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REGULAR ARTICLE

Distinct contributions of low- and high-frequency neural oscillations to speech
comprehension
Anne Kösema,b and Virginie van Wassenhovec
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Psycholinguistics, Nijmegen, The Netherlands; cCognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-
Saclay, NeuroSpin Center, Gif/Yvette, France

ABSTRACT
In the last decade, the involvement of neural oscillatory mechanisms in speech comprehension has
been increasingly investigated. Current evidence suggests that low-frequency and high-frequency
neural entrainment to the acoustic dynamics of speech are linked to its analysis. One crucial
question is whether acoustical processing primarily modulates neural entrainment, or whether
entrainment instead reflects linguistic processing. Here, we review studies investigating the effect
of linguistic manipulations on neural oscillatory activity. In light of the current findings, we argue
that theta (3–8 Hz) entrainment may primarily reflect the analysis of the acoustic features of
speech. In contrast, recent evidence suggests that delta (1–3 Hz) and high-frequency activity (>40
Hz) are reliable indicators of perceived linguistic representations. The interdependence between
low-frequency and high-frequency neural oscillations, as well as their causal role on speech
comprehension, is further discussedwith regard to neurophysiological models of speech processing.
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Introduction

Auditory speech presents slow temporal fluctuations in
the 1–10 Hz range that are closely linked to the syllabic
and prosodic properties of the acoustic signals. Both syl-
labic and prosodic temporal cues are crucial for speech
comprehension (Greenberg, Carvey, Hitchcock, &
Chang, 2003; Poeppel, 2003; Poeppel, Idsardi, & van Was-
senhove, 2008; Rosen, 1992); it has thus been proposed
that the brain finds encoding strategies to track the
slow temporal fluctuations of speech. In line with this,
distinct neural responses have been observed to follow
the slow speech rhythms. Neural oscillations in the
delta (1–3 Hz)and theta (3–8 Hz) ranges have been
shown to temporally correlate with the slow temporal
dynamics of speech (Ahissar et al., 2001; Boemio,
Fromm, Braun, & Poeppel, 2005; Ding & Simon, 2012,
2013a, 2013b; Ding, Melloni, Zhang, Tian, & Poeppel,
2016; Doelling, Arnal, Ghitza, & Poeppel, 2014; Gross
et al., 2013; Kayser, Ince, Gross, & Kayser, 2015; Luo &
Poeppel, 2012, 2007; Luo, Liu, & Poeppel, 2010;
Millman, Johnson, & Prendergast, 2015; Millman, Pre-
ndergast, Hymers, & Green, 2013; Nourski et al., 2009;
Zion Golumbic et al., 2013; Zoefel & VanRullen, 2015a).
In addition, the power of high-frequency activity
(>40 Hz) has also been observed to follow phrasal and

syllabic rhythms (Ding et al., 2016; Kubanek, Brunner,
Gunduz, Poeppel, & Schalk, 2013; Mesgarani & Chang,
2012; Nourski et al., 2009; Pasley et al., 2012; Zion Golum-
bic et al., 2013).

While the neural entrainment patterns in the delta,
theta, and high-frequency ranges have consistently
been observed in human data during speech listening,
their underlying mechanism is still unclear. Considering
that the neural tracking of slow auditory rhythms has
also been reported for non-speech stimuli (Henry &
Obleser, 2012; Lakatos, Karmos, Mehta, Ulbert, & Schroe-
der, 2008; Stefanics et al., 2010), one first source of
debate is whether these responses are distinctive of lin-
guistic processing in speech, or whether they reflect a
generic processing of acoustic features. As a follow-up
to recent critical reviews (Ding & Simon, 2014; Zoefel &
VanRullen, 2015b), we argue that the different neural
responses are not only reflecting sound processing, but
linguistic processing as well. More specifically, a body
of recent experimental reports hint at the conclusion
that different neural markers do not relate to the same
processing stages of speech, namely: (1) theta oscil-
lations would primarily reflect early sound analysis and
phonological processing; (2) delta oscillations would
reflect the encoding of sound properties as well as
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abstract syntactic structures; and (3) high gamma activity
would represent phonological, lexical and syntactic infor-
mation, and may reflect the output of speech analysis.

