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Abstract

The use of deep neural networks (DNNs) for the calibration of volatility models applied to pricing and
hedging issues has led to abundant academic literature. In contrast, few works utilize these tools for model
estimation with a focus on volatility forecasting. Based on this observation, this article introduces an
innovative deep estimation method using historical data, specifically designed for volatility forecasting. To
illustrate this method, the article focuses on estimating a version of the rough path-dependent volatility
(RPDV) models (Parent, 2022), which is well-suited to the prediction objective and very complex to
estimate using standard approaches. After formalizing the estimation problem within the framework of
Bayesian decision theory, the article details the methodology for constructing the estimator function.
Finally, a comprehensive evaluation of the estimation approach is conducted using both synthetic and
market data to assess its performance.

Keywords: PDV model, volatility forecasting, rough volatility, rough path-dependent volatility model,
volatility forecasting, deep learning, deep calibration, Bayesian decision theory.

JEL classification: C11, C13, C15, C19, C22, C51, C53, C58.

1 Introduction
The use of machine learning methods in finance has experienced a significant boom in recent years. Among
the most important use cases is the deep calibration of volatility models which consists in using artificial
neural networks (NNs) to determine a set of parameters for a certain model in order to best meet given
pricing or hedging objectives. If this topic resulted in abundant literature (Bayeret al., 2019; Barra et al.,
2020; Horvath et al. 2021; Rosenbaum and Zhang, 2021), research on the use of NNs for model estimation in
the context of volatility forecasting is much scarcer. However, this subject also represents an important issue
within quantitative finance.

The potential interest in deep estimation within this framework is manifold. Firstly, the last decade has seen
the emergence of numerous new volatility models that could serve as powerful tools for volatility forecasting.
However, due to their complexity, some of these models are practically difficult to estimate using standard
approaches such as maximum likelihood-like methods. In addition, as decision theory demonstrates, the
most probable set of parameters is not necessarily the optimal choice from a consequentialist perspective
(Parmigian and Inoue, 2009; Berger, 2013). In fact, the optimality of a parameter set depends not only on the
parameter distribution but also on the model’s intended use for estimation (Hernandez, 2016). For instance,

1



the optimality criterion for the parameters of a model used in an options pricing perspective is typically
defined by a fitting criterion, either of an option price map as in the article by Horvath et al. (2021), or of
an implied volatility surface as in the article by Rosenbaum and Zhang (2021). Analogously, the optimality
criterion used for parameter estimation in the context of volatility forecasting must reflect this objective to
be fully consistent. However, the associated optimization problem can be very difficult, if not impossible, to
solve analytically.

Accordingly, the present article aims to introduce a deep estimation method for volatility models based on
historical data, grounded in the theoretical framework of Bayesian decision theory (BDT). The core principle
of this method involves estimating a volatility model through the interaction of two neural networks (NNs): the
first NN associates a historical dataset with a vector of parameters and state variables of the considered model,
while the second NN uses this vector to estimate different moments of the associated volatility. This second NN
compensates for the lack of analytical formulas for the volatility moments of the model, playing a role similar to
the NN pricing map approximator proposed by Horvath et al. (2021). The volatility model under consideration
for estimation is a specific version of the rough path-dependent volatility (RPDV) models (Paren,t 2022). It
is a good candidate for the proposed approach since, on the one hand, it provides a framework for capturing
the main empirical features that characterize volatility dynamics, making it a potentially suitable model for
volatility forecasting, and on the other hand, it is very complex to estimate using traditional approaches.
Obviously, although the article focuses on this model, the general principle of the proposed estimation method
can be applied to other volatility models as well.

The paper is organized as follows. Section 2 provides the definition of the RPDV model intended for estimation,
along with an explanation of its role in forecasting. This leads to the formalization of the estimation problem as
an optimization issue within the BDT framework. In section 3, a method for constructing an estimator function
is presented, aiming to address this problem by utilizing two deep neural networks within a collaborative game
framework. Lastly, in section 4, a comprehensive evaluation of the resulting estimator function is conducted
from various perspectives, using both synthetic and market data.

2 Exposition of the estimation problem

2.1 The model to be estimated

2.1.1 The considered rough path-dependent volatility model

In the present paper, we aim to estimate the following RPDV model:

dPt

Pt
=
(
λ1σt + λ2(σt)

2
)
dt+ σtdBt,

σt = β0 + β1R1,t + β2

√
R2,t,

R1,t =

∫ t−ϵ

−∞
(t− u)−α1

(
dPu

Pu
− κ1 ·R1,udu

)
,

R2,t =

∫ t−ϵ

−∞
(t− u)−α2

(
σ2
u − κ2 ·R2,u

)
du

. (1)

Here, the asset price thus depends on λ1 and λ2, which are positive risk premia, B is a Brownian motion
that constitutes the unique source of randomness, and σ is the volatility process. This volatility process is a
multilinear function with β0 a positive constant, β1 ≤ 0 a sensitivity parameter to R1 that can be viewed as an
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asset price trend variable, and β2 ≥ 0 a sensitivity parameter to R2 that can be viewed as a variable measuring
recent market price activity regardless of the sign of the trend. ϵ is a positive parameter close to zero that
encodes a latency of the impact of price dynamics on the volatility process. Technically, this parameter allows
for values of αj greater than 0.5 to be given without causing divergence issues. Furthermore, the memory of
the processes R1 and R2 depends on the respective positive parameters α1, κ1 and α2, κ2.

This model has several remarkable properties that make it highly suitable for volatility forecasting issues.
First, it is structurally adapted to jointly capture two important empirical features, which are the rough
behavior and the path-dependence of the volatility process. The rough volatility dynamics are determined by
the rough kernels K1(τ) = τ−α1 and K2(τ) = τ−α2 , while the model incorporates path-dependency through
the processes R1 and R2. Additionally, this version of the RPDV model shares a similar structure with the
PDV model introduced by Guyon and Lekeufack (2022), which has demonstrated strong predictive capabilities
in volatility forecasting.

2.1.2 The Markovian approximation of the model and its discretization scheme

Like other rough volatility models, the RPDV model is non-Markovian, which makes it difficult to simulate
efficiently (Parent, 2022). However, as shown by Parent, we can approximate model 1 by the following
Markovian model (see Appendix A.1), which will be referred to as the M-RPDV model. This model substitutes
rough kernels t−αj with kernels of the form K̃j(τ) =

∑n
i=1 wj,iγj,ie

−γj,iτ :

dPt

Pt
=
(
λ1σt + λ2(σt)

2
)
dt+ σtdBt,

σt = β0 + β1R1,t + β2

√
R2,t,

dR1,t = Γ1 ·
(
dPt

Pt
− κ1R1,tdt

)
− Γ1 ⊙ R1,tdt,

dR2,t = Γ2 ·
(
σ2
t − κ2R2,t

)
dt− Γ2 ⊙ R2,tdt,

R1,t = W⊤
1 R1,t,

R2,t = W⊤
2 R2,t,

(2)

where Wj the vector of weights (wj,i)1≤i≤n and Γj the vector of discount coefficients (γj,i)1≤i≤n, such that

Wj =

wj,1

...

wj,n

 , Γj =

γj,1...

γj,n

 .

The method used to obtain these vectors is presented in Appendix A.2. It should be noted that model 2
depends on the parameter vector

ϕ =
(
λ1, λ2, β0, β1, β2, α1, α2, κ1, κ2

)
,

and that all relevant information at time T for the volatility dynamics is aggregated into the following vector
of state variables:

RT =
(
R

(1)
1,T , ..., R

(n)
1,T , R

(1)
2,T , ..., R

(n)
2,T

)
.

