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Abstract
This article introduces a family of rough path-dependent volatility (RPDV) models that encompass a wide
range of modeling two major empirical features of volatility: its rough behavior and its path dependence.
After presenting it in its general form and its connections to other existing models in the literature, we
provide a Markovian multi-factor approximation of this family of RPDV models, building upon the works
of Abi Jaber (2019). Then, our analysis focuses on some specifications of RPDV models interpretable
from an economic point of view, leading to the formulation of different hypotheses about both asset price
and volatility formation mechanisms.
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1 Introduction
Continuous-time volatility modeling is a central issue in quantitative finance that has given rise to prolific
academic literature in recent years. Among these new approaches, two particularly important classes of
models emerged: the rough volatility (RV) and the path-dependent volatility (PDV) models.

The rough volatility literature has grown quickly after the seminal article Volatility is Rough (Gatheral et al.
2018) showing empirical evidence of volatility roughness over a wide range of financial markets. Thus different
rough volatility models have emerged among which may be mentioned the rough Bergomi (RB) model (Bayer
al. 2016), the rough-Heston (RH) (El Euch and Rosenbaum 2018), and the super-Heston rough (SHR) models
(Dandapani al. 2019), or the quadratic rough Heston (QRH) model (Gatheral al. 2020). These have shown
strong practical interest to deal with pricing and hedging issues, but also for volatility forecasting (Gatheral
et al. 2018, El Euch and Rosenbaum 2018, Rosenbaum and Zhang 2022).

In parallel, in recent years there has been a resurgence of interest in PDV models (Guyon 2014, Blanc et al.
2017, Gatheral al. 2020, Jacquier and Lacombe 2020) motivated by the fact that empirical volatility clearly
"depends on the path followed by the asset price in the recent past" (Guyon and Lekeufack 2023, p.1). This
fact already shown by Zumbach works (2009, 2010) has been strongly reaffirmed by the recent article by
Guyon and Lekeufack Volatility Is (Mostly) Path-Dependent (2023).

Given the significance of these two approaches, the primary objective of the article is to introduce a general
class of volatility models that reconciles their respective advantages. For the sake of simplicity, models
belonging to this class will be referred to as the rough path-dependent volatility (RPDV) models1. The
secondary objective of the article is to specifically consider the properties of certain models within this class.

1This nomenclature does not imply that the model family introduced in this article exhaustively encompasses all path-
dependent rough volatility models.
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The paper is organized as follows. In section 2, we introduce a general form of PDV model that includes
several volatility models popular in the academic literature. On that basis, we define the family of RPDV
models. Then, using the results of Abi Jaber (2019), we expose a Markovian multi-factor approximation of
these models. In section 3, we focus on a parsimonious version of the RPDV models from which different
specifications economically consistent are proposed, leading to the formulation of competing hypotheses about
price and volatility formation mechanisms.

2 Rough path-dependent volatility models

2.1 A general form of path-dependent volatility model
Let us introduce a general form of path-dependent volatility model defined by the following equation system:

dPt

Pt
= µtdt+ σtdBt

(σt)
p = β0 + β

(+)
1 (m1,t − m̄1)

a1

+ + β
(−)
1 (m̄1 −m1,t)

a1

+ + β2(m2,t)
p/a2

m1,t =

∫
It

K1(t− u)
dPu

Pu
+ κ1

∫
It

K1(t− u) (θ1,u −m1,u) du,

m2,t =

∫
It

K2(t− u)(σu)
a2du+ κ2

∫
It

K2(t− u) (θ2,u −m2,u) du

(1)

with B a Brownian motion, It the time interval of integration with an upper bound less than or equal to t,
where p, a1, a2 ∈ {1, 2}, and such as θj are Ft-measurable processes, and Kj are kernel functions continuous
decreasing on R+.

In this model, the path dependency of price dynamics is captured through processes m1 and m2. The process
m1 corresponds to a past price trend variable and can be understood as a sort of weighted moving average
of past returns. It allows to capture the dependence of the volatility process to the historical price path.
The variable m2 is a historical volatility factor that capture the asset price activity regardless of its trend.
It can be viewed as a moving average of the volatility process either p = 1, or of the variance process σ2

if p = 2. The impact of these variables on the volatility process depends on the specification of the second
equation of (1). In this, the value of the parameter p plays a central role. In case p = 1, the multilinear
function expressed by the right-hand term of the second equation of (1) defines the volatility, while if p = 2
this function defines the variance process.

Furthermore, if θ1 and θ2 are deterministic functions, the volatility process is a function of a single source
of randomness B: the Brownian motion driving the asset price. The model is then purely path-dependent.
Conversely, the functions θj can also include an exogenous source of randomness by taking, for example, the
following form:

θj,tdt = θ̄j,tdt+ σtdZt, (2)

where θ̄j is a deterministic process and Z is a Brownian motion independent of B. In this case, the model is
partially path-dependent and corresponds to a stochastic volatility (SV) model in the terminology of Guyon
and Lekeufack (2023).

Thanks to its highly flexible form, the model includes a certain number of existing volatility models. Table
1 reports some of them and their respective specifications.

2



p a1 a2 K1(τ) θ1(u) β
(+)
1 β

(−)
1 m̄1 K2(τ) θ2(u) β2

Model 1 2 1 − τα−1

Γ(α)
− β1 −β1 0 − −

Model 2 2 2 2 γ1e
−γ1τ − β1 β1 0 γ2e

−γ2τ m2,u −

Model 3 2 2 − τα−1

Γ(α)
− β1 β1 m̄1 − −

Model 4 1 1 − γe−γτ m1,u 0 −β1 0 − − −

Model 5 1 1 2 (δ1 + τ)−α1 m1,u β1 −β1 0 (δ2 + τ)−α2 m2,u β2

Table 1: Some model specifications that correspond to existing model in stochastic volatility literature.

Model 1 is a specific case of the famous rough Heston model (El Euch and Rosenbaum 2018) in which the
price asset and the volatility depend on the same Brownian motion. The variance process is equal to

(σt)
2 = β0 + β1m1,t

m1,t =

∫ t

0

(t− u)α−1

Γ(α)

dPu

Pu
+

∫ t

0

(t− u)α−1

Γ(α)
κ1 (θ1,u −m1,u) du,

where α ∈ [0.5, 1] and

θ1,tdt = (θt − β0)dt+ σtνdZt,

where Z is an independent Brownian motion from B, and θ is an explicit F0-measurable process (El Euch and
Rosenbaum 2018). Here thus, when ν = 0, the variance process is linearly dependent on a moving average of
past returns with power law weighting.