In the second part of this opinion paper, we discuss and
re-interpret existing work with regard to two main neuro-
physiological models of speech perception, which we will
refer to as oscillatorymodels and gainmodels. So far, there
is no clear empirical evidence that observed neural oscil-
lations could either originate from intrinsic oscillatory
mechanisms or from non-oscillatory based mechanisms.
We discuss how the two hypotheses could be disen-
tangled and make some experimental predictions. We
further focus on one property of oscillatory models, that
is, the coupling between neural responses at different fre-
quencies. We highlight that the dissociation between
delta, theta, and gamma speech-tracking are inconsistent
with the hypothesized directionality in cross-frequency
coupling between the three neural markers.

Theta, delta, and gamma oscillations track
speech at distinct processing stages

Neural entrainment and intelligibility: acoustic
analysis of speech

While speech perception naturally relies on acoustic
signals, it is also informed by linguistic knowledge. It
comes as a direct question whether neural entrainment
mainly reflects the acoustical analysis of rhythmic
sounds, or whether they could also be the hallmark of lin-
guistic processing. To test this, several reports have com-
pared the properties of the entrained neural responses
when listening to speech in contrast to neural entrain-
ment to speech-like unintelligible acoustic streams.
Among all neural responses tracking speech dynamics,
theta oscillations –whose dynamics directly echo the syl-
labic rhythms – are the neural responses that have
received most scrutinized interest (Ding & Simon, 2014;
Ghitza, 2011; Giraud & Poeppel, 2012; Peelle & Davis,
2012; Poeppel, 2003; Poeppel et al., 2008). For now, exist-
ing reports present contradicting results, either associat-
ing stronger low-frequency entrainment with improved
speech intelligibility (Ahissar et al., 2001; Ding & Simon,
2013a; Doelling et al., 2014; Gross et al., 2013; Peelle,
Gross, & Davis, 2013; Pérez, Carreiras, Gillon Dowens, &
Duñabeitia, 2015; Rimmele, Zion Golumbic, Schröger, &
Poeppel, 2015) or showing no change in neural entrain-
ment responses between intelligible speech and non-
intelligible speech-like sounds (Howard & Poeppel,
2010; Millman et al., 2015; Peña & Melloni, 2012; Zoefel
& VanRullen, 2015a). We argue below that the main
differences between studies could be accounted for by
the acoustical properties of the stimuli. In other words,

low-frequency neural entrainment would primarily
reflect acoustic processing.

In findings supporting that low-frequency neural
entrainment is related to some extent to linguistic pro-
cessing, the manipulations of speech intelligibility was
done by applying important modifications of the
speech acoustics. For instance, the manipulations to
render speech unintelligible included changes in speed
(Ahissar et al., 2001), the loss of spectral complexity
using noise-vocoded speech (Peelle et al., 2013;
Rimmele et al., 2015), changes in the temporal dynamics
of the speech envelope using time-reversed speech
(Gross et al., 2013; Mai, Minett, & Wang, 2016), or the
removal of strong acoustic edges (Doelling et al., 2014),
and the addition of background noise (Ding & Simon,
2013a). Yet, temporal as well as spectro-temporal charac-
teristics of sounds are known to drive neural entrainment
(Ding, Chatterjee, & Simon, 2013); reducing the spectro-
temporal complexity of speech could thus be predicted
to have consequences on neural entrainment that are
independent of linguistic processing.

