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Abstract

This article introduces the factorial path-dependent market (FPDM) model, a multivariate asset price
dynamics model in which these dynamics are determined by a set of elementary factors. In this frame-
work, both the factorial drift and factorial volatilities are conditioned by the past dynamics of the
factorial portfolios, resulting in a model mostly path-dependent. Derived from this theoretical founda-
tion, the paper subsequently designs a market generator positioned midway between parametric models
based on strong assumptions and purely data-driven approaches. The aim is to combine the best of
both worlds, offering a model capable of faithfully reproducing the empirical financial dynamics while
maintaining a clear understanding of the financial phenomena driven by the simulated price paths. To
evaluate the effectiveness of the proposed approach, a thorough out-of-sample assessment of the market
generator is conducted based on the S&P500 investment universe.

Keywords: multivariate process, market generator, generation of market scenarios, complex dependence
structures, nonlinear dependences, volatility modeling, path-dependent model.

JEL classification: C15, C22, C30, C32, C38, C53, G1, G10, G12, G14, G17.

1 Introduction
"Backtesting against synthetic datasets should be the preferred approach for developing tactical investment
algorithms" [37]. This statement from Marco Lopez De Prado underscores a key point: the importance
of synthetic financial series in a modern quantitative finance approach. Beyond the interest for strategy
backtesting, synthetic data are increasingly used by the industry for other applications such as stress testing
([37], [63], [64]), obtaining risk metrics ([29]), generating conditional scenarios ([9]), etc. However, the
consistency of these synthetic data-based approaches depends to a large extent on the ability to accurately
model multivariate asset price dynamics. Yet, this modeling represents one of the most challenging problems
in quantitative finance.

The difficulty stems from a twofold complexity: a complexity inherent in marginal price dynamics (where
each asset price is considered independently of the others) and a complexity in the correlation structure of
asset price dynamics. On the first aspect, the distributions of asset returns (and log-returns) at different
time scales are non-Gaussian, exhibit heavy tails, and are generally asymmetric ([51], [28]). Moreover, asset
price dynamics are path-dependent, leading to significant time-series features such as volatility clustering
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and the Zumbach effect ([76], [35]). Regarding the correlation structure of asset price dynamics, it is itself
dynamic and exhibits significant variability over time ([75]). Thus, a set of assets that are weakly correlated
over a given period can be highly correlated over another period. Additionally, the joint distributions of
returns for a significant portion of assets are non-elliptical ([25]), adding yet another layer of complexity to
the modeling.

While classical multivariate dynamics models such as those based on multivariate geometric Brownian
motion fail to capture these various empirical properties, more sophisticated approaches better suited to
handle this complexity have emerged in recent years. In particular, models based on new machine learning
methods have garnered particular interest. Among the most popular are models based on Restricted Boltz-
mann Machines ([44], [48]) and Generative Adversarial Networks ([48], [32], [56]), which have yielded very
good results in terms of reproducing the various features characterizing financial time series. Nevertheless,
these methods have also important limitations. Firstly, most of them are not suitable for handling the
temporal dependence of large multi-dimensional data: as the data dimension increases, calibrating these
models becomes impractical ([56]). However, in practice, asset portfolios are typically constructed from
investment universes comprising several hundred to several thousand assets. Moreover, these models are
typically black boxes. Therefore, while they can be very effective at reproducing the statistical properties
of financial series, they do not provide an intelligible framework for the reproduced phenomena.

On the theoretical front, effectively modeling the dynamics of a price system goes beyond the technical
question of "which model fits the data best?" Instead, it involves identifying the mechanisms through which
the asset price system is formed and understanding the conditions that enable various historical market
paths. In this respect, ambitious modeling should enable us to answer questions such as: "what causes a
certain asset pair, which was weakly correlated at one time t, to become strongly correlated at another
time t’?" In broader terms, it must provide to some extent a hermeneutic of market dynamics. However,
the value of such an approach goes beyond the simple search for knowledge for its own sake. It creates
conditions that allow for the avoidance, or at least the mitigation, of generalization error better than a
model based solely on the brute reproduction of historical sample characteristics, and thereby potentially
anticipates the possibility of unprecedented but non-zero probability events.

It is in this perspective that the present article is situated. Its objective is to propose a general model for
asset price dynamics that can be adapted into a market generator, bridging the gap between classical Monte
Carlo approaches based on parametric models with strong assumptions and purely data-driven approaches
without theoretical a priori. The aim is to combine the best of both worlds by offering a model capable
of faithfully reproducing the empirical financial dynamics in all their complexity while maintaining a clear
understanding of the financial phenomena driven by the simulated price paths. Furthermore, thanks to
the theoretical framework induced by the model structure, this approach aims to disentangle contingent
statistical phenomena, which are merely expressions of specific historical realizations, from the structural
mechanisms that generate the probability distribution of the asset price vector dynamics.

The article is structured as follows. Section 2 introduces the general framework of the Factorial Path-
Dependent Market (FPDM) model and outlines the underlying logic of its structure. Section 3 derives
a market generator from one specification of this model and presents a calibration method to the latter.
Lastly, section 4 assesses this market generator and its calibration from various perspectives using market
data.
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2 General framework of the factorial Path-Dependent Market
Model

2.1 General framework of the FPDM model

2.1.1 Elementary factor-based decomposition of asset price vector dynamics

Let us consider P as the random vector of prices of dimension n× 1 for an investment universe composed
of n assets. Adopting a similar approach to that proposed in [61], we assume that the dynamics of P

are driven by a set of m factors denoted
{
Fj

}
1≤j≤m

, which is composed of mC common factors and n

idiosyncratic factors. We will refer to this set as the elementary factor set. For all t, dPt is defined by the
following multi-dimensional stochastic differential equation (SDE):

dPt = Pt ⊙ (AdFt), (1)

where F is the vector of elementary factors, and A is an n×m factor loadings matrix that represents the
sensitivity of the assets to the elementary factors, respectively given by:

F⊤
t =

((
F

(C)
t

)⊤
,
(
F

(I)
t

)⊤)
and A⊤ =

((
A(C)

)⊤
, In

)
,

with F(C) being the mC-dimensional vector of common elementary factors, F(I) the n-dimensional vector
of idiosyncratic elementary factors, A(C) the n×mC matrix of the sensitivity of the assets to the common
elementary factors, and In is the n-dimensional identity matrix. Furthermore, we suppose that the dynamics
of the elementary factors are given by:

dFt = µtdt+
√
ΩtdWt, (2)

with W being an m-dimensional Brownian motion, µ the drift vector of elementary factors of dimension
m × 1, and Ω a m ×m diagonal matrix with diagonal elements corresponding to the variance process of
the elementary factors. In this framework, the solution to the asset price vector is given by (see proof in
appendix B.1):

Pt = P0 ⊙ exp ◦

(∫ t

0

Aµu −
1

2
· diag

(
AΩuA

⊤
)
du+

∫ t

0

A
√
ΩudWu.

)
.

Therefore, the instantaneous returns are expressed as a linear combination of elementary factor dynamics,
with each factor associated with an independent source of randomness corresponding to the margin of W.
Furthermore, in this model, the drift vector and covariance matrix associated with instantaneous asset
returns are entirely determined by the drift and volatility vector of the elementary factors. Indeed, at time
t, the drift vector and covariance matrix of instantaneous asset returns are respectively defined as follows:1:

µt = Aµt and Σt = AΩtA
⊤.

1Because dtdt = 0, dtdWt = 0m and dWtdW⊤
t = Imdt:

(dPt ⊘Pt) (dPt ⊘Pt)
⊤ =

(
Aµtdt+A

√
ΩtdWt

)(
Aµtdt+A

√
ΩtdWt

)⊤

= AΩtA
⊤dt.
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From the expression of the matrix of instantaneous asset returns and given Ωt is a diagonal matrix, it
follows that the instantaneous correlation between the returns of the i-th and j-th assets in P is defined
by:

(Ct)i,j =

∑m
k=1(A)i,k · (A)j,k · (Ωt)k,k√∑m

k=1(A)2i,k · (Ωt)k,k
√∑m

k=1(A)2j,k · (Ωt)k,k
. (3)

This expression highlights one of the main advantages of the factorial form of the model: generating a
dynamic correlation structure between asset returns from the dynamics of the elementary factors. More
precisely, since the exposure of assets to the factor given by the elements of the matrix A is assumed to be
constant, the correlation dynamics are solely driven by the changes in the factorial volatilities within the
vector V. Therefore, as illustrated in figure 1 through a simple example, the correlation structure between
assets can undergo significant changes following movements in factorial volatilities. This property of the
model is of major interest in explaining empirical phenomena, such as the abrupt increase in correlations
between different assets that almost systematically accompanies an increase in market factor volatility.

Figure 2: The values taken by ρi,j , the linear correlation coefficient between the instantaneous returns
of two assets, as a function of the values taken by the factorial volatilities in the simple case where:

A =

[
1 1 0
1 0 1

]
and diag

(√
Ωt

)⊤
=

[
σF (C) σϵi σϵj

]
In this example, since both assets, i and j, are positively exposed to a common risk factor F (C), their correlation ρi,j
follows an increasing relationship with the volatility of this factor. However, the profile of the relationship between
these two quantities is also strongly influenced by the levels of volatility of the idiosyncratic factors.

2.1.2 The information driven the dynamics of factorial drift and volatilities

In the FPDM model introduced in section 2.1.1, the dynamics of the factors that drive the price vector
P depend on two major components: the vector of factorial drifts µ and the factorial variances defined
by the diagonal of Ω. However, these components themselves have dynamics that need to be defined. To
this end, both can be viewed as functions that, given It, a set of information available at time t, map
to an m-dimensional vector. More specifically, µ : It → Rm and diagM→d(Ω) : It → Rm

+ . Adopting
this approach, the identification of the information comprising It becomes a central question. First and
foremost, this information can be categorized into two main components: endogenous information and
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exogenous information. Here, endogenous information corresponds to the natural filtrations of P and F,
i.e., {Pu}u≤t and {Fu}u≤t. Exogenous information is defined, on the other hand, as the complement of
endogenous information, representing the set of information on which µ and Ω depend but is not contained
in {Pu,Fu}u≤t. The philosophy adopted by the FPDM model aligns with that of path-dependent volatility
models ([33], [38], [39]), aiming to explain the dynamics of µ and Ω as much as possible through an
endogenous manner. More specifically, we assume that at a given time t, all the relevant endogenous
information on which µ and Ω depend is contained in the following set of state variables:

I1,t =
{
µ̃
(k)
t , Ω̃

(k)
t

}nτ

k=1
,

where µ̃
(k)
t and Ω̃

(k)
t correspond to the following exponential weighting moving averages (EWMA):

µ̃
(k)
t =

1

τk

∫ t

−∞
e
− t−u

τk dFu and Ω̃
(k)
t =

1

τk

∫ t

−∞
e
− t−u

τk Ωudu,

whose dynamics are respectively defined by (see details in the appendix B.2):

dµ̃
(k)
t =

1

τk
·
(
dFt − µ̃

(k)
t dt

)
, and dΩ̃

(k)
t =

1

τk
·
(
Ωu − Ω̃

(k)
t

)
dt.

Given that I1,t constitutes a set of information that impact µ and Ω, we also have the following inclusion
relation: I1,t ⊆ It. However, in the considered approach, the EWMA estimators of the drift and covariance
matrix of F, represented by µ̃

(k)
t and Ω̃

(k)
t respectively, only impact µ and Ω indirectly. Indeed, the causal

relationship operates through transmission channels that consist of metrics associated with a set of factorial
portfolios denoted by Y and defined as:

Y(It) =
{
yp,t

}ny

p=1
,

with yp,t ∈ Rm and ∀ p, t : ∥yp,t∥1 = 1. The modeling idea is that variations in factorial trends and
volatilities arise from changes in anticipations about the future dynamics of factorial portfolios, anticipations
which are formed based on the endogenous information I1,t. Furthermore, the composition of the factorial
portfolios included in Y is itself a deterministic function of the information It. This general form includes
the particular case where Y (Yt = Y ∀ t) is invariant over time. In this specific case, it is clear that Y is
independent of the information I. Another interesting special case is when the entire set of information on
which Y depends is contained in I1,t. In this configuration, Y is purely path-dependent. Still, the metrics
of the factorial portfolios that impact µ and Ω do not depend on the form taken by Y. These will be of
two types.

The first type, which we will refer to as convolved dynamics features, takes the form:

µ̂t

(
yp,t, δp

)
=

nτ∑
k=1

(
δp
)
k
· y⊤

p,tµ̃
(k)
t = y⊤

p,t

∫ t

−∞
gp(t− u)dFu, (4)

where δp ∈ Rny and gp(s) =
∑nτ

k=1
(δp)k
τk

e
− s

τk . These features thus correspond to stochastic convolutions
with respect to dF over the interval ] − ∞, t]. It should be noted that the kernels {gp}

ny

p=1 on which
these factors depend can be highly diverse. In the case where δp ∈ Rny

+ (resp. δp ∈ Rny

− ), gp is a positive,
decreasing, convex function (resp. negative, increasing, concave) over R+. In contrast, when the coordinates
of δp are not of the same sign, gp can be non-homogeneous and have variable sign over R+.
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The second type of features impacting µ and Ω, that we will term as historical volatility features, takes the
form:

σ̂t

(
yp,t,wp

)
=

√√√√ nτ∑
k=1

(
wp

)
k
· y⊤

p,tΩ̃
(k)
t yp,t =

√√√√y⊤
p,t

(∫ t

−∞
kp(t− u)Ωudu

)
yp,t (5)

where wp ∈ Rny

+ , ∥wp∥1 = 1 and kp(s) =
∑nτ

k=1
(wp)k
τk

e
− s

τk . Therefore, the form of the kernels {kp}
ny

p=1 is
much more constrained than that of {gp}

ny

p=1: they are necessarily positive, decreasing, convex functions
over R+, and their integral is equal to 1. This distinction arises from the very nature of this second
type of features, which correspond to averages of the realized volatility of factorial portfolios. Specifically,
σ̂t

(
yp,T ,wp

)2 is a moving average of the realized variance of the process (yp,T )
⊤dFt (not of (yp,t)

⊤dFt).

