; = 7;(2) is a smooth symplectic form.
The end of the proof follows from Proposition 11.
a

Proof [Proof of Corollary 15] According to the assumption of this Corollary, after ap-
plying Theorem 13, the proof will be completed if we prove that the 2-form w defined
by the closed 2-form w; is also closed and if w is a closed 2-form on the projective limit
M = @Ml (each induced 2 form w; induced on M; is closed). Under the notations of the
proof of Theorem 13, we have

: E; =M; and E = Mj;
2 X =To], 0] = 6], A = Toy;
: Ti:T¢ivT:T¢'
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We can apply the context of Lemma 7 and so if M = keré?, then M, is isomorphic to

n oo
HM; and so M = H M. According to Diagram 8 in our context, we have
i=0 i=0

(V) . o(U) x [ x [ v (9)
=0

I>i
i SixXAi
m (Us) = ¢:(U:) x [ [ M1
1=0
o
U o(U)
i

and ¢(U) is an open set in HMQ and ¢;(U;) is an open set of HM; Thus, ¢;(U;) is of

=0 1=0

type H U] where U] is an open set of M} and ¢(U) is of type H U] where U] is an open
1=0 1=0
set of M and with only a finite number of [ > i for which U; # M.

(1) Assume that w is a projective limit of the sequence (w;);en. As in the proof of The-
orem 13 let Q; be the form on ¢;(U;) induced by w; and we denote by 2 the symplectic
form on ¢(U) induced by w according to the context of Diagram 9. If ¢; be the natural

inclusion of U] in HM;, we set Q; = 1;Q; for I > 4. Note that Q; does not depend on the
1=0

choice of the integer ¢ > [. As €, is closed , it follows that Q; is closed. Note that each

subbundle U/ x E; is the tangent bundle of U;. But, from the construction of w ( and so

), if X1 and X» are vector fields on ¢(U) which are tangent to U], and Uy, respectively,

we have Q(Xl,XQ) =0 if l1 7é lz and Q(Xl,XQ) = ﬁl(Xl,Xg) if = lz = ll = [. This

implies that €2 is closed.

(2) Assume that w is a symplectic form such that T,; : T, M — T, M; is a symplectic
submersion. Then from Theorem 6 (2), w induces a non degenerate 2-form w; on M;.
Again let Q (resp. €;) be the 2-form on ¢(U) (resp. ¢;(U;)) according to the context
of Diagram 9. We must show that each €2; is closed. Since € is the projective limit of
the sequence (€;);en, according to Theorem 13 (2). Thus, as previously, if X; and X, are
vector fields on ¢(U) which are tangent to Uj, and Uj, respectively, we have Q(X1, X2) =0
if ll 75 lz and Q(Xl,XQ) = E(Xl,XQ) if = 12 = ll = l Thus QZ = L:(Q if Li is the natural
inclusion of ¢;(U;) in ¢(U). It follows that each w; is closed.
|

3. WEAK SYMPLECTIC FORMS ON A SUBMERSIVE PROJECTIVE SEQUENCE OF REFLEXIVE
BANACH BUNDLES AND DARBOUX-BAMBUSI ASSUMPTION

3.1. Moser’s method and Darboux-Bambusi Theorem. We recall the following gen-
eralization of Moser’s Lemma (see [23]).

Let M be a manifold modeled on a reflexive Banach space M. Consider a weak sym-
plectic form w on M. Then W’ TM — T*M is an injective bundle morphism. According
to section 2.1, we denote by T, M the Banach space which is the completion of T, M
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provided with the norm || ||., associated to some norm || || on T, M. The Banach space
Tx M does not depend on this choice. Then w, can be extended to a continuous bilinear
map @p on ToM x T, M and w’, becomes an isomorphism from T M to (T, M)*. We set
TM = U m and TM = U (m)*
xeM reM

Theorem 17 (Moser’s Lemma). Let w be a weak symplectic form on a Banach manifold
M modeled on a reflerive Banach space M. Assume that we have the following properties:

(i) There exists a neighbourhood U of xo € M such that f]\\/[w is a trivial Banach

bundle whose typical fibre is the Banach space (m, [ weg )5

(ii) via a trivialization, w can be extended to a smooth field of continuous bilinear
forms on
TM|U X TM|U

Consider a family {w'}o<i<1 of closed 2-forms, smoothly depending on t, with the

following properties:

~ w'=w and Vt € [0,1] ,Why = Wag;

— w' can be extended to a smooth field of continuous bilinear forms on TMyy x
TMy.

Then there ezists a neighbourhood V' of xo such that each w' is a symplectic form on V/

and there exists a family {Fi}o<i<1 of diffeomorphisms Fy from a neighbourhood Vo C V

of zo to a neighbourhood Fy(Vo) C V of xo such that Fy = Id and Fyw' = w, for all
0<t<1.

Proof [sketch for more details see [23]] Without loss of generality, we may assume that
U is an open neighbourhood of 0 in M and TM |y = U x M. Therefore, U x M is a trivial

Banach bundle modeled on the Banach space (M, || ||w,). Since w can be extended to a
non-degenerate skew symmetric bilinear form (again denoted w) on U x (M x M) then w’
is a Banach bundle isomorphism from U x M to U x M*.
We set &' = %wt. Since each w' is closed for 0 < t < 1, we have :
d
di' = —(dw') =0
=)

and so &' is closed. After shrinking U if necessary, from the Poincaré Lemma, there exists
a 1-form o on U such that &' = da' for all 0 < ¢ < 1. In fact a; can be given by

al = /01 s.(@wh) (z)ds.

Since at = 0, (o.;fc())b is an isomorphism from M to M*, there exists a neighbourhood V'
of 0 such that (w?%)’ is an isomorphism from M to M* for allz € V and 0 < ¢ < 1. In
particular, w’ is a symplectic form on V. Moreover z (wfc)b is smooth and takes values
in (M, M*). We set X! := —((w’)")"*(ak). It is a well defined time dependent vector
field and let F1; be the flow generated by X* defined on some neighbourhood Vo C V of
0. As for all t € [0,1], @k, = 0, then X% = 0. Thus, for all ¢t € [0,1], Fi(z0) = zo . As
classically, we have

Ll wf = FIf (Lyew') + FI; Lot = FIf (—da’ + &) = 0.

dt dt

Thus FI} w® = w. a
Now as a Corollary of Theorem 17, we obtain the Bambusi’s version of Darboux The-

orem ([2], Theorem 2.1).

Theorem 18 ( Darboux-Bambusi Theorem). Let w be a weak symplectic form on a Ba-
nach manifold M modeled on a reflexive Banach space M. Assume that the assumptions
(i) and (ii) of Theorem 17 are satisfied. Then there exists a chart (V, F) around xo such
that F*wo = w where wo is the constant form on F(V) defined by (F_l)*wxo.
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Definition 19. The chart (V, F) in Theorem 18 will be called a Darbouz chart around
ZXo.

3.2. Projective sequence of weak symplectic bundle reflexive Banach bundle
with Darboux-Bambusi assumptions.
Let E = @EZ be a projective limit of a projective sequence of reflexive Banach spaces

(El,rf) We can provide each Banach space E; with a norm | ||, such that |[A;T"]|9P < 1

for i € N.

We consider a sequence (wi),;cy of weak symplectic forms on E; and let W’ E; — Ef be
the associated bounded linear operator. According to notations in Remark 2, we consider
the norm ||u||w, = ||’ (u)||; where || ||} is the canonical norm on E} associated to || ||;. We
have seen that the inclusion of the Banach space (E, || ||;) in the normed space (E;, || ||w;)

is continuous and we have denoted by E, the Banach space which is the completion of
(Ei, || ||w;). Recall that from Remark 2, the Banach space E; does not depend on the
choice of the norm || ||; on E;. According to section 2.1 (before Remark 2), w? can be
extended to a symplectic submersion between E; and E;. Moreover, w? is an isomorphism
from E; to IE;" .