3



Consequently, the estimation procedure will consist of estimating the 2n+ 9 vector

θT =
(
λ1, λ2, β0, β1, β2, α1, α2, κ1, κ2, R

(1)
1,T , ..., R

(n)
1,T , R

(1)
2,T , ..., R

(n)
2,T

)
, (3)

with T a given period. This vector is therefore composed of 9 parameters and 2n state variables. To
perform simulations from the model required by the estimation procedure, we use the following explicit Euler
discretization scheme:

Pt+∆t = Pt

(
1 +

(
λ1σt + λ2(σt)

2
)
∆t+ σt

(
Bt+∆t −Bt

))
,

R1,t+∆t = R1,t ⊙
(
1n − Γ1 ·∆t

)
+ Γ1 ·

(
Pt+∆t − Pt

Pt
− κ1R1,t∆t

)
,

R2,t+∆t = R2,t ⊙
(
1n − Γ2 ·∆t

)
+ Γ2 ·

(
σ2
t −R2,t

)
∆t,

R1,t+∆t = W⊤
1 R1,t+∆t,

R2,t+∆t = W⊤
1 R1,t+∆t

σt+∆t = β0 + β1R1,t+∆t + β2

√
R2,t,

(4)

with ∆t being the time step of simulations and (Bt+∆t − Bt) ∼ N (0,∆t). It is important to note that
in order to ensure the stability of the scheme, all coordinates of Γj must be lower than 1

∆t . If one wishes
to eliminate this condition, an alternative is to opt for an implicit-explicit scheme analogous to the scheme
proposed by Rosenbaum and Zhang (2021) for the quadratic rough Heston model. The time step ∆t used in
this article is 1

19656
1 year, and the larger discount factor is equal to 10000 (expressed in years). Therefore,

because ∀i, j, γj,i∆t < 1, this stability issue does not arise.

2.2 The Bayesian estimation problem to solve: a forecasting objective-based
estimation problem

2.2.1 The forecasting issue

The estimation method presented in this article for model 4 is specifically designed to address a particular
forecasting problem. More precisely, we place in a context in which we have a data matrix D of the form

D =

Pt1 σ̃t1

... ...

PtN σ̃tN

 , (5)

where t1 < . . . < tN = T , P represents the price of a financial asset, and σ̃ is a proxy of realized volatility
defined as the square root of the sum of squares of a sample of 78 observations of logarithmic returns over the
considered period2. From this N × 2 data matrix, we want to get an estimator as accurate as possible of the
following set of conditional moment vectors:

ΩM =
{(

E
[
σT+δk |D

]
,Std

[
σT+δk |D

])}p

k=1
, (6)

1The reason for choosing this discretization time step is that a trading day is approximately equal to 1
252

of a year, and the
realized volatility estimator used in this article is calculated using 78 price observations per trading day: 1

252
× 1

78
= 1

19656
.

2Regarding the simulated data, this proxy is calculated from 78 log-returns evenly distributed over a period of 1
252

year. For
the real data used in section 4.2, σ̃ is calculated from a sample of 78 5-minute log-returns.
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where δk1≤k≤p represents different time horizons. In this article, we will consider the horizons of 1, 5, 21, 42,
and 63 trading days, which are defined here as 1

252 year. The RPDV model will therefore serves as a tool to
estimate these moments. Consequently, contrary to standard statistical approaches like maximum likelihood
estimation, the estimation procedure will not consist of determining the most likely vector θT , but rather the
vector θT that serves this forecasting goal the best.

2.2.2 The Bayesian estimation problem

To propose an appropriate estimation method for the RPDV model that aligns with the forecasting objective
defined in section 2.2.1, we adopt the theoretical framework of Bayesian decision theory (Berger, 2013, Bickel
and Doksum, 2015). As a result, we assume that the dynamics of (P, σ) follow a model given by 4, and θt is
considered as a random vector with a prior distribution π (i.e., θt ∼ π), ∀ t. Under these assumptions and
following the principles of BDT, an estimator θ̂T of θT is optimal given D and a loss function L if it minimizes
the expected posterior loss defined as follows:

EπD

[
L
(
θT , θ̂T

)]
=

∫
R2n+9

L
(
θT , θ̂T

)
dπD (θT ) , (7)

where πD represents the posterior distribution for θT given D3. Regarding the loss function L, its purpose is
to capture the objective of the estimation, which is to obtain an estimator of the conditional moments in ΩM.
This function L is defined as follows:

L
(
θT , θ̂T

)
=

p∑
k=1

ck · C
(
M(θT , δk),M(θ̂T , δk)

)
, (8)

where {ck}pk=1 are positive weights, C is another loss function, and M is a function defined as:

M(θT , δk) =
(
E
[
σT+δk |θT

]
,Std

[
σT+δk |θT

])
, ∀ π(θT ) ̸= 0 δk ∈ R+, (9)

where E
[
σT+δk |θT

]
and Std

[
σT+δk |θT

]
represent the conditional mean and standard deviation of volatility

at horizon δk given θT . In other words, the cost associated with an estimator θ̂T given the true θ-vector
θT is a function of the prediction error in the mean and standard deviation of volatility for time horizons
T + δ1, ..., T + δp induced by this choice of θ-estimator. This cost is influenced by the form of C, which will be
specified in section 2.3. Irrespective of the specific form of C and within the previously established framework,
the Bayes estimator of θT under the posterior measure πD is a solution to the following optimization program:

argmin
θ̂T∈R2n+9

p∑
k=1

ck · EπD

[
C
(
M(θT , δk),M(θ̂T , δk)

) ]
. (10)

The objective of the estimation method introduced in this article, which will be presented in section 3, is to
find an approximate solution to this optimization problem.

2.3 The loss function: a sum of proxy divergence measures
As mentioned in section 2.2, the choice of the loss function is crucial as it implicitly encodes preferences
regarding estimation errors. The mean squared error (MSE) is commonly used as a loss function in forecasting
problems due to its simplicity. However, although the MSE has certain advantages, it may not be the most
suitable loss function for the forecasting objective. In this case, using the MSE would give excessive weight

3In practice, updating π with the information contained in D (i.e., determining πD) is not a trivial task. The estimation
procedure presented in section 3 does not require directly computing this posterior measure.
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to situations where the expected volatility and volatility of volatility are high compared to cases where these
quantities are low. Therefore, we will employ an ad-hoc loss function that can be interpreted as a sum of
proxy divergence measures.

The starting point is the empirical observation that log-volatility increments closely follow a Gaussian distribution
(Gatheral et al. 2018), and empirical volatility distributions closely resemble log-normal distributions (Tegnér
and Poulsen 2018). Additionally, the conditional volatility distributions generated by the RPDV model also
exhibit a similar log-normal behavior. Based on these observations, if we assume θT = θT , we can approximate
the distribution of σT+δ by a log-normal distribution with parameters m(θT+δ) and s(θT+δ). Leveraging the
analytical expressions for the expectation and variance of the log-normal distribution, we can express them as
follows:

E
[
σT+δ|θT

]
≈ em(θT+δk

)+s(θT+δk
)2/2, Var

[
σT+δ|θT

]
≈
(
es(θT+δk

)2 − 1
)
e2m(θT+δk

)+s(θT+δk
)2 .

Equivalently, we can write (see details in appendix B):

m̃
(
θT+δk

)
= log

(
E
[
σT+δ|θT

])
− 0.5 log

(
Var [σT+δ | θT ]
E [σT+δ | θT ]2

+ 1

)
,

s̃
(
θT+δk

)2
= log

(
Var [σT+δ | θT ]
E [σT+δ | θT ]2

+ 1

)
,

(11)

where m̃
(
θT+δk

)
and s̃

(
θT+δk

)2 are approximations of m(θT+δ) and s(θT+δ), respectively. Furthermore, the
divergence between two log-normal distributions, LN

(
m1, (s1)

2
)

and LN
(
m2, (s2)

2
)
, can be expressed as an

analytical function of m1, s1, m2, and s2. Specifically, for the case of Kullback-Leibler (KL) divergence, we
have (Gil et al., 2013):

DKL (P1,P2) =
(m1 −m2)

2 + (s1)
2 − (s2)

2

2(s2)2
+ log

(
s2
s1

)
,

where P1 = LN
(
m1, (s1)

2)
)

and P2 = LN
(
m2, (s2)

2
)
.

