
HAL Id: hal-04751926
https://hal.science/hal-04751926v1

Submitted on 13 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

KSPHPDDM and PCHPDDM: Extending PETSc with
advanced Krylov methods and robust multilevel

overlapping Schwarz preconditioners
Pierre Jolivet, Jose E. Roman, Stefano Zampini

To cite this version:
Pierre Jolivet, Jose E. Roman, Stefano Zampini. KSPHPDDM and PCHPDDM: Extending PETSc
with advanced Krylov methods and robust multilevel overlapping Schwarz preconditioners. Comput-
ers & Mathematics with Applications, 2021, 84, pp.277-295. �10.1016/j.camwa.2021.01.003�. �hal-
04751926�

https://hal.science/hal-04751926v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

KSPHPDDM and PCHPDDM: extending PETSc with advanced Krylov
methods and robust multilevel overlapping Schwarz preconditioners

Pierre Joliveta,∗, Jose E. Romanb, Stefano Zampinic

aCNRS, IRIT–ENSEEIHT, Toulouse, France
bUniversitat Politècnica de València, València, Spain

cKing Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Abstract

Contemporary applications in computational science and engineering often require the solution of
linear systems which may be of different sizes, shapes, and structures. The goal of this paper is to
explain how two libraries, PETSc and HPDDM, have been interfaced in order to offer end-users
robust overlapping Schwarz preconditioners and advanced Krylov methods featuring recycling and
the ability to deal with multiple right-hand sides. The flexibility of the implementation is showcased
and explained with minimalist, easy-to-run, and reproducible examples, to ease the integration of
these algorithms into more advanced frameworks. The examples provided cover applications from
eigenanalysis, elasticity, combustion, and electromagnetism.

Keywords: Krylov methods, domain decomposition preconditioners, distributed-memory parallel
computing

1. Introduction1

Computational science and engineering today enjoys unprecedented opportunities to trans-2

form the way society solves many of its most urgent technological problems through predictive3

simulations. At the heart of simulations are robust and scalable solution algorithms. The effi-4

cient production of applications requires a rich ecosystem of state-of-the-art reusable libraries from5

which domain specialists can benefit [1]. In this paper, we focus on the interoperability of two such6

libraries.7

On the one hand, PETSc [2, 3], the Portable and Extensible Toolkit for Scientific computa-8

tion, is a well-established, actively developed software from the community. It may be used to9

efficiently discretize partial differential equations and solve algebraic linear or nonlinear systems10

of time-dependent equations. Among its strengths, it offers many advanced features regarding11

preconditioning and tailored matrix formats, and it can interact with third-party libraries, such as12

hypre [4] for linear solvers, TetGen [5] for mesh generation, p4est [6] for adaptive mesh refinement,13

to cite a few. The extensibility and robustness of the framework convinced computational scientists14

to use PETSc as one of the discretization and/or algebraic backend in many different higher-level15

projects, see https://www.mcs.anl.gov/petsc for a comprehensive list.16

∗Corresponding author
Email addresses: pierre.jolivet@enseeiht.fr (Pierre Jolivet), jroman@dsic.upv.es (Jose E. Roman),

stefano.zampini@kaust.edu.sa (Stefano Zampini)

Preprint submitted to Computers & Mathematics with Applications December 27, 2020

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0898122121000055
Manuscript_6fbe7e72dc0392135434b063b7f5ee78

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0898122121000055
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0898122121000055

On the other hand, HPDDM [7], the High-Performance unified framework for Domain Decom-17

position Methods (HPDDM) is a much smaller project focusing on robust and scalable domain18

decomposition preconditioners and advanced iterative methods [8] which can efficiently deal with19

linear systems with multiple right-hand sides, i.e., block iterative methods, and when there is a20

recurrence of varying coefficient matrices and right-hand sides, i.e., recycling iterative methods.21

Here, we describe the integration of the HPDDM solvers suite consisting of advanced iterative22

methods and robust domain decomposition preconditioners into PETSc. The design principles23

of the interface are showcased considering minimalist and easy-to-run examples, with a focus on24

fulfilling reproducibility requirements as advocated by the Association for Computing Machinery25

https://www.acm.org/publications/policies/artifact-review-badging, as well as to ease26

the integration of these algorithms into more advanced frameworks and facilitate the analysis and27

comparison of performance results [9].28

Fruits of the proposed enhancement are discussed for applications from SLEPc [10], the Scalable29

Library for Eigenvalue Problem computations, an add-on library that extends PETSc with classes30

for linear and nonlinear eigenvalue problems, as well as with tools to facilitate the use of shift-and-31

invert spectral transformations.32

The paper is divided in two main parts. Section 2 introduces the interface to recycling and33

block Krylov methods (KSPHPDDM) and discusses the readiness of the PETSc library with respect to34

block Krylov methods. Different applications from eigenanalysis are also provided. Section 3 intro-35

duces the suite of robust multilevel overlapping Schwarz methods (PCHPDDM) with examples from36

linear and nonlinear partial differential equations. Eventually, concluding remarks are provided in37

section 4.38

All PETSc keywords and options are typeset in typewriter font, these are public and docu-39

mented at https://www.mcs.anl.gov/petsc/petsc-master/docs. Codes not already available40

in other public repositories are available at https://github.com/prj-/jolivet2020petsc. In41

Appendix A, a short guide to build the required set of libraries for running these codes is pro-42

vided.43

2. Advanced Krylov methods in PETSc: KSPHPDDM44

2.1. Related work45

Krylov subspace methods are widely used in numerical linear algebra for solving linear sys-46

tems of equations because of their memory efficiency [11, 12]. They mainly rely on matrix–vector47

operations such as multiplications or transpose multiplications and, for robust convergence when48

dealing with challenging high-dimensional systems, on the application of appropriate precondition-49

ers. PETSc, as of version 3.14.0, already offers 44 different types of Krylov methods within the50

KSP base class. Some of the most used types are KSPGMRES, KSPCG, or KSPBCGS, which respectively51

implement the generalized minimal residual method [13] (GMRES), conjugate gradient [14] (CG),52

or biconjugate gradient stabilized method [15] (BCGS).53

Because Krylov methods may need long-term recurrences to mitigate round-off errors during54

the generation of subspaces, it is common to introduce a restart parameter in order to control55

their memory consumption and the volume of global communications needed when orthonormal-56

izing a candidate basis vector. Such restarts may hinder convergence of iterative methods, and57

even introduce convergence plateaus. Recycling techniques have been introduced to attenuate58

these effects. On the one hand, PETSc implements the loose GMRES [16] (LGMRES) and the59

2

deflated GMRES [17, 18] (DGMRES) as KSPLGMRES and KSPDGMRES. However, neither handle60

variable preconditioning, unlike KSPFGMRES or KSPGCR which respectively implement the flexible61

GMRES [19] (FGMRES) and the generalized conjugate residual method [20] (GCR). Furtheremore,62

KSPDGMRES does not support complex arithmetic. Moreover, extending the recycling capabilities of63

such methods to sequence of linear systems with smoothly varying coefficient matrices and right-64

hand sides is not trivial. On the other hand, HPDDM offers support for the generalized conjugate65

residual method with inner orthogonalization and deflated restarting [21] (GCRODR), which does66

not suffer from the aforementioned limitations.67

Another important aspect of Krylov methods is their ability to deal with multiple right-hand68

sides simultaneously. Block Krylov methods [22] are designed for solving linear systems AX = B,69

where X and B are tall-and-skinny matrices with k ≥ 1 columns. Such methods, while having70

higher arithmetic intensities, generate larger subspaces and typically converge in fewer iterates.71

These methods are not currently offered in PETSc and they are less frequently implemented in72

general purpose libraries because they require somehow more involved kernels such as matrix–73

matrix multiplication, instead of matrix–vector product, and may involve different inner-product74

realizations [23]. Still, systems with multiple right-hand sides are ubiquitous, e.g., in tomogra-75

phy [24], data analytics [25], eigensolvers [26], geophysics [27], quantum chromodynamics [28], and76

optimization with time-dependent partial differential equations as constraints.77

Trilinos [29] is another well-known software for scientific computing and it provides iterative78

methods through its Belos package [30]. Although having PETSc and Trilinos interoperate is79

possible, there is currently no KSP interface to Belos. Furthermore, some of the Krylov methods80

implemented in HPDDM and discussed in section 2.2, are not available in Belos.81

2.2. Interfacing HPDDM Krylov methods in PETSc82

In this section, we provide details of the interface between HPDDM Krylov methods and the83

various PETSc classes. It is assumed that the right-hand sides, and consequently the solutions,84

are always dense vectors or matrices.85

KSPHPDDM, the interface between HPDDM Krylov methods and PETSc, is automatically regis-86

tered since PETSc version 3.12 when configuring PETSc with the extra flag --download-hpddm.87

HPDDM linear solvers can be selected using the command line option -ksp type hpddm, or pro-88

grammatically via KSPSetType(ksp, KSPHPDDM). Then, the following Krylov methods can be ac-89

cessed:90

� pseudo-block GMRES or flexible GMRES [19];91

� pseudo-block CG or flexible CG [31];92

� pseudo-block GCRODR or flexible GCRODR [32];93

� block GMRES or flexible GMRES [27], with deflation at each restart;94

� block CG [33];95

� breakdown-free block CG [34], with deflation at each iteration;96

� block GCRODR or flexible GCRODR, with deflation at each restart.97

While being mathematically equivalent to their “standard” counterparts, the pseudo-block variants98

fuse together multiple similar operations like matrix–vector products to achieve higher arithmetic99

intensity, or to decrease the number of global synchronizations needed for scalar products.100

HPDDM Krylov methods may be selected using the options -ksp hpddm type (gmres|cg|gcrodr|101

bgmres|bcg|bfbcg|bgcrodr|preonly), or programmatically by using KSPHPDDMSetType(ksp,102

KSPHPDDMType). Preconditioning variants can be specified via -ksp hpddm variant (left|right|103