Lemma 20.
(1) The sequence (Ef)ieN is a projective sequence of Banach spaces and so E* = l&nl@f
is well defined. Moreover, zf/\7 is surjective and its kernel is split, then the bonding

map /\? = IE;‘ — H?:f also satisfies this assumption.
(2) The projective limit W = l&nw'{ is well defined and is an isomorphism from E to
]/E\*

Proof (1) It is sufficient to show that )\7 and w’ give rise to a map E from I/F:;‘ into I/F::‘
and if )Tf is surjective and with a split kernel so is E Indeed since w! is an isomorphism

from E; to ]/E\;*, the bonding map )\g =uwlo )\g o (w?)fl satisfied the announced properties
in (1).
(2) is obvious.

O

Now we consider a reduced projective sequence (E;,m;, M;) of Banach vector bundles
where the typical fibre E; is reflexive. The projective limit £ = limF; has a structure
Fréchet bundle over M = @Ml with typical fibre E = @EZ (cf. Proposition 50).

Consider a sequence (w; ),y of compatible weak symplectic forms w; on E;. According

to the previous notations, since E; is reflexive, we denote by (E)zz the Banach space
which is the completion of (E;)., provided with the norm || |[(,),.. Then (w;)z; can be

extended to a continuous bilinear map (@;)z;, on (F;)z; X (E)wl and (wz)iz becomes an

i

isomorphism from (E;)., to (E\ml) We set

Ei= J B e E = |J @

z;,€EM; z;€EM;
According to the assumption of Theorem 18 we introduce the following terminology:

Definition 21. Let (E;, m;, M;) be a reduced projective sequence of Banach bundles whose
typical fibre B; is reflevive. Consider a sequence (wi);cy of compatible weak symplectic
forms w; on E;. We say that the sequence (wi),cy satisfies the Bambusi-Darbour assump-
tion around a € M if there exists a projective limit chart U = @Ui around a such that:

—

(i): for each i € N, (E;) |y, is a trivial Banach bundle;
(ii) : for each i € N, w; can be extended to a smooth field of continuous bilinear

o~

forms on (E;)ju, x (Ei)u, -

Under these assumptions we have:



14 FERNAND PELLETIER

Proposition 22. Consider a sequence (w;),cy of compatible symplectic forms w; on E;
which satisfies the Bambusi-Darbouz assumption around a € M. Then we have the fol-
lowing properties:
(1) The projective limit (E*)\U = @(E*)\Ui s well defined and is a trivial Fréchet
bundle with typical fibre E= @Ez
(2) The sequence (wf) of isomorphisms from Ejy, to (E*)‘Ui induces an isomor-
phism from Ey to (E*)w.

Proof (1) From our assumptions, for each i, we have a sequence of trivializations
i+ (Ei)ju, = UixE;. Thus we obtain a sequence 7T U xE; — (E7)|u, of isomorphisms
of trivial bundles. Now, from the proof of Lemma 20, we have the bonding map )\7 : IE;‘
— Ej and by restriction to U; we have a bonding map 53 : Uj — U;. So we get a bundle

morphism 5{ X )\7 from U; x I/F:;‘ to U; x I/l*if Now the map

770 (63 x D) o
is a bonding map for the projective sequence of trivial bundles ((E*)IM) Therefore the
projective limits 7 = 1&1&% and E]*U = lgl(ﬁ*)“]l are well defined and 7 is a Fréchet

isomorphism bundle from U x E* to E‘*U, which ends the proof of (1).

(2) At first, from Proposition 6, then w = @wi is a 2-form on E. From our assumption,
since for each ¢ € N we can extend w; to a bilinear onto (E;)|y, X (Ei)IUm this implies

that w? is an isomorphism from (E;)y, to (E; )jy,. Consider the sequence of bonding
maps ()TZ) for the projective sequence ((E*)‘Ui) previously defined. Then we have

ieN
the following commutative diagram:

71 WP

Uj x By —— (E)) v, —— (E}) v, ——=U; x E;

agxegi leg lz l&gx?{

U; x By —— (Ei)ju, —— (ED)u, —— Ui xE;

—1
Ti i

It follows that the projective limit w® = lglwf is well defined and is an isomorphism from

E\U to (E*)\U O

4. PROBLEM OF EXISTENCE OF DARBOUX CHARTS ON A STRONG REDUCED PROJECTIVE
SEQUENCE OF BANACH MANIFOLDS

4.1. Conditions of existence of Darboux charts. Let (Mz,éf) be a submersive or

reductive projective sequence of Banach manifolds where M; is modeled on a Banach space
M;. We first apply the previous results for F; = T'M;.

Theorem 23.

(1) Consider a sequence (w;) of compatible weak symplectic forms w; on M;. Then,

ieN
for each x € M, the projective limit w; = L&n(wl)';l is well defined and is an
isomorphism from T, M to (m)* Moreover wy(u,v) = w’(u)(v) defines a
smooth weak symplectic form on M.

(2) Let w be a symplectic form on a submersive projective limit manifold M = lglMl
For all i € N, assume that the canonical projection §; : M — M; is a symplectic
submersion. Then there exists a symplectic form w; on M; such that 6; w; = w in
restriction to (ker§;)" and the sequence (w;);oy is a sequence of compatible weak
symplectic forms such that the weak symplectic form which is the projective limit
of (wi)ien on M is exactly w.
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Proof (1) Since w(u,v) = w’(u)(v), by application of Proposition 22 to E; = TM;, we
obtain that w is non degenerate. The proof of that w is closed is formally the same as in
the proof of Corollary 15 (1).

(2) is a direct consequence of Corollary 15 (2).
d
As in the Banach context, we introduce the notion of Darboux chart:

Definition 24. Let w be a weak symplectic form on the direct limit M = @Ml We say

that a chart (V,+) around xo is a Darbouz chart if *w® = w where w° is the constant
form on (U) defined by (™) *wa, .

We have the following necessary conditions and sufficient conditions of existence of
Darboux charts on a submersive projective sequence of Banach manifolds (cf. Theorem
3):

Theorem 25. Let (M,-, (Sf) be a submersive or decreasing projective sequence of Banach
manifolds where M, is modeled on a reflexive Banach space M.

(1) Consider a sequence (w;)ien of compatible symplectic forms w; on M; and let w
be the symplectic form which is the projective limit of (wi)ien on M = hﬂMl
Assume that the following property is satisfied:

(D): There exists a projective limit chart (U = limU;, ¢ = L&lqﬁl) around x°
such that, for each a; = §;(a) € M;, then (Ui, ;) is a Darbouzx chart around
a; for w;.
Then (U, ¢) is a Darbouz chart around a for w.

(2) Let w be a weak symplectic form on a submersive projective limit M = limM; such
that 0; : M — M, is a symplectic submersion. Assume that there exists a Darboux
chart (V, @) around a in M.

If w; is the symplectic form on M; induced by w, then there exists a projective limit
chart (U = l'&nUh o= hgﬁ(bl) around a such that the property (D) is satisfied.