These two types of features thus form the set

Ft =
{
µ̂t

(
yp,t, δp

)
, σ̂t

(
yp,t,wp

)}ny

p=1
, (6)

which integrates as follows into the causal chain of the FPDM model: It generates the set of factorial
portfolios Yt, and the combination of It and Yt defines the set of features Ft on which µt and Ωt depend.
More precisely, as will be exposed in section 2.2, the set Ft determines (either entirely or partially) Ωt, and
the triplet (Ωt,Ft,Yt) in turn defines µt. The figure 3 summarizes the sequence of causal relationships in
the FPDM model.

Yt

Ft

µt

Ωt

dFt dPt

dWt

I1,t

Figure 3: Causal diagram of the FPDM model in the case where Y, µ, and Ω depend solely on endogenous
information. The endogenous information I1,t defines the set of factorial portfolios Yt. The features
constituting the set Ft are computed from the pair (I1,t,Yt), and this set determines the value of the
matrix of factorial variances Ωt. In turn, Ωt,Ft and Yt determine the vector of factorial drifts µt. Finally,
the pair of µt and Ωt, coupled with the random shocks modeled by dWt, generates the dynamics dFt of the
elementary factors, which ultimately leads to the variation in the vector of prices dPt. Furthermore, the
dynamics of the elementary factors produces a feedback effect by increasing the endogenous information
and, through the same causal chain, modifying the state of the system in turn.
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2.2 Volatilities and drifts of elementary factors

2.2.1 The factorial volatilities

The modeling approach adopted for factorial volatilities
√
Ω presents significant analogies with the PDV

model proposed by Guyon and Lekeufack ([39]). Similar to this model, volatility dynamics are considered as
a primarily endogenous phenomenon with the addition and interaction of short-term exogenous dynamics.
Accordingly, the matrix of factorial volatilities takes the following general form2:

√
Ωt = diag

(
V (Ft)⊙Xt · St

)
, (7)

where V is a deterministic function of the set of features Ft such as V : Ft → Rm
+ , X is an m-dimensional

stochastic process responsible for capturing for capturing the exogenous dynamics of factorial volatilities,
and S is a univariate stochastic process corresponding to a common factor sensitivity operator to random
frictions.

More precisely, we define the path-dependent component of the vector of volatilities of the elementary
factors V (Ft) as follows:

V (Ft) = b0︸︷︷︸
(1)

+

ny∑
p=1

b1,p · µ̂t

(
yp, δ

(V)
p

)
︸ ︷︷ ︸

(2)

+

ny∑
p=1

b2,p · σ̂t

(
yp,w

(V)
p

)
︸ ︷︷ ︸

(3)

, (8)

where:

• (1) is an intercept vector such as b0 ∈ Rm
+ .

• (2) is the component of V (Ft) attributable to the convolved dynamics features (equation 4), with
b1,p ∈ Rm.

• (3) is the component of V (Ft) attributable to the historical volatility features (equation 5), with
b2,p ∈ Rm

+ and
∑ny

p=1 b2,p ≤ 1m.

This formalization may be viewed as a generalization of the PDV model proposed by Guyon and Lekeufack
([39]) in a factorial and multivariate framework. Indeed, first, the 4-factor PDV ([39]) model is a specific
case of 8 (see appendix C.1), second, even the general form of 8 exhibits an analogous three-block structure.
However, the generalization induced by 8 entails substantial specificities that need to be detailed.

Firstly, regarding component (2), where its counterpart in the Guyon and Lekeufack model corresponds to
a moving average of past returns (up to a multiplicative constant) for the considered asset, (2) is a linear
combination of stochatic convolution of factorial portfolio dynamics. This aims to capture the impact of
past dynamics of the factorial portfolios belonging to Yt on the level of factorial volatilities. The well-known
leverage effect and the strong Zumbach effect ([76], [35]), respectively defined as the negative relationship
between past returns and spot volatility, and the dependence of the volatility process on the historical
price path, can thus be modeled through this component. In addition to these effects already captured
in a univariate framework by the PDV model of Guyon and Lekeufack, (2) allows for the consideration of

2Or equivalently:

Ωt = S2
t ·

(
V (Ft)⊙Xt

) (
V (Ft)⊙Xt

)⊤ ⊙ Im.
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other effects specific to multidimensional and factorial modeling. In particular, the past dynamics of one
elementary factor can impact the volatility level of another elementary factor. By extension, the volatility
level of an asset can be conditioned by the past dynamics of other assets. Concretely, this transmission
mechanism allows for the modeling of empirical phenomena such as the difference in amplitude of the
leverage effect between individual assets and indices that group a set of assets ([16]).

This type of transmission mechanism is also enabled by component (3), which is a linear combination of
historical volatility features associated with different factor portfolios. It is akin to the "historical volatility
factor" in the Guyon and Lefeufack model. However, unlike the latter, (3) does not solely depend on the
volatility of an elementary factor based on its own past trajectory (the past trajectory of the volatility
of this elementary factor) but also depends on the past trajectories of volatilities of other elementary
factors. This structure allows for capturing, in addition to the volatility feedback and volatility clustering
phenomena already enabled by the Guyon and Lefeufack model, effects specific to multi-asset dynamics,
such as volatility spillover effects ([41], [6], [26]). Thus, an increase in the volatility level of a subset of the
investment universe can propagate to other assets through this relationship.

In addition to the path-dependent component V (Ft) just defined, as per 7, the factorial volatilities are
functions of the vector X whose purpose is to capture dynamics of exogenous origin in volatility. The
simplest case is, of course, when X is invariant (typically ∀ t : Xt = 1m), and therefore, the factorial
volatilities are purely path-dependent. Beyond this particular case, we adopt and generalize once again the
idea proposed by Guyon and Lekeufack by specifying X as a mean-reverting process. More precisely, follow-
ing [59] adapted to the considered multivariate framework, we define X as an m-dimensional exponential
Ornstein-Uhlenbeck process, such that:

Xt = exp ◦ (Yt) with dYt = Υ
(
Ȳ −Yt

)
dt+ΨdBt, (9)

where Υ is a m × m transition matrix, Ȳ is the unconditional expectation of Y, Ψ is a m × m scatter
matrix, and B is a m-dimensional Brownian motion independent of W. As shown in [54], the conditional
distribution of Yt+s given Yt is normal at all times, such that:

Yt+s|Yt ∼ N

(
Ȳ + e−Υ·s (Yt − Ȳ

)
, vec−1

m×m

(
(Υ⊕Υ)

−1
(
Im − e−(ΥΥ⊤)·s

)
vec
(
ΨΨ⊤

)))
.

Therefore Xt+s conditional on Xt follows the log-normal distribution:

Xt+s|Xt ∼ LN

(
Ȳ + e−Υ·s (Yt − Ȳ

)
, vec−1

m×m

(
(Υ⊕Υ)

−1
(
Im − e−(ΥΥ⊤)·s

)
vec
(
ΨΨ⊤

)))
.

Furthermore, the asymptotic distribution of X is given by:

lim
s→+∞

Xt+s|Xt ∼ LN

(
Ȳ, vec−1

m×m

(
(Υ⊕Υ)

−1
vec
(
ΨΨ⊤

)))
.

Several remarks can be made regarding the specification of parameters defining the dynamics of X. First, if
we assume that the path-dependent component exhausts the structural relationships linking the volatilities
of the elementary factors, it is consistent then for Υ and Ψ to be both diagonal matrices. Additionally,
[39] and [59] tend to show that when adopting a primarily path-dependent calibration approach, exogenous
dynamics of volatility appear as a short-term phenomenon (intraday). In this context, Y mean-reverts
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very fast toward Ȳ, implying high values for elements of Υ.

Finally, the last component of the factorial volatilities S is a univariate process that defines a common
sensitivity to all factors. This allows for capturing the homothetic dynamics of the matrix of factorial
volatilities. Like X, aside from the special case of constant S, it is coherent to model it using a mean-
reverting process. Thus, the choice of an exponential Ornstein-Uhlenbeck process remains meaningful in
this context. An alternative is to model log(S) through a continuous-time ARMA (autoregressive-moving
average) process ([19], [20], [22]). Due to the multitude of approaches included in this family of models,
this choice provides a high degree of flexibility in capturing various types of dynamics, particularly in terms
of temporal dependence relationships.

2.2.2 The drifts of the elementary factors

The modeling of the drift vector of the elementary factors proposed in this section aims to achieve a dual
purpose. On one hand, it aims to incorporate the insights provided by financial literature, and on the other
hand, to be flexible enough to capture potential market-specific patterns that may not be accounted for
by standard approaches. In line with this objective, we propose to define this drift as the following linear
combination:

µt =

ny∑
p=1

βp,t · Γp,t, (10)

where Γp is the performance factor associated with portfolio yp,t, and β(yp,t) is the vector of sensitivities
of the elementary factors defined by:

βp,t =
Cov

(
dFt,y

⊤
p,tdFt

)
Var

(
y⊤
p,tdFt

) =
Ωtyp,t

y⊤
p Ωtyp,t

. (11)

The form 10, although very general in its current state, frames the modeling of µ by defining the drifts of
the elementary factors based on their respective exposures to the portfolios included in Y. Therefore, the
composition of Y plays a crucial role in this framework. Furthermore, it is clear from 10 that the significance
of the various portfolios contained in Y on µ is contingent upon the forms taken by the functions Γp. Here,
according to our dual objective outlined in the introduction, we consider the following specification:

Γp,t = λ(S)
p

(
σt(yp,t)

)
︸ ︷︷ ︸

(1)

+λ(P )
p

(
σ̂t(yp,t,wp)

)︸ ︷︷ ︸
(2)

+ µ̂t

(
yp,t, δp

)
︸ ︷︷ ︸

(3)

+ Ep,t︸︷︷︸
(4)

, (12)

where:

• (1) corresponds to the instantaneous risk premium of the portfolio yp,t, which is a function of the
value taken by σt

(
yp,t

)
, the spot volatility of this portfolio, such that λ

(S)
p : R+ → R.

• (2) corresponds to the premium compensating for the historical risk of the portfolio yp,t measured by
σ̂t

(
yp,t,wp

)
(equation 5), such that λ

(P )
p : R+ → R.

• (3) corresponds to the feedback effect of the past dynamics of yp,t on its current drift deined by
equation 4).

• (4) corresponds to the residual component of the performance factor associated with portfolio yp,t,
not explained by the first three components.
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This modeling approach has the double advantage of being highly flexible while preserving a clear under-
standing of the factors influencing the vector of factor drifts. For instance, as demonstrated in appendix
C.2, the proposed model can be specified to align with the theoretical coordinates of the capital asset
pricing model (CAPM) ([72], [52]). In addition to a strict adoption of this type of specification based on
a strong theoretical framework, those can serve as a baseline for integrating other components of µ. This
allows for a combination of a theoretical model with a data-driven approach. Moreover, the combination
of the four components that form a performance factor enables the modeling of complex drift patterns and
different natures.

Firstly, components (1) and (2) allow linking the volatility levels of factorial portfolios - instantaneous
volatilities in the case of (1) and past volatilities in the case of (2) - with drifts. However, the relationship
between the level of volatility and expected returns is both common in financial modeling ([70], [40]) and
extensively documented [34]. Furthermore, the very general definition given to λ

(S)
p (.) and λ

(P )
p (.) enables

the consideration of a variety of ways to model this relationship, including for instance linear and polynomial
forms, as proposed in [40]. Regarding the dual risk premium structure employed, comprising a spot volatility
premium and a historical volatility premium, it may seem unconventional at first glance. Nevertheless, in
practice, this specific form allows for the modeling of various important empirical phenomena documented
in financial literature. One such example is the market behaviors studied by French et al. ([34]), where
the expected returns of stocks are positively related to predictable volatility through autoregressive (AR)
models and negatively related to unexpected changes in volatility. In the proposed framework, considering
yp as a factorial portfolio representative of the equity market, this phenomenon can be captured by jointly
specifying λ

(S)
p as an increasing function on R+ and λ

(P )
p as a positively increasing function on R+. Indeed,

in this context, on the one hand, the variation in (1) + (2) is negatively correlated with a volatility shock,
and on the other hand, (1) + (2) follows a positive relationship with the level of volatility predicted by an
AR model due to component (2). A second example of an empirical pattern that the dual form of the risk
premium can capture is the well-documented ’fly-to-quality’ phenomenon ([11], [23], [7]). Indeed, let us
suppose that yq corresponds to a quality portfolio, and that the associated risk premiums take the form
λ
(S)
q

(
σ
)
= λ̄

(S)
q σ2 and λ

(P )
q

(
σ
)
= λ̄

(P )
q σ2 with 0 < λ̄

(S)
q = −λ̄(P )

q . In this setup, during prolonged periods of
stability in the volatility level, (1) + (2) is close to zero. However, if the instantaneous volatility suddenly
spikes, (1) + (2) turns positive due to a positive delta between spot volatility and the historical volatility
factor. Conversely, when volatility decreases, (1) + (2) turns negative, spot volatility becoming lower than
historical volatility.

Regarding (3), this feedback feature enables the modeling of momentum and mean-reversion phenomena,
two important determinants of empirical price dynamics ([62], [36], [71]). The nature of the feedback
generated by this component depends on the value of δp, as clearly evident from its mathematical expression
provided by 4. Thus, when δp ∈ Rny

+ and if at least one coordinate of δp > 0, (3) may be viewed as a
momentum factor. Conversely, if δp ∈ Rny

− and at least one coordinate of δp < 0, (3) can be seen as a
reversal factor. Beyond these two polar cases, the form of (3) allows capturing more complex feedback
structures, such as the coexistence of positive autocorrelation in returns over short horizons and negative
autocorrelation over longer horizons highlighted by Poterba and Summers ([62]).

The component (4) differs from the first three components of 12 on several fronts. Firstly, it is not
necessarily solely a function of endogenous information but may also depend on exogenous information
contained in It. Consequently, this component enables the consideration of exogenous determinants of
factor drifts, allowing for the concrete incorporation of factors such as ’views’ in the Black-Litterman sense
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on portfolios. Moreover, (4) can serve to ensure certain relationships between different components of the
model, as in the case of the CAPM specification of µ discussed in appendix C.2.

3 The Factorial Path-Dependent Market Generator

3.1 The market generator framework

3.1.1 The considered RPDV model

The theoretical framework proposed in section 2, defining the RPDV model, is intentionally very general
and encompasses a large number of possible specifications. This section aims to define the RPDV under
consideration, which will be used, in a discretized version, as a market generator in the remainder of the
article.