Considering these elements, we specify the loss function as follows4:

L
(
θT , θ̂T

)
=

p∑
k=1


(
m̃
(
θ̂T+δk

)
− m̃

(
θT+δk

))2
+ s̃
(
θ̂T+δk

)2 − s̃
(
θT+δk

)2
2s̃
(
θT+δk

)2 + log

(
s̃
(
θT+δk

)
s̃
(
θ̂T+δk

))


︸ ︷︷ ︸
DKL(P̃i,Pi)

,

with Pi = LN
(
m̃
(
θT+δk

)
, s̃
(
θT+δk

)2) and P̂i = LN
(
m̃
(
θ̂T+δk

)
, s̃
(
θ̂T+δk

)2).

Therefore, the loss function L can be understood as the summation of estimated KL divergences between the
predicted volatility distribution and the true volatility distribution at various time horizons. It quantifies the
discrepancy between these distributions. It is worth noting that although the log-normal distribution is an
approximation of the distribution of σT+δ given θT , the KL divergence DKL

(
P̂i,Pi

)
achieves its minimum

value (which is 0) when E
[
σT+δ|θT

]
= E

[
σT+δ|θ̂T

]
and Var

[
σT+δ|θT

]
= Var

[
σT+δ|θ̂T

]
.

4Note that L is a loss function of the form 8.
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Figure 1: Example of two volatility distributions at a one-week horizon generated from the M-RPDV model
using two different θ-vectors and their respective log-normal approximations. The KL-divergence between the
two associated distributions is equal to 4.66, while the KL-divergence between the log-normal approximations
of these distributions is equal to 3.92.

3 Construction of the Bayesian estimator function
Section 2.2 outlined the estimation problem we seek to solve, defined by the optimization program 10. However,
two main obstacles need to be overcome: firstly, an analytical formula for the function M is not available,
and secondly, updating the prior distribution π to obtain the posterior distribution πD is a highly complex
task. To address the first issue, we will adopt a strategy similar to that of Horvath et al. (2021), which
compensates for the lack of an analytical formula for the option price by using "a neural network that maps
parameters of a stochastic model to pricing functions" in their calibration process. In a comparable fashion,
we introduce in section 3.1 an estimator for the function M in the form of an NN that maps (θT , δ) to the
conditional mean and standard deviation E

[
σT+δ|θT

]
and Std

[
σT+δ|θT

]
. We will use this proxy of M to

calibrate a second NN that will play the role of a Bayesian estimator function. Therefore, the objective of
this second NN, the architecture of which will be detailed in section 3.2, is to provide, for any D, a proxy for
the Bayesian estimator of θT , i.e., an approximate solution to the optimization program 10. Section 3.3 will
detail an estimation procedure followed to achieve this situation, a method that circumvents the challenge
of estimating the posterior distribution πD directly by indirectly addressing the original problem, solving a
related problem under the prior measure π.

3.1 The neural network as a proxy for function M

The initial stage in constructing the estimator function involves developing an estimator for the function M ,
denoted as M. This estimator maps (θ, δ) to the conditional moments E

[
σT+δ|θT

]
and Std

[
σT+δ|θT

]
. The

objective is for M to approximate M for all θ : π(θT ) ̸= 0 and δ ∈ δ1, ..., δp, as expressed by the approximation

M (θT , δ) ≈ M (θT , δ) and ∇M (θT , δ) ≈ ∇M (θT , δ) . (12)

The objective is for M not only to be a good approximation of the function M , but also for the gradient
of M to be approximately equal to the gradient of M for all θ : π(θT ) ̸= 0 and δ ∈ δ1, ..., δp. This
property (∇M(θT , δ) ≈ ∇M(θT , δ)) is crucial in the role that M will play in learning the estimator of the
θ-vector. To achieve this, M will be implemented as a neural network (NN) with a specialized and tailored
architecture designed for this task. In this section, we will provide a detailed description of the adopted
network architecture.
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3.1.1 General structure of the network

As mentioned earlier, the architecture of M is specifically adapted to ensure that the gradient passed to the
estimator neural network contains informative information about the implications of the chosen θ-vector in
moment predictions. This choice is motivated by the observation that a more standard network structure often
results in a fitted NN that is primarily sensitive to state vectors R1 and R2, thus missing the main purpose
of M. In order to address this issue and satisfy the requirements described in equations 12, M adopts an
architecture schematized in figure 2.

Subnetwork 1

Subnetwork 2

Subnetwork 3

Subnetwork 4

Subnetwork 5

Input θT

Input δ

W (α1, α2) Ê
[
σT+δ|θT

]

Ŝtd
[
σT+δ|θT

]

Ê
[
R1,T+δ|θT

]

Ê
[√

R2,T+δ|θT
]2

β0, β1, β2

β1, β2

Ŝtd
[
R1,T+δ|θT

]

Ŝtd
[√

R2,T+δ|θT
]

ρ̂
[
R1,T+δ,

√
R2,T+δ|θT

]

α1, α2

W1

W2

Figure 2: The architecture of the neural network M.

Firstly, the neural network (NN) consists of 2 distinct input layers: the first layer receives the θ-vectors and
thus has 9 + 2n input neurons, while the second layer has a dimension of 1 to specify the temporal horizon
δ for which the conditional moments are to be computed. These 2 input layers feed several subregions of the
network, which can be segmented into 2 main components. The first component is responsible for estimating
E[σT+δ|θT ], while the second component is tasked with estimating Std[σT+δ|θT ].

3.1.2 The part of the network responsible for estimating E[σT+δ|θT ]

The part of the network responsible for predicting E[σT+δ|θT ] utilizes the fact that this expectation can be
expressed as follows:

E[σT+δ|θT ] = β0 + β1E
[
R1,T+δ|θT

]
+ β2E

[√
R2,T+δ|θT

]
(13)

The approach is to estimate E
[
R1,T+δ|θT

]
and E

[√
R2,T+δ|θT

] (
more precisely, E

[√
R2,T+δ|θT

]2) separately
using two parallel subnetworks: subnetwork 1 and subnetwork 2 as depicted in figure 2. Equation 13 is then
used to calculate an estimation of E[σT+δ|θT ]. These subnetworks each consist of 6 hidden layers, with the first
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5 layers containing 100 ReLU neurons each, and the final layer consisting of 20 linear neurons. The last hidden
layer connects to an output layer with a single neuron (each subnetwork has its own output neuron/layer),
which receives input from the two input layers associated with θT and δ, as well as from a function that
computes the vectors W1 and W2 from θT .

Hidden Layers
Subnetwork 1

Hidden Layers
Subnetwork 2

Output
Subnetwork 1

Output
Subnetwork 2

Ê[σT+δ|θT ]Input θT

Input δ

W (α1, α2)

δ

W1,W2

α1, α2

θT

θT

x1

x2

δ,R1,T ,W1

δ,R2,T ,W2

Ê1

Ê2

β0, β1, β2

Figure 3: The part of the network M responsible for estimating E[σT+δ|θT ].

The activation function associated with this output neuron is of the form:

Êj

(
δ,Rj,T ,Wj , xj

)
=

n∑
i=1

wj,ie
−γiδRj,i,T︸ ︷︷ ︸
(1)

+

20∑
k=1

(
1− e−gkδ

)
xj,k︸ ︷︷ ︸

(2)

, (14)

where xj is the output vector of the last hidden layer associated with subnetwork j. The exponential weights(
gk
)
1≤k≤20

are defined as follows:

gk = exp

(
log

(
1

1000

)
+

log(100)− log
(

1
1000

)
20− 1

(k − 1)

)−1

. (15)

The specific form of this activation function is particularly suited to its objective in view of the analytical
expressions of E

[
R1,T+δ|θT

]
and E

[√
R2,T+δ|θT

]
. First of all, when δ = 0,

Ê1

(
0,R1,t,W1, x1

)
= R1,t and Ê2

(
0,R2,t,W2, x2

)
= R2,t.