Proof (1) Assume that the assumption (D) is true and that (Mz,éf) is a reduced
projective sequence of Banach manifolds. We fix some a € M. We consider a projective
limit chart (U = @Ui,cﬁ = @1@) around a such that, if a; = d;(a) € U, then (U;, ¢;) is
a Darboux chart around a; for w;. Now we have the following commutative diagram:

T¢

= HU) d(U) x M (10)
oy J 5, %5,
—1 P;
m (Ui) l ¢i(Ui) x Mi
P
U o(U)
\ 5
P
According to this diagram and modulo the diffeomorphisms ¢ and ¢;, we may assume
that
— U is an open neighbourhood of a = 0 € M, and Uj; is a neighbourhood of 0 € M;;
— w is a smooth 2-form on U and w; is a constant 2-form on Uj;.
Now if x = limz; € U, u = @uz and v = l'gwi, since w; is constant on U; it follows

that (w;)a, (us, v;) is independent of z; € U;; so the value
wa (, v) = Um (w; ), (i, v:i)

is independent of the point z, which ends the proof of (1).
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(2) Let w be a weak symplectic form on M = @MZ such that, for all « € N, §; :
M — M; is a symplectic submersion. Assume that we have a Darboux chart (U =
T&nUi, ¢ = hggbl) around a for w. Fix some 7 € N. In the context of Diagram(10), we have
M = K; x G; where K; is the kernel of Tpd; and G; is the orthogonal of K; in M; = To M
(cf. Diagram(7) with, for all i € N, E; = T'M;). Thus again, modulo the diffeomorphisms
¢ and ¢;, we may assume that

— aEOEUCKiXGi, aiEOGUZ‘CMi;
— w is a constant 2-form on U and w; is a smooth 2-form on Uj;.

Recall that the restriction of §; to G; is an isomorphism onto M;, thus we may also
assume that G; = M;. In this way, we have §;w; = w in restriction to G; = M;. Thus,
with our identification, w; is nothing but the restriction of w to U; x M; and so w; is a
constant 2-form on U; whose value is fixed by the restriction of w to M;. |

4.2. Problem of existence of Darboux chart in general. In this subsection, we will
explain why, even in the context of a submersive projective sequence of weak symplectic
Banach manifolds which satisfies the assumption of Theorem 18 | in general, there does
not exist any Darboux chart for the induced symplectic form on the projective limit.

Let (Mi, 5{ )) be a projective sequence of Banach manifolds where M; is modeled on
a reflezive Banach space M;. Consider a sequence (w;),y of compatible weak symplectic
forms on M;. Since M is reflexive, we denote by TWZ the Banach space which is the
completion of 7%, M; provided with the norm || [|(,),,. Then (w;)z;, can be extended to

a continuous bilinear map (0;)q, on Ty, M; X TZM and (wl)ib becomes an isomorphism
from T, M; to (mz)* We set
TM;= |J ToM;, TM; = |J (To,M)".
z€M; @ € M;

Then by application of Proposition 22, we have:

Proposition 26. Let (Mi7 55) be a reduced projective sequence of Banach manifolds whose
model is a reflexive Banach space M;. Consider a sequence (w;) of compatible weak sym-
plectic forms w; on M;. Assume that there exists a limit chart (U = mU¢,¢ = l&nqﬁz)

around a € M = l&an such that we have the following assumptions: 3

(1) (’f]—\\Jz)m is a trivial Banach bundle.
(ii) wi can be extended to a smooth field of continuous bilinear forms on (T'M;)y, %
(TMy)u; for alli e N.
Then (f]\\/l*)\y is a trivial bundle. If w is the symplectic form defined by the sequence
(wi);ens then the morphism
W :TM —T*M
induces an isomorphism from TMy to (m)TU

Note that the context of Proposition 26 covers the particular framework of projective
limit of strong symplectic Banach manifolds (M;,w;).

We will expose which arguments are needed to prove a Darboux theorem in the context
of reduced projective sequence of Banach manifolds under the assumptions of Proposition
26. In fact, we point out the problems that arise in establishing the existence of a Darboux
chart by Moser’s method.

Case 1. Assume that M = limM; is a reduced projective limit.
Fix some point a = I‘&Hai € M. In the context on Proposition 26, on the projective limit
chart (U, ¢) around a, we can replace U by ¢(U), w by ¢*w on the open subset ¢(U) of

3 These assumptions correspond to the Bambusi-Darboux assumptions in Definition 21
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the Fréchet space M. Thus, if w° is the constant form on U defined by w,, we consider
the 1-parameter family

t — . —
w :wOthw, with @ = w — w".

Since w' is closed and M is a Fréchet space, by [13] Lemma 33.20, there exists a neigh-
bourhood V' C U of a and a 1-form « on V such that da = @ which is given by

Oy 1= /01 $.Wsa(x, )ds. (11)

Now, for all 0 < ¢t < 1, w! is an isomorphism from T,M = M onto m = M*. In the
Banach context, using the fact that the set of invertible operators is open in the set of
operators, after restricting V', we may assume that (wt)b is a field of isomorphisms from
M to M*. Unfortunately, this result is not true in the Fréchet setting. Therefore, the

classical proof does not work in this way in general.

Case 2. Assume that M = limM; is submersive projective limit.
According to Theorem 23, assume that the canonical projection §; : M — M; is a sym-
plectic submersion, for all i € M. Then w induces a symplectic form w; on M;. Therefore,
for each 4, let a; be the 1-form induced by « on ¢;(U; N V). Then we have w; = da; and
also

(ai)ay = / 5.(@1) e (a1, )ds (12)

where @; = w; —w? is associated to the 1-parameter family w! = w® + tw;. We are exactly
in the context of the proof of Theorem 17 and so the local flow FI;'¢ of X! = ((w!)?)™*(a)

is a local diffeomorphism from a neighbourhood W; of a; in V; and, in this way, we build a

Darboux chart around a; in M;. Therefore, after restricting each W, if necessary, assume
that:

(PLDC): (projective limit Darboux chart) We have a projective sequence of such
open sets (W;), oy, then on W = ]'&nWh the family of local diffeomorphisms

F' = I'&nFit is defined on W.

Recall that w® = 'mw'; and w’ is an isomorphism. Thus according to the previous nota-
tions, we have a time dependent vector field

X' = (")) ()

and again, we have Lytw’ = 0. Of course, if the (PLDC) assumption on (Wa),en is
true, then X* = l&le So we obtain a Darboux chart as in the Banach context.

Remark 27. In fact, under the assumption (PLDQC), the flow Fl; is the local flow (at
time t € [0,1]) of X' = hﬂXf where X! = ((wh)”) () (with the previous notations).
Unfortunately, according to Remark 45, outside particularity special cases, the ”Darbouz
chart” assumption is not true in general, since, in general,

(ol (W;)

Jjzi

is mot an open neighbourhood of a.

5. PROOF OF THEOREM 4

We begin by a more precise version of Theorem 4. However we need some preliminaries
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5.1. Preliminaries and results.

Definition 28.
(1) Let E be a Banach space, M be a Banach manifold and E = M X E be the trivial
bundle over M. A function || || : E — R is a Finsler structure on E if
i) for each x € M, the map u — ||u||s := ||(z,u)|| is a norm which defines the
topology of E;
ii) given xo € M, and k > 1, there exists a neighbourhood U of xo in M such
that

1
Ve € U, Vu € B, Fllulleg < [[ulle < Kllullz,-

(2) A Banach bundle w: E — M with typical fibre E. A map || || : E — R is called a
Finsler norm on E, if for any x € M, there exists a trivilization ® : Ejy — U X E
over an open neighbourhood U of x such that || ||o® is a Finsler structure on U X E.

If M is a Banach manifold modeled on M, given a chart (U, ¢) on M, a trivialization
®: Ejy — U xE, and a norm || || on E, then we get a canonical Finsler norm on U x E,
(again denoted || ||), and so via ® we can provide Ejy with an associated Finsler norm.