3.1.1.1 The set of factor portfolios Y

Firstly, the set of factor portfolios Y is defined as:

Y = {ep}mp=1,

where ep is an m × 1 vector, with the value of the p-th row being 1 and 0 for all other rows. This is one
of the simplest possible specifications of Y, which implies that the features on which the factor drifts and
volatilities depend are each a function of a single elementary factor. Furthermore, through equations 4 and
5, the drift vector of the elementary factors can be simplified as follows:

µt =

m∑
p=1

βp,t · Γp,t =

m∑
p=1

Ωtep
epΩtep

· Γp,t =

m∑
p=1

ep · Γp,t = Γt.

Therefore, the drift of an elementary factor j depends solely on the performance factor Γj,t associated with
it (since βj,t = ej).

3.1.1.2 The kernels

The specification adopted for the kernels associated with the features on which the factor drifts and volatil-
ities depend is also made with a concern for parsimony. Thus, the considered model includes only two
kernels: the first shared by all convolved dynamics features and the second shared by all historical volatil-
ity features, respectively defined by:

g(µ̂)(s) =

nτ∑
k=1

δk
τk

e
− s

τk and g(σ̂)(s) =

nτ∑
k=1

wk

τk
e
− s

τk , (13)

where δ,w ∈ Rnτ
+ and with

τk = exp

(
log(τ−) +

log(τ+)− log(t−)

nτ − 1
(k − 1)

)
. (14)

This method of defining the parameters {τk}nτ

k=1, introduced in [58], allows for a good approximation for
the majority of positive decreasing kernels on R+ as long as one opts for a specification of nτ , t−, t+. In
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this case, we choose the following specification: nτ = 10 and 1/365 and 5 (expressed in years).

3.1.1.3 The volatilities of elementary factors

The specification of the vector of elementary factors is based on the idea that one elementary factor,
corresponding to the market factor, plays a specific role in the overall level of factorial volatilities. In
this framework, the purely path-dependent component of the volatility of an elementary factor depends
solely on its own past trajectory and the past trajectory of the market factor. Following this principle,
by associating the market factor with the first (in terms of index) elementary factor, we define this purely
path-dependent component for an elementary factor k as:(

V (Ft)
)
k
= b0,k + b1,k · µ̂t (ek, δ) + b2,k · σ̂t (ek,w) + b3,k ·

(
V (Ft)

)
1
, (15)

where ∀ k : b0,k, b2,k, b3,k ∈ R+. In a less compact form, equation 15 can be rewritten as follows:

(
V (Ft)

)
k
= b0,k + b3,kb0,1 + b1,k

∫ t

−∞
K(µ̂)(u)d(Fu)k + b3,kb1,1

∫ t

−∞
K(µ̂)(u)d(Fu)1

+ b2,k

√∫ t

−∞
K(σ̂)(u)(Ωu)k,kdu+ b3,kb2,1

√∫ t

−∞
K(σ̂)(u)(Ωu)1,1du.

Certainly, for the specific case of the market factor (i.e. k = 1), b3,1 = 0. Consequently, the purely path-
dependent component of the market factor volatility takes a form analogous to the PDV model by Guyon
and Lekeudfack:

(
V (Ft)

)
1
= b0,1 + b1,1

∫ t

−∞
K(µ̂)(u)d(Fu)1 + b2,1

√∫ t

−∞
K(σ̂)(u)(Ωu)1,1du.

Regarding X, the process responsible for capturing the exogenous dynamics of factorial volatilities, we
adopt here the form suggested in section 2.2, namely an exponential OU process. More precisely, reusing
the form 9, we consider the case where both Υ and Ψ are diagonal matrices, such that the coordinates are
independent. Furthermore, we assume that the mean-reversion parameters associated with this process are
very high, corresponding to high or medium frequency phenomena. Thus, for the time step ∆t considered
in the market generator, the realizations of Xt and Xt+∆t are approximately independent. This modeling
assumes that, for low-frequency observations, the autocorrelation structure of volatilities is entirely captured
by V and S.

To model the dynamics of the market sensitivity operator S, we assume that log(S) follows a CARMA
process. In practice, since the market generator is a discrete model, the selected model will be a standard
ARMA(1,1). This choice, which may appear arbitrary at first glance, is actually determined by the empirical
dynamics of S, which are fairly well-modeled by this type of process (see appendix G.3).
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3.1.1.4 The factorial drifts

The specification of the factor drift vector follows a CAPM-like framework under the assumption of zero
interest rates: only the market factor has a non-zero drift. Specifically, this vector is defined by the
expression:

µt = Γt = e1 ·
(
µ̄+ ζ · µ̂t (e1, δ) + λ · σ̂t (e1,w)

)︸ ︷︷ ︸
Γ⋆
t

.

where Γ⋆ respresents the market premium. This comprises three components. The first, µ̄, represents
the invariant part of the market premium. The second component, ζ · µ̂t (e1, δ), models the effect of past
market factor dynamics on their current market premium. If ζ is positive, the market premium exhibits
momentum: the market factor is subject to a positive feedback effect. Conversely, if ζ is negative, the
market premium exhibits reversal: the market factor is subject to a negative feedback effect. The third
component, λ · σ̂t (e1,w), represents a premium for historical volatility.

Several additional remarks can be made. Firstly, the market risk premium, and consequently the drift,
is purely path-dependent. Only the feature variables determining the path-dependent component of the
volatility of the market factors make the drifts time-variable. Furthermore, the market risk premium can
be rewritten as follows:

Γ⋆
t = µ̄′ + λV · (Vt)1 + ζ ′ · µ̂t (e1, δ) + λ′ · σ̂t (e1,w) ,

µ̄′ = µ̄−λV ·b0,1, ζ ′ = ζ−λV ·b1,1 and λ′ = λ−λV ·b2,1. Therefore, it has as a special case Γ⋆
t = µ̄+λV ·(Vt)1.

Another important point is that the drift vector of the assets is defined as:

Aµt = (A)[:,1] · Γ⋆
t .

Consequently, in this framework, changes in the asset drifts are solely caused by movements in the market
risk premium.

3.1.2 The market generator

The considered market generator is a discrete version of the FPDM model discussed in dection 3.1.1. It
is defined by algorithm 1. In addition to the time step ∆t and the number of simulations ns, it takes
as input the set of parameters δ,w,A, τ ,b0,b1,b2,b3,S, µ̄, ζ, λ, a0, a1, a2, and the set of state variables
P0,M

(µ̃)
0 ,M

(Ω̃)
0 , ϵ0, whose determination is discussed in next section 3.2. These inputs are then used to

generate a time series {Pu∆t}0≤t≤u, which constitutes the output of the generator3. The objective of this
section is to elucidate the various components of this market generator, including the discretization choices
made and the rationale behind these choices.

Firstly, the SDEs associated with the dynamics of the price vector and elementary factors are discretized
using a simple Euler scheme. Interestingly, the price is subject to the positive part operator (.)+. This
characteristic has two major advantages. Firstly, it ensures that prices remain positive or zero. Secondly,
it allows for the possibility of bankruptcy or default: when the price reaches 0, its value remains null for all
subsequent dates. In the case where the price vector corresponds to a set of stocks, this property allows,

3Of course, other elements used for simulating this time series can be added to the output, depending on the purpose of
using the market generator. Typically, it may be beneficial to also retain the trajectories of elementary factors or volatility.
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for example, to estimate by simulation the probability of default at a given time horizon for the different
companies in the considered investment universe.

Algorithm 1 The Factorial Path-dependent Market Generator.

Input: P0,M
(µ̃)
0 ,M

(Ω̃)
0 , ϵ0, δ,w,A, τ ,b0,b1,b2,b3,S, µ̄, ζ, λ, a0, a1, a2,∆t, ns.

For t = 1 to ns do

1. Sample
(
W⊤

t+∆t,B
⊤
t+∆t, ϵt+∆t

)⊤
from N (02m+1, I2m+1).

2. Update system equations:

µ̂t+∆t ← δ⊤M
(µ̃)
t

σ̂t+∆t ←
(
w⊤M

(Ω̃)
t

)◦1/2
Vt+∆t ← b0 + b1 ⊙ µ̂t+∆t + b2 ⊙ σ̂t+∆t + b3 · (b0 + b1 ⊙ µ̂t+∆t + b2 ⊙ σ̂t+∆t)1

Xt+∆t ← exp ◦
(
S⊙ (Bt+∆t − S)

)
log (St+∆t)← a0 + a1log (St+∆t) + a2ϵt + ϵt+∆t

µt+∆t ← e1 · (µ̄ · 1m + ζ · µ̂t+∆t + λ · σ̂t+∆t)

√
Ωt+∆t ← diag

(
Vt+∆t ⊙Xt+∆t · St+∆t

)
∆Ft+∆t ← µt ·∆t+

√
ΩtWt+∆t ·

√
∆t

Pt+∆t ←
(
Pt +Pt ⊙

(
A⊤∆Ft+∆t

))
+

M
(µ̃)
t+∆t ←

(
1⊤
nτ
⊗ exp ◦

(
τ−1 ·∆t

))
⊙M

(µ̃)
t +

(
τ−1

)⊤
⊗∆Ft+∆t

M
(Ω̃)
t+∆t ←

(
1⊤
nτ
⊗ exp ◦

(
τ−1 ·∆t

))
⊙M

(Ω̃)
t +

(
τ−1

)⊤
⊗
(
∆Ft+∆t

)◦2
3. Update the set of price vector trajectories:

{Pz∆t}0≤z≤u ← {Pu∆t}0≤z≤u−1 ∪ {Pu∆t}

end for.

Output: {Pk∆t}1≤k≤ns
.

The EWMA of the variations and quadratic variations of the elementary factors are, in turn, aggregated
respectively into matrices M(µ̃) and M(Ω̃) of dimension m × nτ . Thus, the element at coordinate (j, p)

of M(µ̃) (resp. M(Ω̃)) corresponds to the EWMAs with parameter τp of the variations (resp. quadratic
variations) of the elementary factor j. Furthermore, the dynamics of these matrices are not directly modeled
by discretizing the SDEs associated with them, but rather by discretizing the integrals that define these
state variables. This approach, adopted for example in [68], has the beneficial property of ensuring the
stability of the model regardless of the time step considered, which is not the case for classical discretization
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schemes of the SDEs for EWMAs ([67]).

Now, concerning the drifts and factorial volatilities, only the components X and S need to be discretized.
To start with, the process X is not regarded in this discrete model as a stochastic process, in the sense
that the different realizations of this random vector generated from this model form an i.i.d. sample. This
stems from the assumption of very rapid mean reversion of the coordinates of X as posited in section
3.1.1.3, which makes it consistent to model Xt+∆t from the asymptotic distribution of X. Thus, for each
simulation period:

Xt+∆t ∼ LN (−S⊙ S, diag(S)2).

In practice, this choice is equivalent to opting for a non-Gaussian innovation process whenever S ̸= 0m.
Indeed, the marginal distributions of Xt ⊙Wt correspond (independent of each other) to Normal Log-
normal (NLN) mixture ([74]) of the form W · exp(s(B − s)), with (W,B)⊤ ∼ N (02, I2), These marginal
distributions have the important properties of sharing the first three centered moments regardless of the
value taken by S: zero mean, a standard deviation (variance) equal to 1, and zero skewness (see details
in appendix E.1). On the contrary, the kurtosis of the marginal distributions of Xt ⊙Wt depends on the

Figure 4: NLN mixture distributions of the form W es(B−s) with
(W,B)⊤ ∼ N (02, I2) for different values of s.

specification of S, since:

E

[(
W es(B−s)

)4]
= 3e4s

2

.

Thus, as illustrated in figure 4, the larger
(the absolute value of) (S)j , the thicker
the tails of the distributions of (Xt ⊙
Wt)j exhibit. This characteristic en-
ables capturing potential extreme vari-
ations of the elementary factors (and
consequently, of the assets) occurring at
short time scales. However, as men-
tioned earlier, the skewness of (Xt ⊙
Wt)j is necessarily zero due to the in-
dependence of (W )j and (B)j , imply-
ing a symmetry of these factorial vari-
ations at the horizon ∆t. Consequently,
this modeling assumes that the potential
asymmetry of the distributions of facto-
rial increments is caused by the path-

dependent component of volatility, and more specifically by the convolved dynamics features. For this
reason, the choice of the simulation time step ∆t is important. Indeed, in this framework, if the choice
of a daily time step makes the model structurally unable to capture potential asymmetries in daily return
distributions, opting for a smaller time step allows for a potential capture of these asymmetries through
the impact of returns on the level of volatility.

Of course, alternative modeling choices are conceivable, either to capture a potential portion of the skewness
unexplained by the dynamics of Vt, or to maintain a relatively high simulation time step. One way is to
relax the assumption of independence between W and B, so that the correlation between (W )j and (B)j
can be different from 0. In this framework, the innovation process is still distributed according to an NLN
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mixture distribution but can exhibit a non-zero skew. However, the correlation between (W )j and (B)j
results in a non-zero mean of the innovation process associated with factor j, which must be neutralized
in order to maintain E[∆Ft+∆t] = µt ·∆t. Another possible approach to incorporate excess skewness is to
replace Xt ⊙Wt with Zt, a vector whose marginals follow, for instance, skewed generalized t distributions
or kernel density estimators (KDE). However, once again, this requires ensuring that Zt remains centered
so that the factorial drifts stay fully captured by µ.

Remark 1 The algorithm 1 implicitly assumes that the simulation time step is equal to the observation
time step of the model on which the ARMA model parameters were calibrated. When this condition is
not met, it is necessary first to simulate the trajectory of S using the time step with which the model was
calibrated, and then perform interpolation between the simulation periods ∆t, 2∆t, . . . , ns∆t. In practice,
linear interpolation will be used.

3.2 Calibration of the market generator

3.2.1 Input information for model calibration

In the following sections, the calibration of 1 is performed based on a data matrix D of the form:

D =


P1,t0 . . . Pn,t0

P1,t1 . . . Pn,t1
...

. . .
...

P1,tN . . . Pn,tN

 (16)

where t0 < t1 < . . . < tN = T . This matrix D will be used to compute the central matrix for model
calibration, namely the matrix of returns denoted R, defined as:

R =


r1,1 . . . rn,1

...
. . .

...
r1,N . . . rn,N

 (17)

where:

ri,u =
Pi,tu − Pi,tu−1

Pi,tu−1

.