3

flexible) to select whether the preconditioner is applied on the left, on the right, or if it can-104

not be represented as a linear operator. In this latter case, the preconditioner is always applied105

on the right, except for the conjugate gradient methods BCG, BFCG, and BFBCG, that only106

handle left preconditioning. It is also possible to set the preconditioning side through the more107

common PETSc option -ksp pc side (left|right). In addition, convergence monitoring with108

the KSPMonitor interface is fully supported, as well as the specification of customized convergence109

testing via the KSPSetConvergenceTest callback.110

Recycling Krylov methods try to extract convergence information by solving a small standard111

or a generalized dense eigenproblem at the end of each cycle or when convergence is reached, and112

then reuse it appropriately for subsequent solves [35, 36, 37]. Such deflation subspaces, stored as113

dense tall-and-skinny matrices, can be accessed with KSPHPDDMGetDeflationSpace. User-defined114

deflation subspaces can also be specified via KSPHPDDMSetDeflationSpace.115

To fully support HPDDM solvers, in version 3.14.0 of PETSc, we added interface routines for116

solving systems with multiple right-hand sides, KSPMatSolve(ksp, X, Y), and to apply precondi-117

tioners, PCMatApply(pc, X, Y). Both input X and output Y matrices are currently limited to be118

dense tall-and-skinny matrices. With KSPHPDDM, (pseudo-)block Krylov methods will be used. In-119

stead, when no specialized implementation is available, PETSc will perform the solution phase in120

a column by column fashion. Furthermore, a function KSPSetMatSolveBlockSize is also provided121

to decompose a single large block of column vectors into multiple sub-blocks. KSPMatSolve is122

then called repeatedly until all sub-blocks are traversed. Similar considerations apply to the un-123

derlying calls to PCMatApply and MatProductNumeric. This was inspired by MUMPS [38] option124

ICNTL(27)1.125

While solving linear systems, possibly with multiple right-hand sides, HPDDM will repeatedly126

call the following PETSc routines:127

� MatMult(A, x, y) for y = Ax;128

� MatMatMult(A, X, MAT REUSE MATRIX, PETSC DEFAULT, Y)2 for Y = AX;129

� PCApply(M, x, y) to apply a preconditioner to x, i.e., for y = M−1x;130

� PCMatApply(M, X, Y) for Y = M−1X;131

The rest of the operations are performed directly inside HPDDM. Specifically, within Krylov meth-132

ods using the Arnoldi process, or when recycling is requested, one has to compute QR factoriza-133

tions of tall-and-skinny dense matrices to orthonormalize candidate basis vectors. Such operations134

are performed using the CholQR algorithm [39], or via the (modified) Gram–Schmidt method.135

These orthonormalization variants can be selected at runtime with the option -ksp hpddm qr136

(cholqr|mgs|cgs). For Hessenberg matrices generated by the Arnoldi process, it is common137

to update their QR decomposition using Givens rotations [12]. For block Hessenberg matrices,138

Householder reflectors are used instead [40].139

For matrix–matrix products, there are currently specialized implementations for the following140

MatTypes:141

� MATAIJ: standard sequential or parallel sparse matrix, based on compressed sparse row format;142

� MATSEQBAIJ: block sparse matrix, based on block compressed sparse row format;143

� MATSEQSBAIJ: symmetric block sparse matrix stored in upper triangular form;144

� MATSHELL: user-defined matrix;145

� MATNEST: block-defined matrix with nested submatrices;146

1http://mumps.enseeiht.fr/doc/userguide_5.3.3.pdf, section 6.1
2or MatProductNumeric(Y) with PETSc 3.14.0 and above

4

� MATAIJCUSPARSE: sequential or parallel sparse matrix, offloaded to a NVIDIA GPU using147

cuSPARSE [41].148

The following preconditioners have specialized implementations for dealing efficiently with multiple149

vectors:150

1. PCKSP: embedded Krylov method;151

2. PCMAT: matrix multiplication;152

3. PCH2OPUS: hierarchical matrices [42, 43];153

4. PCHPDDM: see section 3;154

5. PCASM and PCGASM: overlapping Schwarz methods;155

6. PCBJACOBI: block Jacobi;156

7. PCLU or PCCHOLESKY: exact LU or Cholesky factorization;157

8. PCILU or PCICC: incomplete LU or Cholesky factorization.158

One appealing feature of domain decomposition-like preconditioners (items 4 to 6) is that they159

most often rely on exact or inexact factorizations (items 7 and 8) as subdomain solvers. In these160

cases, it is possible to access the so-called factored matrix F via PCFactorGetMatrix, and then161

call MatMatSolve(F , X, Y) to take advantage of blocked forward eliminations and backward162

substitutions from the various factorization packages interfaced with PETSc. In the case of a163

sparse matrix, this strategy is possible with: MUMPS [38], SuiteSparse [44], MKL PARDISO164

or CPARDISO [45], and SuperLU [46] or SuperLU DIST [47]. For the case of a dense matrix:165

ScaLAPACK and Elemental [48] are supported. Future work will consider extending the multigrid166

framework PCMG, as well as other preconditioning classes to increase arithmetic intensity of the167

preconditioner application phase for blocks of right-hand sides.168

2.3. Applications and numerical results169

2.3.1. Reproducibility of the results from Parks et al. [21]170

Alongside the paper introducing GCRODR [21], a MATLAB implementation was provided171

and is since then available3. It comes with a sequence of ten “linear systems from a finite element172

fracture mechanics problem constructed by Philippe H. Geubelle and Spandan Maiti.” The goal173

of this paragraph is to explain how the results can be reproduced with PETSc and KSPHPDDM:174

the matrix files used are available at https://gitlab.com/petsc/datafiles/-/tree/master/175

matrices/hpddm/GCRODR while the driver code is part of the PETSc test suite and available176

at https://www.mcs.anl.gov/petsc/petsc-master/src/ksp/ksp/tutorials/ex75.c.html. In177

order to check the correctness of the KSPHPDDM interface, the following tests are performed:178

� in MATLAB, unpreconditioned GCRODR(40, 20), ICC(0) left-preconditioned GCRODR(40,179

20), and Jacobi right-preconditioned GCRODR(40, 20);180

� in PETSc with no preconditioning and no restart GMRES(∞) KSPGMRES;181

� in PETSc with KSPHPDDM, all of the above.182

The notation GCRODR(n, m) indicates a restart after n iterations and a recycling subspace of183

dimension m. In all of the cases, convergence is declared when the initial unpreconditioned residual184

is reduced by 10 orders of magnitude. Except for the right-preconditioned GCRODR, these tests185

are the same as the ones from the original GCRODR paper [21]. All PETSc tests are performed186

using four MPI processes and can be launched using the following command lines.187

188

3https://www.sandia.gov/~mlparks/GCRODR.zip

5

402 404 406 408 410
0

100

200

300

400

500

System index

#
of

it
er

at
io

n
s

MATLAB unpreconditioned GCRODR
KSPHPDDM

MATLAB ICC(0)-preconditioned GCRODR
KSPHPDDM

MATLAB Jacobi-preconditioned GCRODR
KSPHPDDM

Unpreconditioned KSPGMRES

KSPHPDDM

Figure 1: Number of iterations needed to converge for various configurations as originally tested by Parks et al. [21].
Note that the numbers of iterations needed by KSPHPDDM match with the respective MATLAB or PETSc reference
implementation.

$ mpirun -n 4 ./ex75 -ksp_converged_reason -pc_type none -ksp_rtol 1e-10 -ksp_gmres_restart 40 \

-ksp_type hpddm -ksp_hpddm_type gcrodr -ksp_hpddm_recycle 20 \

-load_dir ${DATAFILESPATH}/matrices/hpddm/GCRODR

$ mpirun -n 4 ./ex75 -ksp_converged_reason -redundant_pc_type icc -ksp_rtol 1e-10 \

-ksp_type hpddm -ksp_hpddm_type gcrodr -ksp_gmres_restart 40 -ksp_hpddm_recycle 20 \

-load_dir ${DATAFILESPATH}/matrices/hpddm/GCRODR -pc_type redundant

$ mpirun -n 4 ./ex75 -ksp_converged_reason -pc_type jacobi -ksp_rtol 1e-10 -ksp_gmres_restart 40 \

-ksp_type hpddm -ksp_hpddm_type gcrodr -ksp_hpddm_recycle 20 \

-ksp_pc_side right -load_dir ${DATAFILESPATH}/matrices/hpddm/GCRODR

$ mpirun -n 4 ./ex75 -ksp_converged_reason -pc_type none -ksp_rtol 1e-10 -ksp_gmres_restart 500 \

-ksp_type hpddm -load_dir ${DATAFILESPATH}/matrices/hpddm/GCRODR

The iteration numbers needed to reach convergence are gathered in figure 1. The cases and189

(resp. and) reproduce Figure 4.2 in [21], while cases and partially reproduce Figure190

4.3.191

2.3.2. Performance of primitives for block Krylov methods192

The readiness of PETSc, as of version 3.14.0, is now discussed when it comes to delivering193

efficient implementations of the core matrix–matrix multiplication needed by block Krylov methods194

and when a restart occurs in recycling Krylov methods.195

In particular, we consider the first three sequential matrix types from section 2.2, namely196

MATSEQAIJ, MATSEQBAIJ, and MATSEQSBAIJ. Their distributed memory counterparts, e.g., MATMPIAIJ,197

rely on the sequential implementations, with each process storing two such matrices, one with lo-198

cal rows and columns, and another with local rows and “nonlocal” columns. To keep this study199

succinct, we only evaluate the performance of the sequential implementations, which can help in200

drawing conclusions for the intraprocess performance of the parallel formats. For this reason,201

from now on, we drop the SEQ substring. The performance of the multiplication primitives of the202

three aforementioned types will also be compared against those obtained with the MKL inspector–203

6

executor sparse BLAS routines [45], using a single OpenMP thread. There is an ongoing effort to204

better integrate these routines in PETSc, but at the time of writing, direct calls to the MKL were205

used.206

For benchmarking, we first discretize the Poisson equation on a cube with trilinear finite ele-207

ments and obtain a matrix A of dimension one million. Though the numerical values of A are of no208

interest here, the sparsity pattern is rather common and frequently encountered when discretizing209

partial differential equations. We then generate a random symmetric dense b-by-b matrix T , for210

b ∈ {1, 3, 6}, and the matrix A = A⊗T is assembled into all three formats described above, using a211

block size of b for the block formats. The performance of the MatProductNumeric operation is eval-212

uated for tall-and-skinny dense matrices with a varying number of columns N ∈ {2, 8, 16, 32, 64}.213

