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Dynamic and Sustainable Flexible Job Shop Scheduling Problem under
Worker Unavailability Risk

Candice Destouet1, Houda Tlahig1, Belgacem Bettayeb2 and Bélahcène Mazari3

Abstract— In the current context of Industry 5.0, sustainable
scheduling has emerged as an evolution of classical scheduling,
now integrating environmental and human-centric considera-
tions. The objective is to strike a balance between economic,
environmental, and societal concerns. Additionally, there is a
growing need to enhance the resilience in the Industry 5.0 era,
necessitating dynamic systems capable of reacting to unforeseen
disruptive events. This paper introduces a multi-objective dy-
namic scheduling model designed to simultaneously minimize
the makespan, the energy consumption, and a standardized
ergonomic risk factor. The initial schedule is generated using
a non-dominated sorting algorithm (NSGA-III), and in the
event of worker absence during production, a rescheduling
process is initiated. The choice of rescheduling strategy is
determined using a Q-learning algorithm, allowing continuous
improvement in the selection of the optimal strategy depending
on the scenario. Results, derived from experiments conducted
on literature instances, demonstrate the model’s effectiveness in
swiftly generating new efficient schedules. The motivation for
this research stems from the increasing demand for sustainable
industrial practices that not only enhance productivity but also
reduce environmental impact and improve worker well-being,
thereby contributing to the development of more resilient and
sustainable industrial systems.

I. INTRODUCTION

In manufacturing systems, Industry 5.0 is emerging as the
logical progression from Industry 4.0. In [1], the authors
propose an architectural design for Industry 5.0, illustrating
how this paradigm builds upon existing digital transformation
efforts while aiming to rectify the societal and ecological
shortcomings of Industry 4.0. Industry 5.0 places empha-
sis on three primary aspects: environmental sustainability,
human-centric approaches, and resilience [2]. This entails
numerous consequences for decision-making across all levels
within an industrial firm. More precisely, this necessity arises
at the operational level, where production planning must
address these three critical aspects [3]. Firstly, focusing on
frugal utilization of machinery, energy, tools, and materials
can contribute to improving the ecological sustainability of
the system. Secondly, human considerations pose a far more
complex challenge than the efficient and energy-saving use
of resources. Ensuring the safety and well-being of work-
ers involves accommodating their diversity and individual
needs. Lastly, system resilience, defined as its ability to
recover and return to its original functionality after a major
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disruption, is a primary consideration. This capability is
becoming increasingly valuable due to the proliferation of
various crises and sources of disruption worldwide. Thus,
in the event of disruptions during production, the system
must promptly react and find rapid solutions. This paper
addresses a Dynamic Flexible Job Shop Scheduling Prob-
lem that incorporates considerations of energy consumption
and workers’ safety. The disruptions considered concern
potential unpredictable periods of worker unavailability to
to factors such as lateness, illness, or other personal con-
straints. Section II gives a concise overview of the current
state-of-the-art in sustainable and dynamic flexible job shop
scheduling. Section III delineates the problem, develops
the mathematical model, and outlines various rescheduling
strategies to manage disruptions. Then, Section IV describes
the methods used to solve the problem, including the non-
dominated sorting genetic algorithm NSGA-III and a Q-
learning algorithm. Finally, Section V presents the results
obtained with instances from the literature, and Section VI
provides the concluding remarks for our study.

II. LITERATURE REVIEW

The Sustainable Flexible Job Shop Scheduling Problem
(SFJSSP) has been defined in [3] as a FJSSP with eco-
nomical, environmental, human and resilience considera-
tions. Firstly, the choice of machine can significantly impact
the overall energy consumption, as certain machines may
be more energy-intensive than others. Recent studies have
increasingly focused on incorporating energy consumption
data for machines and operations into scheduling algorithms
[4][5]. Some research has even integrated strategies such as
turn-on/off scheduling, as well as idle and stand-by modes for
machines during inactive periods, effectively reducing energy
consumption during downtime periods [6][7]. Additionally,
significant energy is often expended in product transportation
between machines, particularly with the use of automated
guided vehicles. This has led to prompting efforts to opti-
mize transport routes and methods to further reduce energy
consumption [8]. Some other tasks such as setup times and
loading/unloading operations contribute to energy consump-
tion, while less frequently considered in scheduling models
[9]. Most studies addressing energy consumption combine
environmental objectives with economic ones, striving to
strike a balance between the two through trade-off analyses.