Consider a submersive projective sequence (E;, m;, M;) of Banach bundle. For each z =
l'&lmi eEM = l<i£1Mi, there exists a projective chart bundle limit (U = @Ui, ¢ = l&nqﬁ,)
and a trivialisation (U, ® = Mq)l) of E = @El over U where ®; is a trivialization of E;
over U;. If we identify E; with the fiber (E;).; then ®; is an isomorphism from (E;)y,.
Given a sequence of norms ((|| ||i)z,)ien on (E;)z, by the previous argument, we obtain
an associated Finsler norm || ||; on (Ey)|u,.

Under the assumptions of Proposition 26, given a sequence of norms ((|| ||i)a;)ien on
T.,M;, as in section 2.1, we denote simply by || ||; the family od associated Finsler metric
on T'M|y,. Also, can consider the family of norms (|| [|(,),,) on Ta,M; which gives

rise a family of norm (|| wai)a_) on mz* Thus the bundle (f]\Z)TU is provided with
an associated Finsler norm denoted simply || Hf Recall that on the set of morphisms

ni: TMyjy — (m)‘*U we have an operator norm
[[nil[77 = sup{||n: (V)I[7 + Ilolls <1}

The vector field Ey characterized by

Ew(f)(x)

17"

_4d )14
o dif|t:0f(e ?)

is the Euler vector field on M (in a classical sense). For any chart (U,¢) in M then
E = ¢;'(Ew) is called an an Euler vector field on U. We will always consider such local
Euler vector fields.

Here is a precise version of Theorem 4:

Theorem 29. Let M = limM,; be a submersive projective limit of reflexive Banach mani-
folds M; and (w;)ien a compatible sequence of symplectic forms (resp. w a symplectic form
on M such that §; : M — M; is a symplectic submersion,).

Assume that there exists a chart (U = @Ui, ¢ = l&l(ﬁz) around a and sequence of norms
(] lla;)ien on Ta, M; such that, for all i € N, we have:

(DB) The Darbouz-Bambusi assumptions are satisfied on U;.

(SN) if (|| |IP) 4s the sequence of Finsler norms operator associated to (|| |]i)ien on
TM;y, and ( (]| ||f) sen " (T/MZ)I*UU there exists a continuous positive map K
on U such that

b o
Vai € Ui, |[|((wi)e,)IF° < K(x);

4¢he same is true for any locally convex topological vector space
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(EN) consider the Euler vector field E; = ¢ ' (Ewm;) on U; then there exists a continuous
positive map C' on U such

Vai € Ui, [|(wi — 67 )5, (B)|l; < C(a)

where Q; 1is the constant 2-form on ¢;(U;) defined by ((;5;1)* ((wi)ay)

Then there exists a Darboux chart around a.

5.2. Proof of Theorem 29. For the sake of simplicity, since there will have non ambi-
guity in this proof, the Finsler norm || ||; will be simply denoted || ||;.

The context of Theorem 4 and Theorem 29 is exactly the case 2 exposed in section
4.2 with the following assumptions :

(i) there exists a limit chart (U = limU;, ¢ = mcﬁz) around a such that (m)\Ui is
a trivial Banach bundle.
(ii) wi can be extended to a smooth field of continuous bilinear forms on (T'M;)y, x
(TM;)p, for all i € N.
(i)
3K (z) > 0: Va; = d;i(z) € Uy, Vi €N, ||((w,)il)|\;’p < K(z); (13)
(@) > 0 Vo = 6i(x) € Us, Vi €N, [|(wi — 61005 BIf < Clw)  (14)

i

Thus, according Proposition 26, (f]\\/[*)‘U = @(m)rw is a trivial bundle and w =

l'&nwi and the morphism
W TM —T*M
induces an isomorphism from 7'My to (m*)w.

Since the problem is local, without loss of generality, we can assume that M; = U,
(resp. M = U) and is an open set of M; and (resp. M) and a = 0 € M. By the way we
have TM; = U; x M; and (TMi)\*Ui =U; X Mi*. In this context, z; — ((wl)iq) is a smooth
map from U; to GL(M;, I\//JI\Z) and z; — ((wi);i)fl is a smooth map from U; to QC(I\//I;, M;).

Now each Finsler norm || ||; on Mj; (resp. || ||; on I\/AI\Z*) induces a seminorm v; on M

! according to our

(resp. v; on M*). Since (w) = lim((w:)?,) and ((wp)™" = lim((w})”
assumptions, it follows that (w;)}) (resp. ((w:)2)™") belongs to to GH,(M, M*) (resp. to

GH,(M*,M)) (cf. Appendix F).

But, for all ¢ € [0, 1], we have w’, = w, so (w!)” belongs to GH, (M, M*). By compactness
of [0,1], as x (L;.)fg)b is a smooth map from U to Hy(M, M*) and by a continuity argument,
from Proposition 58, we may assume that (c/.);i)b belongs to GH, (M, M*) for all t € [0,1],
after shrinking U if necessary. Thus ((w%)?)™" exists and belongs to Q’Hb(M*,M). Let
denote by || [|22 the norm on GH,(M, M*) and GH,(M*,M). Thus if K = ||w}||2 and
E = ||(wd) |2, again from Proposition 58, by a continuity argument, there exists an
open neighbourhood W = l&nWl of a € U such that

WL I < 2K Yo e W te[0,1] (15)

(@) THI® <2k Yz e W telo,1] (16)

On the other hand, from its definition, it follows that the sequence (E;) is a projective
sequence of vector fields and it projective limit E = I&IEZ is Euler vector field on M in the
classical sense. Since in our context have (¢; Qi) is simply (£;)z, = wa, for all z; € Us,
then (w; — sz)Zl (E;) is simply (w; — Ql)il (E;) and so we get

lim(w; — )2, (B) = (w — Q)%(E) (17)
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where obviously Q, = m(ﬂl)ﬁ =w, for all z € U.
On the other hand by same arguments used to obtain (15), it is clear that from (14), after
shrinking W if necessary, we get

l(w = Qu)o(B)||% <2C VoeW (18)

Note that from the definition of E;, in our context, we have E;(x;) = x; and so E(z) = «.
Thus the relations (12) and (11) are respectively exactly

(@), = / (@i — )%, (Bo)ds: (19)

— /Ol(w — Q)% (E)ds. (20)

Thus from (18), we have

llow|l% < 20, Yz e W (21)

where || ||% is the norm for uniformly bounded elements of M*.

According to Remark 27, the time dependent vector field X* = ((w')”)~!(a) is defined
on a star-shaped open set Wi in W at 0. The following Lemma asserts that X* satisfies
the assumption of Theorem 60 which ends the proof.

Lemma 30. We can choose the a star-shaped open set V of 0 € U such that X' is
Lipschitz on V' that is:

there exists a a constant k > such that v;( X% — X%/) < kvi(z — o)
for allz,x' € V, allt € [0,1] and all i € N.

Proof Note that from (17), (19) and (20) it follows that

o= @ai.
Since from (19) the map x; — (@), is smooth, this implies that = — «, is a smooth

map from Wi to M* which is uniformly bounded from (21). Therefore this map is x1-
Lipschitz for some 1 > 0 (cf. [3]) on some star-shaped open W> of 0 € Wy that is

Vi (ag — apr) < kivi(z — '), Vo,2’ € Wa, Vi €N

From (16), by the same type of arguments for 2 — ((w’)”)~* we obtain that there exists
a star-shaped open neighbourhood of W3 of 0 € W; such that this map is xe-Lipschitz.
Taking in account (21), we obtain
vi(XE = XL) < v ((@8)") 7 aw) = (@h)) 7 (@) ) + o (b)) e — aw))
< 2Ckovi(z — x') + 2kk1vi(z — x')
for any ¢ € [0,1] and any ¢ € N. This ends the proof by taking V = W3 and k =

2Cko + 2kk1.
O

6. EXAMPLES AND CONTRE-EXAMPLE ABOUT THE EXISTENCE OF A PROJECTIVE LIMIT
OF DARBOUX CHARTS

Example 31 (Example of existence of Darboux chart around any point).