In contrast, when variations in acoustic properties
between intelligible and unintelligible speech stimuli
were controlled for, no clear link was observed between
theta entrainment and non-acoustic speech analysis. For
instance, specific noise could be added to speech
signals to remove the energetic fluctuations and spectral
content that yield the entrainment to sounds at the
level of the cochlea (Zoefel & VanRullen, 2015c). Despite
the absence of amplitude fluctuations in the speech
envelope, strong entrainment of the electroencephalogra-
phy (EEG) response was observed when participants lis-
tened to the manipulated sounds. The observed neural
oscillatory response was interpreted as entrainment to
speech features processed beyond the cochlea (Zoefel &
VanRullen, 2015a). However, and importantly, the strength
of neural entrainment was equally strong when the
manipulated speech signals were time-reversed thus on-
intelligible (Zoefel & VanRullen, 2015a). These findings
suggest that differences in the neural entrainment to
speech and time-reversed speech could originate from
the processing of acoustical temporal dynamics, and not
intelligibility. One other way to reduce the acoustic differ-
ences between speech and non-intelligible speech is to
contrast brain responses while listening to distinct
languages. Neural oscillations have been shown to track
to a lesser extent non-native or foreign compared to
native speech for certain types of languages contrasts
(e.g. English vs. Spanish) (Pérez et al., 2015), but not for
others (Spanish vs. Italian vs. Japanese) (Peña & Melloni,
2012). As distinct languages differ with regard to the tem-
poral fluctuations of the speech envelope (e.g. phonetic
and stress patterns), the differences in reports could be
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explained by non-linguistic acoustic processing. Consist-
ent with this, word and pseudo-word sequences of
similar phonological structure are shown to yield similar
neural entrainment patterns (Mai et al., 2016). Finally, to
rule out any acoustical confounds, Millman et al. (2015)
have investigated stimuli with the exact same acoustical
information but distinct linguistic content. To do so, the
authors used noise-vocoded speech that was initially
unintelligible but could become intelligible after the pres-
entation of a clear speech utterance (Millman et al., 2015).
In this study, no differences were observed in the strength
of neural entrainment before and after the training,
suggesting that neural entrainment was uniquely driven
by the acoustical processing of the signals. It should be
noted that no study so far has reported that intelligible
speech processing could occur without neural entrain-
ment. Hence, the observed low-frequency entrainment
may be the hallmark of a necessary (but not sufficient,
and not language-related) mechanism used for speech
comprehension.

To conclude, it remains unclear using manipulations
of speech intelligibility whether neural entrainment to
speech has a functional role in encoding linguistic infor-
mation essentially due to potential acoustical confounds
in the experimental designs.

Theta, delta, and gamma oscillations represent
distinct linguistic features

Cortical entrainment to speech reflects to a great extent
the bottom-up analysis of acoustic signals. Yet, neural
entrainment can also reflect top-down modulations of
sound processing by attention (Lakatos et al., 2008) or pre-
diction (Kayser et al., 2015; Stefanics et al., 2010).The atten-
tional modulations of low-frequency oscillations could be
particularly relevant for speech processing in adverse con-
ditions to track the relevant signal and to discard irrele-
vant distracting information (Ding & Simon, 2012; Zion
Golumbic et al., 2013). In addition to non-speech-specific
top-down modulations, recent reports have suggested
that linguistic processing could modulate neural entrain-
ment. As will now be discussed, theta entrainment may
not only reflect acoustic analysis but also possibly phono-
logical processing. It has recently been shown that EEG
theta entrainment to natural speech could be best pre-
dicted when speech was parameterized as the combi-
nation of low-level acoustic and phonetic features (Di
Liberto, O’sullivan, & Lalor, 2015). The phonetic labelling
of sounds did not improve the modelisation of the
neural oscillatory response to time-reversed speech,
suggesting that these labels efficiently captured speech-
specific content. The results thus indicated that theta
oscillations are sensitive to the phonetic features of

speech. Consistent with these reports, theta (3–8 Hz) oscil-
lations are also recruited during phonemic restoration
(Riecke et al., 2012; Riecke, Esposito, Bonte, & Formisano,
2009; Strauß, Kotz, Scharinger, & Obleser, 2014; Sunami
et al., 2013). Theta oscillations could also be recruited for
the identification of consonants in syllables (Ten Oever
& Sack, 2015), as well as the processing of co-articulation
cues that could guide the parsing of words within speech
streams (Kösem, Basirat, Azizi, & van Wassenhove, 2016).