To address the second pillar of Industry 5.0, various
approaches exist for incorporating human factors into flexible
job shop modeling. Initially, workers are often regarded as
static, even marginalized resources, characterized by skills,



costs, and capacity [10][11]. However, the new perspectives
strive to place humans at the center of the production
system. In recent studies, there has been a growing focus on
factors such as safety indices, fatigue levels, and individual
preferences, all aimed at improving worker well-being in
the workplace [12][13]. Moreover, as satisfied, healthy and
fulfilled workers are not only more productive but also are
more likely to remain in their roles longer, thereby helping
to strengthen the resilience of the entire system.

The resilience of a system refers to its ability to revert to
its original state following a disruption. Thus, in the event
of a disruption during production, the system must react
promptly and provide a rapid solution to the issue. Common
disruptions in a FJSSP include machine breakdowns, job in-
sertions, uncertain processing times, and order cancellations
[4][14][15][16]. To effectively address these disruptions, the
model must be dynamic, capable of adapting to them. There
are three types of dynamic models: i) completely reactive
models, which generate schedules in real-time as jobs enter
the system [14]; ii) proactive models, which often utilize
fuzzy logic, probability, or stochastic parameters to anticipate
and mitigate disruptions in advance [15]; iii) predictive-
reactive models, which initially generate a schedule and
adapt it during the process in response to disruptions [4].

In this paper, we introduce a model for Dynamic SFJSSP
(DSFJSSP) considering human factors including safety and
skills, as well as energy consumption by machines, trans-
portation, and auxiliary equipment. Our approach employs
a predictive-reactive dynamic scheduling model deigned to
address unexpected worker absences.

III. PROBLEM DEFINITION AND FORMULATION

A. The DSFJSSP description

The classical jobshop scheduling problem involves a set of
J operations divided into Kj tasks that need to be processed
in a predefined sequence on a set of machines. When tasks
can be executed on various machines, it transforms into a
Flexible Job Shop Scheduling Problem (FJSSP), composed
of two sub-problems: i) determining the optimal allocation of
a machine for each operation, and ii) establishing an optimal
sequencing of operations assigned to each machine. Existing
literature predominantly focuses on optimizing economic
factors such as total process time, costs, and delays. However,
the SFJSSP extends this scope to include environmental
and societal considerations. In this context, we address the
environmental aspect by minimizing energy consumed by
machines, transport and auxiliaries equipment within the
workshop. Incorporating the human element introduces addi-
tional complexity, firstly by necessitating the optimization of
worker allocation for each operation, and secondly by incor-
porating concerns regarding worker safety and well-being.
Consequently, we introduce a third objective: maximizing
worker safety by minimising the maximum level reached
on the OCRA index, developed by [17]. The OCRA index
is a standardized measure that assesses the ergonomic risk
for workers by evaluating the strain on their upper limbs.
Human integration also requires considering uncertainty and

potential disruptions caused by workers. Personal constraints
such as tardiness, temporary absences, or unforeseen emer-
gencies can impact the production schedule. Whether a
worker arrives late or is partially or entirely absent, these
events can significantly impact the predefined schedule.
Therefore, it is essential to find a strategy to adapt to these
new constraints while minimizing disruptions to the initial
schedule. Subsection III-B and III-C detail the mathematical
model used to solve this problem and introduce various
rescheduling strategies applicable in the event of disruption,
specifically addressing the absence of an operator in our case.