According to [23] section 4, the set L (S*, M) of Sobolev loops of class L has a Banach
structrue manifold and if where (M, w) is a symplectic manifold, we can provide LY (S', M)
with a weak symplectic form  and around any v € LY (S', M), we have a Darboux chart
(cf. [23] Theorem 32). Moreover, LZ(S*, M) is a Hilbert space and 2, is a strong symplectic
form. If we denote by L>(S*, M) the set of smooth loops in M, we have L®(S', M) =
l'glLi (S*, M) and this space is a ILH-manifold. It is easy to see that the sequence of forms
(%) ken are compatible and since the projective sequence (Li(Sl, M))keN
get a weak symplectic form Q) = L&lﬂk on L*®(S', M). In fact,  can be defined directly

in the same way as Q on each L?(S', M).
When M = R*™, consider the canonical (linear) Darboux form w on R*™. Then we have
a global Darboux chart for Q on L>(S*,R?*™) (cf. [16]). Of course, since we also have a

is reduced, we
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global Darboux chart on each LZ(S',R?*™), we then get an example of projective limit of
Darboux charts.

Example 32 ( Existence of Darboux chart under Darboux-Bambusi assump-
tions). Let (M;),.y be a sequence of Banach spaces. Consider the submersive projective

sequence of Banach spaces <M, = H Mk> of Banach spaces where 53 : Mj — M is
k=1

1EN*

the canonical projection. Then the projective limit M is the product H M. On M the
k=1

projective limit topology is the product topology and it is also the topology of Fréchet

manifold.

Now, assume that on each M we have a weak symplectic form wy such that, for some

a= @(al, ...,an) € M, each symplectic form wy, satisfies the assumptions (i) and (ii) of

Theorem 17 at a and for all k € N*. Then from this Theorem, around the point ay € Mg,

we have a Darboux chart (Vi, Fy).

For any Zn := (1,...,%n) € M,, and @, = (u1,..-,Un), Un = (V1,...,0p) in Tz, M,, we

define the 2 form

n
@n (i, ) = wi(tk, vk).
k=1

Then @, is also a weak symplectic form on M, and it is easy to see that (V,, F,) is
a Darboux chart for w, around Z,. Now it is clear that the sequence (cZ)n)neN of weak
symplectic forms are compatible and so give rise to a weak symplectic form @ on M. Then
(V= @Vm@ﬁn) is a Darboux chart around a := mdn if V' is an open set that is

V. = M, for any n € N execpt eventually for a finite subset J C N. Such a situation
occurs in the following contexts:

(1) wyg is a linear Darboux form on the Banach space My, for all k¥ € N eventually
outside of finite set J (cf. section 2.1).
(2) wr is a weak linear symplectic form on the reflexive Banach space M for all
k € N* eventually outside of finite set J (cf. [4] Proposition B.3 Point (3))
(3) H is a separable infinite-dimensional real Hilbert space and we consider:
— My = H for each integer k € N;
— Sk : H — H is a compact operator with dense range, but proper subset of H,
which is self adjoint and positive!® (such an operator is injective)
— @ a linear Darboux form on H and wy = S;@ for at most a finite number of
integers and otherwise Sy = Idy.

From the example produced in [19], we can obtain the following example for which there
18 mo Darboux chart on a submersive projective limit of symplectic Banach manifolds:

Example 33 (Non existence of Darboux chart). Let H be a separable infinite-
dimensional real Hilbert space endowed with its inner product < , >. If g is a weak
Riemannian metric on H, we may use the trivialization TH = H x H to define a weak
symplectic form w in the following way ([19]):

2 w(z,e)((u, U)7 (u/7 U/)) = Dﬂcgﬁi(ev u)'u/ - ngx(e, ul)'u + 900(1/7 u) - gﬂi(’u7 ul)'
Then the operator w'(’z’e) : Tiw,eyH x H — T, H x H can be written as a matrix of type

b
1 F(zb,e) 9z (22)
2 4 0

Since ¢ is always injective by assumption, it follows that w‘(’z,e) is always injective and is

surjective if and only ¢’ is so. It follows that if & is the set of points z € H where g, is
not surjective, then the set of points (z,e) € TH where w( ) is not a strong symplectic

15such operators Sy exist since the Hilbert space H is separable and infinite-dimensional
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form is precisely ¥ x H.

As at the end of the above Example, let S : H — H be a compact operator with dense
range, but proper subset of H, which is self adjoint and positive. Given a fixed a € H,
then A, = ||z — a||*Idw + S is a smooth field of bounded operators of H which is an
isomorphism for all z # a and A,(H) # H but A,(H) is dense in H (cf. [19]). Then
gz (e, f) =< Az(e), f > is a weak Riemaniann metric and the associated symplectic form
W(z,e) is not a strong symplectic form if and only if (z,e) belongs to {a} x H and, in this
case, the range of w?w,e) is dense in 77, . (H x H) = H x H.

For each k € N* and any = € H we set
(Ap)e = [Jz — %HQIdH +S.

We consider the Hilbert space H, = H Hj, where H;, = H and provided with the inner
k=1
product

< (z1,--yTn), (Y1, -y Yn) >n= Z < T, Yk >
k=1

As in the previous example, we identify H,, with H,, x {0} in H,+:. From now on, we will
use the notations introduced in Example 32.
For any Zn = (21,...,%n) € H,, we set

(e'ﬂ)ﬂ_cn = ((Al)x17 ceey (An)xn) .
We denote by g, the Riemannian metric on H,, defined by
(gn)in(ﬂnyf)n) =< (Kn)(zl ,,,,, zn)(ﬁn)a'ﬁn >n
for all 4, and ¥, in H,,. Thus we can consider the weak symplectic form @, associated to

gn as above. Therefore the maximal open set on which w,, is a strong symplectic form is
the open set

p— i a n —
U, =TH, \ U({%} x | ] Hik) x H,
k=1 k=2
By construction, for all > n and n € N*, we have

8 o (Ej)(s%(fj) = (0n)z, 08.

We set H = @ﬁn. From all the above considerations, it follows that the sequence

(Wn),en- is a family of compatible weak symplectic forms which induces a weak symplectic
form @ on the Fréchet manifold TH = H x H since, as in the general case, the cotangent
space T&’ﬂ)(ﬁ x H) does not have a Fréchet structure, which implies that @” can not be
surjective.
Now, for each n € N*, as (0,0) belongs to the open set U,, we have a Darboux chart
(Vn, Fy) around (0,0) € TH,, from the classical Darboux Theorem for strong symplectic
Banach manifold (cf. [18] or [25] for instance). Since @y is a strong symplectic form on
V., we must have V,, C U,. But from the definition of U, it follows that

52 (V) NTH, € {(z,u) eHx H : ||z| < %}.

Therefore, according to Remark 45, the sequence (V,,, F;,) is not a projective sequence of
charts and so there is no Darboux chart for @ around (0,0) € TH.

Example 34 (Existence of Darboux chart under Theorem 29 assumptions).
We again consider an Hilbert space a separable infinite-dimensional real Hilbert space
endowed with its inner product < , > and for each k € N* and any = € H we set

1
(Ak)e = ﬁ(l\wl\QSJrde)
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where S is a compact operator with dense range, which is self adjoint and positive. Since
the set of GL(H) automorphisms of H is open in the Banach space £L(H) of endomorphisms
of H, there exists a ball B(0,27n;) such that Ax(x) belongs to GL(H) and moreover such
that

o 2

@™ < 5

for all z € B(a,2n;). Consider a smooth map 0, : R" — RT such that x(t) = t for
0<t<mn, and 0;(t) =0 for t > 27, and we set

(Ab)s = 75 (Ou([2]*)S + Tds)

Since |6(t)| < 2mi for all t € RT we obtain
o 2
1Ak @)I™ < 7 (23)
for all z € H.