It is worth to note that if the formulation of D does not imply a strict constancy of the observation frequen-
cies of the vector P, the estimation method proposed in the following sections is based on the assumption
of moderate heterogeneity in P frequencies. Thus, if moderate heterogeneity in daily observations caused
by the presence of weekends or holidays is not problematic for the proposed estimation method, the same
cannot be said for a mixture of daily and hourly observation frequencies, for instance.
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3.2.2 The elementary factors decomposition

The price dynamics are driven in the FPDM model by the elementary factors. Accordingly, the first step
in calibrating the market generator is to perform a decomposition of R in the form:

R = ∆̂FÂ
⊤ =

(
∆̂⊤

Fc , ∆̂⊤
Fi

)⊤ (
(Âc)⊤, In

)
= ∆̂Fc

(
Âc
)⊤

+ ∆̂Fi ,

where Â and Âc are respectively estimators of the loading matrix A and Ac, ∆̂F is the history of estimated
variations of elementary factors:

∆̂F =


F̂t1 − F̂t0

...
F̂tN − F̂tN−1

 , ∆̂Fc =


F̂c

t1 − F̂c
t0

...
F̂tN − F̂tN−1

 .

The method used for this purpose is defined by algorithm 2.

Algorithm 2 Decomposition of the returns matrix R into elementary factors.
Input: R, nδ

1. Standardize the matrix R to obtain ¯̄R (equation 18).

2. Perform a singular value decomposition of ¯̄R.

3. v, q ← 1, n
N

4. Repeat until convergence:

(a) Compute
ϕthr ← argmin

ϕi

∣∣∣ϕi − v
(
1 +
√
q
)2∣∣∣

ϕ̃min ← ϕthr(1− t)

ϕ̃max ← ϕthr(1 + t)

(b) Estimate fKDE, the density of {ϕi | ϕi ≤ ϕ+} using a kernel density method.
(c) Find the parameters v and q that minimize:

v, q ← argmin
v,q∈[0,1]2

nδ∑
k=0

(√
fKDE(ϕ̃k)−

√
fMP(ϕ̃k|v, q)

)2

,

where ϕ̃k = ϕ̃min + ϕ̃max−ϕ̃min

nδ
k.

5. Compute
Âc ← (U)[:,:m]

∆̂Fc ← (D)[:m,:m](V)[:,:m]

∆̂Fi ← (D)[mc:,mc:](V)[:,:m](V)⊤[:mc,:]

Output: Âc, ∆̂Fc , ∆̂Fi
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To do this, we will use a matrix factorization commonly employed in various fields of data analysis: singular
value decomposition. However, we will not perform this factorization on R but on ¯̄R defined as:

¯̄R = RMst with Mst = diagM→D

(
1

N
· R̄R̄⊤

)−1/2

, (18)

and where R̄ = diagM→D

(
1

n
·R⊤R

)−1/2

R.

Therefore, it involves double standardization: standardization per row then standardization per column.
The row standardization helps reduce the impact of volatility level variability on the singular value de-
composition. This standardization makes particular sense in the proposed model where the volatilities of
elementary factors depend on the volatility level of the market factor and the sensitivity operator (S). On
the other hand, column standardization assigns equal importance to each asset, whereas a singular value
decomposition performed directly on R implicitly weights more volatile assets. Moreover, it normalizes
the variance of the matrix R̄, denoted as v, to 1, which will allow for certain simplifications in subsequent
steps. By proceeding with a singular value decomposition of R̄, we obtain the following factorization:

R̄ = UDV⊤,

where U is a N ×N matrix, V a n× n matrix, and D is a N × n matrix diagM→d (D) = (
√
ϕ1, ...,

√
ϕn)

⊤

such as ϕ1 > ... > ϕn.

To build the estimators Â and ∆̂F from the elements obtained through this decomposition, the next step
involves distinguishing the dynamics of common elementary factors from those of idiosyncratic elementary
factors. The mc elements associated with the mc largest singular values will define the component of
R̄ generated by the common elementary factors, and the n − mc elements its component produced by
the idiosyncratic elementary factors. More precisely, regarding the matrices associated with the common
elementary factors:

Âc = M
−1/2
st (V)[:,:mc], and ∆̂Fc = (U)[:,:mc](D)[:mc,:mc]. (19)

As for the matrix of variations of idiosyncratic elementary factors:

∆̂Fi = (U)[:,mc+1:](D)[mc+1:,mc+1:]

(
M

−1/2
st (V)[:,mc+1:]

)⊤
. (20)

The challenge is therefore to determine the value taken by mc. In practice, this involves finding a threshold
value ϕthr for the eigenvalues of 1

N R̄R̄⊤ to separate the noise from the signal, an issue that has been
extensively addressed in the academic literature ([45], [17], [49]). In these works based on results from
random matrix theory, ϕthr is determined using the upper bound ϕ+ of a Marchenko-Pastur distribution,
whose density is defined by:

fMP(ϕ|v, q) =


√
(ϕ+ − ϕ)(ϕ− ϕ−)

2πqϕ
if ϕ ∈ [ϕ− : ϕ+],

0 else,

where ϕ− = v(1 − √q)2 and ϕ+ = v(1 +
√
q)2. However, if the values of the parameters q = N/n and

v correspond to the variance of 1
N R̄R̄⊤ in the case where the entries of R̄ are independent identically

distributed random variables, the choice of these values is no longer straightforward when this assumption
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does not hold (which is a priori the case here). For this reason, several approaches coexist in the literature
for determining these parameters ([45], [49]).

The method adopted here is largely inspired by the one proposed by Lopez de Prado ([49]). This involves,
after initializing v and q to 1 and n

N , the iterative execution of three successive steps. The first one assigns
a provisional value to ϕthr as the nearest eigenvalue to v

(
1 +
√
q
)2. The second step consist in estimating

the density of the distribution of eigenvalues that are less than or equal to ϕthr using a kernel density
method, density denoted fKDE. The third step updates the parameters v and q to the values that minimize
(a proxy of) the Hellinger distance between fKDE(·) and fMP(·|v, q). These three steps are then repeated
until the convergence of ϕthr.

After this iterative process, mc is defined by the number of eigenvalues strictly greater than ϕthr. The
matrices ∆̂c

F, ∆̂i
F, and Âc are finally calculated using equations 19 and 20.

3.2.3 Estimation procedure

The objective now is to estimate all the parameters (other than the matrix A) and state variables taken as
input by the FPDM generator (algorithm 1), using the matrix of variations of the elementary factors ∆̂F

obtained via algorithm 2. The method chosen for this purpose is defined by algorithm 3.

This one starts by calculating the various EWMAs of the variations and quadratic variations of the elemen-
tary factors. These EWMA are initialized at period trw from the first rw periods (step 1.a. of algorithm
3) using a discretisation of

µ̃
(k)
trw = µ̃

(k)
t0 · e

t0−trw
τk +

1

τk

∫ trw

t0

e
u−trw

τk dFu,

and Ω̃
(k)
trw = Ω̃

(k)
t0 · e

t0−trw
τk +

1

τk

∫ trw

t0

e
t0−trw

τk (dFu ⊙ dFu) .

The values of µ̃(k)
t0 and Ω̃

(k)
t0 are thus initialized using the means of the variations and quadratic variations

of the elementary factors over the entire training period, which compensates for the lack of data for periods
before t0. In practice, when rw is large enough, the impact of this initialization choice is small, as only the
EWMA associated with a high τk are affected. For periods beyond trw, updating the values of EWMA is
done in the same way as adopted in the market generator.

This initial step is followed by a second phase that involves considering the log-likelihood function associated
with the equation governing the dynamics of the vector of elementary factors, under the assumption that
Xt = 1m, such as:

∆Ftu ∼ N
(
µ̂tu ·∆u, diag (Su · Vu ·∆u)

2
)
,

where ∆u = tu − tu−1. This log-likelihood function is given by:

L
(
Θ|∆̂F

)
= −1

2

N∑
u=rw+1

(
(∆̂F)u − (µ)u ·∆u

)⊤ (
∆u · (Su · Vu)

◦2
Im

)−1 (
(∆̂F)u − (µ)u ·∆u

)
+ log

∣∣∣∆u · (Su · Vu)
◦2

Im

∣∣∣−m log(2π), (21)
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where Θ represents the set of parameters on which µ and V depend. However, on the contrary to the
classical maximum likelihood method, the proposed approach does not strictly maximize the likelihood of
the model, due to its sequential structure. Indeed, step 2 of Algorithm 3 involves iteratively maximizing
21 only over subsets of the model’s parameter space. This first subset (step 2a) is defined by:

Θ1 =
{
δ,w, (b0)1, (b1)1, (b2)1, (µ̄)1 , ζ, λ

}
.

Step 2a therefore consists in maximizing the likelihood of the univariate model of the dynamics of the first
elementary factor, corresponding to the market factor. Since δ and w are estimated in this step, the kernels
K(µ̂) and K(σ̂) are determined solely from the data for this factor. This separate and primary optimization
of the parameters of the market factor is motivated by the singular role it plays in the model. Step 2b
involves maximizing 21 with respect to the parameter set Θ2, defined as:

Θ2 =
{
(b0)j , (b1)j , (b2)j , (b3)j

}
2≤j≤m

.

Thus, this step determines the parameters that are functions of µ and V associated with all elementary
factors, with the exception of those associated with the market factor (estimated in step 2a). Step 2c,
which constitutes the final step of phase 2, involves maximizing the log-likelihood with respect to Stu for
rw + 1 ≤ u ≤ N . In this step, the values of S are directly obtained using the analytical solution of the
problem presented in appendix F.

Once the value of the log-likelihood function has converged after iterating through steps 2a, 2b, 2c, the
algorithm estimates a1, a2, a3 by fitting an ARMA(1, 1) model to the series

{
log
(
Ŝtu
)}

rw+1≤u≤N
, using

the standard maximum likelihood estimation approach ([18]).

The final phase involves estimating the vector S on which X depends, utilizing a method-of-moments
approach whose rationale is explained in detail in appendix E.3. First, step 4a calculates the fourth-order
moments of the m samples4: 

(
∆F̂u − µ̂u ·∆u

)
j

(Su · Vu ·
√
∆u)j


rw+1≤u≤N

.

The standardization of factor variations (i.e., F̂u) serves two main purposes: firstly, it allows us to treat
these samples as being i.i.d., and secondly, it enables us to isolate the impact of X. Thus, in the specific
case where the simulation time step ∆t equals the average time step between observations, the computed
empirical moments in step 4a directly serve as estimators of E

[
(X ⊙W )4j

]
. In a broader context, these

fourth-order moments enable us to estimate S using the formula derived in appendix E.3, which is precisely
what step 4b accomplishes.

4The algorithm 3 uses the biased estimator of E
[
(X⊙W )4j

]
. A consistent alternative would be to use its unbiased estimator.
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Algorithm 3 Estimation of the FPDM generator.
Input: ∆̂F,∆t

1. For k = 1 to nτ do

(a)
{
µ̃
(k)
trw

}
← e

t0−trw
τk

N
·
∑N

u=1

(
∆̂F

)
u

tu − tu−1
+ 1

τk

∑rw
u=1 e

tu−trw
τk ·

(
∆̂F

)
u{

Ω̃
(k)
trw

}
← e

t0−trw
τk

N
·
∑N

u=1

(
∆̂F ⊙ ∆̂F

)
u

tu − tu−1
+ 1

τk

∑rw
u=1 e

tu−trw
τk ·

(
∆̂F ⊙ ∆̂F

)
u

(b) For u = rw + 1 to N do{
µ̃
(k)
tz

}
0≤z≤u

←
{
Ω̃

(k)
tz

}
0≤z≤u

∪
{
e

tu−tu−1
τk · µ̃(k)

tu−1
+

1

τk
·
(
∆̂F

)
u

}
{
Ω̃

(k)
tz

}
0≤z≤u

←
{
Ω̃

(k)
tz

}
0≤z≤u−1

∪
{
e

tu−tu−1
τk · Ω̃(k)

tu +
1

τk
·
(
∆̂F ⊙ ∆̂F

)
u

}
End for.

End for.

2. Repeat until convergence:

(a) Θ̂⋆
1 ← argminΘ1∈SΘ

L
(
Θ|∆̂F

)
(b) Θ̂⋆

2 ← argminΘ2∈SΘ
L
(
Θ|∆̂F

)
(c) For u = rw + 1 to N do

Ŝ⋆u ←

√√√√√ m∑
j=1

(
(∆Ftu)j −

(
µ̂tu

)
j
·∆tu

)2
(Vtu)

2
j ·∆tu

3. Fit ARMA(1,1) based on the time series
(
log
(
Ŝ⋆1
)
, ....log

(
Ŝ⋆N
))

to obtain â0, â1, â2, ϵ̂N .

4. For j = 1 to m do

(a) ĉj,4 ←
1

N − rw − 1

∑N
u=rw+1

(∆Fu − µ̂u ·∆u

)
j

(Su · Vu ·
√
∆u)j

4

(b) (Ŝ)j ← 0.5

√√√√√log

 1
N−rw−1

∑N
u=rw+1(tu − tu−1)

∆t

(
ĉj,4
3
− 1

)
+

+ 1

.

End for.

Output:
{
µ̃
(k)
tN

}
0≤k≤nτ

,
{
Ω̃

(k)
tN

}
0≤k≤nτ

, Θ̂⋆
1, Θ̂

⋆
2, â0, â1, â2, ϵ̂N
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4 Empirical assessment of the FPDM generator performance

4.1 Modalities of the conducted assessments

4.1.1 The considered market dataset

The objective of section 4 is to assess the capability of the FPDM generator defined in section 3.1.2 to
produce realistic market scenarios, capturing various characteristics of the considered time series. We begin
by defining the data under consideration.

Firstly, we consider an equity investment universe: the assets comprising the S&P500 index. More precisely,
we focus on the 436 assets belonging to the S&P500 as of April 30, 2024, for which we have daily historical
data from April 1, 2010, to April 30, 2024. The first 8 years of historical data, spanning from April 1, 2010,
to April 30, 2018, constitute the training dataset used to calibrate the FPDM Generator. The remaining
historical data, covering the period from May 1, 2018, to April 30, 2024, will be used as the test dataset
for evaluating the model’s performance. This division has the particularity that the training set does not
include periods of very strong market turbulence similar to that of the 2020 stock market crash included
in the test set, which enables to assess the model’s ability to reproduce such events even without them
appearing in the data used for its training.

4.1.2 The set of parameters of the generator

The various parameters of the market generator are determined by applying algorithms 2 and 3 successively
on the training set.