Model 2 proposed in Blanc et al. (2017) corresponds to a limiting model with a microstructural foundation
that uses quadratic Hawkes processes. The variance is given by:

(σt)
2 = β0 + β1(m1,t)

2 + β2m2,t,

m1,t = γ1

∫ t

0

eγ1(u−t) dPu

Pu
,

m2,t = γ2

∫ t

0

eγ2(u−t)(σu)
2du.

Here, m1 and m2 are respectively an exponentially weighted moving average (EWMA) of past returns and
an EWMA of past variance. Note that other similar models based on quadratic Hawkes processes with other
kernel type has also been studied in Dandapani et al. (2019).

Model 3 corresponds to a quadratic rough Heston model (QRHM) introduced by Gatheral et al.(2020)
defined as

(σt)
2 = β0 + β1(m̄1 −m1,t)

2,

m1,t =

∫ t

0

(t− u)α−1

Γ(α)

dPu

Pu
+

∫ t

0

(t− u)α−1

Γ(α)
(θ1(u)−m1,u) du,
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with m̄1 > 0. On the contrary to model 1 and 2, it encodes an asymmetry of the feedback effect of the price
trend on the volatility. Indeed, for the same absolute value of m1, volatility is higher when m1 is negative
than when it is positive.

Model 4 is a specific case of the EWMA HM of Parent (2021), in which

σt = β0 + β1(m̄1 −m1,t)+,

m1,t = γ1

∫ t

0

e(u−t)γ1
dPu

Pu
,

with m̄1 > 0. Like the QRHM, this model encodes an asymmetry of the feedback effect of the price trend on
the volatility but not in exactly the same way. Indeed, in this model, when m1 falls below m̄1, the feedback
effect disappears. Another difference with models 1,2 and 3, is that p = 1 which means that the volatility
process is linearly sensitive to the asset trend process m1 when m1,t < m̄1.

Model 5 is the PDV model introduced by Guyon and Lekeufack (2023), defined by

σt = β0 + β1m1,t + β2
√
m2,t,

m1,t =

∫ t

−∞
(δ1 + t− u)−α1

dPu

Pu
,

m2,t =

∫ t

−∞
(δ2 + t− u)−α2(σu)

2du.

As in model 2, the volatility dynamics is not only driven by the past price dynamics but also by the variance
price path through m2. However, contrary to the model of Blanc et al., the volatility is linearly sensitive to
m1. In addition, it is worth to note that in the case δ1 = δ2 = 0, the model is rough.

These different examples show thus the diversity of approaches to model the path-dependence of volatility
which is included in the PDV model (1). Moreover, it is on this basis that the RPDV model family will be
defined in the following section.

2.2 The rough path-dependent volatility models
We now define a rough path-dependent volatility model as a specificitation of 1 for which K1 and K2 are power
law kernels of the form

Kj(τ) = τ−αj (3)

where αj is a strictly positive constant.

It may be noted that given this definition, models 1 and 3, and model 5 in the case δ1 = δ2 = 0 (see table
1) belong to the family of the RPDV models. These particular cases share with other RPDV models to be
structurally adapted to capture two main features of empirical volatility: its rough behavior and its path
dependency.

First, the ability of the model to capture the roughness of volatility is made possible by the power law kernels
associated with processes m1 and m2. This characteristic is important to the extent that empirical data tends
to show that the rough behavior of volatility is verified for all classes of financial assets, at least at the daily
scale (Gatheral et al. 2018). Besides this empirical evidence, the rough property of volatility is supported
by a strong theoretical argument, that is this property constitutes a necessary condition for the existence of
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market impact under the no-arbitrage assumption (Jusselin and Rosenbaum 2020). However, the existence
of a market impact on trade is clearly established (Gomes and Waelbroeck 2015).

Second, the path-dependency of the RPDV models is clear given that dynamics of the volatility process
are driven (either fully or partially) by past price dynamics through the processes m1,t and m2,t. This
path-dependence allows capturing important empirical phenomena occurring in the financial market like the
Zumbach effect (Gatheral et al. 2020), but more generally, the fact that the volatility dynamics are mostly
explainable by the past price path (Guyon and Lekeufack 2023).

In addition to their interest considered separately, the relevance of combining these two notions in a parametric
model is also justified by the results in Rosenbaum and Zhang (2022), showing that machine learning methods
for volatility forecasting tend to confirm that volatility is both rough and path-dependent.

Besides these properties, the model allows the decoupling short- and long-term behavior of volatility, a
property whose importance was emphasized notably in Bennedsen et al. (2016). For instance, α1 could take
a low value and α2 a high one. In this example, the long-term behavior of the volatility would be driven
by a medium/long-term past price trend while its short-term behavior would be dominated by recent price
activity regardless of its trend.

At a more technical level, it should be noted that the existence and uniqueness of the solution to the equation
defining the volatility process are not guaranteed for all possible specifications. However, these conditions
have been demonstrated for a certain number of cases, among which, for example, the modeling of volatility
by a Rough Volterra square-root process (Abi Jaber 2019, 2021). For other specifications of 1, these existence
and uniqueness conditions have been demonstrated in the context where Kj are smooth kernels, but remain
an open question for the case where these kernels take the form 3. This is the case, for instance, for a wide
range of Volterra processes. For these types of specifications, the lack of an existence and uniqueness proof
is not necessarily a problem, particularly if we limit its use as a simulation tool, since power law kernels can
be approximated by smooth kernels (Abi Jaber 2019, 2021) as we will see in more detail in the following
section (section 2.3). In this context, the theoretical inversion, which involves considering the power-law
kernel as an approximation of the actual smooth kernel, can be performed. The rough model then becomes
only an ideal-type and a way for parsimoniously approximating the actual model using a kernel with only
one parameter α.

2.3 Markovian multi-factor approximation of the RPDV model
The RPDV models are non-Markovian and non-semimartingale, which makes efficient simulation challenging.
Accordingly, the purpose of this section is to propose a Markovian multi-factor approximation of RPDV
models to address this issue.

2.3.1 Rough kernel approximation

The key idea is to approximate the kernel K(τ) = τ−α by a sum of n exponential kernels defined by

K̂(τ) =

n∑
i=1

wie
−γiτ , (4)

where wi, γi > 0 ∀ i ∈ {1, ..., n}, in order to approximate variables m1 and m2 as sums of solutions of
stochastic differential equations.

