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Detecting Computer-Generated Images
by Using Only Real Images

Ji Li and Kai Wang

Abstract

This paper presents a simple yet effective method to detect fake synthetic images generated by recent deep generative models,
the so-called deepfakes. Unlike existing methods that require a relatively large number of real and fake training images, our
method follows a novel idea of using only real images during the training phase. Our proposal is to construct proxy negative
training samples, representing fake images, by applying an appropriate transformation on the real images in the training set.
The training of our detector leverages the popular CLIP model as well as a center loss to encourage clustering of real images,
with the aim of obtaining discriminative features for the classification of real and fake images. The proposed forensic detector is
conceptually simple and data-efficient, i.e., it can be trained by using a small amount of only 4K real images. Experimental results
and comparisons show the effectiveness of our method in terms of generalization capability to detect fake images generated by
various deep generative models.

Index Terms

Image forensics, fake image detection, deepfake, CLIP, color transfer, neural network.

I. INTRODUCTION

The proliferation of smartphones and social networking applications has significantly increased the ease of acquiring and
sharing digital images in today’s world. In the meantime, the availability of advanced image generation tools has made it
straightforward to generate synthetic images with a very high level of visual realism. Such computer-generated fake images,
which do not reflect reality of the physical world, can have serious negative impacts on society. They can be used to mislead
public opinion, deceive consumers, and notably, impede law enforcement efforts if generated images are accepted as credible
evidence in court. Indeed, the significant evolution of generative models, from Generative Adversarial Networks (GANs) [1]
to the latest state-of-the-art diffusion models [2], has resulted in computer-generated images (see Fig. 1 for examples) of
astonishing quality that are often indistinguishable from real images by humans. This advancement raises substantial concerns
regarding their potential misuse for malicious purposes. Consequently, numerous image forensic techniques have been proposed
over the last two decades [3–5] to detect various types of synthesized images.

Fig. 1. Computer-generated images by different generative models. Top row: GANs. Bottom row: Diffusion models.
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In image forensics, particularly in the detection of computer-generated images [6–8], deep learning-based methods, primarily
using convolutional neural networks (CNNs), often excel in fully supervised scenarios with ample labeled training samples.
Typically, deep learning-based classifiers trained on datasets of real images and fake ones from specific generative models (e.g.,
GANs, diffusion models) perform well within the same generative model family [9, 10]. For instance, a classifier trained on real
and fake images from a specific GAN model can achieve high accuracy when detecting fake images from other GAN models.
However, performance can significantly degrade when facing with images generated by diffusion models. Such classifiers often
struggle to generalize to out-of-domain models, especially those not included in the training set. In addition, existing methods
typically require a relatively large amount of training data. One of our goals is to design a data-efficient fake image detection
method, capable of achieving high detection performance using a minimal amount of data.

In this paper, we first conduct experiments to investigate the transferability of different large pretrained image encoder
models, varying in pretraining data and strategies, in the context of fake image detection. Based on the findings of this study,
we propose a data-efficient method for detecting computer-generated images, capable of handling challenging situations (in
particular related to the generalization capability on unseen image generative models), by training the detection model using
only real images. Specifically, we build a model based on the very popular CLIP [11] image encoder, sufficiently exploiting
the capabilities of this large pretrained model by fusing features from different intermediate blocks.

Importantly, we succeed in training the model using only a small number of real images and an equally small number
of so-called proxy negative samples constructed from real images. We do not use any computer-generated image during the
training phase. The proxy samples represent computer-generated images during training and in the meantime should be, to
some extent, close to real images in order to make the classification challenging. Our main motivation is as follows: different
generative models generate fake images with their corresponding intrinsic distribution and trace, and it is impractical to include
all generative models in the training set; by contrary, our proposed detector, trained to classify between real images and a
set of challenging proxy samples without any specific trace of generative model, could be more favorable to achieve better
generalization capability. Additionally, we implement center loss on the embeddings of real images, aiming to cluster their
feature representations, which further enhances the network’s discrimination ability.

We tested our method on datasets that contain GANs, diffusion models, and others. By leveraging only real images and proxy
samples constructed from them, without introducing additional information about fake images, our method, trained by using
only 4K samples of real images, achieves superior performance compared to the baselines, demonstrating strong generalization
capability across different domains with high accuracy. Our main contributions can be summarized as: (1) we explore the
transferable capabilities of different pretrained large models for computer-generated image detection; (2) we propose the use
of real images as well as the proxy negative samples for training, enhancing the classifier’s generalization ability; and (3) we
conduct experiments to show the effectiveness of our method in terms of detection accuracy and generalization across unseen
domains.