Thus, vectors xj have no impact on the calculation since we use the analytical formulas for R1,t and R2,t

which are θ-measurable. On the other hand, when δ = ∞, the term (1) in equation 13 becomes zero, and we
have

Ê1

(
∞,R1,t,W1, x1

)
=

20∑
k=1

x1,k and Ê2

(
∞,R2,t,W2, x2

)
=

20∑
k=1

x2,k,

which can be respectively interpreted as the estimated asymptotic value of the expectation of R1 and the
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squared estimated asymptotic value of the expectation of
√
R2. Besides these polar cases, component (2) aims

to estimate clearly identified variables. For the network responsible for estimating E
[
R1,T+δ|θT

]
, the objective

is that for all δ:

20∑
k=1

(
1− e−gkδ

)
x1,k ≈ E[R1,T+δ|θT ]−

n∑
i=1

γ1,iw1,ie
−γiδR1,i,T

= E

[∫ T+δ

T

n∑
i=1

γ1,iw1,ie
−γ1,i(T+δ−u)

(
dPu

Pu
− κ1R1,i,udu

)∣∣∣θT]

= E

[∫ T+δ

T

K̂1(T + δ − u)

(
dPu

Pu
− κ1R1,udu

)∣∣∣θT] .
For the network responsible for estimating E

[√
R2,T+δ|θT

]
, the objective is that for all δ5:

20∑
k=1

(
1− e−gkδ

)
x2,k ≈ E

[
R2,T+δ|θ

]
− Var

[√
R2,T+δ|θ

]
−

n∑
i=1

γ2,iw2,ie
−γiδR2,i,T

= E

[∫ T+δ

T

n∑
i=1

γ2,iw2,ie
−γ2,i(T+δ−u)

(
σ2
udu− κ2R2,i,udu

)∣∣∣θT]− Var
[√

R2,T+δ|θT
]
.

= E

[∫ T+δ

T

K̂2(T + δ − u)

(
σ2
udu− κ2R2,i,udu

)∣∣∣θT]− Var
[√

R2,T+δ|θT
]
.

These output layers of the two sub-networks thus produce an estimation of E
[
R1,T+δ|θT

]
and E

[√
R2,T+δ|θT

]
,

respectively, which feed into a global output neuron of the network M: the neuron whose output is the
estimator Ê[σT+δ|θT ]. This neuron, also fed by the input layer associated with θT , then computes the estimator
of E[σT+δ|θT ] using the analytical formula 13:

Ê[σt+δt|θ] = β0 + β1Ê1 + β2

√(
Ê2

)
+
, (16)

with Ê1 the output of the sub-network 1 and Ê2 the output of the sub-network 2.

3.1.3 The part of the network responsible for estimating Std[σT+δ|θT ]

The part of the network responsible for predicting Std
[
R1,T+δ|θT

]
,Std[σT+δ|θT ] uses the fact that the variance

is equal to (see appendix D.3):

Var[σT+δ|θT ] = (β1Std[R1,T+δ|θT ])2 +
(
β2Std

[√
R2,T+δ

∣∣θT ])2
+ 2β1β2Std[R1,T+δ|θT ]Std

[√
R2,T+δ

∣∣θT ]ρ[R1,T+δ,
√
R2,T+δ

∣∣θT ], (17)

where ρ
[
R1,T+δ,

√
R2,T+δ

∣∣θT ] is the correlation between R1,T+δ and
√

R2,T+δ given θT . Similar to the branch
of M responsible for estimating E[σT+δ|θT ], the approach is to estimate Std[R1,T+δ|θT ],Std

[√
R2,T+δ

∣∣θT ],
and ρ

[
R1,T+δ,

√
R2,T+δ

∣∣θT ] using 3 parallel sub-networks assigned to each of these components. These 3
sub-networks are each composed of 6 hidden layers, with the first layer being fed by the input layer θT .
The first 5 layers of each sub-network consist of 100 ReLU neurons. The last hidden layer is composed of
linear neurons, with 3 neurons for sub-networks 3 and 4, which are responsible for estimating Std[R1,T+δ|θT ]

5It arises from the relationship:

Var
[√

R2,T+δ |θT
]
= E

[
R2,T+δ |θT

]
− E

[√
R2,T+δ |θT

]2
⇔ E

[√
R2,T+δ |θT

]2
= E

[
R2,T+δ |θT

]
− Var

[√
R2,T+δ |θT

]
.
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and Std
[√

R2,T+δ

∣∣θT ], respectively, and 21 neurons for the 5th sub-network responsible for estimating the
correlation ρ

[
R1,T+δ,

√
R2,T+δ

∣∣θT ]. The last hidden layer of each sub-network feeds an output neuron, which
also receives input from the δ layer.

Hidden Layers
Subnetwork 3

Hidden Layers
Subnetwork 4

Hidden Layers
Subnetwork 5

Output
Subnetwork 3

Output
Subnetwork 4

Output
Subnetwork 5

Ŝtd
[
σt+δt|θ

]
Input θT

Input δ

β1, β2

δ

θT

θT

θT

x3

x4

x5

Ŝ1

Ŝ2

ρ̂

Figure 4: The part of the network M responsible for estimating Std[σt+δ|θT ].

For sub-networks 3 and 4, the output neuron is associated with an activation function of the following form:

Ŝj(δ, xj) = exp

(
xj,1 +max(xj,2, ϵ) · log

(
δ

1 + (xj,3)+ · δ

))
where ϵ is a positive constant close to zero. The choice of this activation function is motivated by the fact
that, due to the properties of the RPDV model, the logarithms of the respective standard deviations of R1

and
√
R2 for the considered time horizons approximately follow a relationship of the form:

Ŝtd
[
(Rj,T+δ)

1/j |θT
]
≈ exp

(
a+ b · log (δ)

)
,

where b is positive. In the chosen activation function, log (δ) is replaced with log
(
δ/(1+xj,3 ·δ)

)
to potentially

capture concavity of the relationship for certain θ-vectors. Additionally, it is also interesting to note that this
function ensures that the estimated standard deviations are zero when δ = 0, consistent with the fact that
R1,T and R2,T are θ-measurable.

For subnetwork 5 responsible for estimating the correlation between R1,T+δ and
√
R2,T+δ given θT , the output

neuron is associated with the following activation function:

ρ̂(δ, y) = min

(
2; x5,1 +

21∑
k=2

(
1− e−gkδ

)
x5,k

)
− 1.

This activation function ensures that the output range is limited to the interval [−1, 1], which is suitable for
estimating a correlation. Furthermore, the instantaneous correlation and the asymptotic correlation between
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R1 and
√
R2 conditioned on θT are given by:

ρ̂(0, x5) = min (2; x5,1)− 1 and ρ̂(∞, x5) = min

(
2; x5,1 +

21∑
k=2

x5,k

)
− 1.

Each output layer of subnetworks 3, 4, and 5 feeds the output neuron of M responsible for estimating
Std[σT+δ|θT ]. This output neuron, also fed by the input layer θT , is associated with the following activation
function using the analytical expression 17:

Ŝtd[σT+δ|θT ] =
√(

β1Ŝ1

)2
+
(
β2Ŝ2

)2
+ 2β1β2Ŝ1Ŝ2ρ̂,

with Ŝ1, Ŝ2 and ρ̂ being the respective outputs of sub-networks 1, 2, and 3.