Different methods exist for determining the parameters (wi, γi)1≤i≤n in the academic literature (Bochud and
Challet 2007, Abi Jaber 2019). Here we adopt the approach proposed by Abi Jaber (2019). This takes as its
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starting point that the fractional kernel K(τ) may be write as the Laplace transform of a positive measure µ2

K(τ) =

∫ ∞

0

e−γτµ (dγ) , µ (dγ) =
γα−1

Γ(α)

By approximating µ by a finite sum of Dirac measures
∑n

i=1 wiδγi , we obtain a kernel KE of the form 4.
Then, using a geometric partition of (wi, γi)1≤i≤n,

wi =

∫ ηi

ηi−1

µ(dx), γi =
1

wi

∫ ηi

ηi−1

xµ(dx),

with µ (dx) =
xα−1

Γ(α)
dx and ηi = xi−

n
2 we obtain:

wi =

(
1− x−α

)
xα(i−

n
2 )

αΓ(α)
, γi =

α(x1+α − 1)xi−1−n
2

(1 + α)(xα − 1)
, (5)

with x > 1 whose value can be determined by solving

x⋆ = argmin
x>1

∥∥K̂ − K
∥∥
L2(t−,t+)

.

With this specification method of (wi, γi)1≤i≤n, K̂ converges toward K in the L2 sense when n → ∞ (see
proof in Abi Jaber 2019).

Note that in Abi Jaber (2019) or Rosenbaum and Zang (2019) t− is zero. However, it may be consistent
to choose a strictly positive value for this parameter, particularly when n is little. Indeed, because of the
characteristic of rough type kernel, the very recent past (t close to zero) may represent a too high share of∥∥K̂ − K

∥∥
L2(0,t+)

in comparison of its practical importance. For instance, in a context of medium-long term
volatility simulation, the divergence between K(τ) and K̂(τ) for a very small value of τ (ex.: τ is equal to
one second) does not matter much, particularly if the discretization timestep is proportionally large (of the
order of an hour or more). In such a case, it is coherent to set t− > 0, because it allows choosing a value of x
which minimizes the difference between K(τ) and K̂(τ) for the range of values of τ which really impacts the
quality of the estimation in the context considered.

2.3.2 Markovian approximation of the RPDV models

Using results exposed in section 2.3.1, the RPDV models may be approximated through the following multi-
factor model Markovian in variables:

dPt

Pt
= µtdt+ σtdBt,

σt =
(
β0 + β

(+)
1 (m1,t − m̄1)

a1

+ + β
(−)
1 (m̄1 −m1,t)

a1

+ + β2(m2,t)
p/a2

)1/p

,

dM1,t = 1n ·
(
dPt

Pt
+ κ1(θ1(t)−m1,t)dt

)
− Λ1 ⊙M1,tdt,

dM2,t = 1n ·
(
(σt)

a2 + κ2(θ2(t)−m2,t)
)
dt− Λ2 ⊙M2,tdt,

m1,t = ⟨W1,M1,t⟩,

m2,t = ⟨W2,M2,t⟩,

2The considered kernel being K(τ) =
τα−1

Γ(α)
in the original article, the measure µ differs according to the kernel specificity.
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where 1n is a n × 1 vector of ones, Wj the vector of weights (wj,i)1≤i≤n and Λj the vector of discount
coefficients (γj,i)1≤i≤n, with (wj,i, γj,i)1≤i≤n given by 5), such as

Wj =

wj,1

...
wj,n

 , Λj =

γj,1...
γj,n

 .

As shown in appendix A, we have

m1,t =

∫ t

0

n∑
i=1

wie
−γ1,i(t−u)

︸ ︷︷ ︸
K̂1(t−u)

(
dPu

Pu
+ κ1 (θ1,u −m1,u) du

)
,

and

m2,t =

∫ t

0

n∑
i=1

wie
−γi(t−u)

︸ ︷︷ ︸
K̂2(t−u)

(
(σt)

a2 + κ2 (θ2,u −m2,u)
)
du.

This results in a Markovian model in variables that approximates the RPDV models through smooth kernels.

3 Some specifications of the RPDV model with interesting theoretical
implications

The definition given previously to a RPDV model is deliberately very general in order to include a lot of
possible specifications. The aim of this section is to focus on a more parsimonious specification of this model
understandable from an economic point of view, which is defined by:

σt = β0 + β1m1,t,

m1,t =

∫
It

(t− u)−α

(
dPu

Pu
+ κ1(θ1,u − σu)du

)
,

θ1,tdt =

(
θt −

rt
κ1

)
dt+ νσtdWt

where W is an independent Brownian motion from B, α, β0 > 0, β1 < 0, κ1, ν ∈ R, and with r the free risk
rate. For the sake of clarity, we rewrite the expression of the volatility as:

σt = β0 +

∫
It

(t− u)−α

((
κ(θu − σu) + βru)du+

(
ν̄σtdWt − β

dPu

Pu

))
, (6)

with β = −β1, κ = κ1β1 and ν̄ = νβ1κ1. Equivalently, by introducing a Brownian motion Z such that
dZt = ρdWt +

√
1− ρ2dBt, and setting β = −β̄ρ and ν = β̄

√
1− ρ2, we can also express the volatility

process as follows:

σt = β0 + β1

∫
It

(t− u)−α
((
κ(θu − σu) + β(ru − µu)

)
du+ β̄σtdZu

)
.

An initial observation is that in the case where ν̄ = 0 and θ is a deterministic function, the model is purely
path-dependent. Conversely, if ν̄ is nonzero, the model is only partially path-dependent and includes an
exogenous source of randomness.
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Moreover, the proposed model is a stochastic Volterra function when It = [0 : t]. While this type processes
with a power-law kernel are commonly used in the volatility literature, the use of this type of Volterra
processes in this context is largely confined to modeling variance through a Volterra square-root or Voltera
Heston process (Abi Jaber 2019). In these modelings, therefore, p = 2 and a1 = 1. Conversely, in the
considered model, p = a1 = 1, which makes the term m1 homogenous to the volatility.

Another important element, this RPDV model does not include a feedback effect of the volatility through a
process m2. This choice may seem questionable in view of the results of Guyon and Lekeufack (2023) which
seem to show that this type of historical volatility factor explains, even before the price trend process, most
of the historical and implied volatility. However, this apparent need to incorporate this type of factor can be
largely caused by a spurious relationship induced by the exogenous randomness generated by the Brownian
motion W . Consequently, the results of Guyon and Lekeufack, do not delegitimize this type of modeling.