For the single column case N = 1, the MatMult operation is used. All results have been obtained us-214

ing double-precision arithmetic and 32-bit integers. The scaled efficiency measured in GFLOP per215

second is reported with respect to the baseline MATAIJ implementation withN = 1 in figure 2, where216

performances have been averaged over five consecutive product operations. They can be repro-217

duced by using the mini-app MatProduct.c from https://github.com/prj-/jolivet2020petsc218

and any input MATAIJ stored in binary format, here using the default name binaryoutput, available219

at http://jolivet.perso.enseeiht.fr/binaryoutput.220

$ mpicc MatProduct.c -O3 -I${PETSC_DIR}/${PETSC_ARCH}/include -I${PETSC_DIR}/include \

-L${PETSC_DIR}/${PETSC_ARCH}/lib -lpetsc -o MatProduct

$ mpirun -n 1 ./MatProduct -f binaryoutput -log_view \

-bs 1,3,6 -N 1,2,8,16,32,64 -type aij,aijmkl,baij,baijmkl,sbaij,sbaijmkl

Some conclusions may be drawn:221

� with a block size of 1, top plot b = 1 in figure 2, using any type but MATAIJ is counterpro-222

ductive when N > 1, see and , even when using the MKL, see and . With 8 or223

more columns, the performance of MATAIJ plateaus and the efficiency reaches approximately224

200%, while the performance of the MKL primitives stagnate at around 175%, see . For225

the single column case, MATSBAIJ and MATAIJMKL deliver slightly better performances;226

� for block sizes lower or equal than 5, loops for matrix–vector and matrix–matrix multiplica-227

tions are unrolled by hand for block formats. This yields rather disappointing performance,228

except for MATAIJ, see in middle plot b = 3, and its 350% efficiency, even with a moder-229

ate number of columns. For block formats and , given the small value of b, it could230

be beneficial to switch to optimized libraries for small matrices, e.g., LIBXSMM [49]. In231

fact, MKL implementation for block formats is here clearly outperforming PETSc, see232

and ;233

� for block sizes larger than 5, block entry multiplication with PETSc block formats is per-234

formed using ?gemv or ?gemm operations. For MATAIJ in the bottom plot corresponding235

to b = 6, the efficiency quickly caps near 400% for N ∈ {8, 16, 32, 64}, while reaching 500%236

for large number of columns for the block formats, see and for N = 64. With these237

numbers of columns, PETSc and MKL perform similarly.238

The mini-app is then used to benchmark intranode performance of matrix–matrix multiplications,239

either with multiple OpenMP threads, or by offloading the operation to a NVIDIA GPU and using240

cuSPARSE [41] as interfaced in PETSc.241

$ export OMP_NUM_THREADS=20 && export MKL_NUM_THREADS=20

$ mpirun -n 1 ./MatProduct -f binaryoutput -log_view \

-bs 1,3,6 -N 1,2,8,16,32,64 -type aijmkl,baijmkl,sbaijmkl,aijcusparse

7

50%
100%
150%
200%

b = 11.
57

G
F
L
O
P
/s

MATAIJ MATBAIJ MATSBAIJ
MATAIJMKL MATBAIJMKL MATSBAIJMKL

100%

350%

600%

b = 3

1.
12

G
F
L
O
P
/s

E
ffi

ci
en

cy

100%

300%

500%

1 2 8 16 32 64

b = 6

1.
08

1.
08

G
F
L
O
P
/s

Number of right-hand sides (N)

Figure 2: Performance of the matrix–matrix multiplication for different sparse matrix formats.

8

100%

350%

600%

b = 1

18
.7
5
G
F
L
O
P
/s

MATAIJMKL MATBAIJMKL MATSBAIJMKL MATAIJCUSPARSE

100%

500%

900%

b = 3

15
.6
5
G
F
L
O
P
/s

E
ffi

ci
en

cy

100%

300%

700%

2,000%

1 2 8 16 32 64

b = 6

15
.3
2
G
F
L
O
P
/s

Number of right-hand sides (N)

Figure 3: Performance of the matrix–matrix multiplication as implemented in PETSc using intranode parallelism.

Results reported in figure 3 have been scaled with respect to the baseline implementation MATAIJMKL242

with N = 1. They have been obtained on a single node of Jean Zay, a system composed of 261 nodes243

with two 20-core Intel Xeon Gold 6248 clocked at 2.5 GHz and four NVIDIA Tesla V100 SXM2.244

Neither transfers between host and device nor time spent in mkl sparse optimize have been taken245

into account. For the sake of completeness, the performance of the matrix–vector multiplication246

with MATAIJMKL and different numbers of threads is also reported in figure 4. Clearly, it is not247

advised to use the full socket to perform this type of workload for such small sparse matrices and248

skinny dense matrices. However, these results help in drawing a fair comparison between a full249

CPU socket and a GPU device.250

The CPU configuration which reaches the highest percentage of peak is MATSBAIJMKL with251

b = 3 and N = 64, rightmost middle plot in figure 3, with approximately 63 GFLOP/s. This format252

is not yet available in PETSc, but it is handled by the mini-app. Still, it is less than 1% of peak for253

an Intel Xeon Gold 6248. On the GPU, MATAIJCUSPARSE with b = 6 and N = 64, rightmost254

bottom plot in figure 3, performs at around 306 GFLOP/s, about 4% of peak for an NVIDIA255

Tesla V100 SXM2. Future work may consider using interlaced layouts for storing the dense right-256

hand sides and extend the current PETSc functionality in order to maximize performance while257

maintaining interface flexibility and the user friendliness of the library.258

9

2.3.3. Linear stability analysis259

In this section, we apply recycling Krylov methods in the context of linear stability analysis260

and consider the solution of the following generalized eigenvalue problem:261

J(qb)x = λ

[
M 0
0 0

]
x, (1)

where J is the Jacobian of the incompressible steady-state Navier–Stokes equation evaluated using262

a given base flow qb =

[
ub
pb

]
and M is the discretization of the mass matrix on the space of263

velocities. The mini-app employed for the numerical results is built on top of FreeFEM [50] and it264

is available at https://github.com/prj-/moulin2019al. Interested readers are referred to [51]265

for more details and for larger runs.266

There are different methods to compute the eigenvalues of equation (1) near a complex-valued267

shift σ. In this paragraph we consider a Krylov–Schur method [52], which, for interior eigenvalues,268

relies on spectral transformations and on the solution of successive linear systems such as:269 (
J(qb)− σ

[
M 0
0 0

])
xi = bi, (2)

which, in SLEPc, are parameterized using the -st prefix. In this work, the above linear system270

is preconditioned using a modified augmented Lagrangian approach [53, 51]271

The effectiveness of subspace recycling is shown for finding the 5 eigenpairs closest to the shift272

σ = 10−6 + 0.6i for a flow past a cylinder at Reynolds 100. Results can be reproduced using the273

following four commands. We note here that the first two commands are merely used to generate274

the base flow qb with a SNES, a PETSc object used to solve nonlinear problems, using a continuation275

method on the Reynolds number.276

277

$ mpirun -n 4 FreeFem++-mpi Nonlinear-solver.edp -Re 50 -v 0

$ mpirun -n 4 FreeFem++-mpi Nonlinear-solver.edp -Re 100 -v 0

$ mpirun -n 4 FreeFem++-mpi Eigensolver.edp -Re 100 -v 0 -st_ksp_rtol 1.0e-4 \

-st_ksp_type fgmres -st_ksp_gmres_restart 200 -st_ksp_converged_reason

$ mpirun -n 4 FreeFem++-mpi Eigensolver.edp -Re 100 -v 0 -st_ksp_rtol 1.0e-4 \

-st_ksp_type hpddm -st_ksp_gmres_restart 200 -st_ksp_converged_reason \

-st_ksp_hpddm_variant flexible -st_ksp_hpddm_recycle 10 -st_ksp_hpddm_type gcrodr

100%

200%

400%

800%

2,000%

1 2 4 8 16 20

Linear speedup
b = 1
b = 3
b = 6

Figure 4: Scalability of MatMult with MATAIJMKL and different number of threads.

10

0 20 40
0

20

40

60

80

Krylov–Schur system index

#
of

it
er

a
ti

o
n

s

KSPFGMRES

KSPHPDDM

Figure 5: Number of inner iterations for systems equation (2) with or without recycling.

The Krylov–Schur algorithm converges in six outer iterations (restarts), with a total of 46 inner278

solves equation (2). Recycling of Krylov subspaces with KSPHPDDM provides algorithmic speedup by279

lowering the number of iterations per inner solve, as reported in figure 5, from 80 with KSPFGMRES280

to 45. A similar speedup can be observed in terms of runtime, with the time spent for the solution281

of the eigenvalue problem being reduced from 25.1 min to 17.5 min. These timings, and all that282

follow, have been obtained on Irène, a system composed of 1,656 nodes with two 24-core Intel Xeon283

Platinum 8168 clocked at 2.7 GHz.284

2.3.4. Blocking inside SLEPc285

The implementations of the locally optimal block preconditioned conjugate gradient [26] (LOBPCG)286

and the contour integral spectrum slicing method [54] (CISS) in SLEPc were previously not using287

blocking when applying the preconditioner or solving linear systems. In version 3.14.0, these solvers288

have been adapted to employ KSPMatSolve and PCMatApply. In the case of LOBPCG, which is289

a purely blocked method, all steps were already implemented as block operations, except the ap-290

plications of the preconditioner, which undermined the benefits of blocking. The performance of291

LOBPCG implemented in SLEPc as EPSLOBPCG is studied using three different preconditioners:292

� PCASM: one-level overlapping Schwarz method with one level of overlap and exact Cholesky293

factorizations in each subdomain;294

� PCHPDDM: multilevel overlapping Schwarz method, see section 3;295

� PCGAMG: algebraic multigrid method [55].296

More details on these solvers are given in the next section where focus is put on preconditioning297

rather than Krylov methods. We note here that only PCASM and PCHPDDM currently handle blocking,298

see the list section 2.2, and that PCHPDDM and PCGAMG have lower contraction factors than the299

cheaper alternative PCASM.300

As a testbed, we consider the following generalized eigenvalue problem on a three-dimensional
cube:

−∇ · (κ∇u) = λu.