Note since 0y is smooth with compact support, there exist Cx > 0 such that ||d0|| < Ck
and so

[1d6(||[|*)]|°P < ACkm (24)
for all x € H.

Now, on M = H x H provided with the inner product
< (z,2"),(y,y) >=< 2,2 >+ < y,y >
we consider the 1-form
(k) (,0) (u 0') = (Ak)(u) — (Ak)ar ()
and we set wr = dax. Then we have
(wk)u,x'l)((% w'), (v,0)) =
— (2dox(||2]]*) < z,u > S(v)+ < ((O(||z]]*)S + Ida)(v),u > — < (O(||2]|*)S + Idz)(v),u >))

2k2
— oz (F2d0k(1l']1*) < o'’ > S()+ < ((O(I2']*)S + Tdn) (), u' > = < ((O(|2']]*)S + Idas) (u'), v" >)
It follows that (ws)’(u,u’) can be written as the matrix

A (@dOx(|z][*) < @u > SO)+ < ((0(|2]1*)S + Idu) (), u > — < ((0(|[2][*)S + Idx)(u), >))
2k \ (2d0x(l|2"[]*) < 2’,u" > S()— < (02" |*)S + Idwm)( ), u’ > + < ((0(|[2"|*)S + Idwm)(u), >) )"
(25)
According to (25), (23), and (24) since 6, = 0 for ¢ > 27, and we obtain
O 1 O
[1(@n) o [P < 7z @ ASIP (G + 1)) (26)
Now, from the construction of Ay, for z = 0, (wk)E0,0) is an isomorphism. Thus, for n
small enough, it follows that (wg)
a strong symplectic form on M.

Note that if we choose a decreasing sequence (7)) so is the sequence (Cj) and in this
way for any k > 1 we get

?z’z/) is an isomorphism for all (z,z’) € M and so wy, is

(o) 1 (o)
(@), [ < 7z @IS m(Cr + 1)) (27)

for all (z,z') € M.
Again from (25), (23), and (24), since 0; = 0 for t > 2n; and and if (nx) is decreasing
we obtain

@)% (B, 7)) = (wi){oo) (B, 2))||” < k—12||5||°1“(4m)2(01 +1) (28)

for all (z,z') € M where E is the classical Euler vector fields on M.
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n
By analogy with Example 32, we consider the Hilbert space M, = HM’“ where
k=1

My =M for kK =1,...,n and provided with the inner product

n
(@1 @0)s W) Su= S < By >
k=1
From now on, we will use analogous notations introduced in the previous Example 33. For
any Tn = (r1,...,%n) € M, here we set

(Zn)in = ((Al):tu (R (An):rn) .

We can consider the symplectic form &, = (w1,...wy) on ‘M ,, where wy, is the symplectic
form on My, associated to (¢x) (as in Example 32) and we choose a decreasing sequence
(k). At point Z, the linear map (@, )%, is the matrix of diagonal blocks (wk)';k. According
to (26), there exists K > 0 (independent of n) such that

2

_ b o ~ 1 ™
[1(@n)z, |77 < <Z k2> K=K (29)
k=1
for all Z,, € M,.

On the other hand, denote by Ex the Euler vector fields on My, then the Euler vector
field E, on M, is (E1,...,E;). Then by analog arguments, from (28), there exists a
C' > 0 such that

1(@n)z, (Bn(Zn) = (@n)§(En (@)™ < %C (30)

Now, as in the Example 32, if we set M = @Mn it follows that the sequence (wn),, oy~
is a family of compatible strong symplectic forms which induces a weak symplectic form @
on the Fréchet manifold M. In particular, the assumptions of Proposition 26 are satisfied
around point 0 € M for the global chart (M, Id). Moreover, according to (29) and (30),
on this chart, the assumptions (SN) and (EN) are satisfied. It follows that there exists

a Darboux chart around 0 € M which is a global chart.

Remark 35. In [15] the required conditions for a sequence of compatible weak symplectic
forms can be weakened. Precisely condition (2) is needed only for the sequence (o) defined
by (12). So according to this Remark, it is easy to see that the example 34 satisfies the
other assumptions required in Theorem 5.1 in [15]. Now consider any finite sequences
of weak symplectic manifolds Banach manifold (Mi,01),...,(My,0p) which satisfies the
Darbouz-Bambusi Theorem assumptions around some points a; € M;, i =1,...,p but not
for a global chart (that is the associated vector field X} given in the Moser’s method is not
defined on the whole manifold M; for 1 =1,...,p). For instance, one can take for M; the
Sobolev Banach manifold of loops LY (S, M) where M is a finite dimensional symplectic
manifold and use Theorem 5.9 in [23]. Then by taking M,, = Hle M; x ML, we can build
a projective sequence of weak symplectic Banach manifolds for which the assumptions of
Theorem 29 or Theorem 4 are satisfied but not the assumptions of Theorem 5.1 of [15]
since on each M; the vector fields X! is not globally defined on M;. Also the condition (2)
in [15] for compatible sequences of weak symplectic form is not checked either.

APPENDIX A. PROJECTIVE LIMITS OF TOPOLOGICAL SPACES

Definition 36. A projective sequence of topological spaces is a sequence
((Xi’ég))(i,j)el\@,jzi where
(PSTS 1): For alli € N, X; is a topological space;
(PSTS 2): For all (i,5) € N? such that j > i, 6{ : X; — X; is a continuous map;
(PSTS 3): Foralli€N, §! = Idx,;
(PSTS 4): For all (i,5,k) € N* such that k > j >4, ] o 5% = 6F.
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Notation 37. For the sake of simplicity, the projective sequence ((Xz,éf))
will be denoted (Xi,ég).

(i,J)EN2, j>i

An element (x;),y of the product HXZ' is called a thread if, for all j > i, 67 (x;) = ;.
ieN
Definition 38. The set X = @Xi of all threads, endowed with the finest topology for
which all the projections 6; : X — X, are continuous, is called the projective limit of the
sequence (X,-,(Sf).

A basis of the topology of X is constituted by the subsets (&;)"' (U;) where U; is an
open subset of X; (and so §; is open whenever §; is surjective).

Definition 39. Let (Xi,éf) and (Yi,wf) be two projective sequences whose respective
projective limits are X and Y .
A sequence (fi);cy of continuous mappings fi : X; — Y3, satisfying, for all (i,7) € NZ,
7 > 1, the coherence condition A _
viofi=fiod]
is called a projective sequence of mappings.
The projective limit of this sequence is the mapping
f: X — Y
(®i);en = (fi (70));en

The mapping f is continuous if all the f; are continuous.

APPENDIX B. PROJECTIVE LIMITS OF BANACH SPACES
Consider a projective sequence (Ei, 55 ) of Banach spaces.

Remark 40. Since we have a countable sequence of Banach spaces, according to the

properties of bonding maps, the sequence (53)(1. N2, i is well defined by the sequence of

bonding maps (6#1)2‘61\!‘

Fix some norm || ||; on E;, for all i € N. If z = limz;, then pn(x) = Jnax ||z:]]: is a
semi-norm on the projective limit F = lim[E,, which provides a structure of Fréchet space
on this vector space (see [5]).

Definition 41. A projective sequence (El,éf) of Banach spaces is called reduced if the
range of 62'*'1 is dense for all i € N.

Definition 42. Two projective sequences (IE“(Sf) and (E’M’Z) of Banach spaces are
called equivalent if there exist isometries A; : E; — E'; for all i € N such that
5;4—1 = Al_l o} 6IZ+1 o Ai+1.