B. Mathematical model

The sets, indices, parameters and decision variables used are :

W set of workers, w = 1..W .
M set of machines, m = 1..M .
J set of jobs, j = 1..J .
Kj set of tasks in j noted Okj , k = 1..Kj .
T set of periods, t = 1..T .
dt, ft starting and ending time of period t .
pkjwm processing time of Okj on machine m with worker w.
skjmk′j′ setup time on machine m between Okj and Ok′j′ .
tpmm′ transport time for a product between machines m and m′.
tmm′ travel time for a worker between machines m and m′.
etrans
mm′ energy consumption for transporting a product from m to

m′.
eaux energy consumption of auxiliary equipment per unit time.
atakjm number of technical actions to execute Okj on machine m.
pmkjm posture factor for executing Okj on machine m.
rmkjm repetitiveness factor for executing Okj on machine m.
fmkjm strength factor for executing Okj on machine m.
arfkjm additional risks factor for executing Okj on m.
rcm,dum factor for lack of rest and overall duration of repetitive tasks.
cf constant frequency of technical actions by minute.
Skj , Ckj integer decision variables representing respectively the start-

ing and ending time of Okj .
Rkjwt variable equal to the resting time for worker w after Okj .
Vtw binary decision variable equal to 1 if worker w is assigned

to period t.
Xkjwmt binary decision variable equal to 1 if Okj is executed on

machine m by worker w on period t.
Ykjwk′j′ binary decision variable equal to 1 if Okj is done by worker

w before Ok′j′ .
Zkjmk′j′ binary decision variable equal to 1 if Okj is done on

machine m before Ok′j′ .
Nkjmk′j′m′ binary decision variable equal to 1 if Okj is executed on

machine m and Ok′j′ on machine m′.
Cmax makespan.
E total energy consumption.
ET ,EM ,EC total energy consumption for transport, operations and aux-

iliaries equipment.
ATAwt real number of technical actions for worker w on period t.
RTAwt recommended number of technical actions for worker w on

period t.
OCRAmax OCRA maximum for all workers and periods.

The mathematical model is described as a nonlinear pro-
gram, with three objective functions and a set of constraints
defined below. Please find more details in [18].

min {Cmax, E,OCRAmax} (1)

The objective function (1) aims to minimize simultaneously
the total process time (makespan), the total energy consump-



tion, and the maximum OCRA index.

Cmax ≥ Ckj ∀j, k ∈ J ,Kj (2)

ET =
∑
j

∑
k

∑
m

∑
m′

Nkjm(k+1)jm′ × etransmm′ (3)

EM =
∑
j

∑
k

∑
m

∑
w

∑
t

Xkjwmt × ekjwm (4)

EC = Cmax × eaux (5)
E = ET + EM + EC (6)

The constraints defined in equation (2) establish the
makespan as the maximum completion time of the schedule.
Equations (3), (4) and (5) define the energy consumption for
transport, machines, and auxiliaries equipment, respectively.
Equation (6) computes the total energy consumption.

Vtw+V(t+1)w = 1 ∀t, w ∈ T ,W (7)

Rkjwt = 0.08×
∑
m

Xkjwmt × pkjwm

∀t, w, j, k ∈ T ,W,J ,Kj (8)

ATAwt =
∑
j

∑
k

∑
m

atakjmXkjwmt ∀w ∈ W, t ∈ T (9)

RTAwt = (rcm×dum)
∑
j

∑
k

∑
m

cf×pmkjm×rmkjm

× fmkjm × arfkjm ×Xkjwmtpkjwm ∀t, w ∈ T ,W (10)

OCRAmax ≥ ATAwt

RTAwt
∀t, w ∈ T ,W (11)

The constraints formulated in equations (7) to (11) are the
worker-related constraints. Equations (7) ensure that each
worker is assigned to a period in alternating shifts. Equations
(8) ensure that the rest times are respected. Equations (9),
(10), and (11) compute the OCRA index for each worker.

S(k+1)j ≥ Ckj +
∑
m

∑
m′

Nkjm(k+1)jm′ × tpmm′

∀j, k ∈ J ,Kj (12)

Sk′j′ + (1−
∑
m

Zkjmk′j′)M ≥ Ckj + skjmk′j′

∀j, j′ ∈ J , k, k′ ∈ Kj ,Kj′ (13)

Sk′j′+(1−
∑
w

Ykjwk′j′)M ≥ Ckj+
∑
m

∑
m′

Nkjm(k+1)jm′

× tmm′ +
∑
w

∑
t

Rkjwt ∀j, j′ ∈ J , k, k′ ∈ Kj ,Kj′ (14)

The constraints (12) to (14) are the precedence constraints
for tasks of the same jobs, tasks assigned to the same
machine and tasks assigned to the same worker, respectively.