Delta oscillations have been associated with the pro-
cessing of non-speech-specific attentional and predictive
modulations of auditory processing (Lakatos et al., 2008;
Nozaradan, Peretz, Missal, & Mouraux, 2011; Stefanics
et al., 2010; Zion Golumbic et al., 2013) but they do not
serve the same purpose as theta oscillations. Findings
have suggested that oscillatory responses can be elicited
in the absence of acoustic landmarks delimiting speech
units in the acoustic signal (Buiatti, Peña, & Dehaene-
Lambertz, 2009; Ding et al., 2016). More importantly,
recent report suggest that delta oscillations may reflect
abstract language processing (Ding et al., 2016): in this
study, brain signals presented rhythmic fluctuations
that corresponded to sub-harmonics of the syllabic
rhythm (4 Hz), which were not present in the speech
acoustics. Crucially, the observed delta frequency corre-
sponded to the syntactic complexity of the heard
speech signal. Series of phrases constituted of two
monosyllabic words were associated with a neural
entrainment at 2 Hz, and sentences composed of four
monosyllabic words induced a delta response at 1 Hz.
Hence, delta oscillations could be linked to the combi-
nation or unification of word units into a longer and
more abstract linguistic structure. The process of syntac-
tic unification is attributed to the synergic interaction
between left inferior frontal cortices and left posterior
temporal areas (Hagoort & Indefrey, 2014). Consistent
with this idea, recent findings have demonstrated top-
down communication using transfer entropy measures
of delta band responses between the left Inferior
Frontal Gyrus and the left auditory cortices (Park, Ince,
Schyns, Thut, & Gross, 2015).

In addition to low-frequency entrainment, high-fre-
quency activity (>40 Hz) has also been shown to follow
speech dynamics (Ding et al., 2016; Kubanek et al., 2013;
Mesgarani & Chang, 2012; Nourski et al., 2009; Pasley
et al., 2012; Peña & Melloni, 2012; Zion Golumbic et al.,
2013). Several pieces of evidence suggest that high-fre-
quency power is modulated by variations in linguistic pro-
cessing at different stages of speech processing. First, the
content of heard and attended speech signals can be
decoded from high-frequency power (Mesgarani &
Chang, 2012; Pasley et al., 2012; Zion Golumbic et al.,
2013). More than pure acoustic processing, high-
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frequency activity may reflect the representations of
speech sounds considering that phonological features
can be decoded from high-frequency power of intracranial
recordings in auditory cortices (Mesgarani, Cheung,
Johnson, & Chang, 2014). The power of high-frequency
neural activity is also modulated by lexical knowledge so
that high-frequency power is stronger for words com-
pared to pseudo-words (Cibelli, Leonard, Johnson, &
Chang, 2015; Hannemann, Obleser, & Eulitz, 2007; Mai
et al., 2016) and for native compared to unknown
languages (controlled for phonologic and phono tactic
repertoires) (Peña & Melloni, 2012). It should be noted
here that lexical modulations were observed as a direct
modulation of high-frequency oscillatory power, and not
on the tracking of speech dynamics by high-frequency
power. However, additional evidence suggests that high-
frequency activity tags the timing of abstract linguistic
speech units and structures. For instance, high-frequency
activity has been shown to reflect the result of top-down
word parsing: high-frequency oscillatory power dynamics
systematically delineated the boundaries of perceived
monosyllabic words in ambiguous speech streams
(Kösem et al., 2016). High-frequency activity also rep-
resented, concurrently with delta oscillations, the segmen-
tation of longer abstract linguistic structures (phrases and
sentences) in continuous speech (Ding et al., 2016).

All in all, the reviewed data suggest that neural track-
ing may conjointly decode the acoustic and the distinc-
tive linguistic features of the speech signals. However,
these findings also suggest that theta, delta, and high-
frequency oscillatory activity may relate to different
types of speech processing: theta entrainment may
process acoustic and phonological information of the
signal, delta oscillations may reflect the combinatorial
processes underlying sentence unification, and high-fre-
quency activity may be associated with the output of
phonological as well as lexical and syntactic processing.