This continuous equation is discretized with third-order Lagrange finite elements using FreeFEM.301

The script blocking-slepc.edp available at https://github.com/prj-/jolivet2020petsc can302

be used for reproducibility. The following timings and convergence histories have been obtained303

on 2,304 processes of Irène, for solving a problem of dimension 7.46 · 107.304

11

By default, SLEPc applies at most 5 iterations of GMRES on each column of a so-called set of305

active columns. Since the option -eps lobpcg blocksize 40 is used for computing 20 eigenpairs,306

the size of the set varies between 40 to 1. This size corresponds to the number of right-hand sides307

that will be solved for throughout LOBPCG iterations. Instead of using KSPGMRES, which does308

not handle blocking, KSPHPDDM is used, with the pseudo-block GMRES. Thus, assuming the size of309

the set of active columns is 40, one LOBPCG iteration performs at most 5 pseudo-block GMRES310

iterations with 40 vectors simultaneously, using MatProductNumeric and PCMatApply, instead of311

doing at most 40× 5 successive GMRES iterations, using MatMult and PCApply.312

Results are gathered in table 1. In the first row, the numbers of outer LOBPCG iterations313

are reported with the three different inner preconditioners mentioned above. On the one hand,314

PCASM is known to yield a preconditioned operator whose condition number grows as the number315

of subdomains, here processes, increases. Thus, the number of outer iterations is higher than with316

PCHPDDM or PCGAMG since the inner solves are not converging to meaningful solutions in just 5317

iterations. On the other hand, both multilevel preconditioners perform similarly, with a minimal318

difference in the number of outer iterations. The second and third rows record the number of times319

PCApply and PCMatApply are called. Since PCGAMG does not handle blocking, at each pseudo-320

block GMRES iteration, PCApply is called for each active column separately. PCASM and PCHPDDM321

handle blocking, so they only rely on PCMatApply. In the fourth row, the time spent setting up322

the preconditioners is given. PCASM is extremely cheap but not very robust numerically, while323

both multilevel preconditioners have a similar setup time. The time spent in the full eigensolver324

is reported in the last row. Clearly, having both a KSP and a PC which can efficiently deal with325

multiple vectors is mandatory to achieve reasonable performance with such an outer solver that326

heavily relies on blocking.

Table 1: Performance of EPSLOBPCG with three different inner preconditioners: PCASM and PCHPDDM, which utilize
PCMatApply, and PCGAMG, which utilizes PCApply.

PCASM PCHPDDM PCGAMG

of outer iterations 54 14 15
PCApply — — 4,049

PCMatApply 378 98 —
PCSetUp (sec) 2.9 21.6 26.5
EPSSolve (sec) 265.7 121.6 391.8

327

The script available at https://github.com/prj-/jolivet2020petsc may be used to solve328

the same eigenproblem using EPSCISS by providing the additional command line argument -eps type329

ciss. However, this eigensolver is mostly suited for finding interior eigenpairs, whereas the left-330

most part of the spectrum, closest to 0 for a symmetric positive definite problem, is here sought.331

In this scenario, EPSCISS is not a suitable solver and for fairness, its algorithmic performance332

is not reported, but the options from the script can be readily used for problems where it is an333

appropriate choice. We finally note that blocking support is also available and tested in SLEPc for334

EPSSUBSPACE since version 3.14.0.335

12

3. Robust multilevel overlapping Schwarz preconditioners: PCHPDDM336

3.1. Related work337

Domain decomposition methods are, alongside multigrid methods, one of the dominant paradigms338

for defining efficient and robust preconditioners in modern large-scale applications dealing with339

partial differential equations. There are many monographs on domain decomposition methods340

[56, 57, 58, 59, 60, 61].341

Basic one-level methods such as the block Jacobi and the (overlapping) additive Schwarz method342

are implemented in PETSc as PCBJACOBI and PCASM respectively, with some additional customiza-343

tion [62] available for PCASM. However, none of these methods provide automatic support for a344

coarse-level solver, which is mandatory to obtain algorithmic scalability with large numbers of345

processes. Furthermore, PETSc provides non-overlapping domain decomposition methods. PCNN346

implements a basic balancing Neumann–Neumann method [63], while more advanced precondition-347

ing techniques are available with PCBDDC [64], including adaptive selection of primal constraints [65],348

support for H(curl) [66] and H(div) [67] conforming finite elements, and isogeometric analysis [68].349

For multigrid, PCMG provides a unified framework for geometric or algebraic preconditioners, which350

is used for the implementation of the smoothed-aggregation PCGAMG [55]. There are also interfaces351

to other well-known multigrid packages such as PCHYPRE [4] or PCML [69] from Trilinos. Of course,352

there are many other available domain decomposition preconditioners, either accessible through353

high-level libraries other than PETSc, e.g., FROSch [70] in Trilinos, or as stand-alone packages,354

e.g., BDDCML [71] or FEMPAR-BDDC [72].355

HPDDM implements the same one-level overlapping Schwarz methods as PETSc as well as356

optimized Schwarz methods [73], which may be used in PETSc with PCSetModifySubMatrices,357

see [74]. It also provides support for defining robust two-level methods using the generalized358

eigenvalue problem on the overlap (GenEO) framework, for finite elements [75, 76] and boundary359

elements [77]. Results in this work present the first high-level access to GenEO from PETSc and360

its composable solver infrastructure [78]. We note that GenEO has been recently implemented in361

other libraries as well [79].362

3.2. Interfacing HPDDM overlapping Schwarz methods in PETSc363

PCHPDDM, the interface between HPDDM overlapping Schwarz methods and PETSc, is au-364

tomatically registered since PETSc version 3.12 when configuring PETSc with the extra flag365

--download-hpddm --download-slepc. It is then possible to select the corresponding PC using366

the command line option -pc type hpddm, or the routine PCSetType(pc, PCHPDDM).367

In this section, we are interested in constructing a preconditioner for a given coefficient matrix368

A. Without user intervention, PCHPDDM is strictly equivalent to PCASM. That is, if A is distributed369

among N processes, the action of the preconditioner M−1 is:370

M−1 =
N∑
i=1

R̃Ti (RiAR
T
i)−1Ri, (3)

where {Ri}Ni=1 are restriction operators that act on a global vector and return a local vector on371

each process, possibly with some overlap. {R̃i}Ni=1 are the same operators except that coefficients372

on the overlap are set to 0 [62]. The action of each {RiARTi }
−1
i can be parameterized through373

a local KSP. When A is the discretization of a linear partial differential operator L on a domain374

Ω, it is extremely common to exhibit parallelism by distributing Ω on N processes, possibly with375

13

Domain and global unknown numbering

1 2 3 4 5

Two-way element-based partitioning

Ω1 Ω2

A =


1 0 0 0 0
0 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 0
0 0 0 0 1



Local numbering with overlap

1 2 3 4

4 3 2 1

R2 =

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0

 R̃2 =

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0



Å2 =

1 0 0 0
0 2 −1 0
0 −1 2 −1
0 0 −1 1

 R2AR
T
2 =

1 0 0 0
0 2 −1 0
0 −1 2 −1
0 0 −1 2


Figure 6: Notation and basics of overlapping Schwarz methods.

some overlap, and to construct the {Ri}Ni=1 so that they map global unknowns to unknowns local376

to each process.377

In addition to the local operators {RiARTi }Ni=1, GenEO needs users to supply the local unassem-378

bled matrices {Åi}Ni=1, also known as Neumann matrices, representing the discretization of L on the379

extended local subdomain with overlap, endowed with natural boundary conditions. In the case of380

the one-dimensional Poisson equation with homogeneous Dirichlet boundary conditions discretized381

using trilinear finite elements, an explicit representation of these operators is given figure 6 for a382

two-domain decomposition.383

With extra Neumann information at hand, it is then possible to enrich the original one-level384

preconditioner from equation (3) using a spectral coarse grid built in the following way:385

1. have SLEPc solve the local generalized eigenvalue problem concurrently:386

Åiyi = λiR̃iR
T
i (RiAR

T
i)RiR̃

T
i yi; (4)

2. retrieve the νi smallest eigenpairs {yij , λij}
νi
j=1 and assemble a local deflation dense matrix387

Wi =
[
R̃iR

T
i yi1 · · · R̃iR

T
i yiνi

]
;388

3. define a global deflation matrix P =
[
RT1 W1 · · · RTNWN

]
and a new two-level precondi-389

tioner using the Galerkin product of A and P :390

M ′−1
additive = P

(
P TAP

)−1
P T +

N∑
i=1

R̃Ti (RiAR
T
i)−1Ri. (5)

Note that {R̃iRTi }Ni=1 defines a partition of unity, i.e.,

N∑
i=1

RTi R̃iR
T
i Ri = I.

Such a construction of a two-level method yields a preconditioner with which it is possible to391

bound the condition number of the preconditioned operator. Thus, the convergence rate of a392

preconditioned Krylov method such as the conjugate gradient can be guaranteed a priori.393

14

While step #3 is common to most domain decomposition or multigrid preconditioners, HPDDM394

takes advantage of the special block sparse structure of the deflation matrix P . Moreover, the size395

of the coarse operator P TAP is much lower than the size of A, and coarsening is much more396

aggressive than when using algebraic or geometric multigrid methods. It is thus natural to remap397

the coarse operator on a subset of the processes used to decompose the original matrix A. In398

HPDDM, the coarse operator is computed and redistributed simultaneously. Interested readers399

are referred to the paper describing the technical details of the implementation [7]. Note that400

similar techniques have been proven beneficial for other types of solvers in PETSc [80].401

In order to use GenEO from PETSc, the auxiliary operators {Åi}Ni=1 and the correspond-402

ing local to global map of degrees of freedom, see figure 6, can be provided using the routine403

PCHPDDMSetAuxiliaryMat. In special cases where the matrix has been constructed using the404

PETSc discretization infrastructure, the relevant information is automatically computed by PETSc.405

Figure 7a (resp. figure 7b) is an example of a non-overlapping (resp. overlapping) decomposition406

using a non-conforming grid with DMPLEX [81]. The mesh has been constructed internally by DMPLEX407

using a random pattern of non-conforming 2:1 refinements and a space-filling curve distribution by408

p4est [6]. The required elements needed to properly assemble the Neumann operators in a conform-409

ing way are pictured with a lighter color. Other DMTypes, including user-defined, may be supported410

by implementing the proper DMCreateNeumannOverlap callback. Support for the structured grid411

infrastructure (DMDA) could be easily added.