C. Rescheduling strategies

When a disruption occurs within the system, such as
a worker absence for a period, rescheduling becomes im-
perative. Consequently, we categorize the operations into
three distinct sets: the completed operations, the incomplete
operations, and the not yet started operations. The com-
pleted ones remain unchanged, while those that have not
yet started or are incomplete require rescheduling. Three
different rescheduling strategies can be used:

• Total rescheduling: both the operations that have not yet
started and those incomplete that were being processed
by the absent worker are rescheduled;

• Partial rescheduling: the machine and worker assign-
ments for incomplete operations, as well as operations
that are not yet started and not originally assigned to the
unavailable worker, are retained. However, their starting
times may be adjusted due to the disruption. As for
the incomplete and not started operations assigned to
the unavailable worker, each of the is reassigned to a
new worker/machine pair, which potentially also leads
to adjustments to their start times.

• Right shift rescheduling: the tasks that were incomplete
or had not yet begun, initially assigned to the unavail-
able worker, are postponed until the worker becomes
available again. Meanwhile, the sequence, machine,
and worker assignments of other operations remain
unchanged, although their starting times may be affected
by the disruption.

Depending on the specific circumstances, the most ef-
fective strategy may vary. For our problem, it is crucial
to select a strategy that minimizes disruption across three
key aspects: the makespan, energy consumption, and the
maximum OCRA. In order to obtain a strategy selection
based on the circumstances, we adopted an approach based
on the Q-learning algorithm, as described in Section IV.

IV. ALGORITHM DESCRIPTION

A. Initial schedule generation

The NSGA-III algorithm is used to generate the initial
schedule. This algorithm operates with a population of
solutions and can handle multiple objectives to converge
towards solutions that are not dominated by others, thereby
identifying the best options. To determine the final schedule
for implementation, we select the solution that minimizes the
average of our three objectives among the final population.
For further insights into the algorithm’s description and its
application to our SFJSSP, readers may refer to [20].

B. Model training

To effectively respond to disruptions, we implemented
the Q-learning method, introduced by [19] and used in [4],
to select a rescheduling strategy. Given a state st, the Q-
agent select an action at and gives a reward rt of this
pair state/action proportionally to the obtained outcome and
update the Q-table. This iterative process ensures continuous
improvement of the agent’s knowledge. In our study, the



initial schedule serves as the environment for training the Q-
agent. Over the course of 1000 (tmax) simulations, a worker
is randomly selected at varying time intervals and durations.
It defines the state. The state is determined by two parame-
ters: i) the timing of the disruption occurrence, categorized
into three phases, namely at the beginning, in the middle, or
at the end of the initial schedule, and ii) the proportion of
the duration of the operations that the worker was supposed
to complete during his unavailability compared to the total
duration of the operations that are still to be carried out by
him. Based on the ranges of the two the previous parameters,
Table I enumerates the 15 possible states. Subsequently, the
Q-agent chooses a strategy to implement: either a total (a1),
partial (a2), or right shift (a3) rescheduling. These strategies
constitute the actions available to the agent. The selection of
an action is facilitated by an epsilon-greedy strategy, which
prioritizes exploration in the initial phases of the algorithm
and transitions towards exploitation of acquired knowledge
as the process evolves. Further elaboration on this strategy
can be found in [20]. For the reward function, our three new
objectives are analyzed: the updated makespan C∗

max, the
updated energy consumption E∗ and the updated maximum
level of OCRA OCRA∗

max obtained with the new schedule.
The temporary reward rtemp is calculated as follows:

rtemp =
1

3
× C∗

max

Cmax
+

1

3
× E∗

E
+

1

3
× OCRA∗

max

OCRAmax

Note that the coefficient 1
3 can vary according to the situa-

tion, giving more weight to one or another. Subsequently, rt
is derived from rtemp within the range of −5 to 5, as in [4].
A smaller rtemp value corresponds to a larger reward. Next,
the Q-table is updated with the following formula:

Q(st, at) = (1−αt)×Q(st, at)+αt(rt+λ×maxaQ(st+1, a)),

with λ = 0 as only immediate rewards are considered, and
αt = 1− 0.9× t

T , where T is the total number of iterations.
This adaptive α parameter ensures a pronounced influence
on the Q-table during the early stages, gradually stabilizing
over time. Table II represents the Q-table at each instant t.