Of course, any projective sequence (Ei,éf ) of Banach spaces is not reduced and, in
general, such a sequence is not equivalent to a reduced one. However, by replacing each
E; by the closure E in E; of 67! (E;;1) and 6! by the restriction 6’;"" of 677! to B, ;,
we produce a reduced sequence of Banach spaces (IE;, 5'{) such that lgﬂl-iZ = lgﬂE;

Conversely, any Fréchet space provided with a countable family of semi-norms is topolog-
ically isomorphic to the projective limit of a reduced projective sequence.

A particular important case of projective limit of a reduced projective sequence of
Banach spaces corresponds to the case of a decreasing sequence:
Eo DEy D "'DEiDEi-‘-l Do
fulfilling, for any i € N, the properties:
(DecS 1): the inclusion (™ : E;41 — [E; is continuous;
(DecS 2): E;;; is dense in E;.



26 FERNAND PELLETIER

Then the projective limit l&nﬂiZ is the intersection ﬂ E;; it is called an inverse limit of
ieN

Banach spaces or ILB for short (cf. [22]). In fact, any Fréchet space is an ILB space (cf.

Appendix A).

APPENDIX C. PROJECTIVE LIMITS OF DIFFERENTIAL MAPS

The following proposition (cf. [8], Lemma 1.2) is essential

Proposition 43. Let (Ez,éi) be a projective sequence of Banach spaces whose projec-
tive limit is the Fréchet space F = @Ez and (fi : E; — E;),oy o projective sequence of
differential maps whose projective limit is f = L&nﬁ Then the following conditions hold:

(1) f is smooth in the convenient sense (cf. [13])
(2) Forall x = (vi),cy, dfe = @(dfl)zl
(3) df = limdf;.

APPENDIX D. PROJECTIVE LIMITS OF BANACH MANIFOLDS

Definition 44. The projective sequence (Mi, 5{)j>i 1s called projective sequence of Banach
manifolds if B

(PSBM 1): M; is a manifold modeled on the Banach space M;;
(PSBM 2): (Mi, 5{) . is a projective sequence of Banach spaces;
J=
(PSBM 3): For allx = (x;) € M = I'&th there exists a projective sequence of
local charts (Us, goi)ieN such that x; € U; where one has the relation

i 06] = 6] 0 p;;

(PSBM 4): Under the previous assumptions if ¢ = @Ui and U = @Ui then ¢(U)
is an open set of Ml = @Ml

Under the assumptions (PSBM 1) and (PSBM 2) in Definition 44, the assumptions
(PSBM 3)] and (PSBM 4) around = € M is called the projective limit chart property
around x € M and (U = l'glUi, ¢ = qu) is called a projective limit chart.

The projective limit M = limM; has a structure of Fréchet manifold modeled on the
Fréchet space M = l'&nMi and is called a PLB-manifold. The differentiable structure is
defined wvia the charts (U, ¢) where ¢ = limp; : U — (0i (Ui));en -

@ is a homeomorphism (projective limit of homeomorphisms) and the charts chang-
ings (11; o SD_I)ILp(U) — @ ((% o ((‘Oi)_l)m(m)) between open sets of Fréchet spaces are
smooth in the sense of convenient spaces.

Remark 45. If M is the projective limit of the sequence (Ml,éf)
can identified with

i then, as a set, M

{(mi)igN c HMZ : V_] > i, T; = 6?(@)} .
ieN
Since each M; is a topological space, we can provide H M; with the product topology and
ieN

so, since each 5{ is continuous, it follows that M is a closed subset in HMl which can
ieN

be provided with the induced topology generated by the open sets of type H Vi ﬂ M where
i€N

Vi is an open set of M; for a finite number of indices ¢ and otherwise V; = M;.

However, under the previous identification, as Fréchet manifold, the topology on M is not

this projective limit topology according to the assumption (PSBM /). By the way, this

topology is generated by all the sets of projective limit of charts (U = @Ul) where U; is

a chart domain in M; for all i € N. Of course in general such set U is not an open set
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in the projective limit topology. In fact, if §; = @jziéf then we have U = ﬂ 8 (Uy).
€N
Without the assumption (PSBM 4), ﬂ 67 (Ui) could be reduced to a point.

i€N

The sequence (Mz,éf) is called reduced projective sequence of Banach manifolds if

jzi
the sequence (Mi, 55) is a reduced projective sequence of Banach spaces. Then 517 (M) is
dense in M; for all j > i. We will say that (Mi, 65) is a reduced projective sequence and
M = l&lMl is a reduced PLB-manifold. This situation occurs when the bonding map 517 is
a surjective submersion from M; onto M; for all j > i. In this case, we say that (Mi7 53)
is a surjective projective sequence and M = @Mi is a surjective PLB-manifold. More
particular is the situation:

Definition 46. The sequence (Mi7 53) is called submersive projective sequence of Banach
manifolds if
(SPSBM 1): Y(i,j) € N?:j >4, 67 : My — M; is a surjective submersion;
(SPSBM 2): Around each x € M = @Mi, there exists a projective limit chart
(U = timUs, o = limep, ) ;
(SPSBM 3): For all i € N, there exists a decomposition M; = ker 5:“ @ M such
that the following diagram is commutative:

Pit1

Uit1 —> (ker 5?'1 X M;) (31)
5;+1l léj*’l
®i

Uy ———=M;
Such a chart is called a submersive projective limit chart around x.

The projective limit M = li of a submersive projective sequence (Mi, 5{ ) is called
asubmersive projective limit of Banach manifolds or for short a submersive PLB-manifold.
In this case, we have the following results (cf. [3])

Proposition 47. Let (Mz,df) be a surjective (resp. submersive) projective sequence.
Then, for each i € N, the map 6; : M — M; is surjective (resp. is a submersion).

Under the assumptions of Proposition 47, in fact each 63 : M; — M; is a surjective
submersion for all j > i where (4, j) € N2,

Another important situation of reduced PLB-manifold, is the case of ILB-manifold de-
fined as follows:

Definition 48. A PLB-manifold M = @Mi is called ILB-manifold if
(ILBM 1): Vi € N, Mi+1 C Mi,‘
(ILBM 2): Vi € N, 62“ : Miy1 — M; is the canonical inclusion which is a weak
immersion with dense range.

Note that this definition is stronger than the definition of ILB-manifold in the Omori’s
sense (see [22]) since we impose the condition (PSBM4). In this case, M = m M;.
ieN
APPENDIX E. PROJECTIVE LIMITS OF BANACH VECTOR BUNDLES

Let (Mi, 517 ) be a projective sequence of Banach manifolds where each manifold M; is
modeled on the Banach space M.
For any integer i, let (E;,m;, M;) be the Banach vector bundle whose type fibre is the

Banach vector space E; where (IEi7 )\f) is a projective sequence of Banach spaces.

774

Definition 49. ((Ei,m,Mi),( g 57))j>i, where ff : E; — E; is a morphism of vector
bundles, is called a projective sequence of Banach vector bundles on the projective sequence
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of manifolds (Mz,dzj) if for all (x;) there exists a projective sequence of trivializations
(Ui, i) of (Es,mi, M), where 7; : (m;)_1 (Ui) — U; x E; are local diffeomorphisms, such
that z; € U; (open in M;) and where U = @Ui is a mon empty open set in M where, for
all (i,7) € N2 such that j > i, we have the compatibility condition

(PLBVB): (6] x M) orj=mi0f].

With the previous notations, (U = @Ui, T = l&m) is called a projective bundle chart
limit The triple of projective limit (E = @nEh T = 1'&nm7 M = li)) is called a pro-
jective limit of Banach bundles or PLB-bundle for short.

The following proposition generalizes the result of [10] about the projective limit of
tangent bundles to Banach manifolds.