On the contrary, the introduction of this model has an interest in proposing a credible parsimonious alternative
to existing volatility models, capable of reproducing the main part of the empirical phenomena which
characterize the volatility dynamics, but adopting a different modeling approach.

With this perspective in mind, we consider in this section certain specifications of 6 that are economically
consistent, and we delve into the assumptions implied by these specifications. This has the dual objective of
defining coherent parsimonious RPDV models and proposing different hypotheses about price and volatility
formation mechanisms consistent with empirical data. To this end, we will start by looking at the case
where θ is a constant, and on this basis, we will expose the conditions of compatibility of the parameters so
that the model remains coherent from an economic point of view. Using these results, we then consider two
cases where the value of θ is time-dependent with different assumptions about the determinant of price and
volatility dynamics.

In addition, in the following considered model specifications, we will assume the drift of the asset price follows
a quadratic relationship of the form3

µt = rt + λ1σt + λ2(σt)
2, (7)

where λ1 and λ2 are positive or zero volatility and variance risk premium, respectively. This type of asset
price drift, defined by a risk-free rate component and a risk premium component, aligns with a modeling
approach similar to that of the intertemporal capital asset pricing model proposed by Merton (1973), under the
assumption that the volatility of the considered asset is linked by a linear relationship with the instantaneous
covariance of its returns with the returns of the market portfolio (covariance, which is assumed to be positive).
About the quadratic form, this allows for modeling a potential convex relationship between the level of
volatility and the risk premium.

Under this assumption, the volatility may be rewritten as the following Brownian semistationary (Barndorff-
Nielsen and Schmiegel 2009) process:

σt = β0 +

∫
It

(t− u)−αfu(σu)du− β

∫
It

(t− u)−ασudZu,

where

ft(σt) = κθt − (κ+ βλ1)σt − βλ2(σt)
2. (8)

From the equation 8, we introduce the notion of attraction volatility defined as a strictly positive real number σ̄
which is a zero of the function f (i.e. f(σ̄) = 0) and such that f is decreasing continuously in the neighborhood
of σ̄. This notion will facilitate the description of the behavior of the volatility dynamics for the different
model specifications. Furthermore, for all considered specifications, ft(0) ≥ 0 and ft is concave decreasing on
an interval [σ̄ : +∞] with σ̄ < +∞, ∀ t ∈ R+, in order to ensure strict positivity and non-divergence of σt.

3The assumption of constant risk premia is lifted in section 3.3.2.
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3.1 The function θ as a constant
The θ function plays a central role in the dynamics of volatility. A natural specification is to consider it as a
constant.

The first option is to assume that θ is strictly positive. In such a case, for f(0) > 0, κ must also be
positive. Under this specification, because of the term κ(θ−σt), θ could seem to correspond to the long-term
volatility level towards which the volatility process tends to revert like in the Heston (Heston 1993) or OU
(Schöbel and Zhu 1999) models. However, except in the risk-neutral measure hypothesis (i.e. when λ1 and λ2

are zero), the volatility level towards which the volatility tends to revert is not equal to θ. Indeed, in addition
to the difference between θ and σt, another component plays a mean reverting role: the drift of the price µt

defined by equation 7. It induces a risk premium effect −β(λ1σt + λ2(σt)
2) which is a negative continuously

decreasing function of the volatility on R+.

The second option is to assume that θ and κ are negative. The underlying hypothesis is the existence
of positive volatility feedback through −κσt. At first sight, under this specification, the model may seem to
be divergent due to the combination of positive feedback from the volatility process and the characteristics
of the power law kernel. However, due to the risk premium effect mentioned above, this is not the case under
appropriate specifications of the drift process µt, which are detailed in the rest of this section.

The price drift, therefore, plays a central role in the dynamics of volatility, regardless of the value taken
by θ. Let us, therefore, consider in turn the cases λ2 = 0 and λ2 > 0.

3.1.1 The case λ2 = 0

If we consider the case λ2 = 0, f is defined by4:

f(σt) = κθ − (κ+ βλ1)σt. (9)

So that σt not to explode, −κ ≤ βλ1. In addition, κ and θ must share the same sign in order that f(0) ≥ 0.
If κ is positive, the condition −κ ≤ βλ1 is clearly satisfied. However, this inequality is more interesting
for κ < 0. In this case, it means concretely that the risk premium effect that puts downward pressure on
volatility must be greater than the positive volatility feedback. As long as this condition is met, regardless
the κ value, f decrease linearly with the volatility and admit unique constant attraction volatility given by:

σ̄ =
κθ

κ+ βλ1
. (10)

The attraction volatility results thus from two effects: a volatility feedback effect and a risk premium effect.
If κ > 0 both ones share the same direction. Conversely, if κ < 0, these two effects are antagonistic. In both
cases, f can be rewritten as follows:

f(σt) =
(
κ+ βλ1

)(
σ̄ − σt

)
, (11)

and therefore,

σt = β0 + κ̄

∫
It

(t− u)−α
(
σ̄ − σu

)
du− β

∫
It

(t− u)−ασudZu, (12)

with κ̄ = κ + βλ1. Equation 12 highlights thus the mean-reverting component that pushes the volatility
process towards the attraction level σ̄. Thus, the greater the risk premium λ1, the lower the attraction
volatility and the higher the mean-reverting force κ̄.

4We denote f without a time index when its time dependency only depends on σt.
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The θ = 0 case is specific since it does not admit an attraction volatility. The volatility is then equal to

σt = β0 −
∫
It

(t− u)−ασu (βdZu − κ̄du) .

It is in interesting to note that if κ̄ = 0 (κ = −βλ1), the volatility becomes an affine function of a power-law
moving average of the past returns adjusted to its deterministic component. In economic terms, it may be
interpreted as the fact that the risk premiums and the instantaneous volatility are known by the market and,
therefore, only stochastic fluctuations (modeled by Brownian dynamics) have an impact on the dynamics of
volatility. Moreover, it may be noted that, by property of the stochastic integral, E[σt] = β0.

3.1.2 The case λ2 > 0

Now consider the behavior of f under the assumption λ2 > 0. Given this configuration, f admits as unique
attraction volatility

σ̄ =
κ+ βλ1 −

√
(κ+ βλ1)2 + 4βλ2κθ

−2βλ2
. (13)

and f may be rewritten as (see appendix B):

f(σt) =
(
κ+ βλ1

)(
σ̄ − σt

)
+ βλ2

(
σ̄2 − (σt)

2
)
. (14)

Figure 1: Plot of f(σt) when κ and θ are strictly positive with different hypotheses about the price drift µt,

with respectively (i)=
√

(κ+ βλ1)2 + 4κθβλ2 − κ− βλ1

2βλ2
, (ii) =

κθ

κ+ βλ1
, and (iii)=

√
κ2 + 4κθβλ2 − κ

2βλ2
.