TABLE I: State definition

Proportion of disruption duration (%)
0-20 20-40 40-60 60-80 80-100

Beginning s1 s2 s3 s4 s5
Middle s6 s7 s8 s9 s10
End s11 s12 s13 s14 s15

TABLE II: Q-table visualization

action/state s1 s2 ... s15
a1 Q(s1, a1) Q(s2, a1) ... Q(s15, a1)
a2 Q(s1, a2) Q(s2, a2) ... Q(s15, a2)
a3 Q(s1, a3) Q(s2, a3) ... Q(s15, a3)

C. Rescheduling after a disruption

At this time, the system operates in online mode. If a
worker is unavailable during the execution of the initial

schedule, the Q-agent is ready to respond to this disruption.
Firstly, it identifies the current state, delineating the duration
and timing of the worker’s unavailability. Leveraging the
information stored in the Q-table, the agent discerns the
optimal action, i.e. the most suitable rescheduling strategy.
Subsequently, the chosen action is implemented, leading to
the generation of a new schedule. Both total and partial
rescheduling procedures are executed using NSGA-III, while
the right shift rescheduling is computed based on the rules
outlined in Section III-C. The framework of the entire
method is described by the flowchart in Figure 1. For a
clearer understanding of the algorithm, please refer to the
example in Section V-C.

Jobs,
machines,
workers

OFFLINE

Run NSGA-III: generate
an initial schedule

t = 1

t ≤ tmax ?

Yes

Simulate a
worker absence

Determine the state
(when and how long)

Choose an action (a
rescheduling strategy)

Compute the reward
(the deviation)

Update the Q-table

t
=

t
+

1

No

ONLINE

Run the initial schedule

Worker
absent ?

Yes

Determine the state
(when and how long)

Choose the best action
according to the Q-table

Run the new schedule

END
No

Fig. 1: Framework

V. RESULTS AND ANALYSIS

A. Instances

To test the efficiency of the method, we use different
instances from literature that we have completed with data
for transport/setup times, worker characteristics and energy
consumption parameters. In this work, we present and dis-
cuss results obtained with two of them, namely kcm4 from
[21] and FJ15 from [22], which are detailed in Table III.
To simulate a disruption, a worker is randomly selected at
varying time intervals and durations.

B. Q-Table

After conducting 1000 simulations for both kcm4 and
FJ15, we obtain a Q-Table containing the various rewards
associated with each state/action pair. Table IV illustrates the
optimal action for each state, denoting the action yielding
the highest reward, applicable across both instances. If a



TABLE III: Instances composition

(a) Instances

Inst. # jobs/tasks/mach./workers proc. time (min) energy (kW)
kcm4 15/56/10/4 [1− 85] [4− 15]
FJ15 46/182/15/8 [1− 20] [15− 20]

(b) Additional data

Parameters value or range
energy for transport (etrans) 3.9 (kwh per time unit)
energy for auxiliaries (eaux) 1 (kwh per time unit)
transport (tp)/setup (s)/travel time (t) [1− 3] / [0− 1] / [0.5− 2]
workers’ skills (p) [0.9− 1.3]
number of technical actions (ata) [10− 70]
posture multiplier (pm) 1-07-0.6-0.5
strength multiplier (fm) 1-0.85-0.65-0.35-0.2-0.01
repetitiveness multiplier (rm) 1-0.85-0.7
additional factors multiplier (arf ) 1-0.95-0.9-0.8

disruption occurs at the beginning or middle of the process,
partial rescheduling emerges as the preferred strategy. How-
ever, when the disruption arises during the last part of the
process, the choice of rescheduling strategy varies based on
the percentage of operations affected by the worker’s unavail-
ability. For disruptions affecting 0% to 40% of operations,
right shift rescheduling is recommended. For disruptions
affecting 40% to 80% of operations, total rescheduling is
favored. Finally, if the worker’s absence impacts 80% to
100% of their remaining operations, partial rescheduling is
the preferred course of action.