Proposition 50. Let ((El7 iy M), ( 7 57))j>i be a projective sequence of Banach vector

bundles.
Then (@EZ, L&nm,&an) is a Fréchet vector bundle.

Remark that GL (E) cannot be endowed with a structure of Lie group. So it cannot
play the role of structural group. We then consider, as in [9], the generalized Lie group
H°(E) = @H? (E) which is the projective limit of the Banach-Lie groups

H) (E) = {(hl,...,hi)GHGL(Ej):A{;Ohj—hkO)\i, forkgjgi}.
j=1

We then obtain the differentiability of the transition functions T.

Example 51. As a particular case of Proposition 50, we can consider the projective se-
quence of tangent bundles ((Ei,m,Mi), (T5f,5f))j>i of a projective sequence of Banach
manifolds (M, 65) Thus, if each M; is modeled on the Banach space M, (l'&lTMi, l‘&nﬂ'i7 1£1M1)
18 a Fréchet vector bundle whose typical fibre is Ml = l'&nMi with structural group H° (M).

As we have already seen, this result was firstly proved in [10].

Notation 52. From now on and for the sake of simplicity, the projective sequence of
vector bundles ((Ei,m,Mi), ( i]’ég))j>i will be denoted (E;,m;, M;).

As in Appendix D, we introduce

Definition 53. A sequence (E;,m;:, M;) is called a submersive projective sequence of Ba-
nach vector bundles if (E;, m, M;) is a submersive projective sequence of Banach manifolds
and if around each x € M, there exists a projective limit chart bundle (U = @Uiﬂ' =

T&nn) such that for all i € N, we have a decomposition E;y1 = ker 5\?1 @ E! such that the
condition (PLBVB) is true.

The projective limit (E,w, M) of a projective sequence of Banach vector bundles
(B, m, M;) is called a submersive projective limit of Banach bundles or submersive PLB-
bundle for short.

Now, we have the following result whose proof is similar to Proposition 47:

Proposition 54. Let (E;, 7, M;) be a submersive projective sequence of Banach bundles.
Then, for each i € N, the map \; : E — E; is a submersion.

APPENDIX F. THE BANACH SPACE H; (F1,Fa2)

Let (Fy1,vy) (vesp. (F2,v2)) be a graded Fréchet space.
Recall that a linear map L : F1 — Fa is continuous if

vn € N, 3k, € N,3C, > 0:Vz € F1,vy (L.z) < Crri™ (2) .
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The space L (F1,F2) of continuous linear maps between both these Fréchet spaces gen-
erally drops out of the Fréchet category. Indeed, £ (F1,F2) is a Hausdorff locally convex
topological vector space whose topology is defined by the family of semi-norms {pn,5}:

pn. (L) = sup {va (L)}

where n € N and B is any bounded subset of F;1. This topology is not metrizable since
the family {p»,p} is not countable.
So L (Fq,F3) will be replaced, under certain assumptions, by a projective limit of appro-
priate functional spaces as introduced in [9].

We denote by L (BT, B%) the space of linear continuous maps (or equivalently bounded
linear maps because BT and B3 are normed spaces). We then have the following result
([5], Theorem 2.3.10).

Theorem 55. The space of all continuous linear maps between F1 and Fa which can be
represented as projective limits

H(F1,F2) = {(Ln) € H L (BY,B3) : imLy, em’sts}

neN
is a Fréchet space.

For this sequence (Ln),, oy of linear maps, for any integer 0 < n < m, the following
diagram is commutative

6™
B <~ B

(82)5"

By <—— B
On H (F1,F2), the topology can be defined by the sequence of seminorms p,, given by
2 1
pn (L) = Jax sup {vi (L.x),z € F1, v(z) <1}

so that (H (F1,F2), pn) is a graded Fréchet space.

Remark 56. Forl € {1,2} , given a graduation (VL) on a Fréchet space Fy, let B} be
the associated local Banach space and 0" : F; — B}' the canonical projection.
The quotient norm U, associated to v}, is defined by

7 (0n(2)) = sup{v(y) : 6uly) = dn(2)}. (32)
We denote by (72)°P the corresponding operator norm on L(B},BY).
If L = @Ln where Ly, : BY — BY, then we have
(72)°P(Ly) = sup{D2(Ln.x), x € B} p(x) <1} =sup{vi(L.a),z € Fi,v'(z) <1}
This tmplies that
pn(L) = max (77)°P(Ly).

0<i<n

Definition 57. Let (F1,v}) and (F2,2) be graded Fréchet spaces. A linear map L : Fy —
Fa is called a uniformly bounded operator, if

AC >0 :VneN, v, (L(x)) < Cun(z).
We denote by Hy, (F1,F2) the set of uniformly bounded operators. Of course H;, (F1, F2)
is contained in H (IF1,F2) and L € H (IF1,F2) belongs to Hy, (F1, F2) if and only if sup p, (L) <
neN
oo and so
Hy (F1,F2) = [H (F1, F2)],

that is the set of uniformly bounded elements of H (F1,F2), relative to the sequence of
semi-norms (py).
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When F = F; = Fs and v; = v2 for all n € N, the set H (F,F) (resp. Hy (F,F)) is
simply denoted H (F) (resp. Hs (F)).

We denote by ZH,, (F1,F2) (resp. SHsp (F1,F2)) the set of injective (resp. surjective)
operators of Hy (F1,F2) with closed range.

Proposition 58. ([3])

(1) Each operator L € H (F1,F2) has a closed range if and only if, for each n € N,
the induced operator L, : BY — B3 has a closed range.

(2) ZHsp (F1,F2) is an open subset of Hy (F1,F2).

(3) SHy (F1,F2) is an open subset of Hp (F1,F2).

We are in situation to end this section by the following result:

Theorem 59. ([3])

(1) The Banach space Hy(F) has a Banach-Lie algebra structure and the set GH,(F)
of uniformly bounded isomorphisms of F is open in Hp(F).

(2) GH(F) has a structure of Banach-Lie group whose Lie algebra is Hy(F).

(3) IfT is identified with the projective LimB" we denote by exp,, : L(B,) = GL(B,),
then we a have a well defined smooth map exp := limexp, : Hy(F) — GH4(F)
which is a diffeomorphism from an open set of 0 € Hy(F) onto a neighbourhood
Of Idp.

APPENDIX G. A THEOREM OF EXISTENCE OF ODE
The following result is in fact a reformulation in our context of Theorem 1 in [17].

Theorem 60. LetF a Fréchet space realized as the limit of a surjective projective sequence
of Banach spaces (By, ') whose topology is defined by the sequence of seminorms (Vn),, cy-
Let I be an open interval in R and U be an open set of I x F. Then U is a surjective
projective limit of open sets U,, C I x B,,. Consider a smooth map f = @fn U — T,
projective limit of maps fn : Un — By, 0 Assume that for every point (t,z)) € U, and
every n € N, there exists an integrable function K, > 0 such that

v ((t, l‘), (t7 xl)) € U27 Vn(f(t7x) - f(tv .T/)) < Kn(t)l/n(ai - x/)' (33)
and consider the differential equation:
z=f(tzx). (34)

(1) For any (to,x0) € U, there exists a > 0 with I = [to — o, to + o] C I, an open
pseudo-ball V = B(xo,7) CU and a map ® : I, X Io x V — F such that

t— &(t,7,x)

is the unique solution of (34) with initial condition ®(7,7,z) =z for allz € V.

(2) V is the projective limit of the open balls V,, of By,. For each n € N, the curve
t = Ap o ®(t, 7, \n(z)) is the unique solution v : I, — B, of the differential
equation Tn = ¢n (t,xn) with initial condition y(1) = An(x).
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