The existence of a non-zero variance risk premium, therefore, led to the emergence of a second mean-reverting
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term - βλ2

(
σ̄2 − (σt)

2
)

- which depends linearly on the differential between the attraction variance σ̄2 and
the variance process (σt)

2. However, two cases must be treated separately: −κ ≤ βλ1 and −κ > βλ1. In the
first case ( −κ ≤ βλ1), f is continuously decreasing in volatility (on R+), but contrary to the case defined by
equation 9, this relationship is strictly concave. On a practical level, this direct consequence of the quadratic
form of the drift process reduces the probability of occurrence of very high levels of volatility in comparison
with the pure volatility premium hypothesis (i.e. λ2 = 0).

However, if −κ > βλ1, the behaviour of f change dramatically as shown in table 2.

σs

f ′(σs)

f(σs)

0 −κ+ βλ1

2βλ2

κ+ βλ1 −
√
(κ+ βλ1)2 + 4βλ2κθ

−2βλ2

+∞

+ 0 − −

00

κθ +
(κ+ βλ1)

2

4βλ2
κθ +

(κ+ βλ1)
2

4βλ2

−∞−∞
0

Figure 2: The table of variation of f(σt) when λ2 > 0 and −κ > βλ1.

Figure 3: Plot of f(σt) and its 2 components κθ − κσt and βλ1σt + βλ2(σt)
2, when −κ > βλ1.

Thus, in this specification, f is no more homogeneous but concave downward because of the antagonistic
effects of the positive volatility feedback and the risk premium effect (see figure 3). Indeed, the volatility
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feedback component −κλ1 is linearly increasing in volatility while the risk premium effect −β(λ1σt+λ2(σt)
2)

is strictly concave decreasing of volatility. Therefore, when the volatility is between 0 and the attraction
volatility (equation 13), the volatility feedback effect dominates and f is positive. Conversely, when σt is
greater than the attraction volatility, the risk premium effect dominates and f is positive.

The study of these different specifications of 6 emphasizes the importance of assumptions relating to the
drift process on the mechanisms that push back the volatility towards an attraction level. More precisely, it
has been shown through equations 10 and 13 that the level of attraction volatility is a decreasing function
of risk premia. In other words, all things being equal, the higher the risk premia are, the lower the mean
volatility. Conversely, the mean-reversion speed is an increasing function of risk premia (equations 11 and
14). Consequently, the higher the risk premia, the lower the dispersion of the volatility distribution. Broadly
speaking, it has shown that even when we limit to the case θ as constant, the model covers various competing
assumptions about volatility dynamics.

In sections 3.2 and 3.3, we will consider hypotheses in which θ is time-dependent.

3.2 The function θ as a path-dependent process
A possible alternative to understanding θ as a constant is to specify it as a path-dependent process. The
idea is to take inspiration from the structure of the super-Heston raw volatility model (SHRV) introduced in
Dapani et al. (2019) in the specification of θ. This SHRV model is defined by:

(σt)
2 = (σ0)

2 + β

∫ t

0

(t− u)α−1

Γ(α)
σudZu + κ

∫ t

0

(t− u)α−1

Γ(α)

(
θu − (σu)

2
)
du,

θt = θ̄t + (Xt)
2,

Xt =

∫ t

0

K(t− u)
dPu

Pu
,

with θ̄ a deterministic function, K a kernel function, and Z a Brownian motion independent on B5. Therefore,
the process X and thus θ are path-dependent processes allowing to capture of the strong Zumbach effect.
Concretely, θ which plays the role of attraction variance (the level towards which the process of variance
tends), is a function of the square of a moving average of past returns (i.e. (Xt)

2). Due to the independence
between W and B, the path dependency is only captured by this variable θ. On this point, the SHR model
and the RPDV differ.

Indeed, for a RPDV model of the form 6, the path dependency of θ adds to the path dependency depending
on ∫

It

(t− u)−α dPu

Pu
. (15)

There is then a mechanism of entanglement of path dependencies. The question then arises about the interest
to introduce this new layer of complexity. One of the main potential motivations is better accounting of the
time-reversal asymmetry that characterizes financial time series (Zumbach 2009, 2010). The aim is then
to model the fact that a strong increase in the volatility is generally originated by a price drop through a
fall of 15, but that even when 15 go back to its level anterior to the volatility spike, the volatility tends
to stay higher due to a latency phenomenon. More generally, it allows make the attraction volatility as a
path-dependent process and thus explains what is generally apprehended as exogenous structural breaks of

5Note also that in the case where ⟨dBt, dZt⟩ ̸= 0 the SHRV model is a RPDV model.
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the volatility formation mechanism. If κ > 0, a possible specification of θ in line with this objective is

θt = θ̄ + |Xt|
1
a , (16)

Xt =

∫
It

K(t− u)

(
dPu

Pu

)a

, (17)

with a ∈ {1, 2}, θ̄ > 0 and K a kernel whose integral on R+ is convergent (for instance an exponential kernel).

First, note that since θ is necessarily positive and given results obtained in section 3.1, the existence and
unicity of the attraction volatility is guaranteed at each time t. Moreover, this attraction volatility is given
by equation 10 if λ2 = 0 and by equation 13 if λ2 > 0 (we just replace θ by θ(t) defined by 16)6. Whatever
the assumption about risk premia, by the relationship between θ and the attraction volatility, the expression
16 makes the level towards which volatility tends a function of a process dependent on the historical price
path: X. The nature of this process depends on the value taken by the parameter a.