TABLE IV: Best action for each state

s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 x x
1 x x x x x x x x x x x
2 x x

C. Rescheduling results

In this section, we study three different scenarios:
• Scenario 1: a worker is late and will be unavailable at

the beginning of the schedule;
• Scenario 2: a worker has to leave earlier and will be

unavailable at the end of the schedule;
• Scenario 3: a worker has to leave in the middle of the

process for some time.
We present the results obtained on these three scenario

with kcm4 instance. First, the initial schedule is presented
in Figure 2. The makespan is equal to 92, the total energy
consumption is 789 kWh, and the OCRAmax to 1.93.

For the three different scenarios, the worker 2 will be
unavailable for a certain amount of time. In the first scenario,
he is unavailable from the beginning to the 44th minute, in
the second scenario from the 69nd minutes to the end, and
in the third scenario from the 50th to the 68th minutes.
Table V presents the results of the three objectives obtained
after each rescheduling strategy. For each scenario, the partial
rescheduling gives the best result when averaging the three
objectives. The time required to generate a new schedule

Jobs: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 20 40 60 80 100
Min

W
or

ke
rs

1

2

3

4

OCRAmax = 1.93 Etot = 789kw

92

Fig. 2: Initial schedule

following a disturbance is less than 5 seconds for both total
and partial rescheduling, and less than 3 seconds for the right
shift strategy. However, it seems worth noting that training
the model can be time-consuming, particularly due to the
number of iterations needed to achieve convergence.

TABLE V: Objectives after rescheduling

Scenario 1 Scenario 2 Scenario 3
Cmax Energy Ocra Cmax Energy Ocra Cmax Energy Ocra

T 140 977 1.44 114 864 1.53 174 954 1.19
P 108 805 1.85 106 802 1.62 103 788 2
R 126 823 1.93 106 803 1.93 107 804 1.93

Figure 3 presents an illustration of the three strategies
applied during the first scenario, when worker 2 is late and
arrives at the 44th minute. The total rescheduling strategy
exhibits the poorest performance in terms of makespan and
energy consumption, yet it excels in minimizing OCRAmax.
However, this strategy may introduce significant deviations
from the initial schedule. It is important to note that during
the rescheduling phase, NSGA-III is executed with less
optimal parameters than those used for the initial sched-
ule, prioritizing speed to promptly address the disruption.
Partial rescheduling yields favorable outcomes across all
three objectives, notably in minimizing both makespan and
energy consumption, with minimal deviation from the initial
schedule. Throughout this process, the pair machine/worker
remains consistent for all operations not assigned to the
unavailable worker, while the sequence may be adjusted
to accommodate the disruption. The right shift strategy
maintains the same OCRAmax because all machine/worker
pairs remain unchanged for each operation. However, the
disruption has an impact on the makespan and energy
consumption, even though efforts are made to minimize
the disparity between the initial and revised solutions. This
strategy can prove effective, especially for minor disruptions.

VI. CONCLUSION
In this paper, we address a Dynamic Sustainable Flexible

Job Shop Scheduling Problem, which considers economic,
environmental, and human factors. At the beginning of the
proposed approach, the NSGA-III algorithm is employed
to derive an initial schedule that balances these three as-
pects, optimizing the makespan, energy consumption, and
OCRA index simultaneously. Subsequently, three reschedul-
ing strategies are employed for the random event of worker
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(c) Right Shift rescheduling

Fig. 3: The three strategy applied in scenario 1

unavailability. The optimal strategy is selected using a Q-
learning method dependently on the timing and occurrence
of the disruption. The results suggest that partial rescheduling
emerges as the preferred strategy for most disruptions. Never-
theless, right shift and total rescheduling prove to be efficient
when disruptions occur towards the end of the schedule,
for shorter and longer durations, respectively. Each method
yields a new schedule in less than 5 seconds for the tested
instances. However, the tested instances do not precisely mir-
ror real-life environments, which are often larger with more
operations, machines, workers, and longer overall process.
In such case, the algorithm’s learning phase can be time-
consuming. Our future research will focus on enhancing our
algorithms to handle larger instances, comparing them with
other methods and exploring additional disruptions, such as
machine breakdowns and new job insertions.
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