Potential neural origins of the observed
oscillatory responses

The functional role of neural oscillations in speech
processing

From a mechanistic perspective, what can be concluded
from the observed modulations of low- and high-fre-
quency oscillatory activity during speech listening? One
crucial question concerns the origins of the neural
entrainment patterns observed in magnetoencephalo-
graphy (MEG), EEG, and intracranial recordings. Is oscil-
latory activity present in electrophysiological data
because neural oscillations are mechanistically involved
in speech processing, or does it reflect the by-product

of other mechanisms (e.g. gain control mechanisms) at
stake during speech processing? For now, both types
of models have received empirical support, and could
in principle explain to a similar extent the reported find-
ings. Here, we discuss briefly the two kinds of models
and suggest how the two models could be tested
against each other.

Oscillatory models (Ding & Simon, 2014; Ghitza, 2011;
Giraud & Poeppel, 2012; Peelle & Davis, 2012; Poeppel,
2003; Poeppel et al., 2008) propose that neural entrain-
ment to speech originates from the recruitment of intrin-
sic neural oscillatory mechanisms, which have a causal
influence on speech perception. Neural oscillations
would specifically serve as parsers of the acoustic
signals into a neural code for speech – namely, discre-
tized informational units relevant for additional linguistic
processing. In these models, intrinsic low-frequency
neural oscillations in the delta (1–4 Hz) and theta
(4–8 Hz) ranges track the phrasal and syllabic rates of
speech, respectively. Low-frequency oscillations impose
periods of inhibition and excitation in high-frequency
neural dynamics (Fries, 2009; Schroeder & Lakatos,
2009a) yielding cross-frequency coupling, that is,
increase in high-frequency activity at particular phases
of low-frequency activity (Akam & Kullmann, 2014;
Canolty et al., 2006; Canolty & Knight, 2010; Lakatos
et al., 2005). High-frequency activity would thus reflect
the read-out of speech processing (Ghitza, 2011; Giraud
& Poeppel, 2012; Mesgarani et al., 2014; Poeppel, 2003;
Poeppel et al., 2008). Because high-frequency activity is
constrained by low-frequency entrainment, this cross-
frequency-coupling results in the discretization of the
neural representation of the auditory input. Crucially,
these models assume a hierarchical coupling between
the distinct neural oscillations being entrained to the
speech dynamics, namely: low-frequency entrainment
should be the master mechanism driving high-frequency
dynamics (Schroeder & Lakatos, 2009b; Schroeder,
Lakatos, Kajikawa, Partan, & Puce, 2008).

Alternatively, neural entrainment to speech could
reflect evoked responses controlled by gain mechanisms
(Kerlin, Shahin, & Miller, 2010) or the outcome of tem-
poral coherence analyses (Ding & Simon, 2012;
Shamma, Elhilali, & Micheyl, 2011). Here, the observed
neural oscillations would reflect the summated individ-
ual evoked response to each relevant acoustic feature
in speech. Because speech is rhythmic, any magnification
of speech-evoked responses would lead to enhanced
oscillatory activity in auditory cortices. For instance, an
increase in speech intelligibility would be the result of
an increased excitability of the neural network encoding
for the relevant speech features (Ding & Simon, 2012;
Hillyard, Hink, Schwent, & Picton, 1973; Kerlin et al.,
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2010; Woldorff et al., 1993). Hence, the observed
enhancement of neural oscillatory activity could be the
by-product of the overall enhancement of the evoked
response to the stimulus. In this scheme, brain oscil-
lations do not confer any mechanistic benefits to the
encoding of speech. In other words, gain models
would predict the emergence of oscillatory brain pat-
terns during speech listening (Ding & Simon, 2014),
although the nature of the speech decoding mechan-
isms would not be oscillatory per se.