To begin, the application of algorithm 2 results in obtaining 25 common elementary factors. Consequently,
the FPDM Generator used comprises a total of 461 common elementary factors: 25 common factors
and 436 idiosyncratic factors. If we focus more specifically on the first estimated common factor, the
correlation between its daily variations and the returns of the S&P500 index over the same periods is
0.985 (see appendix G.2). Therefore, considering this factor as the market factor is entirely coherent. It
is also interesting to examine the separation achieved by algorithm 2 between the eigenvalues associated
with the common elementary factors and the remaining eigenvalues, as illustrated in figure 5. Firstly,
the Marchenko Pastur distribution estimated by the algorithm fits the data quite well. Additionally, the
separation threshold between the 25 largest and the smaller eigenvalues coincides with several changes in
the behavior of the spectrum of 1

N
¯̄R ¯̄R⊤. Indeed, as illustrated by the plot in the top left (figure 5), the

density of eigenvalues as a function of their magnitude appears to follow a power-law relationship for the 25

largest eigenvalues, which is not the case for eigenvalues below this threshold. Relatedly, except for the first
eigenvalue associated with the market factor, the eigenvalues associated with the other common risk factors
follow the relationship: log(ϕk) ≈ a− b · log(rank(ϕk)). This is illustrated by the two plots at the bottom
of figure 5, where the black line corresponds to the OLS regression line a− b · log(rank(ϕk)) estimated from
eigenvalues 2 to 25 (the parameters obtained here are â = 3.45 and b̂ = 0.92). Even more remarkably, when
performing the same regression on the oracle eigenvalues estimated using the approach proposed in [47],
b̂ is almost exactly equal to 1, which could suggest the existence of an underlying fundamental financial
relationship.

The algorithm 3 is then employed, subsequent to the application of algorithm 2, to estimate the remaining
parameters of the model. This entails specifying {τk}nτk=1, ∆t, and rw, in addition to the matrix obtained
from algorithm 2. To determine the values of {τk}nτk=1, we utilize equation 14 (section 3.1.1.2) with nτ = 20,
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τ− = 1/365, and τ+ = 5, all expressed in years. The time step utilized for the simulations is ∆t = 1/3650,
also expressed in years. Moreover, we select a parameter rw = 1008, specified in the number of periods,
which roughly corresponds to the initial 4 years of the training dataset used to initialize the various EWMA
components of the model. Consequently, the estimation of the model parameters is practically conducted
over a period of approximately 4 years, spanning from April 2014 to the end of April 2018.

Figure 5: Histogram of the eigenvalue distribution of 1
N

¯̄R ¯̄R⊤. The black dashed line that fits the red part of the
histograms corresponds to the fitted Marchenko-Pastur distribution obtained from algorithm 2, used to separate
common elementary factors from idiosyncratic elementary factors.

Several observations can be made following the application of algorithm 3. Firstly, as shown in figure
18, the obtained kernels are very close to time-shifted power law (TSPL) kernels, corroborating several
recent findings in volatility literature ([39]). Regarding the parameters of the drift and the path-dependent
component of the volatility associated with the market factor, they are respectively of the same sign:
µ̄, ζ, b0,1, λ, b2,1 are positive, and ζ, b1,1 are negative. However, if the drift of the market factor is quite close
to a positive affine relationship with the (Vt)1, then µ̄/b0,1 > ζ/b1,1 > λ/b2,1. Consequently, the constant
part of the drift plays a more important role than in its approximation of the form Γ⋆

t ≈ µ̄ + λV · (Vt)1.
Similarly, the reversal effect is more significant than the historical volatility risk premium effect if the
affine relationship were perfectly respected. Another notable observation is the strong correlation of 0.875
between the purely path-dependent volatility component associated with the market factor (i.e., (V)1) and
the VIX, despite the latter not being included in the training set. This element suggests a high level of
coherence between the volatility of the market factor estimated by the model results and the market’s
priced volatility. Additionally, significant differences in the fourth-order moments are observed between
the common elementary factors and the idiosyncratic elementary factors. For the 25 common factors, this
moment ranges from 2.75 to 4.1, with mean and median values of 3.26 and 3.18, respectively, close to the
Gaussian assumption (where this moment equals 3). In contrast, for the idiosyncratic factors, this moment
ranges from 2.98 to 78, with mean and median values of 12.8 and 9.64, respectively.
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4.2 General properties of generated datasets
The objective of this initial series of evaluations is to compare the overall properties of synthetic data
generated by the FPDM generator model with market data.

4.2.1 Evaluation based on the marginal distributions

To begin, we delve into the individual dynamics of assets using simulated data, aiming to assess the
consistency of their marginal return distributions with their empirical counterparts. Our analysis focuses
on the first four moments of the daily, weekly, and monthly returns distributions for this purpose.

The comparison method used is as follows: we start by computing the various empirical moments consid-
ered, for both the historical realization and for each market scenario generated by the market generator.
Therefore, for each asset i/moment p/temporal horizon l combination (e.g. the empirical mean of daily
returns for Apple stock), we obtain a sample of 1000 empirical moments from the corresponding 1000
simulations. From the empirical cumulative distribution function F̃i,p,l estimated from this sample, we
compute the estimated cumulative probability of the empirical moment obtained from the actual market
data sample:

pi,p,l = F̃i,p,l(m̂i,p,l),

where m̂i,p,l is the empirical p-th moment of the returns with a temporal horizon l of asset i calculated
on real data. Subsequently, for each moment/time horizon pair, we compute the mean of these cumula-
tive probabilities across the 436 assets, along with the three quartiles and the proportion of cumulative
probabilities between 0.05 and 0.95. The results are then report in the table 1.

Mean pi,p,l Q1 pi,p,l Med. pi,p,l Q3 pi,p,l Prop. pi,p,l ∈ [0.05 : 0.95]

D
ai

ly

Moment 1 0.535 0.349 0.589 0.749 0.913
Moment 2 0.582 0.457 0.643 0.765 0.933
Moment 3 0.462 0.203 0.43 0.718 0.966
Moment 4 0.6 0.499 0.643 0.753 0.954

W
ee

kl
y Moment 1 0.426 0.233 0.412 0.574 0.954

Moment 2 0.55 0.386 0.612 0.741 0.931
Moment 3 0.488 0.265 0.462 0.698 0.961
Moment 4 0.582 0.456 0.617 0.753 0.95

M
on

th
ly Hist. data 0.427 0.236 0.41 0.571 0.954

Sim. data 0.535 0.349 0.589 0.748 0.913
Moment 3 0.398 0.205 0.315 0.561 0.97
Moment 4 0.565 0.418 0.62 0.756 0.936

Table 1: Statistics related to the estimated cumulative probabilities set {pi,p,l}1≤i≤436. For example, the cell
corresponding to the "Mean" column and the "Daily/Moment 3" row represents 1

436

∑436
i=1 pi,3,1 = 0.462.

These obtained figures tend to demonstrate a very good fit between the distributions of the returns gen-
erated by the model and their empirical counterparts. Indeed, the various empirical moments of the real
data are generally close to the mean and median levels of their counterparts obtained through simulations.
Thus, except for the third-order moment of monthly returns, for all others pairs p and l, the mean and
median of {F̃i,p,l(m̂i,p,l)}436i=1 fall between 0.4 and 0.6. Similarly, for each moment/time horizon pair, over
90% of the assets exhibit empirical moments within the 90% confidence interval of the model.
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Moreover, the synthetic data generated by the FPDM Generator are not only coherent with market data in
terms of asset return distributions, but also in terms of trajectories. Indeed, as illustrated in figure 6 with
the example of Amazon stock5, the various characteristics of the price and return trajectories of individual
stocks are well reproduced. It is particularly striking regarding the joint dynamics of price and volatility:
in line with empirical data, on the one hand, volatility spikes coincide in the vast majority of cases with
price drops; on the other hand, volatility tends to decrease relatively slowly following these shocks. This
accurate modeling enables the reproduction of another related feature of financial series: the volatility
clustering effect, which denotes the coexistence of periods of low and high volatility.

Figure 6: Price trajectory, volatility (estimated from a GARCH(1,1) model), and daily returns of Amazon stock:
real data vs simulated data. The features characterizing the real data, such as the phenomenon of volatility spikes
and volatility clustering, strong daily price swings, or the leverage effect, are well reproduced by the model.

4.2.2 Evaluation based on the joint asset prices dynamics

The objective of this section is to assess the model’s ability to capture the correlation structure of price
dynamics.

To this end, the first type of evaluation will focus on the covariance matrix and the correlation matrix of
daily returns. More specifically, we will evaluate estimators of the correlation matrix and the covariance
matrix of the daily returns of the considered universe obtained from the simulations generated by the
FPDM generator, with the sample estimators of these matrices computed for the test period. For this
purpose, we will use as benchmarks, estimators of these matrices calculated on historical data over the
period on which the FPDM generator is trained (i.e. from April 2014 to the end of April 2018). For both

5We take the example of Amazon here, as it is one of the largest capitalizations in the S&P500. However, the observations
in this paragraph hold for all simulated assets.
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estimators calculated on historical and synthetic data, four types of estimators are considered6:

1. The unbiased sample estimator.

2. The Oracle approximating shrinkage (OAS) proposed in [24].

3. The first linear shrinkage estimator of Ledoit and Wolf introduced in [46].

4. The non-linear shrinkage estimator also proposed by Ledoit and Wolf, as detailed in [47].

To compare these estimators, two evaluation metrics are employed. The first one is the Frobenius norm of
the difference between the sample test covariance (resp. correlation) matrix C and the estimator covariance
(resp. correlation) matrix Ĉ:

LF (Ĉ,C) = ∥Ĉ −C∥F .

This is equivalent to calculating the root sum squared error between the elements of the two matrices. The
second one is the minimum loss function proposed in [30], defined by:

LML(Ĉ,C) =
Tr
(
Ĉ−1CĈ−1

)
/n

Tr
(
Ĉ−1

)
/n

− 1

Tr (C−1) /n
.

As Ledoit and Wolf specify ([30], [47]), this cost function is designed to measure the quality of an estimator
of the covariance matrix for use cases "where variance minimization decisions must be taken". The table 2
reports the obtained results.

Corr. Matrix Cov. Matrix
LF LML LF LML

Sample Hist. data 5.98× 101 4.67× 10−1 5.68× 10−2 2.04× 10−4

Sim. data 6.17× 101 2.78× 10−1 4.01× 10−2 1.30× 10−4

OAS Hist. data 6.10× 101 3.94× 10−1 5.71× 10−2 1.72× 10−4

Sim. data 6.17× 101 2.78× 10−1 4.01× 10−2 1.30× 10−4

LW linear Hist. data 6.15× 101 3.74× 10−1 5.73× 10−2 1.64× 10−4

Sim. data 6.17× 101 2.78× 10−1 4.01× 10−2 1.30× 10−4

LW non-linear Hist. data 6.15× 101 3.67× 10−1 5.68× 10−2 1.65× 10−4

Sim. data 5.64× 101 2.70× 10−1 4.00× 10−2 1.24× 10−4

Table 2: Comparison of different estimators of the correlation matrix and the covariance matrix of daily returns.

Firstly, the results concerning the correlation matrix are heterogeneous depending on the cost function
considered. If we begin by focusing on the cost measured by the Frobenius loss function, the costs associated
with correlation matrices calculated on historical data are generally close to their counterparts calculated on
data simulated by the model. If we specifically center our analysis on the sample estimator, the estimator
calculated on historical data slightly outperforms its counterpart calculated on synthetic data. While
this result may initially appear somewhat disappointing regarding the model’s ability to obtain better
estimators of correlations, several factors must be considered to interpret it as accurately as possible.
Firstly, the correlation structure is dynamic in the FPDM generator. However, outperforming the sample
estimator on this metric and over this test period is much simpler with a constant correlation matrix model.

6For each type of estimator, we first calculate the covariance matrix estimator, then from this, we compute the associated
correlation matrix.
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In addition, due to this dynamic nature, the sample correlation matrix changes from one sample (generated
by the model) to another. Thus, if we consider each synthetic sample separately, in 52.3% of cases, the
sample correlation estimator obtained from these samples is associated with a Frobenius loss lower than
that obtained with the sample correlation matrix calculated on the historical data. Furthermore, the
most efficient estimator of the correlation matrix based on the criterion of Frobenius loss is the non-linear
Ledoit-Wolf shrinkage estimator calculated on the simulated data. If we now focus on the comparison
between the estimators of the correlation matrix based on the criterion of the minimum loss function, the
results clearly favor the simulated data. Thus, on this criterion, the cost of the sample correlation matrix
calculated from this simulated data is more than 40% lower than the cost associated with its counterpart
calculated on historical data, and about 25% lower than the cost of the best estimator calculated on
historical data (the non-linear Ledoit-Wolf shrinkage estimator). The results obtained for the covariance
matrices are similar. Indeed, for both considered cost functions, the sample estimator of the covariance
matrix calculated from simulated data significantly outperforms all estimators of this covariance matrix
calculated on historical data. Thus, considering the Frobenius loss, incorporating the effect of the standard
deviations of returns of different assets improves the relative performance of the sample estimator calculated
on simulated data compared to its associated correlation matrix. Therefore, in this context of use (that
of calculating covariance matrices from a set of simulated scenarios over a medium to long-term horizon),
the strength of the model seems to lie less in its ability to better capture linear correlations between
asset returns than in improving the estimation of their individual standard deviations while maintaining a
realistic correlation structure.

Figure 7: The sample correlation matrix and its spectrum: on the left obtained from the real test data, on
the right obtained from a sample generated by the FPDM generator.
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Other interesting findings emerge when considering, not the aggregation of the different generated scenarios,
but each scenario separately. Specifically, while the sample correlation matrix varies significantly from
one generated sample to another, its spectrum retains features characteristic of asset return correlation
matrices. That’s illustrated in figure 7. Thus, like its counterpart calculated on empirical data, the
spectra of these matrices exhibit a similar structure, with, on one side, the largest eigenvalues, which are
distributed following a power law distribution, and the other eigenvalues, which are distributed according
to a Marchenko-Pastur law.

Due to the fact that stock return distributions are non-elliptical ([25]), it is interesting to complement this
analysis of the data’s correlation structure by focusing on correlation measures capable of capturing more
complex dependencies and tail behaviors. To this end, we now focus on two rank correlation measures:
Spearman’s rho and Kendall’s tau. Similarly to the evaluation conducted on linear correlations, we then
compare for each pair of assets (i.e. 94830 pairs, 436 × (436 − 1)/2 = 94830) the empirical Spearman’s
rho and Kendall’s tau of the test sample with the empirical Spearman’s rho and Kendall’s tau of the
simulated data. In addition,two benchmarks for these measures are used to put the obtained results into
perspective: the empirical estimators and the estimators associated with the Gaussian copula calculated
from the training sample7. The table 3 reports the obtained results.