The paper is structured as follows. Section II reviews related work. Section III details our approach. Section IV presents
experimental results. Finally, Section V concludes the paper and gives directions for future research.

II. RELATED WORK

Computer-generated images often contain operation traces left during the generation process, which are termed artificial
fingerprints. These fingerprints can be utilized to determine whether images are real or fake. In general, image detection
methods can be roughly divided into frequency-based methods and spatial-based ones.

A. Frequency-Based Detection

In some cases, fingerprints in computer-generated images can be more easily detected in the frequency domain after applying
the Fourier transform to the synthetic images [12, 13]. Zhang et al. [14] proposed a GAN simulator to replicate artifacts generated
by the common pipeline shared among different GANs. Frank et al. [15] investigated artifacts across various GAN architectures
in the frequency domain and illustrated how artifacts induced by different upsampling strategies in networks can be leveraged
for identifying deepfake images.

While similar artifacts can also manifest in diffusion models, they are notably more pronounced in GAN models [16] due to
the inherent use of upsampling operations in the generator, leading to discernible patterns in the Fourier domain. Chandrasegaran
et al. [17] argued that discrepancies in high-frequency spectral decay are not inherent characteristics of CNN-generated images,
and such features lack robustness for synthetic image detection. They demonstrated that a slight modification to the final
upsampling layer of the architecture enabled computer-generated images to evade recently proposed forensic detectors relying
on high-frequency Fourier spectrum decay attributes for CNN-generated image detection.

B. Spatial-Based Detection

In the spatial domain, image forensic techniques analyze pixel values directly. Methods in this domain focus on detecting
inconsistencies or artifacts introduced during fake image generation [16, 18, 19]. Wang et al. [9] suggested that CNN-
generated images exhibit systematic subtle flaws when compared to authentic real images. Through careful pretraining and
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data augmentation, a simple image classifier (ResNet-50) trained on a specific CNN generator (ProGAN) can generalize well
to unseen GAN architectures.

Although the classifier in [9] achieves impressive performance on images generated within the same domain (e.g., GANs),
it exhibits a significant drop in performance when confronted with diffusion-generated images, with accuracy results falling
below 60%. To address this issue, the authors of [10] proposed a novel image representation called Diffusion Reconstruction
Error (DIRE), which measures the error between an input image and its reconstruction counterpart by a trained diffusion model.
By leveraging these reconstruction errors as fingerprints, a binary classifier can effectively distinguish between real and fake
images, even for unseen diffusion models, demonstrating robustness against various perturbations. However, this generalization
capability did not consistently perform well on all models, particularly when applied to images generated from unseen data
sources.

Ojha et al. [20] discovered that the decision boundary for the classifier of [9] is closely bound to the particular fake domain.
Whenever an image contains the (low-level) fingerprints particular to the generative model used for training (e.g., ProGAN),
the image gets classified as fake; otherwise, it is classified as real. This tendency arises because the classifier easily latches onto
the low-level image artifacts that differentiate fake images from real images, leading to overfitting to subtle artifacts specific
to the training set and resulting in suboptimal performance on unseen generators. Ojha et al. [20] utilized the fixed pretrained
image encoder of CLIP (ViT-L/14) [11] as a feature extractor and explored nearest neighbor and linear probing classification
based on these feature maps. With training on the same dataset as [9] including 720K real/ProGAN images, their promising
results across different domains, which mainly owe to the quality of the image embeddings of CLIP, inspire us to explore the
capabilities of this very popular pretrained image encoder model.

III. APPROACH

In this paper, we attempt to perform data-efficient fake image detection with high accuracy. Naturally, transfer learning [21]
comes to mind as it leverages knowledge acquired from a large dataset to improve the performance of a model on a different,
often smaller dataset.