3.2 The estimator function
As mentioned in the introduction of section 3, the purpose of the function M defined in section 3.1 is to assist
in the training of a second neural network, the estimator function Θ, which is responsible for estimating the
Bayes estimator of θT from a data matrix D under the posterior measure πD. The objective is to construct
an estimator function Θ that satisfies the following criterion:

EπD

[
L
(
θT ,Θ(D)

)]
≈ min

θ̂T

EπD

[
L
(
θT , θ̂T

)]
, ∀ D : π(D) ̸= 0. (18)

Therefore, the architecture of Θ should be designed to extract all relevant information contained in D in order
to achieve the stated objective. To this end, Θ take the following general form:

Θ
(
D
)
= NN

(
E
(
D
))

,

where NN is a neural network and E is a time-series encoder generally defined by:

E
(
D
)
=

 z1
...

znE

 , (19)

with nE the number of features extract by E . The estimator function first encodes with E the raw data matrix
D into a feature vector that is used as input for a neural network NN to predict the θ-vector. The sections
3.2.1 and 3.2.2 provide a detailed description of the structure of these two components that form Θ.

3.2.1 Dual encoder structure: combining non-trainable and trainable methods

The role of the encoder E is to extract informative features from D for estimating θT . Given the variety of
methods available for encoding time series, E can take different forms. These methods, found in the academic
literature, include transforming time series into pattern variables (Kimoto et al., 1990; Usmani et al., 2016),
imaging time series (Wang and Oates, 2015; Barra et al., 2020), or using signature methods (Morill et al.,
2020). Depending on the chosen method, the encoding can be predetermined, meaning that features are
extracted using a fixed method determined in advance, or it can be learned during the training process,
allowing the encoder to adapt to the specific data characteristics. In this work, the encoder E combines both
approaches by incorporating a non-trainable component and a trainable component. The aim is to leverage
prior knowledge of the process by extracting informative metrics using the non-trainable component, while
complementing them with the trainable component of the encoder.

12



3.2.1.1 The non-trainable encoder

The non-trainable component of the encoder E , denoted as E1, is a pre-determined method that extracts
informative metrics from D for determining the θ-vector. Specifically, E1 computes the following features from
D:

• The serial correlation of the log realized volatility for the following lag times expressed in trading days:
1, 2, 3, 4, 5, 10, 20, 60, 125, 252.

• The mean of the absolute value of realized log-volatility increments over the following time intervals in
trading days: 1, 2, 3, 4, 5, 10, 20, 60, 125, 252.

• The first four moments of the distribution of returns and realized volatility for the time horizons of 1,
5, 21, 63, 252 expressed in trading days.

• The 20 percentiles of the distribution of returns and of the realized volatility for the time horizons of 1,
5, 21, 63, 252 expressed in trading days.

• The linear regression coefficient between the volatility increments and the returns for the following lag
times expressed in trading days: 1, 2, 3, 4, 5, 10, 20, 60, 125, 252.

• The standardized exponential moving averages of returns, realized volatility, and realized variance, which
are defined respectively as

m1,j =

∑N
i=1 rtie

(ti−t)gj∑N
i=1 e

(ti−t)gj
, m2,j =

∑N
i=1 σ̃tie

(ti−t)gj∑N
i=1 e

(ti−t)gj
, m3,j =

∑N
i=1 σ̃

2
tie

(ti−t)gj∑N
i=1 e

(ti−t)gj
,

where gj ∈
(
gk
)
1≤k≤20

and their values are defined in equation 15 (section 3.1.2).

The metrics computed by E1 are diverse, allowing for a multifaceted approach to the data in D. These metrics,
along with those from the trainable component of the encoder E , will be used as inputs to the NN network.

3.2.1.2 The trainable encoder

The trainable component of E , denoted as E2, aims to complement the metrics calculated by E1, adopting a
more agnostic approach. It consists of a convolutional neural network (CNN) with a structure similar to that
of a multi-scale CNN (MCNN) proposed by Cui et al. (2016). The input layer of E2 takes the raw data matrix
D as input and feeds it into four branches. The first layer of each branch is associated with a function defined
as:

A
(
D, l
)
=


Pt1+l

Pt1
σ̃[t1:t1+l] r[t1:t1+l] σ̃t1+l

− σ̃t1

... ...
PtN

Pt1
σ̃[t1:t1+l] r[tN−l:tN ] σ̃tN − σ̃tN−l

 , (20)

where

σ̃[ti:ti+l] =

√√√√1

l

l∑
k=1

σ̃2
ti+k

and r[ti:ti+l] =
Pti+l

− Pti

Pti

.

This function transforms the original N × 2 matrix into a (N − l)× 4 matrix. The first column represents the
normalized price with respect to the date t1. The second column corresponds to the integrated volatility over
a time window of l trading days, while the third column denotes the asset return over the same time window.
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The fourth column captures the variation of volatility over the l-day period. For branches 1, 2, 3, and 4, the
time window parameter l is fixed at 1, 5, 21, and 63, respectively. This choice allows for the augmentation of
the original matrix D with two additional informative columns and captures important information at different
time scales using multiple l values. Each augmented matrix is processed by a convolutional layer followed by
an average pooling layer for each of the four branches. Each convolutional layer consists of 50 filters of size
5× 4, with a stride of 1. The pooling layers perform global average pooling for each filtered time series. The
outputs of the four pooling layers associated with the branches of E2 are finally flattened and concatenated
with the output of E1. This combined output is then used as input to the network NN .

A
(
D, 1

)

A
(
D, 5

)

A
(
D, 21

)

A
(
D, 63

)

D

Convolutional
layer 1

Convolutional
layer 2

Convolutional
layer 3

Convolutional
layer 4

Average pooling
layer 1

Average pooling
layer 2

Average pooling
layer 3

Average pooling
layer 4

Concatenate
layer

Figure 5: The architecture of the encoder E2.

3.2.2 The network NN : from encoded data to θ-vector

The NN network is responsible for predicting the Bayesian estimator of the θ-vector using the feature vector
provided by the encoder E . To accomplish this, NN proceeds sequentially by first estimating the 9 parameters
of the model and then, in a second step, estimating the state variables. These two operations are performed by
two separate multilayer perceptrons (MLPs): NN 1, which is responsible for estimating ϕ, and NN 2, which
is responsible for estimating RT .

To begin with, the input layer of NN 1 is fed by the output of E , which results in nE input neurons. This is
followed by 6 ReLU layers, each with 100 neurons. The last ReLU layer feeds into the output layer, which
consists of 9 neurons that correspond to the parameters to be predicted. The output neuron responsible for
estimating β1 is associated with an inverted ReLU activation function, while the other output neurons are
associated with a standard ReLU. The output layer of NN 1 is then fed into the network NN 2, as well as
into the output layer of NN (and therefore the output layer of Θ), where it is concatenated with the output
of the NN 2 network.

The MLP NN 2 receives as input both the output of E and the output of NN 1, which results in nE +9 input
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neurons. Like the input layer of NN 1, the input layer of NN 2 is followed by 6 ReLU layers, each with 100
neurons. Finally, the output layer of NN 1 consists of 2n linear neurons, representing the 2n state variables.
This output layer feeds into the output layer of NN , where it is concatenated with the output of the NN 2

network.

E1(D)

E2(D)

NN 1

NN 2

θ̂TD

E(D) NN
(
E(D)

)

D

D

E1(D)

E2(D)

ϕ̂

R̂T

ϕ̂E1(D)

E2(D)

Figure 6: The architecture of the estimator function Θ.

3.3 The estimation procedure
This section presents an estimation approach for the RPDV model, utilizing the functions M and Θ introduced
in sections 3.1 and 3.2, respectively. This method can be divided into three phases: the generation of training
data, the training of M, and the training of Θ. These three steps are subsequently described in this section.
At the end of this procedure, Θ can be used as an estimator function for the θ-vectors.