If a = 1, X is a moving average of returns like the term 15, and may be apprehended as a past price trend.
Consequently, the volatility process becomes linearly dependent on a moving average of the absolute value of
a moving average of past returns through the term7:

κ

∫
It

(t− u)−α

∣∣∣∣ ∫ u

−∞
K(u− s)

dPs

Ps︸ ︷︷ ︸
Xu

∣∣∣∣du. (18)

This entanglement of moving averages has several implications. First, it allows the introduction of inertia in
the impact of past price trends on the volatility level coherent with the empirical time reversal asymmetry
mentioned above. Second, it implies that the longer a price trend the higher 18. Another important element,
on the contrary to the term which is linearly sensitive to a past price trend, θ is linearly sensitive to the
absolute value of a past price trend. Therefore, a positive price trend such as Xt > 0 increases θ(t) and
by extension the attraction volatility. Consequently, a strong positive price trend produces two antagonistic
effects on the volatility level: on the one hand it decreases the volatility component 15, on the other hand,
it increases the component 18. Conversely, in a negative price trend circumstance, both component puts
upwards pressure on the volatility process. This asymmetry of the impact of the price trend on the volatility
process is consistent with the empirical relationship emphasized by Parent (2021) that links the EWMA of
past returns and the volatility level observable in stock markets.

If a = 2, X corresponds to a weighted moving average of the realized variance. Therefore, X is no more a
price trend variable but a variable of asset price activity like m2 in 1. The volatility process is thus linearly
sensitive to

κ

∫ t

0

(t− u)−α

√√√√√
∫ u

0

K(u− s)(σs)
2ds︸ ︷︷ ︸

Xu

du. (19)

Through this term, in a similar way to the case a = 1, the volatility process is subject to a force of inertia that
depends on the duration of the volatility trend due to the fact that X is a moving average. Consequently,
a short volatility spike does not increase the attraction volatility in the same proportion as a longer period

6For instance, if λ2 = 0, the attraction volatility is

σ̄t =
κ
(
θ̄ + |Xt|

1
a

)
κ+ βλ1

.

7The volatility may be written as

σt = β0 +

∫
It

(t− u)−α
(
κ
(
θ̄ + |Xu|

)
− (κ+ βλ1)σu − βλ2(σu)

2
)
du+ β̄

∫
It

(t− u)−ασudZu.
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of high volatility. Furthermore, this specification is particularly suited to capture time-reversal asymmetry.
Indeed, even after a strong rebound following a negative trend causing a period of high volatility, the volatility
process tends to remain higher than normal for some time due to the force of inertia induced by the term 19.

Thus, if the case a = 1 and a = 2 imply different hypotheses about the determinant of the attraction volatility,
both allow make the RPDV model 6 strongly time-reversal asymmetry.

3.3 The function θ as a long-run coherence operator between price and value
A third way to apprehend θ is to link it to the long-term consistency between "fundamental" value and price.
The idea is thus to model the hypothesis formulated in 1986 by Black that there are "forces tending to cause
price to return to value", a hypothesis consistent with the empirical work of Campbell and Shiller (1998,
2005) showing that fundamental indicators (like the dividend per share or the price/earnings ratio for the
stock market) tend to revert towards a long-term level in the long run, which prevents a total disconnection
between the price and the fundamentals. θ will thus take the role of coherence operator between price and
value, allowing to reconcile this empirical evidence while preserving the hypothesis on price drift as a quadratic
function of volatility (equation 7).

For this purpose, we assume, first, the existence and the uniqueness of attraction volatility denoted σ̄t, and
second that the following conditions are met:

rt + λ1σ̄t + λ2 (σ̄t)
2


≤ qt for Vt ≤ Pt,

= qt for Pt = Vt,

≥ qt for Vt ≥ Pt,

(20)

where V is the value, q its growth rate such as qt ≥ rt
8. Concretely, these conditions mean that the drift

tends to revert toward: (1) a level superior or equal to the growth rate of the value when the price is inferior
to the value, (2) the growth rate of the value when the price is equal to the value, (3) a level inferior or
equal to the growth rate of the value when the price is superior to the value, and these adjustments pass by
a variation of the level towards which the volatility tends.

A hypothesis consistent with 20 is to assume that

λ1σ̄t + λ2 (σ̄t)
2
= F (Vt, Pt)(qt − rt), (21)

where F is a function that respects ∀ (V, P ) ∈ R2
+, F (V, P ) > 0 and such as

F (V, P )


≤ 1 for Vt < Pt,
= 1 for Pt = Vt,
≥ 1 for Vt > Pt.

(22)

This supplementary condition ensures a positive risk price, an important property since market players are
supposed to be risk-averse. Obviously, its definition remaining quite general, F admits a multiplicity of
specifications.

The simplest case satisfying conditions 22 is F (V, P ) = 1, ∀ (V, P ) ∈ R2
+. Within this framework, the

attraction volatility does not depend on Vt and Pt. This property is interesting from a practical since it
dispenses with determining the value V : only its growth rate q is required to specify both θ and the attraction

8If the value follows an ordinary stochastic differential equation, the value dynamics are thus given by:

dVt

Vt
= qtdt.
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volatility. In consequence, the differential between price and value has no impact on the drift of the asset
price.

In all other specifications of F , the term F (V, P ) is a path-dependent component of the volatility process.
Indeed, it implies necessarily that the right-hand term in equation 21 whom the volatility process depends is
greater in case V > P than in case V < P . The particularity of this path-dependence is that it is not purely
endogenous, but linked with the joint past path of price and value. It implies the existence of a mechanism
for an increase in the drift when Vt > Pt and a decrease in it when Vt < Pt. Obviously, the introduction
of such a mechanism must be done in accordance with the conditions previously defined, in particular the
existence of attraction volatility (by definition strictly positive). For instance, a simple specification that
respects conditions 22 is to define F as the ratio value-on-price, i.e.

F (Vt, Pt) =
Vt

Pt
. (23)

The impact of this specification on the dynamics of the volatility process differs significantly depending on
the drift components ensuring that the equality 21 holds.

We will consider below two competing hypotheses. In the first one, risk premia are constant and equality
21 is guaranteed through a variation of the attraction volatility. Conversely, in the second hypothesis, the
attraction volatility is constant and equation 21 is realized at each instant by risk premia adjustments.

3.3.1 The attraction volatility as adjustment variable

Let us begin with the case where risk premia are constants, and the attraction volatility constitutes the
adjustment variable allowing equation 21 to be respected. Again, the cases λ2 = 0 and λ2 > 0 needs to be
considered separately.

If λ2 = 0, as shown in section 3.1.1, it exists attraction volatility only if −κ < βλ1. Under this condition, the
attraction volatility is defined by:

σ̄t =
F (Vt, Pt)(qt − rt)

λ1
, (24)

and θ(t) (using equation 10), by

θ(t) =
F (Vt, Pt)(qt − rt)(κ+ βλ1)

κλ1
. (25)

In this case, there is so a linear relationship with F (Vt, Pt)(qt − rt) for both θ(t) and the attraction volatility.
Therefore, for a given pair (V, P ), the attraction volatility is an increasing linear function of the differential
between the growth rate of value and the risk-free rate. Thus, for a constant free-risk rate of the value, a
variation ∆q of the growth rate of the value results in a variation ∆σ̄ of the attraction value. Symmetrically,
for a constant growth rate of the value, a variation ∆r of the risk-free rate results in a variation −∆σ̄ of the
attraction value. Of course, the independence between q and r is not required.