Spearman’s Rho Kendall’s Tau
RMSE MAE RMSE MAE

Emp. hist. data 9.006× 10−2 7.191× 10−2 6.510× 10−2 5.208× 10−2

Gaussian Copula 10.672× 10−2 8.653× 10−2 7.909× 10−2 6.426× 10−2

Emp. sim. data 9.069× 10−2 7.186× 10−2 6.603× 10−2 5.229× 10−2

Table 3: Comparison of different estimators of the correlation matrix and the covariance matrix of daily returns.

As shown in table 3, the performance of the rank correlation measures estimated on simulated data is
substantially identical to their empirical counterparts estimated on historical data. Furthermore, both
of these outperform the estimators obtained under the assumption of a Gaussian correlation structure.
Consequently, the model effectively captures the rank relationship that links the different pairs of returns
present in the sample on which the generator is trained. While this may not be sufficient to obtain rank
correlation estimators that are better than the empirical estimators, it does allow for more realistic joint
distributions of returns compared to using a Gaussian copula, while employing a dynamic rather than a
static approach.

Figure 8: Dependograms of Johnson&Johnson and Pfizer stock daily returns.

7When two random variables are linked by a bivariate Gaussian copula with parameter ρ, the Spearman’s rho and Kendall’s
tau are respectively equal to 6

π
arcsin(0.5ρ) and 2

π
arcsin(ρ) ([66]).
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4.3 Evaluation of strategy features replication

4.3.1 Strategies considered for evaluating the generator

One of the major interest of a market generator is its utility as a tool for backtesting strategies ([48]).
Therefore, it makes sense to evaluate the RPDM generator based on its ability to reproduce the various
time-series features characterizing different strategies.

To this end, we consider the following 5 strategies:

1. EW: The equally weighted portfolio, one of the most well-known strategies, that consists of assigning
equal weights to each asset in the portfolio such as:

x = n−1 · 1n.

2. MV: A constrained minimum variance portfolio, whose composition is the solution of the following
optimization program ([65]):

x = argmin
x

x⊤Σ̂x s.t.

1⊤
nx = 1

x > −n−1 · 1n,

where Σ̂ corresponds to the estimator of the asset returns covariance matrix. In practice, the estimator
Σ̂ used will be the daily returns covariance matrix over the last 4 years. Regarding the constraint of
individual short selling on assets, this serves a dual purpose. First, it helps to stay within relatively
realistic portfolios, as the sum of the absolute values of the weights is bounded by 3. Furthermore,
it helps to restrict the range of the obtained metrics, as in the absence of constraints on the weights
other than 1⊤

nx, the behavior of the strategies can fluctuate extremely from one market scenario to
another.

3. TP: A constrained tangency portfolio in the zero risk free-rate hypothesis, defined as the solution to
([65]):

x = argmin
x

x⊤µ̂√
x⊤Σ̂x

s.t.

1⊤
nx = 1

x > −n−1 · 1n,

where µ̂ is the estimated expected asset returns vector. Here, we use the vector of empirical means of
the daily returns over the last 4 years as the estimator. Also, the constraint imposed on the weights
serves the same purpose as that imposed on the minimum variance portfolio.

4. TF: A trend following strategy of cross-section momentum type ([42]) whose weight vector is defined
by:

x =
µ̂t −Q1(µ̂t)

1⊤
n

(
µ̂t −Q1(µ̂t)

) (22)

where Q1(µ̂t) corresponds to the first quartile of µ̂t itself defined by:

µ̂t = Pt ⊘Pt−l − 1n.

Here, the window length l of the moving average estimator will be fixed to 1 year.
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5. RV: A reversal strategy of cross-section momentum type, whose weights are defined in the same
manner as for the TF strategy via equation 22, but using:

µ̂t = −Pt ⊘Pt−l − 1n,

where l is also set to 1 year.

Each of these strategies will be examined in three distinct modes: buy-and-hold, fixed-weight, and dynamic.

In the buy-and-hold approach, the portfolio is constructed at the close of the last trading day of April
2018, and no rebalancing is performed thereafter. In this framework, only the price evolution affects the
asset weights in the composition of the various portfolios. However, this mechanism alone is enough to
significantly impact the behavior of the portfolio value considered as a random variable. For instance,
suppose the market factor drops and then does not experience a significant rebound. In this scenario, all
else being equal, the weights of securities with a very high beta tend to decrease relative to other securities,
and this event tends to reduce the portfolio’s exposure to the market factor. The interest of backtesting
buy-and-hold strategies lies in evaluating the model’s ability to accurately reproduce this type of path
dependence.

The fixed-weight approach, for its part, involves daily rebalancing of the strategies to maintain the same
composition as initially set. In this way, the effect of portfolio weight changes induced by the price dy-
namics to which buy-and-hold strategies are subject is neutralized. It is therefore the model’s ability to
replicate various constant linear combinations of the random variables constituting the S&P500 prices that
is evaluated through this approach.

Finally, the dynamic approach involves rebalancing the portfolios monthly by updating the various pa-
rameters on which the composition of the portfolios associated with each strategy depends. Consequently,
depending on the different market scenarios, the composition of the portfolios can vary significantly be-
tween real and synthetic data. Therefore, it is the model’s ability to reproduce the market, conceptualized
as an ecosystem, that is evaluated through these strategies. In other words, the capacity to model the
market not merely as a collection of assets with a simple correlation structure, but as a complex system
whose mechanisms give rise to non-trivial statistical regularities.

Remark 2 The parameters and estimators of the strategies considered are not necessarily optimal. Typi-
cally, to construct minimum variance and tangency portfolios, we use the sample covariance matrix, which
constitutes a poor estimator of the covariance matrix from a portfolio optimization perspective. Further-
more, the "trend-following" and "reversal" portfolios with the buy-and-hold and fixed-weight approaches are
not strictly speaking trend-following and reversal strategies since their composition is solely based on data
as of April 30, 2018. However, these elements are not really problematic in this context since the goal is
not to conduct a comparative study of the considered strategies, but rather to see if the RPDM generator is
capable of reproducing the time-series features characterizing various types of investment strategies.
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4.3.2 Results of numerical experiments

We start by individually considering the 5 types of strategies across the 3 rebalancing modes presented in
the previous section. Tables 4, 5 and 6 compare a set of financial metrics associated with these strategies
between real data and simulated data: their volatility and Sharpe ratio calculated from daily returns and
then annualized, their maximum drawdown, and their value-at-risk and expected shortfall at the 95% and
99% thresholds, empirically calculated on a daily basis. Figure 9 focuses on the moments of the returns
distributions of these strategies at different frequencies (from daily returns to 6-month returns).

Overall, the obtained results tend to prove that the model reproduces very well the different characteristics
of the various strategies considered. Thus, for almost all distributions of the different strategies considered,
the first four empirical moments of the real data fall within the 90% interval of the model calculated from
the simulated data. Moreover, in a significant number of cases, these empirical moments are close to their
median levels calculated from the simulations. Additionally, the non-monotonic relationship of the skewness
of the returns of different strategies as a function of the considered time horizon is noteworthy. Thus, for
both market data and simulated data, the distribution of returns initially becomes increasingly negatively
skewed as the time horizon lengthens. However, past an inflection point located around 10 trading days,
the skewness of the return distribution decreases and tends towards zero in the long term. Similarly, the
negatively convex relationship between the kurtosis value and the time horizon produced by the model
for the different strategies is also consistent with market data. In the same way as the moments of the
distributions, the set of empirical financial metrics - reported in tables 4, 5, and 6 - for almost each strategy
falls within the model’s 90% confidence intervals and, in most cases, is fairly close to the median level
obtained through simulations.

Vol. SR MD VaR95% VaR99% ES95% ES99%

EW

Real data 20.45% 76.58% 36.38% 1.85% 3.22% 3.06% 5.51%
Sim. data med. 20.26% 95.57% 30.05% 1.71% 3.63% 3.05% 5.60%
Sim. data D1 14.63% 36.60% 16.06% 1.27% 2.51% 2.13% 3.60%
Sim. data D9 34.40% 152.58% 62.29% 2.65% 6.37% 5.23% 10.43%

MV

Real data 17.40% 79.11% 32.88% 1.48% 2.89% 2.57% 5.12%
Sim. data med. 12.87% 60.38% 21.92% 1.16% 2.19% 1.86% 3.16%
Sim. data D1 9.94% 6.51% 12.23% 0.92% 1.65% 1.40% 2.18%
Sim. data D9 22.14% 113.97% 47.75% 1.74% 3.97% 3.29% 6.50%

TP

Real data 22.25% 106.88% 36.72% 1.96% 3.64% 3.11% 5.28%
Sim. data med. 20.34% 65.51% 31.57% 1.83% 3.49% 2.94% 4.93%
Sim. data D1 15.57% 9.94% 18.59% 1.44% 2.54% 2.17% 3.43%
Sim. data D9 32.02% 116.96% 60.27% 2.64% 5.85% 4.90% 9.35%

TF

Real data 20.45% 81.59% 36.15% 1.83% 3.36% 3.01% 5.73%
Sim. data med. 19.45% 89.81% 29.88% 1.66% 3.52% 2.93% 5.32%
Sim. data D1 14.19% 32.26% 15.22% 1.24% 2.43% 2.05% 3.42%
Sim. data D9 33.24% 143.55% 61.58% 2.60% 6.20% 5.11% 10.22%

RV

Real data 22.86% 65.53% 30.80% 2.10% 3.76% 3.40% 5.77%
Sim. data med. 22.82% 90.26% 33.79% 1.96% 4.12% 3.40% 6.24%
Sim. data D1 16.64% 33.87% 18.36% 1.45% 2.84% 2.41% 4.05%
Sim. data D9 40.69% 145.51% 69.33% 3.08% 7.34% 6.08% 12.35%

Table 4: Financial metrics associated with different buy-and-hold strategies: real vs simulated data.
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Vol. SR MD VaR95% VaR99% ES95% ES99%

EW

Real data 21.01% 76.12% 37.92% 1.83% 3.32% 3.13% 5.71%
Sim. data med. 19.53% 77.26% 29.28% 1.52% 3.38% 2.88% 5.77%
Sim. data D1 16.21% 3.82% 15.16% 1.29% 2.74% 2.36% 4.21%
Sim. data D9 32.57% 151.14% 61.73% 2.61% 5.79% 4.82% 9.55%

MV

Real data 16.97% 87.00% 31.80% 1.41% 2.73% 2.51% 4.94%
Sim. data med. 11.39% 64.09% 18.43% 0.95% 1.93% 1.65% 3.14%
Sim. data D1 9.78% -2.97% 10.44% 0.83% 1.56% 1.39% 2.32%
Sim. data D9 19.22% 134.70% 39.57% 1.59% 3.18% 2.81% 5.25%

TP

Real data 21.35% 101.64% 27.63% 1.82% 3.71% 3.03% 5.31%
Sim. data med. 17.08% 62.58% 27.52% 1.44% 2.86% 2.46% 4.61%
Sim. data D1 14.73% -5.01% 16.28% 1.26% 2.37% 2.07% 3.43%
Sim. data D9 28.68% 134.11% 54.66% 2.42% 4.75% 4.12% 7.66%

TF

Real data 20.26% 68.83% 38.80% 1.79% 3.19% 2.98% 5.70%
Sim. data med. 18.13% 76.19% 27.71% 1.43% 3.14% 2.66% 5.31%
Sim. data D1 15.12% 5.63% 14.26% 1.22% 2.52% 2.19% 3.87%
Sim. data D9 30.41% 148.46% 58.75% 2.42% 5.24% 4.48% 8.67%

RV

Real data 23.03% 79.16% 37.11% 2.08% 3.84% 3.42% 5.93%
Sim. data med. 21.89% 76.56% 32.19% 1.72% 3.79% 3.22% 6.40%
Sim. data D1 18.21% 4.34% 17.22% 1.46% 3.04% 2.64% 4.69%
Sim. data D9 36.40% 150.06% 65.93% 2.92% 6.39% 5.35% 10.53%

Table 5: Financial metrics associated with different fixed-weight strategies: real vs simulated data.

Vol. SR MD VaR95% VaR99% ES95% ES99%

EW

Real data 21.01% 76.12% 37.92% 1.83% 3.32% 3.13% 5.71%
Sim. data med. 19.5% 96.04% 29.28% 1.65% 3.53% 2.93% 5.39%
Sim. data D1 13.95% 37.85% 15.16% 1.2% 2.42% 2.03% 3.46%
Sim. data D9 34.73% 152.87% 61.73% 2.59% 6.39% 5.23% 10.45%

MV

Real data 15.6% 44.99% 33.55% 1.19% 2.54% 2.29% 4.82%
Sim. data med. 11.29% 70.18% 17.91% 1.01% 1.94% 1.64% 2.79%
Sim. data D1 9.05% 12.03% 10.25% 0.83% 1.49% 1.27% 2.02%
Sim. data D9 16.58% 126.55% 36.8% 1.39% 2.9% 2.49% 4.78%

TP

Real data 23.75% 89.95% 30.05% 2.17% 3.73% 3.53% 6.41%
Sim. data med. 17.38% 75.3% 26.49% 1.54% 3.01% 2.53% 4.32%
Sim. data D1 13.45% 19.95% 15.19% 1.21% 2.2% 1.89% 3.02%
Sim. data D9 26.56% 129.78% 52.43% 2.22% 4.7% 4.01% 7.64%

TF

Real data 21.23% 75.43% 31.23% 1.89% 3.63% 3.09% 5.42%
Sim. data med. 21.36% 91.4% 31.77% 1.83% 3.83% 3.19% 5.79%
Sim. data D1 15.74% 36.51% 17.23% 1.39% 2.74% 2.28% 3.78%
Sim. data D9 34.45% 144.22% 63.48% 2.74% 6.42% 5.27% 10.61%

RV

Real data 29.64% 50.69% 46.69% 2.55% 4.82% 4.17% 7.44%
Sim. data med. 20.41% 85.35% 31.17% 1.72% 3.64% 3.05% 5.54%
Sim. data D1 14.19% 30.52% 16.02% 1.24% 2.4% 2.02% 3.37%
Sim. data D9 41.3% 141.02% 68.33% 2.97% 7.49% 6.2% 12.7%

Table 6: Financial metrics associated with different dynamic strategies: real vs. simulated data.
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Figure 9: Evolution of the four first moments of the returns distributions for the different considered buy-
and-hold strategies as a function of the time-horizon. The red curve corresponds to the real data, the blue
curve to the median of the simulated data, and the blue area represents the 90% interval of the simulations.
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Figure 10: Evolution of the four first moments of the returns distributions for the different considered
constant-weighted strategies as a function of the time-horizon. The red curve corresponds to the real data,
the blue curve to the median of the simulated data, and the blue area represents the 90% interval of the
simulations.
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Figure 11: Evolution of the four first moments of the returns distributions for the different considered
dynamic strategies as a function of the time-horizon. The red curve corresponds to the real data, the blue
curve to the median of the simulated data, and the blue area represents the 90% interval of the simulations.
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Beyond this generally very positive big picture regarding the FPDM generator’s ability to generate realistic
market scenarios, there is, however, a relative disparity in performance when it comes to reproducing certain
time-series features depending on the strategies considered.