3.3.1 Generation of initial data

To calibrate the functions M and Θ, it is necessary to generate training sets. This process involves defining
the method for generating the θ-vectors, which is equivalent to establishing the prior measure π. We will then
outline the different steps involved in constructing the training sets for M and Θ.

3.3.1.1 Defining the prior measure π

The estimation procedure requires defining the prior measure π. The specification of this measure incorporates
prior knowledge about the parameters, even if this knowledge is vague. By constraining the parameter space,
it is likely to increase the estimation quality without overly restricting the range of possible values. The idea
is therefore to propose a generation procedure for parameter θ-vectors that exploits prior knowledge about
price and volatility dynamics, without excessively constraining the parameter space.

In this context, certain coordinates of the random vector θT are assumed to be independent random variables,
while others exhibit a correlation structure. Specifically, the parameters β0, α1, α2, κ1, κ2 are distributed
independently, as follows:

(β0, α1, α2, κ1, κ2) ∼ U(0, 0.25)× U(0, 1)× U(0, 1)× U(0, 5)× U(0, 5)× U(0, 0.15).
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Regarding the risk premia, their generation is slightly more complex. Firstly, the value of the price drift
λ1σt + λ2(σt)

2 is generated when the volatility is equal to 15% (σt = 0.15) as follows:

µ̄ ∼ U(0, 0.1).

In other words, under the measure π, the price drift ranges from 0 to 10% when the volatility level is 15%.
Then, there is a 1

3 probability that λ1 = µ̄
0.15 and λ2 = 0, a 1

3 probability that λ1 = 0 and λ2 = µ̄
0.152 , and a

1
3 probability that

λ1 ∼ U(0, 1) · µ̄

0.15
, λ2 =

µ̄− 0.15λ1

0.152
.

Therefore, there is an equal probability of having a pure volatility premium, a pure variance premium, or
a mixture of both. The last two remaining parameters are β1 and β2. In both cases, it makes sense to
consider the specificity of the kernel associated with the variables for which β1 and β2 determine the volatility
sensitivity. With respect to β1, it is generated as follows:

β1 ∼ U(−1.5, 0) ·

(
n∑

i=1

n∑
k=1

w1,iw1,kγ1,iγ1,k
γ1,i + γ1,k

e−(γ1,i+γ1,k)

)−0.5

.

The term that weights U(−1.5, 0) is the inverse of the asymptotic standard deviation of the BSS process
associated with the kernel K̂1 (see appendix D.2). This weighting allows for the generation of reasonable
values of β1 given α1. Similarly, the parameter β2 is generated as follows:

β2 ∼ U(0, 1)∑n
i=1 w2,i

.

The term that weights U(0, 1) corresponds to the inverse of the integral over R+ of the kernel K̂2 (see appendix
D.1). This weighting prevents volatility from exploding regardless of the value of κ2.

Next, we define how the state variables {(R1)j}nj=1 and {(R2)j}nj=1 are generated. The approach consists of
three steps. The first step is the initialization of the state variables. The state variables {(R1)j}nj=1 are simply
initialized to zero, and the state variables {(R2)j}nj=1 are initialized as follows:

(R2,0)i ∼ (β0)
2 · U(0.9, 1.1).

From these initial values and the associated parameter vector, a simulation of the volatility dynamics is
performed over a period of 5 years. Finally, the values of the state variables at the end of this simulation are
retained.

The θ-vector is retained if and only if the initial value of the volatility is positive and lower than 300%, i.e.,
if 0 < β0 + β1R1,T + β2

√
R2,T < 3.

3.3.1.2 Constructing training sets

The objective is to generate data samples{
D, θT ,

{
Ē1,T+δk , Ē2,T+δk , S̄1,T+δk , S̄2,T+δk , ρ̄T+δk

}p
k=1

}
,

where D is a data matrix of the form 5 (section 2.2.1) generated from the generator 4 (section 2.1.2), θT is the
value taken by the θ-vector at the end of the simulation of D, and where Ēk,T+δj , S̄1,T+δk , ρ̄T+δk are unbiased
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estimators of E[Rk,T+δ|θT ],Std[Rk,T+δ|θT ] and ρ
[
R1,T+δ,

√
R2,T+δ|θT

]
, respectively. To do this, we use the

following algorithm.

Algorithm 1 Procedure for generating training sets.
Require: π, n1, n2

1. Generate an i.i.d. sample Ωθ0 =
{
θ
(i)
t0

}
1≤i≤n1

from the distribution π.

2. Generate from Ωθ0 and model 4 the pairs
{
D(i), θ

(i)
T

}
1≤i≤n1

.

3. Generate n2 time series over the periods T + δ1, ..., T + δp using model 4 for each θ ∈
{
θ
(i)
T

}
1≤i≤n1

, and

extract from each series the sets ΩR =

{{
R

(i,k)
1,T+δk

, R
(i,j)
2,T+δk

}p

k=1

}
1≤i≤n1
1≤j≤n2

.

4. Compute set
{{

Ē
(i)
1,T+δk

, Ē
(i)
2,T+δk

, S̄
(i)
1,T+δk

, S̄
(i)
2,T+δk

, ρ̄
(i)
T+δk

}p

k=1

}
1≤i≤n1

from sample set ΩR.

return
{
D(i), θ

(i)
T ,
{
Ē

(i)
1,T+δk

, Ē
(i)
2,T+δk

, S̄
(i)
1,T+δk

, S̄
(i)
2,T+δk

, ρ̄
(i)
T+δk

}
1≤k≤p

}
1≤i≤n1

This data generation procedure aligns with the adopted Bayesian approach. The set of i.i.d. matrices{
D(i)

}
1≤i≤n1

is generated from initial vectors
{
θ
(i)
t0

}
1≤i≤n1

sampled from the prior distribution π, which
incorporates vague knowledge about the model parameters. In this article, we specify n1 = 200 000 and
n2 = 200. The large value chosen for n1 ensures good coverage of the parameter and state variable space. As
for n2, its value allows for empirical moment estimators with reasonable variance on average.

Figure 7: The left figure plots a historical trajectory of realized joint price and volatility of an asset over
1260 trading days contained in a matrix D(i), generated from the initial θ-vector value θ

(i)
0 . The right figure

represents 5 continuations of this trajectory over 252 trading days generated from θ
(i)
1260.
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3.3.2 The training of M

The second phase of the general procedure involves training M using the datasets generated in section 3.3.1.
The method to be proposed for this purpose is derived from the following proposition proved in appendix C.1.

Proposition 1 Let be θ
(1)
T , ..., θ

(n1)
T a sequence of i.i.d. random variable following π, and

{
M̄

(1)
T+δk

}
1≤j≤p

, ...,{
M̄

(n1)
T+δk

}
1≤j≤p

a sequence of sets such as ∀ i, k, M̄
(i)
T+δk

is an unbiased estimator of M
(
θ
(i)
T , δk

)
calculated

from a sample of size n2. If it exists M⋆, such as M⋆ (θT , δk) = M (θT , δk) , ∀ θT : π (θT ) ̸= 0 and
δk ∈ {δ1, ..., δp}, thus ∀ M̂⋆ solution to

arg min
M

1

n1

n1∑
i=1

p∑
k=1

∥∥∥M(
θ
(i)
T , δk

)
− M̄

(i)
T+δk

∥∥∥2
2
,

M̂⋆ (θ, δk) = M (θT , δk) , ∀ θT : π (θT ) ̸= 0 and δk ∈ {δ1, ..., δp}.

Therefore, this proposition implies a way to make M a convergent estimator of M , under suitable conditions
of existence, for the time horizons δ1, ..., δp and the θ-vectors associated with a non-zero probability under the
measure π. It simply involves minimizing the mean squared difference between the estimators returned by M
and the unbiased estimator M̄ for each pair

(
δ(i), θ

(i)
T

)
in the training set. This minimization constitutes the

second step of algorithm 2, which we propose for training M.