A. Analysis of Large Pretrained Models

Considering the excellent performance of the pretrained CLIP model [11] in various downstream tasks [22, 23], its encoded
representations likely contain sufficient and important information about images. In this subsection, we investigate the sources
of the modeling ability of the CLIP encoder, questioning whether different modeling strategies during pretraining or the scale
of the dataset make a major contribution. Our goal is to explore the potential of large models when adapting to the fake
image detection task. The image encoder used in CLIP is the Vision Transformer (ViT) [24], specifically the ViT/L-14 variant.
Therefore, we considered several different open-source pretrained models based on vision transformers as follows:

• ViT/L-16 [24], supervised classification on ImageNet-22K (with over 14 million images of about 22K classes)
• Swin Transformer-L [25], supervised classification on ImageNet-22K
• BEiT-L [26], masked autoencoder on ImageNet-22K
• Swag [27], supervised classification on Instagram-3.6B (about 3.6 billion images from Instagram)
• MAE [28, 29], masked autoencoder on Instagram-3B (about 3 billion images from Instagram)
• MAWS [29], masked autoencoder + supervised classification on Instagram-3B
It is important to note that all models use ViT-L as the feature extractor, except for the Swin Transformer. These models

employ different modeling methods and were pretrained on various datasets (more details can be found in the original papers).
We followed the same training methods as in [20], freezing the pretrained models as feature extractors and adding a linear
layer as the classifier head. To assess the potential of large models for data-efficient fake image detection, we used only 8K
real/ProGAN images for training and then tested the trained detectors on 19 other datasets.

TABLE I
AVERAGE DETECTION ACCURACY (LAST COLUMN, IN %) OF DIFFERENT LARGE PRETRAINED MODELS.

Model Pretraining
dataset

Modeling
strategy Author Accuracy

ViT/L-16

ImageNet-22k

Supervised Google 58.22
Swin

Transformer-L Supervised Microsoft 79.34

BEiT-L Masked autoencoder Microsoft 62.56
Swag Instagram-3.6B Supervised Meta 78.63
MAE

Instagram-3B
Masked autoencoder Meta 82.08

MAWS Masked autoencoder
+ supervised Meta 82.57

CLIP WIT-400M Contrastive
learning OpenAI 85.85
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The average classification accuracy results are shown in Table I. By comparing ViT/L-16, Swin Transformer-L, and Swag
models, we found that the Swin Transformer exhibits superior feature extraction capabilities compared to ViT/L-16. Furthermore,
scaling up the pretraining data from ImageNet-22K to Instagram-3B also enhances model performance, as demonstrated by
comparing BEiT-L, MAE, and MAWS, which all conducted pretraining with masked autoencoder on different datasets. Among
all the models, the CLIP encoder demonstrated the best performance. We attribute this to its strong feature extraction capabilities,
which benefit from the extensive 400M curated pretraining data, as well as the image-text contrastive learning approach. Our
observation is in line with other studies which show that in general CLIP has the best overall performance on a good range of
downstream tasks compared to other large pretrained models [30–32]. To the best of our knowledge, this is the first time that
different large models pretrained on different data sources and with different approaches have been compared in the context
of a computer-generate image detection task.

B. Detection Model

Based on our analysis, we adopt CLIP:ViT-L/14 as the feature extractor. To fully exploit the capabilities of the CLIP image
encoder for transferable detection, we utilize intermediate representations from the CLIP encoder, rather than solely relying on
the last-layer output features [20]. While the features from the last layer of CLIP contain more high-level information about
images, intermediate representations capture more fine-grained details, which are crucial for detecting fake images. Previous
method [33] leverages intermediate representations of CLIP via a learnable block, here we propose a more concise way. Figure
2 illustrates the architecture of our model.

Fig. 2. The architecture of our model.

The feature extractor consists of n successive Transformer encoder blocks [34], where n is 23. For a batch of input X ∈
Rb×3×w×h, with w and h the width and height of image and b the batch size, each Transformer block outputs the feature
representations Zi ∈Rb×(1+p)×d by calculating multi-head self-attention, where p denotes the number of patches, and d is the
embedding dimension. To fuse the features from different levels, we propose computing the average value of the n class tokens
stemming from each of the n Transformer blocks as the final representation F , which takes into consideration all intermediate
layers:

F = Avg
(
⊕
{

Z[0]
i

}n

i=1

)
∈ Rb×d , (1)

where ⊕ denotes element-wise addition, and Z[0]
i ∈ Rb×1×d denotes the class token from the output of Transformer block n.

The Avg is the above equation is calculated along the second dimension. During training, all the parameters of the feature
extractor are frozen.