Behavioural and neuroscientific evidence so far,
though mostly interpreted within the oscillatory frame-
work, could be explained by the two mechanistic the-
ories. As discussed earlier, enhanced neural oscillatory
activity observed for intelligible and/or attended
speech signals could either originate from the stronger
recruitment of parsing oscillatory mechanisms, or from
the applied gain on the evoked response to the selected
acoustic features. Other pieces of evidence interpreted in
favour of oscillatory models include the fading of neural
entrainment for fast rhythmic stimulation (Ahissar et al.,
2001; Nourski et al., 2009), and the impairment of
speech recognition when the acoustic information is pre-
sented at too fast or too slow rates (Brungart & van Was-
senhove, 2007; Brungart, Iyer, Simpson, & van
Wassenhove, 2008; Ghitza, 2014; Ghitza & Greenberg,
2009). These data suggest that the rate of auditory infor-
mation must be constrained between 2 and 10 Hz so that
speech gets efficiently parsed and becomes understand-
able (Boemio et al., 2005; Poeppel, 2003; Poeppel et al.,
2008). The evidence for restricted temporal sensitivities
to acoustic features in auditory speech and the existence
of temporal encoding windows in audiovisual speech
(van Wassenhove, 2013; van Wassenhove, Grant, &
Poeppel, 2007) are compatible with oscillatory models
hypothesizing that speech parsing is constrained by
theta oscillations (Ghitza, 2011; Giraud & Poeppel,
2012). However, these results could also be explained
by non-oscillatory mechanisms. Stimulus-evoked
responses have been suggested to reflect 50–300 ms
long packets of neural activity, that provide increased
information on the stimulus as the packet progresses
in time (Luczak, McNaughton, & Harris, 2015).This view
suggests that the evoked response to ongoing stimu-
lation is discrete, and that packets of neural activity
would constitute fundamental units of neural code:
sensory information that will be presented within the
time period of the packet will be integrated as one unit
in information. Because the packets have limited dur-
ations, the encoding accuracy of the stimulus’ content
may be potentially impaired if auditory information is
presented at a too fast rate or a too slow rate. This
would eventually yield reduced observed oscillatory

activity and speech intelligibility. In other words, alterna-
tive mechanisms could make the assumption that the
neural code to speech is discrete and has limited tem-
poral parsing windows, this without the recruitment of
intrinsic neural oscillators.

A question related to the debate on the mechanistic
nature behind the observed neural oscillations in electro-
physiological recordings, is whether neural entrainment
carries temporal predictions (Morillon & Schroeder,
2015). Gain control and oscillatory models differ in
their views regarding this question. Neural oscillations
are somewhat epiphenomenal in gain models and do
not relate to temporal predictive mechanisms. In oscil-
latory models of speech processing, neural oscillations
mechanistically track the dynamics the speech envelope
via phase resetting at specific speech onsets. As such,
neural entrainment could constitute a non-predictive
evoked mechanism if phase resetting occurs at each
sound onset. Alternatively, phase reset may not be con-
stantly instantiated, and recent work showed that the
endogenous control of oscillatory phase during percep-
tion may provide a neural code for event timing
(Kösem, Gramfort, & van Wassenhove, 2014; Samaha,
Bauer, Cimaroli, & Postle, 2015; van Wassenhove, 2016).
Hence one possible role of intrinsic oscillators would
be, via the tuning to the timing of current sensory
input, to predict the arrival of future events (Morillon &
Schroeder, 2015; van Wassenhove, 2016). It is difficult
to test oscillatory and gain models against each other,
as well as predictive and non-predictive accounts of
neural entrainment during speech processing, as they
all hypothesise that oscillatory activity should be
observed during the presentation of the speech
signals. However, the models make different predictions
on the presence of oscillatory activity after speech stimu-
lation, or when speech temporal characteristics are sud-
denly changing. Predictive oscillatory models suggest
that neural entrainment that followed sensory infor-
mation presented at instant t should last at instant t +
1 even in the absence or change of stimulation. By
analogy, neural entrainment should work as a bicycle
wheel: even if the pedalling has stopped, the wheel con-
tinues turning. In contrast, gain control models predict
that neural oscillation responses would vanish in the
absence of any external input, or would tune immedi-
ately to the changes of dynamics of new sensory input.
Evoked oscillatory models (systematic phase-reset)
would also predict that oscillations phase-reset directly
and adapt to the dynamics of the new sensory input;
but oscillatory activity should persist in the absence of
new stimulation. There are glimpses of evidence that
neural entrainment could last for a few cycles after
visual/tACS stimulation (Helfrich et al., 2014; Spaak, de
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Lange, & Jensen, 2014; Zaehle, Rach, & Herrmann, 2010)
but additional research is needed to test whether this
remising oscillatory response has consequences on
speech perception. Another way to test oscillatory
models is to recruit the imputed endogenous oscillators
without external sound stimulation. Manipulations of
sound processing via theta stimulation with tACS have
successfully been reported (Riecke, Formisano, Herr-
mann, & Sack, 2015; Riecke, Sack, & Schroeder, 2015)
and tACS studies involving speech stimuli could thus
provide additional support for oscillator models.