To begin, the data generated by the model seems, on average, to slightly underestimate the risk associated
with the various MV portfolios in these different approaches (buy-and-hold, fixed-weighted, and dynamic)
compared to real data. Thus, the different financial risk metrics of these strategies are significantly higher
than their median model level. Similarly, the empirical distributions of returns of these MV strategies are
more skewed than the median level of the return distribution of these strategies on simulated data. This
potential underestimation of risk could be explained by the fact that this strategy is built from the empirical
estimator of the covariance matrix. Indeed, in the case of buy-and-hold and fixed-weighted approaches,
and even for the initialization of the dynamic approach, this matrix is calculated over the exact period on
which the model is fitted. Consequently, this strategy tends to maximize the model risk. However, this
potential underestimation of risk requires nuance. Firstly, the various empirical risk metrics associated with
the MV strategies remain within the 1st and 9th deciles of the simulated data. As a result, the empirical
features of these strategies are not outliers when viewed through the lens of the model. Furthermore, it
is noteworthy that the proposed model seems to avoid, or at least partially mitigate, the phenomenon of
overfitting. This shows up in the fact that, while the empirical estimator of the daily annualized volatility
of the constant-weighted MV portfolio computed from the learning period is 7.89% (even when using a
shrinkage estimator of the covariance matrix, this estimated volatility remains below 8%), the first decile
of this volatility calculated from the simulations exceeds 9%.

Additionally, the rebalancing approach plays a somewhat significant role in the proximity between metrics
on real data and their median levels on simulated data. Thus, while with the buy-and-hold approach, the
empirical risk metrics of the strategies TP and RV are close to their median levels on simulated data, they
are more off-center towards higher deciles when considering dynamic rebalancing. However, once again,
like for the MV strategy, the financial metrics associated with real data remain within the 80% confidence
interval of the simulated data. Therefore, it is difficult to conclusively assert based on these results that
the model underestimates the risk of these strategies.

Beyond effectively capturing the features of the individual strategies, the model also reproduces the cor-
relation between these strategies quite well overall, as shown in figures 13, 15, and 17. On this point,
however, the proximity between real and simulated data depends significantly on the rebalancing approach
adopted. For the buy-and-hold and constant-weighted approaches, the correlations between the different
strategies in the simulated data are very close to those in the real data (figures 13 and 15). This corre-
lation structure is however less similar to the real data for the dynamic rebalancing approach (figure 17).
Furthermore, within this approach, the disparity between real correlations and correlations in simulated
data depends on the pairs of strategies considered. Thus, the correlation of the pair of strategies EW/MV
is well reproduced by the model. Conversely, the empirical correlations between pairs involving the TP,
TF, and RV strategies differ significantly from the correlations obtained from simulated data. However,
these three strategies share a common characteristic: their composition depends on an estimator of the
drift vector, specifically a moving average estimator (over the last 4 years for the TP strategy and over
the last year for the TF and RV strategies). This observation thus suggests that the disparity between the
correlations in real and simulated data could be attributable to an imperfect modeling of drift dynamics
by the generator. Therefore, the assumption of the market factor as the unique determinant of asset drift
is likely too simplistic and warrants amendment.
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Figure 12: Cumulative returns of the considered buy-and-hold strategies: real vs simulated data.

Figure 13: Correlation matrix of daily returns of the different buy-and-hold strategies: real vs. simulated
data.
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Figure 14: Cumulative returns of the considered fixed-weighted strategies: real vs simulated data.

Figure 15: Correlation matrix of daily returns of the different fixed-weighted strategies: real vs simulated
data.
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Figure 16: Cumulative returns of the considered dynamic strategies: real vs simulated data.

Figure 17: Correlation matrix of daily returns of the different dynamic strategies: real vs simulated data.
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5 Conclusion
In this article, we have introduced the Factorial Path-Dependent Market (FPDM) model, a new theoretical
framework for modeling multivariate asset price dynamics. In this framework, asset prices are driven by a
set of elementary factors of two kinds: common elementary factors that link the dynamics of assets together
and generate the correlation structure between individual price variations, and idiosyncratic elementary
factors specific to each asset. The dynamics of the vector of these elementary factors are described by a
multidimensional Itô SDE, whose drifts and volatility vectors depend either partially or completely on its
own past trajectory. As a result, the proposed approach falls within the realm of path-dependent modelings.
This choice aims to account for the fundamentally endogenous nature of financial markets, which manifests
in various forms, ranging from the volatility formation process to the emergence of price trends caused by
feedback effects from previous price dynamics. In practice, the path-dependence in the proposed model is
implemented by modeling factor drifts and volatilities as functions of features encoding the past trajectory
of factor portfolios.

After defining this theoretical framework in section 2, section 3 introduced a market generator derived from
a specific version of the FPDM model. In this one, the path-dependent component of the volatility of each
elementary factor depends on both the past trajectory of the elementary factor to which it is associated
and the past trajectory of the elementary factor that constitutes the market factor. The market factor
thus plays a singular role in this framework, firstly in the overall volatility of the investment universe under
consideration, and secondly in shaping the level and dynamics of the correlation structure among the assets
it comprises. Furthermore, in the considered specification, the market factor is the only elementary factor
with a non-zero drift, thus producing a CAPM-like modeling.

Once this market generator has been defined, a calibration method for it has been proposed. This process
consists of two main phases. The first involves factorizing a historical dataset of returns from the investment
universe under consideration, such that each return is expressed as a linear combination of variations
corresponding to what, in the model, are the elementary factors. The second phase takes as input the
elements resulting from this factorization to estimate the various model parameters using an adapted form
of maximum likelihood estimation.

Section 4 provided an extensive evaluation of this market generator using an investment universe of 436
assets from the S&P500. For this purpose, the data set was divided into two parts: the first, spanning from
April 1, 2010, to April 30, 2018, was used to fit the model, while the second part, covering data from May
1, 2018, to April 30, 2024, was used to conduct the various tests. All evaluations of the market generator
were thus conducted out-of-sample.

A first set of tests showed that the moments of the marginal distributions of the asset returns generated
by the model were highly consistent with their empirical counterparts calculated from market data. A
second type of evaluation, based on the joint dynamics of the assets, was then conducted. A first key
result from these tests is that using synthetic data generated by the FPDM generator enables us to obtain
an estimator of the covariance matrix of returns that is significantly better than standard or shrinkage-
based estimators derived from historical data. Supplementary results from these tests suggest that this
improvement seems to stem less from the model’s ability to better capture linear correlations between
asset returns and more from its enhancement in estimating their individual standard deviations while
maintaining a realistic correlation structure. This, however, does not imply that the model’s ability to

40



capture correlations is poor. For example, the estimated Kendall’s tau and Spearman’s rho calculated on
simulated data exhibit performance on test data similar to the empirical estimators of these correlation
measures calculated on historical data. Furthermore, these results must also be seen in the light of the fact
that, on the one hand, the correlation structure in the model is dynamic, and on the other, the test horizon
is relatively long (six years), which constitutes rather unfavorable evaluation conditions for the model.

The final set of tests aimed to evaluate the model’s ability as a tool for backtesting investment strategies.
For this purpose, five types of strategies were considered, each through three different approaches: buy-
and-hold, constant-weight with daily rebalancing, and dynamic with monthly rebalancing. The results
initially demonstrated that the various time series features characterizing the individual trajectories of these
strategies were generally well replicated by the generator. This includes moments of return distributions
calculated at different frequencies, as well as various risk metrics such as value-at-risk and expected shortfall
at different confidence levels, along with maximum drawdown. In this respect, then, the FPDM generator
seems to be a relevant and powerful tool for backtesting various strategies on synthetic data. The results
regarding the model’s capture of the correlation between these strategies are slightly more nuanced. Thus,
while the correlations of returns among strategies under the buy-and-hold and constant-weighted modes
are well reproduced by the model, the difference between the correlations among dynamic strategies from
simulated data differs quite significantly from their counterparts obtained from empirical data. However,
this latter observation only pertains to the strategies whose composition depends on an estimator of the drift
vector, specifically a moving average estimator. This implies that the difference in correlations between real
and simulated data may stem from an imperfect modeling of drift dynamics by the generator. Therefore,
the assumption that the market factor is the sole determinant of asset drift is likely overly simplistic and
may require adjustments, such as allowing other elementary factors to have a non-zero drift.

More generally, the market generator presented in this article could be improved in multiple ways. As an
example, the model could incorporate "views" in the Black-Litterman sense ([15]) to integrate exogenous
information into the model. Furthermore, the market generator proposed is just one possible (discrete)
specification of the FPDM model introduced in section 2. Hence, for example, more sophisticated specifica-
tions that directly incorporate sectoral decomposition via elementary factor portfolios could further refine
the proposed framework. Additionally, the model can be used to generate conditional scenarios, such as
given a certain trajectory of the market factor, which also deserves further investigation.

Regardless, the results obtained from the market generator proposed in this article already demonstrate
that the FPDM model constitutes an extremely rich framework that can be used as a white box to generate
highly realistic simulations of price trajectories in a high-dimensional investment universe.
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Appendix A List of notations
The following table presents the matrix operators and standard matrices/vectors used in this article.

Symbol Description

1n n× 1 vector of ones

ei n× 1 vector whose value is 1 for coordinate i and 0 elsewhere

In Identity matrix of dimension n× n

(V )i Element i of the vector V

(M)[i,j] Entry at row i and column j of the matrix M

(M)[i,:] Row i of the matrix M

(M)[:,j] Column j of the matrix M

M⊤ Transpose of the matrix M

M−1 Inverse of the square matrix M

M◦p Element-wise application of the power p to each coordinate of M

f ◦ (M) Element-wise application of the function f to each coordinate of M

⊙ Hadamard product

⊘ Hadamard division

⊗ Kronecker product

⊕ Kronecker sum

diag(V ) Converts the vector V into a diagonal matrix

diagM→d(M) Transformation of the square matrix M into a vector from the
diagonal of M

diagM→D(M) Transformation of the square matrix M into a diagonal matrix
by retaining only the diagonal of M

Tr(M) Trace of the square matrix M

vec(M) The vec operator that transforms a matrix into a column vector

vec−1
m×m(V ) The inverse vec operator that transforms the m× 1 vector V into a square

matrix m×m

∥M∥F The Frobenius norm of the matrix M
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Appendix B Stochastic differential equations involved in the FPDM
model

B.1 Calculation of the asset price vector solution
The SDE describing the dynamics of the price vector P is given by:

dPt = Pt ⊙ (Aµtdt) +Pt ⊙
(
A
√
ΩtdWt

)
.

However, if f is a C2 function such that R× Rm → Rn, using the general Itô formula ([57]), we have:

dfk(t,Pt) =
∂fk(t,Pt)

∂t
dt+

∑
i

∂fk(t,Pt)

∂Pi
d(Pt)i +

1

2

∑
i,j

∂2fk(t,Pt)

∂Pi∂Pj
d(Pt)i d(Pt)j .

Considering f(t,Pt) = ln ◦Pt, we have:

∂fk(t,Pt)

∂t
dt = 0,∑

i

∂fk(t,Pt)

∂Pi
d(Pt)i =

d(Pt)k
(Pt)k

=
(
Aµtdt+A

√
ΩtdWt

)
k
,

1

2

∑
i,j

∂2fk(t,Pt)

∂Pi∂Pj
d(Pt)i d(Pt)j = −

1

2(Pt)k
d(Pt)kd(Pt)k = −1

2
·
(
AΩtA

⊤
)
k,k

dt.

It follows that:

dln ◦Pt =

(
Aµt −

1

2
· diag

(
AΩtA

⊤
))

dt+A
√
ΩtdWt

Consequently, the solution to the asset price vector is given by:

Pt = P0 ⊙ exp ◦

(∫ t

0

Aµu −
1

2
· diag

(
AΩuA

⊤
)
du+

∫ t

0

A
√
ΩudWu.

)
.

B.2 EWMA estimators and their stochastic differential equations
Consider the following vector stochastic differential equation (SDE):

dµ̃
(j)
t =

1

τj
·
(
dFt − µ̃

(j)
t dt

)
.

By setting f
(
t, µ̃

(j)
t

)
= e

t
τj µ̃

(j)
t , and applying Ito’s formula, we obtain:

df
(
t, µ̃

(j)
t

)
=

e
t
τj µ̃

(j)
t

τj
dt+ e

t
τj dµ̃

(j)
t =

e
t
τj

τj
· dFt
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It follows that the solution corresponds to the following EWMA:

µ̃
(j)
t = µ̃

(j)
0 e

−t
τj +

1

τj

∫ t

0

e
u−t
τj · dFu.

In the same manner, when considering

dΩ̃
(j)
t =

1

τj
·
(
dFtdF

⊤
t − Ω̃

(j)
t dt

)
=

1

τj
·
(
Ω̃t − Ω̃

(j)
t

)
dt,

and setting f
(
t, Ω̃

(j)
t

)
= e

t
τj Ω̃

(j)
t , we have:

df
(
t, Ω̃

(j)
t

)
=

e
t
τj Ω̃

(j)
t

τj
dt+ e

t
τj dΩ̃

(j)
t =

e
t
τj

τj
· Ω̃(j)

t dt.

It follows that:

Ω̃
(j)
t = Ω̃

(j)
0 e

−t
τj +

1

τj

∫ t

0

e
u−t
τj · Ω̃(j)

u du.