Following this, an MLP layer is used for further purification of features and adapting the CLIP features to the image detection
task by projecting the features to a dimension of 256. Finally, the classification head, consisting of a linear layer with sigmoid
activation, predicts the output (real/fake).
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C. Loss Function

To better learn the distinctive information of real images, we adopt a combination of BCE (Binary Cross Entropy) loss and
Center Loss when training the model. Center loss is commonly used in one-class classification tasks [35, 36], and it enhances
the discriminative power of deep features by minimizing the intra-class variance:

Lcenter =
N

∑
i=1

∥ f R
i − c∥2, (2)

where:
• N is the number of samples,
• f R

i denotes the feature vector of real images output by MLP layer,
• c is the center of the real class, here we set it as origin.

By minimizing the volume of a data-enclosing hypersphere in feature embeddings of real images, the classifier can separate
the real from the others more easily. The total loss function is defined as:

L = LBCE +λLcenter, (3)

where λ is a hyperparameter that balances the two loss terms which are in practice of different orders of magnitude. In all
our experiments, we set λ as 0.01.

D. Proxy Negative Samples

Given the rapid development of new generative models, it is challenging to generalize classifiers to unseen models that
may generate fake images with unknown distributions and using unknown techniques. In the meantime, natural images exhibit
rather stable, common characteristics within their domain. A model trained to recognize these intrinsic characteristics (with
pretraining on a very large number of natural images) has the potential to effectively distinguish real images from synthetic
ones. To investigate the feasibility of training a detection model using only real images, we conducted preliminary experiments.
However, training a model exclusively with samples from a single class is very difficult and frequently leads to “feature
collapse” [36], wherein the model fails to learn discriminative features. Thus, incorporating negative samples (with same label
as computer-generated images) is necessary to provide essential discriminatory information for the successful training of the
detector.

We propose to use proxy data, constructed from real images, to simulate computer-generated images for training the model.
These proxy images are expected to be close to the distribution of real images while introducing distinct discriminative features.
Additionally, they do not have specific traces left by a particular generative model, thus this approach is expected to enhance
generalization. During training, we use these proxy images as negative samples instead of computer-generated images, to
calculate the BCE loss in Eq. (3).

We experimented with several methods of constructing proxy negative samples, visualized in Figures 3, 4, and 5. The details
of the proxy sample construction processes are as follows:

• Frequency-domain Masking (FM). Inspired by [37], We utilize the Fast Fourier Transform (FFT) to compute the
frequency representation of an image, then divide the frequency bands into low, mid, and high regions to isolate the
contributions of specific frequency components to the overall image features. By setting the frequencies to zero in specific
ranges, we obtain masked representations. Masked images are then reconstructed by applying the inverse FFT. In our
experiment, we randomly mask 30% of the low-band and high-band frequency range of the image, denoted as FM (low)
and FM (high), respectively.

• Mix-Up (MU). New samples are created through linear interpolation of two images [38]. We randomly select two semantic
categories of real images in the training set, then randomly choose one image from each category to perform the mix-up.
Here, the mixing weight w is set to 0.5:

x̃ = wxi +(1−w)x j. (4)

• Patch Shuffling (PS). An image is divided into several smaller non-overlapping patches, which are then shuffled randomly
to create a new, altered version of the original image. This method disrupts the spatial relationships between the patches
while retaining the low-level features present within each patch. In our experiments, we set the patch size to 32.

• Color Transfer (CT). This method [39] changes the appearance of a source image to match the color pattern of a target
image. The process involves the following steps:

1) Convert the source and target images from RGB to a suitable color space (e.g., LAB).
2) Compute the mean and standard deviation of each color channel for both images:

µS =
1
N

N

∑
i=1

Si, σS =

√
1
N

N

∑
i=1

(Si −µS)2; µT =
1
N

N

∑
i=1

Ti, σT =

√
1
N

N

∑
i=1

(Ti −µT )2, (5)
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(a) Original image (b) Frequency Masking (c) Patch Shuffled

Fig. 3. Visualization of Frequency Masking and Patch Shuffling.

(a) Image A (b) Image B (c) Mix-Up image

Fig. 4. Visualization of Mix-Up.

(a) Source (b) Target (c) Color Transfer

Fig. 5. Visualization of Color Transfer.

where Si and Ti are the pixel color channel values of the source and target images, respectively, and N is the number
of pixels.