In case λ2 > 0, the attraction volatility is defined by:

σ̄ =
−λ1 +

√
(λ1)2 + 4F (Vt, Pt)(qt − rt)λ2

2λ2
, (26)

and θ(t) is given (using equation 13) by9:

θ(t) =
βF (Vt, Pt)(qt − rt)λ2 + 0.5κ

(√
(λ1)2 + 4F (Vt, Pt)(qt − rt)λ2 − λ1

)
κλ2

. (27)

9See appendix C.
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In addition, to ensure that fu(0) > 0, the following inequality must be respected

F (Vt, Pt)(qt − rt) >
κ

βλ2

(
λ1 +

κ

β

)
. (28)

The hypothesis then makes then the attraction volatility a strictly concave increasing function of F (Vt, Pt)(qt−
rt). It follows that for a given pair (V, P ), a movement of the differential q − r has more impact on the
attraction volatility when q − r is low. In the same way, a variation of F (Vt, Pt) has more impact on the
attraction volatility when volatility is low. Moreover, it should be emphasized that the condition 28 is a
strong constraint when F is different from F (V, P ) = 1 ∀ (V, P ) ∈ R2

+. For instance, the hypothesis of F
as the value-on-price ratio is not compatible with λ2 > 0 due to this condition, because in such case, the
inequality 28 has a non-zero probability to be violated.

In both considered assumptions relating to risk premia, all things being equal, for all specifications of F
different of F (V, P ) = 1 ∀ (V, P ) ∈ R2

+ the attraction volatility is strictly higher when Vt > Pt than in
the situation Vt < Pt. The price adjustment to value in the long run pass then through variations of the
attraction volatility that impact the volatility and thus, due to the positive relation between µt and σt, the
asset price drift. For instance, if F corresponds to the value-to-price ratio (equation 23), the higher the price
relative to the value, the lower the attraction volatility is. In this specification of F , a significant drop in price
that is not due to a change in the fundamentals generates an increase in the attraction value as long as the
value-to-price ratio has not returned to its original level. This increase is higher in absolute terms the more
that the value-to-price ratio is high. For example, under the hypothesis λ2 = 0 and λ1 > 0, an instant 20%
price drop increases attraction volatility by 25%, while a 50% price drop increases it by 100%. Furthermore,
as in the hypotheses considered in section 3.2, this mechanism joined to the negative relationship between
past price trends and the volatility process makes the model structurally adapted to capture a strong reversal
asymmetry.

Figure 4: The relationship between the attraction volatility σ̄t and F (Vt, Pt)(qt−rt) under different hypothesis
about risk premia values.
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3.3.2 Risk premia as adjustment variables

An alternative hypothesis is that the attraction volatility is constant, and the risk premia variables. Risk
premia become then adjustment variables guaranteeing equation 20. This reversal has strong theoretical
implications. Indeed, under this hypothesis, the implied risk aversion of the market becomes endogenous.
The price of the risk is no more the result of exogenous market participant preferences but a consequence on
the one hand of the difference between the growth rate of the value and the risk-free rate, on the other hand of
the long-run level of volatility. In other words, the price of the risk becomes a variable socially constituted by
the interaction between agents that treat information related to fundamentals, and thus cannot be deduced
by the aggregation of individual risk aversions.

To understand the practical implications of this reversal, let us start by considering the value taken by risk
premia in this hypothesis and its implication on the volatility dynamics. To this end, we deal here only the
case where the ratio λ1,t on λ1,t + λ2,t is constant ∀ t, i.e.

w =
λ1,t

λ1,t + λ2,t
.

Under this assumption, the drift may be write as

µt = rt + λtRt

with R the measure of risk priced by the market, given by

Rt =
(
w + (1− w)σt

)
σt.

and λt the risk premium associated.

Equation 21 may then be rewritten as

λt

(
w + (1− w)σ̄

)
σ̄ = F (Vt, Pt)(qt − rt).

It follows that

λt =
F (Vt, Pt)(qt − rt)(
w + (1− w)σ̄

)
σ̄
,

which implies λ1,t = wλt and λ2,t = (1−w)λt. Consequently, the price of the risk given by λ is both linearly
dependent of the differential between the growth rate of value and the risk-free rate and of F (Vt, Pt). From
an economic perspective, this means that an increase (resp. decrease) of the differential between the growth
rate of value and the risk-free rate increase (resp. decrease) the implied risk aversion. Similarly, if F is a
strictly increasing function of the differential between price and value, an increase (resp. decrease) in the
value/price ratio also increases (resp. decreases) the implicit risk aversion.

Besides, if θ were constant, an increase in the risk premium would result in a reduction of the attraction
volatility (equations 10 and 13). However, as mentioned above, we here assume constant attraction volatility.
Accordingly, θ is defined by

θ(t) =
σ̄

κ

(
κ+ βλ1,t + σ̄βλ2,t

)
,

and preserves thus the attraction volatility invariance by neutralizing the impact of risk premia variations on
the attraction volatility level. However, this invariance does not imply neutrality of the risk premium λ level
on the volatility dynamics. Indeed, as already remarked in section 3.1.2, the function f may be written as

ft(σt) =
(
κ+ βλ1,t

)(
σ̄ − σt

)
+ βλ2,t

(
σ̄2 − (σt)

2
)
,

and therefore, the reverting force that pushes the volatility process towards its attraction level is an increasing
function of risk premia. Due to this relationship, all things being equal, the higher the risk premium λ (for
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a given value of w) the lower the dispersion of the volatility distribution. In this manner, an increase in the
risk premium, which can be originated by an increase of the differential between the growth rate of value and
the risk-free rate or an increase of the value-on-price ratio (or both), tends to reduce the randomness of the
volatility.

4 Conclusion
This paper introduced a class of models referred to as RPDV models, which reconcile two major empirical
features of volatility: its rough behavior and its path dependency. Additionally, the article has delved deeper
into certain properties of some models within this class.