(a) Initial non-overlapping decomposition. (b) Overlapping decomposition on which auxiliary op-
erators {Åi}Ni=1 are assembled.

Figure 7: Automatic generation of overlapping subdomains when using a DMPLEX. For clarity, only four subdomains,
one of which is disconnected, are colored.

412

With the local matrix pencils available, new options are automatically registered such as413

-pc hpddm levels 1 eps nev or -pc hpddm levels 1 eps threshold, which may be used to cus-414

tomize the eigenpairs SLEPc will compute in step #2. The default -eps nev value is 20, i.e., the415

dimension of the coarse space is 20 × N under the assumption that all concurrent SLEPc solves416

15

converge.417

For performance, it is better to compute the same number of eigenvectors on each process,418

since in this case, the coarse operator will be assembled using symmetric or general blocked matrix419

formats. With usually large block sizes, this has consequent impacts on memory, floating-point,420

and message passing performances. In addition, standard eigensolvers such as EPSKRYLOVSCHUR421

from SLEPc, cannot inexpensively evaluate the exact number of eigenpairs in a given interval of422

R+. Instead, it is often more efficient to provide an upper bound on the number of eigenpairs.423

The option -pc hpddm coarse p can be used to provide the size of the subcommunicator that424

will be used to remap the coarse operator. With the default value of 1, the coarse matrix P TAP425

is centralized on a single process. The action of the inverses in equation (5) can be parameterized426

through the -pc hpddm coarse ksp type and -pc hpddm levels 1 ksp type options respectively.427

3.2.1. Coarse corrections customization428

Some other parameters may be adjusted to define how the one-level preconditioner and the
coarse-grid operator interact. Besides the additive correction shown in equation (5), end-users
may select more numerically efficient corrections [82, 83] as:

M ′−1
deflated = Q+M−1 (I −AQ) (default)

M ′−1
balanced = Q+ (I −AQ)M−1 (I −AQ) ,

withQ = P
(
P TAP

)−1
P T andM−1 defined in equation (3). This is parameterized using the option429

-pc hpddm coarse correction (deflated|additive|balanced) or the routine430

PCHPDDMSetCoarseCorrectionType. All of the correction formulas can be applied to either a431

single vector or a block of multiple vectors optimally. Indeed, the one-level preconditioner M−1 is432

applied with either PCApply or PCMatApply, and the restriction-correction-interpolation operator433

Q is applied in a block fashion in HPDDM, and not column by column.434

3.2.2. Extension of the GenEO framework435

The local generalized eigenvalue problems equation (4) can also be adjusted. In addition to
the local unassembled Neumann matrices {Åi}Ni=1, users can prescribe additional local operators
{Bi}Ni=1, defined on the overlapping decomposition, via the routine PCHPDDMSetRHSMat(pc, Bi). In
the case of local matrices with optimized Robin transmission conditions, the following generalized
eigenvalue problems, called GenEO-2 in the literature [84], are then solved in each subdomain:

Åiyi = λiBiyi.

This may be useful when dealing with nearly indefinite systems, e.g., nearly incompressible elas-436

ticity or the system of Stokes. Indeed, for such equations, one needs to compute a large number437

of eigenvectors from the classical GenEO eigenproblem equation (4) to generate a robust precon-438

ditioner. GenEO-2 alleviates this phenomenon. In the case where the local operators {Bi}Ni=1 are439

the discrete mass matrices on the subdomain interfaces, the so-called Dirichlet-to-Neumann coarse440

operator is constructed. This has proven to be efficient for solving the heterogeneous Helmholtz441

equation [85].442

3.2.3. Multilevel extension443

In the previous sections, it was shown how to supply the required information to PCHPDDM444

in order to build robust two-level overlapping domain decomposition preconditioners. Since the445

16

dimension of the coarse operator linearly depends on the number of subdomains of the fine level446

decomposition, switching to a multilevel scheme may alleviate the increasing cost of solving coarse447

linear systems. A multilevel extension of the GenEO framework has been recently proposed [86],448

with the advantage that the multilevel hierarchy can be automatically constructed without any449

additional information from the user.450

PCHPDDM follows the same numbering of PCBDDC: the finest level is always numbered with 1,451

and the level index increases as the hierarchy is traversed, up until the coarsest level, whose solver452

options are prefixed by coarse . In order to register an additional level l′ = l + 1, the following453

conditions must be met at level l:454

� there must be more than one subdomain;455

� at least one local eigenvector must be computed per coarse subdomain.456

For example, using N = 16 subdomains on the finest level, the options457

-pc hpddm levels 1 eps threshold 0.4 -pc hpddm coarse p 8458

will define a two-level method with the coarse operator being distributed among 8 processes,459

assuming that there is globally enough λi in equation (4) smaller than the prescribed threshold460

0.4. Similarly, the options461

-pc hpddm levels 1 eps nev 10 -pc hpddm levels 2 p 8462

-pc hpddm levels 2 eps nev 10 -pc hpddm coarse p 2463

will define a three-level method with the second level distributed among 8 processes, while the464

coarsest level will be built using 10 eigenvalues per subdomain from the second level and remapped465

onto 2 processes. Additional examples for the solver customization are provided in section 3.3466

3.2.4. PCHPDDM for non-overlapping domain decomposition467

Because of the intrinsic nature of balancing domain decomposition methods, PCNN and PCBDDC468

must be supplied with a MatIS which stores local unassembled matrices and local to global map-469

pings. These local matrices are equivalent to the {Åi}Ni=1 defined section 3.2, assuming the domain470

decomposition is without overlap, see for example Ω1 and Ω2 from figure 6 in a finite element con-471

text. Since the assembled form of these operators can be reconstructed, it is possible to obtain the472

Dirichlet operators {RiARTi }Ni=1 from section 3.2 as well. All tools needed by the GenEO framework473

are thus readily available. Note however that one-level overlapping Schwarz methods are known for474

converging slowly when there is no overlap. The proposed methodology is not strictly equivalent475

to the BDD-GenEO method [87], in which local Schur complements on subdomain interfaces are476

computed explicitly, and then used in concurrent dense generalized eigenvalue problems.477

3.3. Applications and numerical results478

3.3.1. System of elasticity479

We first report on solving the three-dimensional system of linear elasticity with highly hetero-
geneous elastic modulus. Its strong formulation is given by:

div σ(u) + f = 0 in Ω,

u = 0 on ΓD,

σ(u) · n = 0 on ΓN .

(6)

17

The physical domain Ω is a beam of dimensions [0, 6]× [0, 1]× [0, 1]. The Cauchy stress tensor σ480

is given by Hooke’s law: it can be expressed in terms of Young’s modulus E and Poisson’s ratio ν,481

σij(u) =

{
2µεij(u) i 6= j,

2µεii(u) + λdiv(u) i = j,

where482

εij(u) =
1

2

(
∂ui
∂xi

+
∂uj
∂xj

)
, µ =

E

2(1 + ν)
, and λ =

Eν

1− 2ν
.

ΓD is the subset of the boundary of Ω corresponding to x = 0. ΓN is defined as the complementary483

of ΓD with respect to the boundary of Ω. Equation (6) is discretized using trilinear finite elements484

resulting in 593× 106 unknowns with approximately 45 nonzero coefficients per row in the discrete485

coefficient matrix. The physical domain Ω is decomposed in 13,824 subdomains using the automatic486

graph partitioner ParMETIS [88]. There are heterogeneities due to jumps in E and ν. The following487

discontinuous piecewise constant values are considered: (E1, ν1) = (2× 1011, 0.25) in blue regions,488

while (E2, ν2) = (107, 0.45) in red regions, see figure 8. The code used to produce these results was489

borrowed from the original paper about the multilevel extension of GenEO [86] and it is available490

at https://github.com/prj-/aldaas2019multi.

−4.9 · 10−3

0

4.9 · 10−3

u(x, ·, z)

Figure 8: Deformed geometrical configuration of a 3D clamped beam subject to gravity. The striped plane in the
background shows a cut of the resting configuration with the jumps in the coefficient E1 = 107 and E2 = 2× 1011,
aligned with those of ν.

491

The following preconditioners are compared:492

1. PCGAMG;493

2. PCHPDDM with an exact coarse solver;494

3. PCHPDDM with inexact coarse solvers using GenEO multilevel extension.495

The flexible GMRES is used and customized with the options -ksp gmres modifiedgramschmidt496

-ksp gmres restart 50 -ksp type fgmres. The options specific to each solver described above497

are given below.498

18

cf. item 1

-pc_type gamg

-prefix_push pc_gamg_

-threshold 0.03

-square_graph 4

-sym_graph true

-asm_use_agg true

-repartition true

-prefix_pop

-prefix_push mg_levels_

-pc_asm_overlap 0

-sub_pc_type cholesky

-prefix_pop

-prefix_push mg_coarse_

-pc_type redundant

-redundant_pc_type cholesky

-prefix_pop

cf. item 2

-pc_type hpddm

-prefix_push pc_hpddm_

-prefix_push levels_1_

-pc_type asm

-eps_nev 40

-sub_pc_type cholesky

-sub_pc_factor_mat_solver_type mumps

-st_pc_factor_mat_solver_type mumps

-prefix_pop

-prefix_push coarse_

-p 24

-pc_factor_mat_solver_type mkl_cpardiso

-prefix_pop

-define_subdomains

-has_neumann

-prefix_pop

499

By default, the coarse problem in PCHPDDM is solved using an exact LU or Cholesky factorization,500

in this case using 24 processes and MKL CPARDISO. Switching to an inexact solver using the501

multilevel extension of GenEO, cf. item 3, is straightforward.502

cf. item 3

-prefix_push pc_hpddm_levels_2_

-p M
-ksp_type gmres

-ksp_rtol 1.0e-2

-ksp_pc_side right

-pc_type asm

-eps_nev 80

-sub_pc_type cholesky

-sub_pc_factor_mat_solver_type mkl_pardiso

-st_pc_factor_mat_solver_type mkl_pardiso

-prefix_pop

503

In this third configuration, M is the number of subdomains used to define the second-level domain504

decomposition, which is an aggregation of first-level subdomains.505

Considering the parametrization used for the PCHPDDM solvers, items 2 and 3 yield the same506

number of outer iterates. In figure 9a, the convergence history of PCGAMG and PCHPDDM are reported.507

In figure 9b, the number of inner coarse iterations are reported for various values of M . In the508

case of a two-level method (item 2) this number is equal to one and is thus not reported. Note509

that in this test case, PCGAMG is faster than all PCHPDDM alternatives. On the one hand, for PCGAMG,510

the setup phase takes 70 seconds, while the solution phase requires 19 seconds. On the other511

hand, the fastest PCHPDDM configuration, which corresponds to the configuration with 256 second-512

level subdomains , requires 64 seconds to setup and 36 seconds for the solution of the linear513

system. Out of the 64 seconds needed for PCHPDDM setup, 31 are spent in SLEPc EPSSolve for514

solving GenEO at each level but the coarsest. With respect to coarsening, PCGAMG has an operator515

complexity of 1.501, while for PCHPDDM, it is 1.015.516

3.3.2. Liouville–Bratu–Gelfand equation517

The strong formulation of this nonlinear problem is given by:518

−∇ · (κ∇u)− 6.2eu = 0, (7)

19

0 10 20 30 40 50

10−4

10−3

10−2

10−1

1

101

Iteration number

U
n

p
re

co
n

d
it

io
n

ed
re

si
d

u
a
l

PCGAMG

PCHPDDM

(a)
Numerical comparison of PCGAMG

and PCHPDDM.