3) Adjust the source image’s color channels to match the target image’s statistics:

S′i =
σT

σS
(Si −µS)+µT , (6)

where S′i is the adjusted pixel color channel value.
4) Convert the adjusted image back to the RGB color space.

Similar to the mix-up method, we first randomly select semantic categories of source and target images, then randomly
select source and target images within these categories.

IV. EXPERIMENTS

A. Dataset and Evaluation Metrics

In previous works [9, 20], the training set comprised 720K images, evenly split between 360K real images from LSUN
[40] and 360K fake images generated by ProGAN. To demonstrate the effectiveness and data-efficiency of our method, we
randomly selected 4K LSUN real images from this dataset. Based on these real images, we generated 4K proxy images using
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the transformation methods described in Section III-D. Thus, our training set consists of only 8K images, equally divided
between real and proxy images.

For testing, we selected synthetic datasets from different domains as outlined in [20]. These domains include:
• GANs: ProGAN, CycleGAN, BigGAN, StyleGAN, GauGAN, StarGAN.
• Diffusion models: Latent Diffusion Model (LDM, 3 variants, see [20] for details), Guided Diffusion Model, GLIDE (3

variants, see [20] for details).
• Autoregressive model: DALL-E.
• Facial manipulation with deep learning: FaceForensics++.
We intentionally excluded the “Low-Level Vision” and “Perceptual Loss” categories from [20], which contain SITD, SAN,

CRN, and IMLE. These images are either sourced from video games or pertain to image post-processing, and are not directly
relevant to our task of detecting computer-generated images.

For comparability purposes, we assess the performance of detectors using average precision and classification accuracy as
our evaluation metrics, consistent with previous approaches for AI-generated image detection [9, 10, 20]. When calculating
classification accuracy, we use a fixed threshold of 0.5, which aligns with realistic scenarios where there is no prior information
on the test data. Additionally, we report the average metric values across the test datasets to provide a comprehensive summary
of the model’s performance.

B. Different Methods for Constructing Proxy Negative Samples

We first evaluate the performance of our approach with different transformation methods for proxy sample construction.
Tables II and III report the mean classification accuracy (ACC) and mean average precision (mAP) results on fifteen datasets,
which are divided into different domains.

TABLE II
AVERAGE ACCURACY (IN %) OF DIFFERENT PROXY SAMPLE CONSTRUCTION METHODS. THE BEST RESULT IS HIGHLIGHTED IN BOLD.

Proxy sample
construction method GANs Diffusion models FaceForensics DALL-E

PS 57.56 51.73 50.10 54.40
MU 84.46 62.99 58.50 67.40

FM (low) 96.77 80.23 84.05 98.50
FM (high) 95.51 83.75 81.30 98.95

CT 93.73 89.17 82.80 98.30

TABLE III
MEAN AVERAGE PRECISION (MAP) RESULTS (IN %) OF DIFFERENT PROXY SAMPLE CONSTRUCTION METHODS.

Proxy sample
construction method GANs Diffusion models FaceForensics DALL-E

PS 96.77 76.16 73.84 91.07
MU 98.13 92.72 94.07 96.56

FM (low) 99.76 95.75 93.84 99.88
FM (high) 99.71 95.37 91.84 99.90

CT 99.01 96.14 91.25 99.99

Our findings indicate that, even without using computer-generated images for training, our approach achieves comparable
detection accuracy across various domains. This is particularly evident when applying Frequency Masking and Color Transfer
for proxy sample construction. Conversely, the performance of Patch Shuffling and Mix-Up methods is unsatisfactory, yielding
rather acceptable mAP but low accuracy. We suspect that the distribution of proxy images generated using these methods is
too divergent from that of real images. Consequently, the classifier tends to overfit to artifacts specific to these proxy images
and often predicts most samples as “real”, leading to suboptimal performance.