Coupling between low- and high-frequency
neural tracking of speech

Currents oscillatory models of speech processing
propose that different neural oscillators decode distinct
linguistic units but also, and crucially, make the assump-
tion that the three oscillators (delta, theta, and gamma)
are hierarchically coupled to each other, and that oscil-
lators at lower frequencies constrain activity at higher
frequency. Recent computational models have provided
evidence that phase-amplitude coupling between theta
and high-frequency oscillations could provide a relevant
encoding strategy to delineate syllabic boundaries
within speech in a bottom-up fashion (Ghitza, 2011;
Hyafil, Giraud, Fontolan, & Gutkin, 2015; Shamir, Ghitza,
Epstein, & Kopell, 2009). However, additional mechan-
isms are required to explain the observed top-down
modulations of neural oscillations based on linguistic
knowledge. If the coupling holds, then theta and high-
frequency dynamics should undergo similar modulations
by linguistic processing. Specifically, high-frequency
dynamics should always be constrained so that the
maximum of high-frequency power occurs at a specific
phase of the low-frequency oscillation (Canolty et al.,
2006; Schroeder & Lakatos, 2009a). Yet, as discussed in
the first section, high-frequency power is indicative of
linguistic manipulations while theta activity is
unchanged (Mai et al., 2016; Peña & Melloni, 2012), and
the dynamics of high-frequency power may follow the
perceived parsing of speech sequences while theta oscil-
lations remain stable in comparison (Kösem et al., 2016).
Although more evidence is needed to confirm the
observed coupling behaviour between high- and low-
frequency neural dynamics during speech processing,
the data is in line with reports in the visual domain,
showing that distinct phases of theta-modulated high-
frequency lead to distinct perceptual outcomes
(Landau, Schreyer, van Pelt, & Fries, 2015; Maris, Womels-
dorf, Desimone, & Fries, 2013).

To explain the observed differences between low- and
high-frequency neural entrainment to speech, one

extreme hypothesis would be to consider that there is
no actual coupling between delta, theta, and high-fre-
quency oscillations. Low- and high-frequency entrain-
ment mechanisms would co-occur independently and
decode distinct properties of the speech sounds. This
theory would speak against theta oscillations as the
“master oscillator” mechanism during the encoding of
linguistic content (Scott & McGettigan, 2013). Another
possibility is that cross-frequency-coupling mechanisms
mainly operate between distinct brain areas (Fontolan,
Morillon, Liegeois-Chauvel, & Giraud, 2014; Park et al.,
2015), and different brain sources preferentially track
speech dynamics through either low- or of high-fre-
quency channels (Ding et al., 2016). Finally, an alternative
mechanism could consist in maintaining the coupling
between low-frequency and high-frequency oscillations,
but varying the phase of coupling to provide an
additional code for perception (Jensen, Bonnefond, &
VanRullen, 2012; Jensen, Gips, Bergmann, & Bonnefond,
2014; Kösem et al., 2014; Ng, Logothetis, & Kayser,
2013; Panzeri, Brunel, Logothetis, & Kayser, 2010).
Hence, complex coupling schemes provide potential
explanation of the current experimental data (Maris,
Fries, & van Ede, 2016; van Wassenhove, 2016). Future
research will give us promising insight on the origins of
the distinct brain oscillatory responses to speech, how
they are interacting with each other, and what their pre-
dictive impact is on speech comprehension.
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