Algorithm 2 Training procedure for M

Require:
{
θ
(i)
T ,
{
Ē

(i)
1,T+δj

, Ē
(i)
2,T+δj

, S̄
(i)
1,T+δj

, S̄
(i)
2,T+δj

, ρ̄
(i)
T+δj

}
1≤k≤p

}
1≤i≤n1

1. Optimize

arg min
M

1

n1

n1∑
i=1

p∑
k=1

(
ρ̂
(i)
T+δk

− ρ̄
(i)
T+δk

)2
+

2∑
j=1

((
Ê

(i)
j,T+δk

− Ē
(i)
j,T+δk

)2
+
(
Ŝ
(i)
j,T+δk

− S̄
(i)
j,T+δk

)2)
.

2. Optimize

arg min
M

1

n1

n1∑
i=1

p∑
k=1

∥∥∥M(
θ
(i)
T , δk

)
− M̄

(i)
T+δk

∥∥∥2
2
,

starting from the training of M obtained at the end of step 1.

return M̂⋆

The first step of the procedure serves only to prepare for the second (and final) step of the training of M.
It involves independently training the five subnetworks that compose M (see figure 2). The objective by the
end of step 1 is as follows:

Ê
(i)
j,T+δk

≈ E
[
(Rj,T+δk)

1/p
∣∣θ(i)T

]p
, Ŝ

(i)
j,T+δk

≈ Std
[
Rj,T+δk

∣∣θ(i)T

]
and ρ̂

(i)
T+δk

≈ ρ
[
R1,T+δk ,

√
R2,T+δk

∣∣θ(i)T

]
,

∀ {i, k}. In this first phase, the training of M is conducted to align with the specific role of each of the 5
subnetworks within it. This first phase, which frames the outputs of the subnetworks in M, is followed by
step 2, which is aimed at achieving the objective 12 stated in the introduction of section 3.1. As previously
mentioned, according to proposition 3.3.2, under suitable conditions of existence, as n1 and n2 approach
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infinity, solving the optimization problem associated with step 2 involves finding M̂⋆ such that:

M̂⋆ (θ, δk) = M (θT , δk) , ∀ θT : π (θT ) ̸= 0 and δk ∈ {δ1, ..., δp}.

The assumption of the existence of M⋆ is related to the flexibility of the network M in approximating the
function M . Moreover, the reasonableness of this assumption is guaranteed by the structure of the subnetworks
that constitute M, which can approximate any continuous function due to the universal approximation
theorem (Hornik et al. 1989).

3.3.3 The training of Θ

The third and final step of the estimation process involves training Θ to achieve the desired situation described
in 18 at the beginning of section 3.2. The consistency of the method to be proposed in this section for this
purpose stems from the following proposition demonstrated in appendix C.2.

Proposition 2 Let θ
(1,1)
t0 , ..., θ

(n1,1)
t0 be a sequence of i.i.d. random variables following π, D(1), ...,D(n1)

a set of time-series such that D(i) is generated from the M-RPDV associated with the θ-vector θ
(i)
t0 , and

θ
(1,2)
T , ..., θ

(n1,2)
T the set of values taken by θ at time tN for each time series D(i). If there exists Θ⋆ such that

for all D : Pπ(D) ̸= 06, Θ⋆(D) is a Bayes estimator of θT under the posterior measure π, then for any Θ̂⋆

solution to the optimization problem

arg min
Θ

lim
n1→+∞

1

n1

n1∑
i=1

L

(
θ
(1,i)
T ,Θ

(
D(i)

))
,

Θ̂⋆(D) is a Bayes estimator of θT under the posterior measure πD, ∀ D : Pπ(D) ̸= 0.

This proposition, therefore, has significant implications as it provides a way to calibrate Θ, such that asymptotically
and under a suitable existence condition, Θ(D) becomes a Bayesian estimator of θT under the posterior measure
πD, for all D : Pπ(D) ̸= 0. This result is even more remarkable considering that the estimation method does
not require explicit calculation of the posterior measures (i.e., the measure π updated by a matrix D) at
any point. Indeed, it simply involves following steps 1 and 2 of algorithm 4.1.1) to generate a set of pairs{
D(i), θ

(i)
T

}
1≤i≤n1

, and then minimizing the average losses measured by L between the θ-vectors predicted by

Θ
(
i.e. D(i)

)
and the true θ-vectors (i.e. θ

(i)
T ). However, since L depends on the function M , which is not

known, we use the following proxy that replaces M with M:

L̂
(
θ
(i)
T ,Θ

(
D(i)

))
=

p∑
k=1

C
(
M
(
θ
(i)
T , δk

)
,M

(
Θ
(
D(i)

)
, δk

))
.

The idea is that after training M (algorithm 2), M (θT , δ) ≈ M (θT , δ) and ∇M (θT , δ) ≈ ∇M (θT , δ), and
therefore:

L̂
(
θ
(i)
T ,Θ

(
D(i)

))
≈ L

(
θ
(i)
T ,Θ

(
D(i)

))
and ∇L̂

(
θ
(i)
T ,Θ

(
D(i)

))
≈ ∇L

(
θ
(i)
T ,Θ

(
D(i)

))
.

Consequently, the quality of the approximation of the function M by M is crucial in the training of Θ.
Regarding the assumption of the existence of Θ⋆ on which proposition 3.3.3 relies, its reasonableness depends
on both the encoder’s ability to extract all relevant information contained in the time series D and the plasticity
of the networks NN 1 and NN 2.

6Pπ denotes the distribution of D induced by π.
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Based on these elements, the training of Θ is carried out using the following algorithm.

Algorithm 3 Learning procedure for the estimator function Θ

Require:
{
D(i), θ

(i)
T

}
1≤i≤n1

1. Optimize

arg min
E2, NN 1

1

n1

n1∑
i=1

∥∥∥NN 1

(
E
(
D(i)

))
− ϕ(i)

∥∥∥2
2
.

2. Optimize

arg min
NN 2

1

n1

n1∑
i=1

(
NN 2

(
E
(
D(i)

)
, ϕ(i)

)
− R

(i)
T

)2

.

3. Optimize

arg min
NN 2

1

n1

n1∑
i=1

(
M
((

ϕ(i),NN 2

(
D(i)

))
, 0
)
−M

(
θ(i), 0

))2

.

4. Optimize

arg min
Θ

1

n1

n1∑
i=1

p∑
k=1

C
(
M
(
θ
(i)
T , δk

)
,M

(
Θ
(
D(i)

)
, δk

))
.

return Θ̂⋆

The first three learning steps for sub-regions of the network that constitutes Θ in practice serve only to prepare
for the fourth and final step, which is directly derived from proposition 3.3.3. In the first phase, only the
components of the network responsible for predicting the parameter vector ϕ, i.e., the trainable encoder E2
and the neural network NN 1, are trained. The aim is to guide the learning of Θ initially by minimizing
the sum of squared differences between predicted and actual parameter vectors, thereby obtaining parameters
consistent with the prior measure π. Next, the neural network NN 2 responsible for predicting the state
variable vector R is trained. The calibration of NN 2 uses the encoder E fitted during phase 1 and actual
parameter vectors, rather than those estimated by NN 1. This approach allows for a more focused learning
of the relationship between data and the vector of state variables to be predicted, without introducing any
bias caused by estimation errors in NN 1. The first three steps of the algorithm described previously are not
important in themselves, but serve only to prepare for the final learning step of Θ. This final step aims to
achieve the objective defined in the introduction of section 3.2, namely that Θ returns an estimator of θT that
is close (in terms of expected loss measured by L) to its Bayesian estimator under the posterior measure. The
consistency of the optimization program solved in this step with this objective is established by the following
proposition proved in the appendix C.2.