0 10 20 30 40

5

10

15

20

25

Outer iteration index

#
o
f

in
n

er
it

er
a
ti

o
n

s

-pc hpddm levels 2 p M

16 256 1,024

(b)
Number of inner coarse iterations
for various values of M , the num-
ber of second-level subdomains.

Figure 9: Convergence histories of PCGAMG and PCHPDDM for solving the 3D system of linear elasticity. For PCHPDDM,
a comparison of the number of inner coarse iterations is displayed when using an inexact method, cf. item 3.

where κ is a heterogeneous coefficient distribution, see figure 10a. This equation may model the519

temperature distribution in combustion models. Here, it is merely used to test PCHPDDM in the520

context of solving successive linearized equations. The physical domain Ω is the unit cube. It is521

decomposed in 10,272 subdomains. Equation (7) is discretized using second-order Lagrange finite522

elements. The number of unknowns is 217 × 106, with approximately 29 nonzero coefficients per523

row. It is solved using SNES, with PCHPDDM being the preconditioner for solving each linearized524

system, see figure 10b. The GenEO framework has seldom been used in the context of nonlinear525

problems, but here, it is shown that it can solve the linearized equations from equation (7) in few526

iterates. There are two strategies to define the preconditioner:527

� whenever the Jacobian is being updated in the SNESSetJacobian function, new unassembled528

Neumann matrices at the current linearization point can be updated as well and supplied via529

PCHPDDMSetAuxiliaryMat530

� by reusing the PCHPDDM hierarchy assembled when solving the first linearized system, using531

the SNESSetLagPreconditioner option.532

Since the system is not too stiff here, both strategies lead to the same convergence history, which533

is displayed in figure 11a. The complete set of options is given in figure 11b. In the case where the534

preconditioner is being rebuilt at each of the four linearization steps, 81.1 s are spent in PCSetUp535

and 27.7 s in KSPSolve. Setting up the preconditioner only once is in this scenario a compelling way536

of amortizing this cost. Results can be reproduced using the FreeFEM script bratu.edp available537

at https://github.com/prj-/jolivet2020petsc.538

3.3.3. Using PCHPDDM as a coarse grid solver for PCBDDC539

A last problem shows how one may switch between a multilevel BDDC solver to a two-level
BDDC solver using PCHPDDM for solving the coarse problem. The problem is generated using
the MFEM [89] definite Maxwell example available at https://github.com/mfem/mfem/blob/

master/examples/petsc/ex3p.cpp. The strong formulation of the continuous problem is given

20

(a) Coefficient distribution.

6 · 10−2

4

8.5

κ

−1.9

0

1.9

u

(b) Isosurfaces of the solution.

Figure 10: Solving the Liouville–Bratu–Gelfand equation using SNESNEWTONLS and PCHPDDM.

0 10 20 30 40 50 60 70

10−5

10−4

10−3

10−2

10−1

1
12.012.0 3.4E-43.4E-4 1.9E-51.9E-5 8.8E-78.8E-7 2.5E-92.5E-9

Iteration number

R
el

a
ti

v
e

u
n

p
re

co
n

d
it

io
n

ed
re

si
d

u
a
l

(a) Convergence histories of the four linearized systems. At
the top of each curve, for the first iterate, the value of the
function norm is displayed.

-snes_type newtonls

-snes_linesearch_type basic

-ksp_pc_side right

-pc_type hpddm

-prefix_push pc_hpddm_

-prefix_push levels_1_

-pc_type asm

-eps_nev 10

-sub_pc_type cholesky

-sub_pc_factor_mat_solver_type mumps

-prefix_pop

-coarse_p 128

-define_subdomains

-has_neumann

-prefix_pop

(b)
SNES, KSP, and PC options for
solving equation (7)

Figure 11: Numerical performance of PCHPDDM in a nonlinear context for solving the Liouville–Bratu–Gelfand equa-
tion. Default PETSc tolerances are used: 10−5 decrease of relative residuals for linear solves, 10−8 decrease of
function norms for nonlinear solves.

21

by:

∇× (∇× E) + E = 0 in Ω,

E × n = (1 + 16π2)
[
sin 4πy sin 4πz sin 4πx

]T
on ∂Ω.

(8)

It is discretized using first order Nédélec finite elements and PCBDDC is automatically customized540

to obtain a stable method with these elements [66]. The number of unknowns is 5.6 × 106. The541

following command line options are used.542

543

$ mpirun -n 512 ./ex3p -m ../../data/fichera.mesh -f 4 --petscopts rc_ex3p_bddc --nonoverlapping

The option file shows how PCHPDDM may be composed into PCBDDC.544

$ cat rc_ex3p_bddc

-ksp_type fgmres

-ksp_norm_type unpreconditioned

-ksp_rtol 1.0e-8

-prefix_push pc_bddc_

-use_deluxe_scaling

-levels 1

-adaptive_threshold 2.0

-coarsening_ratio 8

-neumann_pc_factor_mat_solver_type mumps

-dirichlet_pc_factor_mat_solver_type mumps

continue on the right column

continued from the left column

-prefix_push coarse_

-ksp_converged_reason

-ksp_type gmres

-ksp_max_it 100

-ksp_rtol 1.0e-1

-pc_type hpddm

-ksp_norm_type preconditioned

-prefix_push pc_hpddm_

-levels_1_pc_type asm

-levels_1_eps_nev 10

-levels_1_sub_pc_type cholesky

-coarse_pc_type cholesky

-prefix_pop

-prefix_pop

-prefix_pop

545

Deluxe scaling is used to build an adaptive second level with PCBDDC. On this second level with546

16,284 unknowns, new subdomains are built by aggregating the coarse element matrices of 8 fine-547

level subdomains. The BDDC coarse problem composed of 512
8 = 64 subdomains is then solved548

using PCHPDDM, which itself builds another adaptive level using 10 local eigenvectors per subdomain.549

The coarsest level is aggregated on a single process and solved using an exact Cholesky factoriza-550

tion. The magnitude of the electric field is plotted in figure 12a. The convergence history of the551

solver is shown in figure 12b. The outer solver reaches the prescribed convergence tolerance in 17552

iterations . The number of inner iterations for solving the BDDC coarse problem is reported553

as well .554

4. Conclusion and perspectives555

In this paper, we presented the interface between PETSc and HPDDM and discussed the new556

Krylov and overlapping Schwarz methods, providing several numerical examples and describing557

various runtime options. Overall, the interface paves the way for having recycling and block558

Krylov methods plus robust overlapping Schwarz methods using the GenEO framework in PETSc.559

Concerning PETSc, the infrastructure for dealing with blocks of vectors has been laid out.560

However, only a little fraction of the built-in matrix types and preconditioners can currently handle561

them efficiently, and additional storage formats may be considered to maximize performance.562

22

0

0.7

1.4

||E||

(a) Magnitude of the electric field.

0 5 10 15

5

10

15

20

25

Outer iteration index

#
o
f

in
n

er
it

er
a
ti

o
n

s

10−6

10−4

10−2

100

102

U
n

p
re

co
n

d
it

io
n

ed
re

si
d

u
a
l

(b)
Convergence history of PCBDDC us-
ing PCHPDDM as a coarse solver.

Figure 12: MFEM example ex3p for solving the Fichera corner problem.

Concerning SLEPc, we plan to implement new solvers or extend existing ones to further exploit563

block solve primitives, for instance, block Krylov–Schur [90]. The current code for Arnoldi iterations564

would then handle block Arnoldi iterations, and shift-and-invert solves would operate on the whole565

block instead of column by column.566

Concerning HPDDM, its integration inside PETSc offers a much-needed flexibility compared567

to the standard implementation. Indeed, it is now possible to decide at runtime many solvers568

parameters that are instead determined at compile-time in a stand-alone HPDDM implementation.569

The interface between PETSc and HPDDM has room for future improvements. First, HPDDM570

handles mixed-precision, e.g., using single-precision scalars for assembling coarse operators while571

using double-precision scalars at the fine level. The topic of mixed-precision is under scrutiny for572

the next major overhaul of PETSc. Second, HPDDM does not handle GPU efficiently currently,573

but the interface with PETSc provides a very thorough testbed with Mat and PC implementations574

that do exploit GPU.575

Acknowledgments576

The authors would like to thank S. Balay, J. Brown, V. Hapla, M. Knepley, and B. Smith577

for reviewing the successive merge requests in PETSc repository and for their feedback on this578

manuscript. This work was granted access to the GENCI-sponsored HPC resources of:579

� TGCC@CEA under allocation A0070607519;580

� IDRIS@CNRS under allocation AP010611780.581

Jose E. Roman was supported by the Spanish Agencia Estatal de Investigación (AEI) under project582

SLEPc-DA (PID2019-107379RB-I00).583

23

Appendix A. Code reproducibility584

In order to reproduce the various results from this paper, a short how-to is provided in this585

appendix to get a minimalist functioning set of required libraries. First, PETSc version 3.14.2586

can be downloaded at https://gitlab.com/petsc/petsc/-/archive/v3.14.2/petsc-v3.14.2.587

zip. While some adjustments may be needed to ensure that the proper MPI implementation and588