To achieve this, section 2 initiated by outlining a general form of path-dependent model, which encompasses
several significant volatility models found in the current academic literature. Based on this foundation, we
then defined what we have referred to as the family of RPDV models. In this modeling framework, volatility
is a function of two stochastic processes, which can be seen respectively as a type of price trend process and a
type of volatility trend process. Being neither Markovian nor semimartingale since their properties actually
define them as a rough models, RPDV models are not very tractable for simulations. To overcome this issue,
we therefore introduced a Markovian multi-factor approximation of RPDV models using Abi Jabers findings
(2019).

In the section 3, we focused on different specifications belonging to a rather parsimonious sub-family of RPDV
models, in which the price drift is a quadratic function of the volatility process. A key idea that emerged from
these analyses is the central importance of the price drift on the volatility dynamics induced by the actual
structure of the RPDV models. This drift determines central properties such as the level towards which the
volatility tends to revert (the attraction volatility) or the speed of mean reversion, and so ultimately the
volatility distribution. More precisely, attraction volatility is a decreasing function of risk premia while the
speed of mean reversion of these premia is increasing. Furthermore, the study of these model specifications
made it possible to formulate competing hypotheses on the mechanisms of asset price and volatility formation
that each underlies. Thus, having exposed the simpler specifications in which both attraction volatility and
mean-reverting force were constant, we considered a specification in which the attraction volatility level is
itself a path-dependent process leading to an entanglement of path dependencies. This assumption makes it
possible to reinforce the time reversal asymmetry property of the process, which is an important empirical
characteristic of financial data (Zumbach 2009, 2010). The third hypothesis involved considering the price drift
as an operator of long-term consistency between price and value. It has been shown within this framework,
that depending on the sub-hypotheses adopted, either the attraction volatility level or the speed of mean-
reversion of the volatility process then becomes an increasing function of both the difference between the rate
of growth of the value and the risk-free rate, and the differential between price and value. Therefore, the
choice between these sub-hypotheses also has implications in terms of time reversal asymmetry and volatility
distributions.

This papers exploration of the competing specifications of the RPDV model thus opens up avenues of reflection
for future theories of asset price and volatility dynamics consistent with empirical data.
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Appendix A Stochastic differential equations for Markovian
approximation of the RPDV model

We want to solve the following SDE:

dm
(i)
1,t =

dPt

Pt
+

(
κ1θ1,t − κ1m1,t − γim

(i)
1,t

)
dt,

To consider the dynamics of m(i)
1,t, we set g

(
m

(i)
1,t, t

)
= eγitm

(i)
1,t and apply the Itô lemma:

dg
(
m

(i)
1,t, t

)
= eγit

(
dPt

Pt
+ κ1 (θ1,t −m1,t) dt

)
.

Consequently, if m(i)
1,0 = 0

m
(i)
1,t =

∫ t

0

e−γi(t−u)

(
dPu

Pu
+ κ1 (θ1,u)−m1,u) du

)
Thus:

n∑
i=1

w1,im
(i)
1,t =

∫ t

0

n∑
i=1

w1,ie
−γ1,i(t−u)

︸ ︷︷ ︸
K̂1(t−u)

(
dPu

Pu
+ κ1 (θ1,u −m1,u) du

)

Analogously, with

dm
(i)
2,t =

(
(σt)

a2 + κ2θ2,t − κ2m2,t − γim
(i)
2,t

)
dt,

by applying same steps, we obtain:
n∑

i=1

w2,im
(i)
2,t =

∫ t

0

n∑
i=1

w2,ie
−γ2,i(t−u)

(
(σu)

a2 + κ2 (θ2,u −m2,u)
)
du.

Appendix B Highlighting the mean-reverting component of the
volatility process

Using expression of the attraction volatility 13, we have:

θ =

(
2βλ2σ̄ + κ+ βλ1

)2 − (κ+ βλ1)
2

4βλ2κ

θ =
4
(
βλ2σ̄

)2
+ 4βλ2σ̄(κ+ βλ1)

4βλ2κ

θ =
βλ2σ̄

2

κ
+

σ̄(κ+ βλ1)

κ

θ =
σ̄

κ

(
κ+ βλ1 + βλ2σ̄

)
.

Replacing θ in equation 8, we then obtain

f(σt) =
(
κ+ βλ1

)(
σ̄ − σt

)
+ βλ2

(
σ̄2 − (σt)

2
)
.
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Appendix C Zero of the function f in polynomial drift hypothesis
The unique positive solution to10

yt + λ1σ̄ + λ2σ̄
2 = 0,

is

σ̄t =
−λ1 +

√
(λ1)2 + 4(qt − rt)λ2

2λ2
.

In addition, from equation 13 in section 3.1.2, we now that

σ̄t =

√
(κ+ βλ1)2 + 4κβλ2θt − κ− βλ1

2βλ2
.

By combining the two previous equalities, we have:√
(κ+ βλ1)2 + 4κβλ2θt − κ− βλ1

2βλ2
=

−λ1 +
√
(λ1)2 + 4ytλ2

2λ2√
(κ+ βλ1)2 + 4κβλ2θt − κ− βλ1 = −βλ1 + β

√
(λ1)2 + 4ytλ2

(κ+ βλ1)
2 + 4κβλ2θt =

(
κ+ β

√
(λ1)2 + 4ytλ2

)2

(κ+ βλ1)
2 + 4κβλ2θt = κ2 + β2

(
(λ1)

2 + 4ytλ2

)
+ 2κβ

√
(λ1)2 + 4ytλ2

4κβλ2θt = −2κβλ1 + β2 (4ytλ2) + 2κβ
√

(λ1)2 + 4ytλ2

θt =
βytλ2 + 0.5κ

(√
(λ1)2 + 4ytλ2 − λ1

)
κλ2

.

It is clear that if κ is positive, θt is also positive ∀yt > 0 and therefore θtκ > 0 which ensures that f(σt) > 0.
If κ is negative, to ensure that θtκ ≥ 0:

βytλ2 + 0.5κ
(√

(λ1)2 + 4(qt − rt)λ2 − λ1

)
> 0(

βλ2

0.5κ
yt − λ1

)2

− (λ1)
2 − 4λ2yt > 0

4(βλ2)
2

κ2
(yt)

2 − 4λ2

(
βλ1

κ
+ 1

)
yt > 0

4λ2yt

(
β2λ2

κ2
yt −

(
βλ1

κ
+ 1

))
> 0

Consequently,

yt >
κ

βλ2

(
λ1 +

κ

β

)
.

10In the considered context set out in section 3.3,

yt = F (Vt, Pt)(qt − rt).
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