C. Comparison with State of the Art

We compared our approach with several state-of-the-art methods, which include: (i) CNNSpot [9], which fine-tunes a ResNet-
50 on 720K real/ProGAN images; (ii) PatchForensics [14], which detects fingerprints in the frequency domain of images; (iii)
CoOccurrence [8], which uses a combination of co-occurrence matrices and deep learning for classification; (iv) DIRE [10],
which uses reconstruction errors of images for detection; (v) UniFD [20], which employs CLIP features followed by linear
probing to separate real and fake images. All baselines are trained on the same dataset in a supervised manner, i.e., 720K
real/ProGAN images from [9].
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Tables IV and V present the mean classification accuracy (ACC) and mean average precision (mAP) results of the different
methods, respectively. Compared to other baselines, our method, trained on only 4K real images and 4K proxy color transferred
images, demonstrates superior performance, achieving an average ACC of 91.18% and an mAP of 97.22%.

TABLE IV
GENERALIZATION RESULTS (ACC, IN %) WITH COMPARISONS TO OTHER METHODS. THE BEST RESULT IS HIGHLIGHTED IN BOLD.

Method Data
source

Data
scale

GANs Face
Forensics

Diffusion models DALL-
E

Total
Pro

GAN
Cycle
GAN

Big
GAN

Style
GAN

Gau
GAN

Star
GAN

LDM Guided GLIDE avg
ACC200s 200s

w/CFG 100s 100-
27

50-
27

100-
10

CNNSpot LSUN /
ProGAN

360K /
360K 99.99 85.20 70.20 85.70 78.95 91.70 53.47 54.03 54.96 54.14 60.07 60.78 63.80 65.66 55.58 68.95

Patch
Forensics

LSUN /
ProGAN

360K /
360K 75.03 68.97 68.47 79.16 64.23 63.94 75.54 76.50 76.10 75.77 67.41 74.81 73.28 68.52 67.91 71.71

Co-
Occurrence

LSUN /
ProGAN

360K /
360K 97.70 63.15 53.75 92.50 51.10 54.70 57.10 70.70 70.55 71.00 60.50 70.25 69.60 69.90 67.55 68.00

DIRE LSUN /
ProGAN

360K /
360K 100.00 67.73 64.78 83.08 65.30 100.00 94.75 82.70 84.05 84.25 83.20 87.10 90.80 90.25 58.75 82.45

UnivFD LSUN /
ProGAN

360K /
360K 100.00 98.50 94.50 82.00 99.50 97.00 66.60 94.19 73.76 94.36 70.03 79.07 79.85 78.14 86.78 86.28

Ours
LSUN /

CT
4K /
4K 96.70 94.50 91.85 96.15 83.50 99.65 82.80 97.85 97.40 97.80 76.60 83.10 87.65 83.80 98.30 91.18

LSUN /
CT + FM

4K /
4K 99.15 93.50 89.90 98.05 80.50 99.60 85.00 97.95 97.40 98.10 81.10 88.40 91.90 87.20 98.10 92.39

TABLE V
GENERALIZATION RESULTS (AP, IN %) WITH COMPARISONS TO OTHER METHODS. THE BEST RESULT IS HIGHLIGHTED IN BOLD.