BLAS/LAPACK libraries are used by PETSc build system, the configure line should be somehow589

similar to:590

./configure --download-hypre --download-metis

--download-slepc --download-hpddm --download-mfem

--with-scalar-type=real PETSC_ARCH=real-build

MFEM will then be available for reproducing results from section 3.3.3. As a stand-alone library,591

PETSc can be used to reproduce results from sections 2.3.1 and 2.3.2. After building PETSc with592

real scalars, it must also be built with complex scalars.593

./configure --with-metis-dir=real-build

--download-slepc --download-hpddm

--with-scalar-type=complex PETSC_ARCH=complex-build

Eventually, one can download FreeFEM version 4.7-1 at https://github.com/FreeFem/FreeFem-sources/594

archive/v4.7-1.zip and use the following configure line:595

./configure --with-petsc=${PETSC_DIR}/real-build/lib

--with-petsc_complex=${PETSC_DIR}/complex-build/lib

After building FreeFEM, results from sections 2.3.3, 2.3.4, 3.3.1 and 3.3.2 can be reproduced.596

References597

[1] R. Bartlett, I. Demeshko, T. Gamblin, G. Hammond, M. A. Heroux, J. Johnson, A. Klinvex, X. S. Li, L. C.598

McInnes, J. D. Moulton, D. Osei-Kuffuor, J. Sarich, B. F. Smith, J. Willenbring, U. M. Yang, xSDK foundations:599

Toward an extreme-scale scientific software development kit, Supercomputing Frontiers and Innovations 4 (1)600

(2017).601

URL https://xsdk.info602

[2] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout,603

W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson,604

K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc web page (2020).605

URL http://www.mcs.anl.gov/petsc606

[3] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout,607

W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson,608

K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc users manual, Tech. Rep. ANL-95/11609

- Revision 3.13, Argonne National Laboratory (2020).610

[4] R. Falgout, U. M. Yang, hypre: A library of high performance preconditioners, Computational Science—ICCS611

2002 (2002) 632–641.612

URL https://www.llnl.gov/casc/hypre613

[5] H. Si, TetGen: A quality tetrahedral mesh generator and 3D Delaunay triangulator, Tech. Rep. 13 (2013).614

URL http://wias-berlin.de/software/tetgen615

[6] C. Burstedde, L. C. Wilcox, O. Ghattas, p4est: Scalable algorithms for parallel adaptive mesh refinement on616

forests of octrees, SIAM Journal on Scientific Computing 33 (3) (2011) 1103–1133.617

URL http://www.p4est.org618

24

[7] P. Jolivet, F. Hecht, F. Nataf, C. Prud’homme, Scalable domain decomposition preconditioners for heterogeneous619

elliptic problems, in: Proceedings of the International Conference on High Performance Computing, Networking,620

Storage and Analysis, SC13, ACM, 2013.621

[8] P. Jolivet, P.-H. Tournier, Block iterative methods and recycling for improved scalability of linear solvers, in:622

Proceedings of the 2016 International Conference for High Performance Computing, Networking, Storage and623

Analysis, SC16, IEEE, 2016.624

[9] T. Hoefler, R. Belli, Scientific benchmarking of parallel computing systems: Twelve ways to tell the masses625

when reporting performance results, in: Proceedings of the 2015 International Conference for High Performance626

Computing, Networking, Storage and Analysis, SC15, 2015.627

[10] V. Hernandez, J. E. Roman, V. Vidal, SLEPc: A scalable and flexible toolkit for the solution of eigenvalue628

problems, ACM Transactions on Mathematical Software 31 (3) (2005) 351–362.629

URL https://slepc.upv.es630

[11] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine,631

H. Van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM,632

1994.633

[12] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd Edition, SIAM, 2003.634

[13] Y. Saad, M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear635

systems, SIAM Journal on Scientific and Statistical Computing 7 (3) (1986) 856–869.636

[14] M. R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, Journal of Research of637

the National Bureau of Standards 49 (6) (1952) 409–436.638

[15] H. A. Van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-639

symmetric linear systems, SIAM Journal on Scientific and Statistical Computing 13 (2) (1992) 631–644.640

[16] A. H. Baker, E. R. Jessup, T. Manteuffel, A technique for accelerating the convergence of restarted GMRES,641

SIAM Journal on Matrix Analysis and Applications 26 (4) (2005) 962–984.642

[17] J. Erhel, K. Burrage, B. Pohl, Restarted GMRES preconditioned by deflation, Journal of Computational and643

Applied Mathematics 69 (2) (1996) 303–318.644

[18] D. N. Wakam, F. Pacull, Memory efficient hybrid algebraic solvers for linear systems arising from compressible645

flows, Computers & Fluids 80 (2013) 158–167.646

[19] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM Journal on Scientific Computing 14 (2)647

(1993) 461–469.648

[20] S. C. Eisenstat, H. C. Elman, M. H. Schultz, Variational iterative methods for nonsymmetric systems of linear649

equations, SIAM Journal on Numerical Analysis 20 (2) (1983) 345–357.650

[21] M. L. Parks, E. de Sturler, G. Mackey, D. D. Johnson, S. Maiti, Recycling Krylov subspaces for sequences of651

linear systems, SIAM Journal on Scientific Computing 28 (5) (2006) 1651–1674.652

[22] M. H. Gutknecht, Block Krylov space methods for linear systems with multiple right-hand sides: An introduc-653

tion, in: A. Siddiqui, I. Duff, O. Christensen (Eds.), Modern Mathematical Models, Methods and Algorithms654

for Real World Systems, 2006, pp. 420–447.655

[23] A. Frommer, K. Lund, D. B. Szyld, Block Krylov subspace methods for functions of matrices, Electronic656

Transactions on Numerical Analysis 47 (2017) 100–126.657

[24] P.-H. Tournier, I. Aliferis, M. Bonazzoli, M. de Buhan, M. Darbas, V. Dolean, F. Hecht, P. Jolivet, I. El Kanfoud,658

C. Migliaccio, F. Nataf, C. Pichot, S. Semenov, Microwave tomographic imaging of cerebrovascular accidents659

by using high-performance computing, Parallel Computing 85 (2019) 88–97.660

[25] V. Kalantzis, A. C. I. Malossi, C. Bekas, A. Curioni, E. Gallopoulos, Y. Saad, A scalable iterative dense linear661

system solver for multiple right-hand sides in data analytics, Parallel Computing 74 (2018) 136–153.662

[26] A. V. Knyazev, Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate663

gradient method, SIAM Journal on Scientific Computing 23 (2) (2001) 517–541.664

[27] H. Calandra, S. Gratton, J. Langou, X. Pinel, X. Vasseur, Flexible variants of block restarted GMRES methods665

with application to geophysics, SIAM Journal on Scientific Computing 34 (2) (2012) A714–A736.666

[28] T. Sakurai, H. Tadano, Y. Kuramashi, Application of block Krylov subspace algorithms to the Wilson–Dirac667

equation with multiple right-hand sides in lattice QCD, Computer Physics Communications 181 (1) (2010)668

113–117.669

[29] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long,670

R. P. Pawlowski, E. T. Phipps, et al., An overview of the Trilinos project, ACM Transactions on Mathematical671

Software (TOMS) 31 (3) (2005) 397–423.672

URL https://trilinos.github.io673

[30] E. Bavier, M. Hoemmen, S. Rajamanickam, H. Thornquist, Amesos2 and Belos: Direct and iterative solvers for674

25

large sparse linear systems, Scientific Programming 20 (3) (2012) 241–255.675

[31] Y. Notay, Flexible conjugate gradients, SIAM Journal on Scientific Computing 22 (4) (2000) 1444–1460.676

[32] L. M. Carvalho, S. Gratton, R. Lago, X. Vasseur, A flexible generalized conjugate residual method with inner677

orthogonalization and deflated restarting, SIAM Journal on Matrix Analysis and Applications 32 (4) (2011)678

1212–1235.679

[33] D. P. O’Leary, The block conjugate gradient algorithm and related methods, Linear Algebra and its Applications680

29 (1980) 293–322.681

[34] H. Ji, Y. Li, A breakdown-free block conjugate gradient method, BIT Numerical Mathematics 57 (2) (2017)682

379–403.683

[35] Y. Saad, M. Yeung, J. Erhel, F. Guyomarc’h, A deflated version of the conjugate gradient algorithm, SIAM684

Journal on Scientific Computing 21 (5) (2000) 1909–1926.685

[36] A. Stathopoulos, A. Abdel-Rehim, K. Orginos, Deflation for inversion with multiple right-hand sides in QCD,686

in: Journal of Physics: Conference Series, Vol. 180, IOP Publishing, 2009.687

[37] K. M. Soodhalter, D. B. Szyld, F. Xue, Krylov subspace recycling for sequences of shifted linear systems, Applied688

Numerical Mathematics 81 (2014) 105–118.689

[38] P. Amestoy, I. Duff, J.-Y. L’Excellent, J. Koster, A fully asynchronous multifrontal solver using distributed690

dynamic scheduling, SIAM Journal on Matrix Analysis and Applications 23 (1) (2001) 15–41.691

URL http://mumps.enseeiht.fr692

[39] A. Stathopoulos, K. Wu, A block orthogonalization procedure with constant synchronization requirements,693

SIAM Journal on Scientific Computing 23 (6) (2002) 2165–2182.694

[40] M. H. Gutknecht, T. Schmelzer, Updating the QR decomposition of block tridiagonal and block Hessenberg695

matrices, Applied Numerical Mathematics 58 (6) (2008) 871–883.696

[41] NVIDIA, cuSPARSE web page, https://docs.nvidia.com/cuda/cusparse (2020).697

[42] W. Boukaram, G. Turkiyyah, D. Keyes, Hierarchical matrix operations on GPUs: Matrix–vector multiplication698

and compression, ACM Transactions on Mathematical Software 45 (2019).699

[43] I. Ambartsumyan, W. Boukaram, T. Bui-Thanh, O. Ghattas, D. Keyes, G. Stadler, G. Turkiyyah, S. Zampini,700