Appendix C Important specifications of the FPDM model

C.1 The 4-factor PDV as a specific case of the FPDM model
Suppose that m = n = 1, A = 1, and nτ = 2. In this univariate single-factor framework, there exists a
unique factor portfolio, which is y = 1. Therefore Yt = 1 ∀ t. If we additionally assume that the drift is
zero, we then have the following FPDM model:

dPt

Pt
= dFt = σtdWt,

σt = σ̄ + b1 · µ̂t (1, δ) + b2 · σ̂t (1,w) ,

µ̂t (1, δ) = (δ)1 · µ̃(1)
t + (δ)2 · µ̃(2)

t ,

σ̂t (1,w) =

√
(w)1 · Ṽ (1)

t + (w)2 · Ṽ (2)
t ,

dµ̃
(j)
t =

1

τj
·
(
dPt

Pt
− µ̃

(j)
t dt

)
,

dṼ
(j)
t =

1

τj
·

((
dPt

Pt

)2

− Ṽ
(j)
t dt

)
,

which corresponds to the 4-factor PDV model by Guyon and Lekeufack.
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C.2 Definition of the factorial drift vector in the context of the CAPM
Let π represent the value of the market portfolio, and assume that at any time, there exists a vector y⋆

t

such that, ∀ t:

dπt

πt
= (y⋆

t )
⊤
dFt.

Let us now suppose that the vector of drifts for elementary factors depends on the n+ 1 factor portfolios
y⋆t , e1, ..., en (where ej represents the factor portfolio composed entirely of factor j), such that:

µt = βt (y
⋆
t ) · Γ⋆

t +

n∑
p=1

βt (e1) · Γ(I)
p,t = βt (y

⋆
t ) · Γ⋆

t +

n∑
p=1

Γ
(I)
p,t ,

where

Γ
(I)
p,t = E(I)p,t =

(
1− (Aβt (y

⋆
t ))i

)
· rt +

(
βt (y

⋆
t )
)
i
· rt.

From the expression of µ and since for i > m, (y⋆
t )i = 0, the drift of y⋆ is given by:

µ(y⋆
t ) = (y⋆

t )
⊤µt

= (y⋆
t )

⊤Γ
(I)
t + (y⋆

t )
⊤βt (y

⋆
t ) · Γ⋆

t

= (y⋆
t )

⊤ Ωty
⋆
t

(y⋆
t )

⊤
Ωty⋆

t

· rt + (y⋆
t )

⊤ Ωty
⋆
p

(y⋆
p)

⊤Ωty⋆
p

· Γ⋆
t

= rt + Γ⋆
t

It follows that the vector of the asset drift is defined by:

µt = Aµt

= AEt +Aβt (y
⋆
t ) · Γ⋆

t

= (1n −Aβt (y
⋆
t )) · rt +Aβt (y

⋆
t ) · rt +Aβt (y

⋆
t ) · Γ⋆

t

= 1n · rt +
Cov

(
dPt ⊘Pt, dπt/πt

)
Var

(
dπt/πt

) · Γ⋆
t

= 1n · rt + β
(A)
t ·

(
µ(y⋆

t )− rt
)
.

This then results in a relationship analogous to that of the CAPM.
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Appendix D Approximation of the Wasserstein distance for eigen-
values

If the support of the distributions fMP and fKDE is included in [ϕmin : ϕmax], then∫
R

(√
fKDE(ϕ)−

√
fMP(ϕ|v, q)

)2
dϕ =

∫ ϕmax

ϕmin

(√
fKDE(ϕ)−

√
fMP(ϕ|v, q)

)2
dϕ.

It follows that

∫
R

(√
fKDE(ϕ)−

√
fMP(ϕ|v, q)

)2
dϕ ≈ 1

nx

nx∑
i=1

√fKDE

(
ϕmin +

ϕmax − ϕmin

nδ
i

)
−
√
fMP(δxi|v, q)

2

.

Appendix E Normal log-normal mixture

E.1 First four moments a normal log-normal mixture of the form W es(B−s)

Using the results of [74], if X = W esB with (W,B)⊤ ∼ N (02, I2): E [Z] = 0,E
[
Z2
]
= e2s

2

,E
[
Z3
]
= 0,

and E
[
Z4
]
= 3e8s

2 . Therefore, setting X = W es(B−s), we have:

E[Z] = e−s2E[X] = 0,

E
[
Z2
]
= e−2s2E

[
X2
]
= 1,

E
[
Z3
]
= e−3s2E

[
X3
]
= 0,

E
[
Z4
]
= e−4s2E

[
X4
]
= 3e4s

2

.

E.2 First four moments of an i.i.d. sample from a normal log-normal mixture
We consider the random variable Z defined by:

Z =
1√
n

n∑
i=1

Yi,

where Y1, ..., Yn is an i.i.d sample such that E
[
Y
]
= E

[
Y 3
]
= 0, E

[
Y 2
]
= 1, and E

[
Y 4
]
= c4. Using the

multinomial theorem, we can express the moments of Z of order q as follows:

E
[
Zq
]
= n

−q
2 · E


 n∑

i=1

Yi

q
 = n

−q
2 ·

∑
k1+...+kn=q

E

[(
q

k1, ..., kn

)
Y k1
1 Y k2

2 ...Y kn
n

]

From this expression, it is easy to verify that E [Z] = E
[
Z3
]
= 0 and E

[
Z2
]
= 1. To determine the 4th

moment of Z, we can start by noting that only two types of combinations, such that k1 + ...+ kn = 4, are
associated with a non-zero expectation due to E [Y ] = 0 and E

[
Y 3
]
= 0. The first combination implies that

one of the terms kj is equal to 4, while the remaining n− 1 terms are equal to 0. The second combination
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involves two of the terms kj being equal to 2, with the rest being equal to 0. Therefore:

E


 1√

n

n∑
i=1

Yi

4
 =

1

n2

(
4!

4!(0!)n−1
·
(
n

1

)
· E
[
Y 4
]
+

4!

(2!)2(0!)n−2
·
(
n

2

)
· E
[
Y 2
])

=
1

n2

(
n · c4 + 6 · n(n− 1)

2

)
=

c4 + 3(n− 1)

n
(23)

Consequently, if Yi = Wie
s(Bi−s) where Wi and Bi are i.i.d. standard normal realizations, using the

expression for the third moment of Yi calculated in section E.1, we have:

E


 1√

n

n∑
i=1

Yi

4
 =

3e4s
2

+ 3(n− 1)

n
.

E.3 Estimation of the vector S using the method of moments
We aim to estimate the vector S on which X depends. To begin with, we assume that the time step between
observations is constant, and that the ratio of the sample time step to the simulation time step is equal to
n, a strictly positive natural number:

1
N−rw−1

∑N
u=rw+1(tu − tu−1)

∆t
=

∆̄u

∆t
= n, with n ∈ N∗.

In this context, and assuming µ̂u, Ŝu, V̂u are constant between tu−1 and tu, the equation for the variation
of elementary factors over this period is given by:

∆F̂u =

n∑
i=1

µ̂u ·∆t+ Ŝu · V̂u ·Xi ·Wi ·
√
∆t

We then introduce the process Ẑj , such that:

Ẑj,u =

(
∆Fu − µ̂u ·∆u

)
j

(Su · Vu ·
√
∆u)j

=

∑n
i=1 Xi ·Wi ·

√
∆t√

∆u

=
1√
n

n∑
i=1

(
exp ◦

(
S⊙ (Bi − S)

)
⊙Wi

)
j
.

Therefore Ẑj,rw+1, ..., Ẑj,N forms an i.i.d. sample drawn from an NLN mixture distribution of the form
considered in section E.1. To estimate (S)j , we use a method-of-moments approach by equating ĉ4 as the
empirical estimator of E

[
Ẑ4
j

]
associated with the sample {Ẑj,u}rw+1≥u≥N with its theoretical counterpart
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obtained in section E.2. This gives us:

ĉ4 =
3e4(S)

2
j + 3(n− 1)

n
nĉ4
3

= e4(S)
2
j + n− 1

e4(S)
2
j = n

(
ĉ4
3
− 1

)
+ 1

(S)j = 0.5

√√√√log

(
n

(
ĉ4
3
− 1

)
+ 1

)

However, in practice, ĉ4 may be less than 3, resulting in the absence of a real solution for (S)j . Additionally,
the choice of ∆t may lead to the ratio of the sample time step to the simulation time step not being an
integer. Therefore, to address these issues, it is appropriate to use the following estimator for (S)j :

(Ŝ)j = 0.5

√√√√√log

 1
N−rw−1

∑N
u=rw+1(tu − tu−1)

∆t

(
ĉ4
3
− 1

)
+

+ 1

.

Appendix F Estimation of the market sensitivity operator by
maximum likelihood

The solution to this optimization program is reached when the partial derivatives of 21 with respect to Stu
are equal to 0. These partial derivatives are given by:

∂L
(
∆̂F;Θj

)
∂Stu

=
1

S3tu

m∑
j=1


(
(∆Ftu)j −

(
µ̂tu

)
j
·∆tu

)2
(Vtu)

2
j · Stu

− S2tu

 .

We can then deduce the solution value of Stu :

0 =
1

S3tu

m∑
j=1


(
(∆Ftu)j −

(
µ̂tu

)
j
·∆tu

)2
(Vtu)

2
j ·∆tu

− S2tu


S2tu =

m∑
j=1

(
(∆Ftu)j −

(
µ̂tu

)
j
·∆tu

)2
(Vtu)

2
j ·∆tu

Stu =

√√√√√ m∑
j=1

(
(∆Ftu)j −

(
µ̂tu

)
j
·∆tu

)2
(Vtu)

2
j ·∆tu

.
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Appendix G Additional results of the numerical experiment

G.1 Fitted kernels
The table 7 shows the weights of the different exponential kernels in the composition of the kernels K(µ̂)

and K(σ̂) obtained after calibration by the algorithm 38. Figure 18 shows the shape of these kernels and
compares them to their respective approximations by a TSPL kernel.

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10
(δ)k 0 0.2% 39.7% 55.9% 0.3% 0 3.8% 0 0 0
(w)k 23.2% 20.8% 28.7% 23.4% 0 3.2% 0.6% 0 0 0.1%

Table 7: Weight of the different exponential kernels in the composition of the kernels K(µ̂) and K(σ̂).

Figure 18: Kernels K(µ̂) and K(σ̂) obtained as a result of the calibration performed by algorithm 2 and their
respective approximations by a TSPL kernel.

8As exposed in section 3.1.1.2, the values of {τk}10k=1 are defined by:

τk = exp

(
log(1/365) +

log(5)− log(1/365)

9
(k − 1)

)
.
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G.2 The market factor
The first common elementary factor obtained from the algorithm output 2 is hypothesized to be the market
factor. Figure 19 allows for evaluating the coherence of this hypothesis by comparing the data related to
this factor with the data related to the S&P500 index, which is a good proxy for the market portfolio. In
addition, the path-dependent component estimated for this market factor, obtained after calibrating the
market generator form algorithm 3, i.e. (V)1, is compared with the VIX over the same period.

Figure 19: Comparison between the market factor estimated by the algorithm 2 and the S&P500 index, as
well as between (V)1 and the VIX.
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G.3 The market sensitivity operator
The figure 20 allows us to compare the estimated trajectory of the market sensitivity operator S obtained
from the algorithm 3 with the trajectory simulated by the model over the same period. The figure 21
allows us to compare the empirical distribution and its autocorrelation of this market sensitivity operator
with those generated by the model. Overall, the ARMA(1,1) model used to simulate the trajectory of
log(S) reproduces the characteristics of the time series of this operator quite well. However, it can be
noted that the empirical autocorrelation of S tends to become more negative compared to the simulated
data. Additionally, the estimated empirical value of the market sensitivity operator appears to exhibit a
seasonal component. Specifically, it seems to reach its lowest values during the latter half of December,
then rise again in the first days of January. Consequently, taking this potential seasonality into account
could improve the modeling quality of the proposed model.

Figure 20: On the left, the estimated trajectory of the market sensitivity operator; on the right, a trajectory
simulated from the model fitted on this path.

Figure 21: Distribution and autocorrelation of the market sensitivity operator: real vs. simulated data.
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G.4 Some distributions of individual stock returns
Figures 22, 23, and 24 illustrate and compare, through three examples, the stock return distributions
generated by the model with empirical data for daily, weekly, and monthly horizons.

Figure 22: Comparison of the distribution of daily returns of Amazon stock between real data and data simulated
using the FPDM generator. The KDE distribution of simulated data is estimated using the entire daily data set
from the 1000 conducted simulations. The confidence interval is obtained by estimating the KDE distribution of
daily returns for each simulation and then calculating the 5th and 95th percentiles of densities for each considered
return level.
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Figure 23: Comparison of the distribution of daily returns of JPMorgan Chase & Co. stock between real data and
data simulated using the FPDM generator. The KDE distribution of simulated data is estimated using the entire
daily data set from the 1000 conducted simulations. The confidence interval is obtained by estimating the KDE
distribution of daily returns for each simulation and then calculating the 5th and 95th percentiles of densities for
each considered return level.
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Figure 24: Comparison of the distribution of daily returns of Microsft stock between real data and data simulated
using the FPDM generator. The KDE distribution of simulated data is estimated using the entire daily data set
from the 1000 conducted simulations. The confidence interval is obtained by estimating the KDE distribution of
daily returns for each simulation and then calculating the 5th and 95th percentiles of densities for each considered
return level.
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Appendix H Cumulative returns of the considered investment
strategies

The following graphs compare the dynamics of different strategies between real data and data simulated
from the FPDM generator.

(a) EW (b) MV

(c) TP (d) TF

(e) RV

Figure 25: Cumulative returns of the different considered strategies with the buy-and-hold rebalancing
approach: real data vs simulated data. In each plot, the red line corresponds to the cumulative returns
of the strategy computed from the real data, while the blue lines represent those computed from the 1000
simulations considered in section 4.3.1.
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(a) EW (b) MV

(c) TP (d) TF

(e) RV

Figure 26: Cumulative returns of the different considered strategies with the constant-weighted rebalancing
approach: real data vs simulated data. In each plot, the red line corresponds to the cumulative returns
of the strategy computed from the real data, while the blue lines represent those computed from the 1000
simulations considered in section 4.3.1.
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(a) EW (b) MV

(c) TP (d) TF

(e) RV

Figure 27: Cumulative returns of the different considered strategies with the dynamic rebalancing approach:
real data vs simulated data. In each plot, the red line corresponds to the cumulative returns of the strategy
computed from the real data, while the blue lines represent those computed from the 1000 simulations
considered in section 4.3.1.
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