Method Data
source

Data
scale

GANs Face
Forensics

Diffusion models DALL-
E

Total
Pro

GAN
Cycle
GAN

Big
GAN

Style
GAN

Gau
GAN

Star
GAN

LDM Guided GLIDE mAP
200s 200s

w/CFG 100s 100-
27

50-
27

100-
10

CNNSpot LSUN /
ProGAN

360K /
360K 100.00 93.47 84.50 99.54 89.49 98.15 89.02 70.62 71.00 70.54 73.72 80.65 84.91 82.07 70.59 89.02

Patch
Forensics

LSUN /
ProGAN

360K /
360K 80.88 72.84 71.66 85.75 65.99 69.25 76.55 87.10 86.72 86.40 75.03 85.37 83.73 78.38 75.67 78.75

Co-
Occurrence

LSUN /
ProGAN

360K /
360K 99.74 80.95 50.61 98.63 53.11 67.99 59.14 91.21 89.02 92.39 70.20 89.32 88.35 82.79 80.96 79.63

DIRE LSUN /
ProGAN

360K /
360K 100.00 76.73 72.80 97.06 68.44 100.00 98.55 95.17 95.43 95.77 94.29 96.18 97.30 97.53 68.73 90.26

UnivFD LSUN /
ProGAN

360K /
360K 100.00 99.46 99.59 97.24 99.98 99.60 82.45 99.14 92.15 99.17 87.77 94.74 95.34 94.57 97.15 95.89

Ours
LSUN /

CT
4K /
4K 99.86 100.00 97.42 99.29 97.48 100.00 91.25 99.76 99.57 99.77 86.07 95.28 96.80 95.75 99.99 97.22

LSUN /
CT + FM

4K /
4K 99.99 100.00 99.48 99.77 99.96 100.00 94.75 99.90 99.64 99.91 89.93 96.55 97.60 96.36 99.99 98.25

We observe that while methods trained on real/ProGAN images can perform well within the GAN domain, they may fail
to generalize to other domains. In contrast, our method exhibits better generalization across different domains. This improved
generalization is due to our use of proxy images as negative samples, which allows our model to learn the distinguishing
features of real images more effectively, making it less sensitive to the specific domain of the fake images.

To further enhance our method, we combined different types of proxy images to augment the distribution of negative
samples. Based on the earlier experiment, we selected the two best-performing types of proxy images: Color Transfer (CT) and
Frequency Masking (FM). Specifically, we randomly selected 2K CT images and 2K FM images (low) as negative samples
to train the model. Compared to using only CT images as negative samples, this combination further improved performance,
with the average ACC rising from 91.18% to 92.39% and the mAP increasing from 97.22% to 98.25%. These results verify
the effectiveness of our approach and inspire us to further explore the potential of other methods for generating proxy samples.

D. Effect of Center Loss

We conducted ablation studies to evaluate the effectiveness of applying center loss on the embeddings of real images. Table
VI shows the average detection accuracy on the test set, where “w/o Center loss” refers to training the model without center
loss. The results demonstrate the positive impact of this additional training constraint on real image features. When training
with CT, the accuracy improved by 2.94% after applying center loss; when training with CT + FM, center loss enhanced the
accuracy by 0.64%.

Additionally, Fig. 6 presents the t-SNE visualization of features from different test sets, output from the MLP layer of the
model. The visualization shows that, after applying center loss, the features of real images (shown in blue) are more closely
clustered, thus enhancing their discriminative power.

V. CONCLUSION AND OUTLOOK

In this paper, we proposed a data-efficient method for detecting computer-generated images using large pretrained models,
specifically leveraging the CLIP image encoder. To the best of our knowledge, our approach demonstrates for the first time
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TABLE VI
AVERAGE DETECTION ACCURACY (IN %) ON TEST SET.

Proxy samples w/o center loss with center loss
CT 88.24 91.18

CT + FM 91.75 92.39

(a) w/o center loss (b) with center loss

Fig. 6. t-SNE visualization of different test sets using the feature space output by the MLP layer of our model. Circle means that the sample is predicted
correctly, while cross stands for the wrong prediction.

in the literature that it is feasible to achieve high detection accuracy by using during training only a small set of real images
and proxy counterparts constructed from real images, thus avoiding the need for a large dataset of computer-generated images.
This is interesting and significant from both an academic research and practical utility perspective. Technically, we explored
various construction methods to simulate negative samples and found that frequency masking and color transfer methods
were particularly effective. Combining these methods further improved our model’s performance, underscoring the potential
of diverse proxy samples in enhancing generalization capability of fake image detection.

We conducted experiments to compare our approach with state-of-the-art methods and demonstrated superior performance
in terms of both mean average precision and average classification accuracy. Our method’s robustness across different domains
of synthetic image generation, including GANs, diffusion models, and autoregressive models, highlights its generalization
capability. Additionally, the application of center loss on the embeddings of real images further improved feature discrimination,
as evidenced by the t-SNE visualizations and enhanced accuracy metrics.

The success of our model in learning the intrinsic properties of real images, rather than overfitting to specific generative model
artifacts, points to a promising direction for future research. In particular, our findings suggest that further exploration of proxy
sample construction techniques and their combinations could yield even more robust detection frameworks. Understanding the
varying performances of different proxy sample construction methods will be essential in refining these techniques. Additionally,
a deeper comprehension of the features learned by the CLIP model and how they contribute to distinguishing real images from
synthetic ones will provide valuable insights for improving model performance.

In conclusion, our work presents a significant step towards more efficient and generalizable computer-generated image
detection, offering a viable solution in scenarios with limited access to extensive labeled datasets. Future research shall focus
on refining proxy image generation methods, exploring additional loss functions, and extending the approach to handling more
diverse forms of digital content, such as the detection of fake videos [41] and other multimedia forgeries.
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