Hierarchical matrix approximations of Hessians arising in inverse problems governed by PDEs, SIAM Journal701

on Scientific Computing 42 (5) (2020) A3397–A3426.702

[44] T. A. Davis, Algorithm 832: UMFPACK—an unsymmetric-pattern multifrontal method, ACM Transactions on703

Mathematical Software 30 (2) (2004) 196–199.704

[45] Intel, MKL web page, https://software.intel.com/content/www/us/en/develop/tools/705

math-kernel-library.html (2020).706

[46] X. S. Li, An overview of SuperLU: Algorithms, implementation, and user interface, ACM Transactions on707

Mathematical Software 31 (3) (2005) 302–325.708

[47] X. S. Li, J. Demmel, SuperLU DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear709

systems, ACM Transactions on Mathematical Software 29 (2) (2003) 110–140.710

[48] J. Poulson, B. Marker, R. A. Van de Geijn, J. R. Hammond, N. A. Romero, Elemental: A new framework for711

distributed memory dense matrix computations, ACM Transactions on Mathematical Software 39 (2) (2013).712

[49] A. Heinecke, G. Henry, M. Hutchinson, H. Pabst, LIBXSMM: Accelerating small matrix multiplications by713

runtime code generation, in: Proceedings of the 2016 International Conference for High Performance Computing,714

Networking, Storage and Analysis, SC16, IEEE, 2016.715

URL https://github.com/hfp/libxsmm716

[50] F. Hecht, New development in FreeFem++, Journal of Numerical Mathematics 20 (3-4) (2012) 251–266.717

URL http://freefem.org718

[51] J. Moulin, P. Jolivet, O. Marquet, Augmented Lagrangian preconditioner for large-scale hydrodynamic stability719

analysis, Computer Methods in Applied Mechanics and Engineering 351 (2019) 718–743.720

URL https://github.com/prj-/moulin2019al721

[52] G. W. Stewart, A Krylov–Schur algorithm for large eigenproblems, SIAM Journal on Matrix Analysis and722

Applications 23 (3) (2002) 601–614.723

[53] M. Benzi, M. A. Olshanskii, Z. Wang, Modified augmented Lagrangian preconditioners for the incompressible724

Navier–Stokes equations, International Journal for Numerical Methods in Fluids 66 (4) (2011) 486–508.725

[54] T. Sakurai, H. Sugiura, A projection method for generalized eigenvalue problems using numerical integration,726

Journal of Computational and Applied Mathematics 159 (1) (2003) 119–128.727

[55] M. Adams, H. H. Bayraktar, T. M. Keaveny, P. Papadopoulos, Ultrascalable implicit finite element analyses in728

solid mechanics with over a half a billion degrees of freedom, in: Proceedings of the 2004 ACM/IEEE Conference729

on Supercomputing, SC04, IEEE Computer Society, 2004, pp. 34:1–34:15.730

26

[56] B. F. Smith, P. Bjørstad, W. D. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial731

Differential Equations, Cambridge University Press, 2004.732

[57] V. Dolean, P. Jolivet, F. Nataf, An Introduction to Domain Decomposition Methods: Algorithms, Theory and733

Parallel Implementation, SIAM, 2015.734

[58] A. Toselli, O. B. Widlund, Domain decomposition methods: algorithms and theory, Vol. 34 of Series in Com-735

putational Mathematics, Springer, 2005.736

[59] C. Pechstein, Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems, Vol. 90737

of Lecture Notes in Computational Science and Engineering, Springer, 2012.738

[60] A. Quarteroni, A. Valli, Domain Decomposition Methods for Partial Differential Equations, Vol. 10, Clarendon739

Press, 1999.740

[61] T. Mathew, Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations,741

Vol. 61, Springer Science & Business Media, 2008.742

[62] X.-C. Cai, M. Sarkis, A restricted additive Schwarz preconditioner for general sparse linear systems, SIAM743

Journal on Scientific Computing 21 (2) (1999) 792–797.744

[63] J. Mandel, Balancing domain decomposition, Communications in Numerical Methods in Engineering 9 (3)745

(1993) 233–241.746

[64] S. Zampini, PCBDDC: A class of robust dual–primal methods in PETSc, SIAM Journal on Scientific Computing747

38 (5) (2016) S282–S306.748

URL https://www.mcs.anl.gov/petsc/petsc-master/docs/manualpages/PC/PCBDDC.html749

[65] C. Pechstein, C. R. Dohrmann, A unified framework for adaptive BDDC, Electronic Transactions on Numerical750

Analysis 46 (2017) 273–336.751

[66] S. Zampini, P. Vassilevski, V. Dobrev, T. Kolev, Balancing domain decomposition by constraints algorithms752

for curl-conforming spaces of arbitrary order, in: International Conference on Domain Decomposition Methods,753

Springer, 2017, pp. 103–116.754

[67] D.-S. Oh, O. B. Widlund, S. Zampini, C. Dohrmann, BDDC algorithms with deluxe scaling and adaptive755

selection of primal constraints for Raviart–Thomas vector fields, Mathematics of Computation 87 (310) (2018)756

659–692.757

[68] L. B. Da Veiga, L. F. Pavarino, S. Scacchi, O. B. Widlund, S. Zampini, Isogeometric BDDC preconditioners758

with deluxe scaling, SIAM Journal on Scientific Computing 36 (3) (2014) A1118–A1139.759

[69] M. W. Gee, C. M. Siefert, J. J. Hu, R. S. Tuminaro, M. G. Sala, ML 5.0 smoothed aggregation user’s guide,760

Tech. Rep. SAND2006-2649, Sandia National Laboratories (2006).761

URL https://trilinos.github.io/ml.html762

[70] A. Heinlein, A. Klawonn, O. Rheinbach, A parallel implementation of a two-level overlapping Schwarz method763

with energy-minimizing coarse space based on Trilinos, SIAM Journal on Scientific Computing 38 (6) (2016)764

C713–C747.765

[71] J. Š́ıstek, J. Mandel, B. Soused́ık, P. Burda, Parallel implementation of multilevel BDDC, in: Numerical Math-766

ematics and Advanced Applications 2011, Springer, 2013, pp. 681–689.767

URL http://users.math.cas.cz/~sistek/software/bddcml.html768

[72] S. Badia, A. F. Mart́ın, J. Principe, A highly scalable parallel implementation of balancing domain decomposition769

by constraints, SIAM Journal on Scientific Computing 36 (2) (2014) C190–C218.770

[73] M. J. Gander, Optimized Schwarz Methods, SIAM Journal on Numerical Analysis 44 (2) (2006) 699–731.771

[74] M. J. Gander, S. Van Criekingen, New coarse corrections for optimized restricted additive Schwarz using PETSc,772

in: International Conference on Domain Decomposition Methods, Springer, 2019.773

[75] N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, R. Scheichl, A robust two-level domain decomposition774

preconditioner for systems of PDEs, Comptes Rendus Mathématique 349 (23) (2011) 1255–1259.775

[76] N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, R. Scheichl, Abstract robust coarse spaces for systems776

of PDEs via generalized eigenproblems in the overlaps, Numerische Mathematik 126 (4) (2013) 741–700.777

[77] P. Marchand, X. Claeys, P. Jolivet, F. Nataf, P.-H. Tournier, Two-level preconditioning for h-version boundary778

element approximation of hypersingular operator with GenEO, Numerische Mathematik 146 (2020) 597–628.779

[78] J. Brown, M. G. Knepley, D. A. May, L. Curfman McInnes, B. F. Smith, Composable linear solvers for mul-780

tiphysics, in: 2012 11th International Symposium on Parallel and Distributed Computing, IEEE, 2012, pp.781

55–62.782

[79] R. Butler, T. Dodwell, A. Reinarz, A. Sandhu, R. Scheichl, L. Seelinger, High-performance Dune modules for783

solving large-scale, strongly anisotropic elliptic problems with applications to aerospace composites, Computer784

Physics Communications 249 (2020).785

[80] D. A. May, P. Sanan, K. Rupp, M. G. Knepley, B. F. Smith, Extreme-scale multigrid components within PETSc,786

27

in: Proceedings of the Platform for Advanced Scientific Computing Conference, 2016.787

[81] M. G. Knepley, D. A. Karpeev, Mesh algorithms for PDE with Sieve I: Mesh distribution, Scientific Programming788

17 (3) (2009) 215–230.789

[82] J. Tang, R. Nabben, C. Vuik, Y. Erlangga, Comparison of two-level preconditioners derived from deflation,790

domain decomposition and multigrid methods, Journal of Scientific Computing 39 (3) (2009) 340–370.791

[83] P. Bastian, G. Wittum, W. Hackbusch, Additive and multiplicative multi-grid—a comparison, Computing 60 (4)792

(1998) 345–364.793

[84] R. Haferssas, P. Jolivet, F. Nataf, An additive Schwarz method type theory for Lions’s algorithm and a sym-794

metrized optimized restricted additive Schwarz method, Journal on Scientific Computing 39 (4) (2017) A1345–795

A1365.796

[85] L. Conen, V. Dolean, R. Krause, F. Nataf, A coarse space for heterogeneous Helmholtz problems based on the797

Dirichlet-to-Neumann operator, Journal of Computational and Applied Mathematics 271 (2014) 83–99.798

[86] H. Al Daas, L. Grigori, P. Jolivet, P.-H. Tournier, A multilevel Schwarz preconditioner based on a hierarchy of799

robust coarse spaces, Journal of Scientific Computing (2019) submitted for publication.800

URL https://github.com/prj-/aldaas2019multi801

[87] N. Spillane, D. J. Rixen, Automatic spectral coarse spaces for robust finite element tearing and interconnecting802

and balanced domain decomposition algorithms, International Journal for Numerical Methods in Engineering803

95 (11) (2013) 953–990.804

[88] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM Journal805

on Scientific Computing 20 (1) (1998) 359–392.806

URL http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview807

[89] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny, V. Dobrev, Y. Dudouit, A. Fisher,808

T. Kolev, W. Pazner, M. Stowell, V. Tomov, I. Akkerman, J. Dahm, D. Medina, S. Zampini, MFEM: A modular809

finite element methods library, Computers & Mathematics with Applications 81 (2021) 42–74.810

URL http://mfem.org811

[90] Y. Zhou, Y. Saad, Block Krylov–Schur method for large symmetric eigenvalue problems, Numerical Algorithms812

47 (4) (2008) 341–359.813

28