4 Assessment of the estimation method
The purpose of this section is to evaluate the estimator function defined in section 3. For this purpose, we
perform various tests, starting with synthetic data and then moving on to market data.
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4.1 Evaluation of estimation method using synthetic data
In this section, the objective is to evaluate the estimation method presented in section 3 using synthetic data.
We start by assessing the accuracy of the moment estimator M in approximating the function M . Next, we
evaluate the effectiveness of the estimator function Θ in providing consistent estimates of the θ-vector that
align with our forecasting objectives.

4.1.1 Test dataset and evaluation metrics

The test dataset is generated using algorithm , as introduced in section 3.3.1.2, with parameters n1 = 10000

and n2 = 1000. Hence, we have the following elements that will be used to construct the test datasets:{
D(i), θ

(i)
T ,
{
M̄

(i)
T+δk

}
1≤k≤p

}
1≤i≤10000

.

The choice of n2 = 1000 in Algorithm 1 allows us to consider M̄
(i)
T+δk

as reasonably accurate estimators of
M
(
θ
(i)
T , δ

)
. This consistency enables us to use them as targeted values for comparison with the predicted

values generated by M
(
θ
(i)
T , δ

)
and M

(
D(i), δ

)
.

The evaluation of the estimated conditional moments ŷi with the targeted conditional moment values yi will
be conducted using the following metrics:

• The root mean squared error(RMSE)

RMSE =

√∑n1

i=1

(
yi − ŷi

)2
N

.

• The mean absolute error (MAE)

MAE =

∑n1

i=1

∣∣yi − ŷi
∣∣

N
.

• The mean absolute percentage error (MAPE)

MAPE =
1

n1

∑n1

i=1

∣∣yi − ŷi
∣∣

yi

• The coefficient of determination

r2 = 1−
∑n1

i=1(yi − ŷi)
2∑n1

i=1

(
yi − 1

n1

∑
i=1 yi

)2 .
The use of these different metrics allows for evaluating, from different angles, the moment estimators. RMSE is
a classic metric that measures the difference between predicted and actual values, while taking into account the
variance of errors. MAE, on the other hand, measures the average of absolute errors, providing an indication
of the overall accuracy of the estimation. MAPE has the advantage of comparing the performance of the
estimation, taking into account the heterogeneity of the magnitudes of the moments. Finally, the coefficient
of determination r2 measures the overall adequacy of the model by providing an indication of the proportion
of variance explained by the model.
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4.1.2 Evaluation of the ability of M to approximate M

We aim to evaluate how closely M approximates M . To do so, we compare the estimators

M
(
θT , δ

)
1
= Ê

[
σT+δ|θT

]
and M

(
θT , δ

)
2
= Ŝtd

[
σT+δ|θT

]
,

with the corresponding empirical estimators calculated from a sample of volatility trajectories using θT . This
comparison is performed using the test dataset{{

θ
(i)
T , M̄

(i)
T+δk

}
1≤i≤10000

}
1≤k≤5

,

which is extracted from the synthetic data defined in section 4.1.1. The results obtained are reported in tables
1 and 2.

δ = 1 δ = 5 δ = 21 δ = 42 δ = 63

RMSE 0.0055 0.0069 0.0095 0.0090 0.0100
MAE 0.0029 0.0035 0.0043 0.0045 0.0049

MAPE 0.0270 0.0325 0.0391 0.0421 0.0453
R-Squared 0.9958 0.9920 0.9832 0.9842 0.9800

Table 1: Evaluation metrics for the estimation of E[σT+δ|θT ] by M.

δ = 1 δ = 5 δ = 21 δ = 42 δ = 63

RMSE 0.0258 0.0279 0.0297 0.0310 0.0353
MAE 0.0107 0.0105 0.0122 0.0131 0.0141

MAPE 0.1081 0.0965 0.1046 0.1102 0.1143
R-Squared 0.9010 0.8887 0.8742 0.8675 0.8359

Table 2: Evaluation metrics for the estimation of Std[σT+δ|θT ] by M.

The obtained results demonstrate that M provides a reliable approximation of M across different time
horizons. When estimating E[σT+δ|θT ], the evaluation metrics indicate a significant agreement with the
empirical estimators in terms of both absolute and relative deviation. For example, the MAE falls within
the range of 0.0029 to 0.0049 for various time horizons δ, indicating that, on average, the estimated values of
E[σT+δ|θT ] provided by M deviate from the empirical estimator by less than 0.005 units. Additionally, the
MAPE metric reveals that the average absolute deviation between these two estimators ranges from 2.7% to
4.5% in relative terms, which is notably low. Furthermore, the consistently high R-squared values exceeding
98% confirm the excellent quality of approximation for the conditional expectation by M.

The same observation applies to the estimation of the conditional standard deviations Std[σT+δ|θT ], albeit
with some nuances. The evaluation metrics demonstrate a significant agreement between M and the empirical
estimators, indicating a reliable approximation of Std[σT+δ|θT ] for the different time horizons. However, it is
worth noting that the deviation between these estimators is significantly larger compared to the estimation
of E[σT+δt|θT ]. Specifically, we observe that the MAE ranges from 0.0107 to 0.0141 for different values of δ,
suggesting that, on average, the estimated values provided by M deviate from the empirical estimator by less
than 0.015 units. In terms of the MAPE, the average absolute deviation between the estimators ranges from
9.65% to 11.43% in relative terms. Moreover, the R-squared values for Std[σT+δ|θT ] range from 83.59% to
90.10%, indicating a relatively high concordance between M and the empirical estimators, but lower compared
to the estimation of E[σT+δ|θT ].
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Figure 8: Example of estimated conditional means and standard deviations by M compared to sample
conditional estimators.

However, this discrepancy does not necessarily imply a lower quality of estimation for Std[σT+δt|θT ]. In fact,
it can be mainly attributed to the higher variance of the empirical estimator used for estimating the standard
deviations. This higher variance is illustrated by the example exhibited in Figure 8, where the absolute
percentage error for the 51 trading days horizon is greater than 50%. However, by replicating the experiment
with 20 000 simulations, this absolute error decreases significantly to less than 2%. This suggests that the
observed residuals are primarily due to the higher variance of the empirical estimators used rather than a
misestimation of M.

4.1.3 Assessment of the estimator function Θ

4.1.3.1 Evaluation based on conditional moments

To evaluate the performance of the estimator function Θ, we compare in this section the following estimators:

M
(
Θ
(
D(i)

)
, δ
)
1
= Ê

[
σt+δ|D(i)

]
and M

(
Θ
(
D(i)

)
, δ
)
2
= Ŝtd

[
σt+δ|D(i)

]
,

using two types of moment estimators: the empirical estimators already used in section 4.1.2, and the
estimators computed from M using the actual θ-vectors.

To begin the evaluation, we use the following test dataset, where the targeted values are the sample moments:{{
D(i), M̄

(i)
T+δk

}
1≤i≤10000

}
1≤k≤5

.

The results obtained from this evaluation are presented in tables 3 and 4.

δ = 1 δ = 5 δ = 21 δ = 42 δ = 63

RMSE 0.0147 0.0129 0.0128 0.0122 0.0129
MAE 0.0083 0.0076 0.0074 0.0075 0.0077

MAPE 0.0904 0.0799 0.0753 0.0747 0.0761
R-Squared 0.9705 0.9725 0.9696 0.9705 0.9662

Table 3: Evaluation metrics comparing M
(
Θ
(
D
)
, δ
)
1

and
(
M̄T+δk

)
1
.
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δ = 1 δ = 5 δ = 21 δ = 42 δ = 63

RMSE 0.0355 0.0368 0.0373 0.0400 0.0476
MAE 0.0156 0.0155 0.0165 0.0175 0.0185

MAPE 0.1857 0.1655 0.1610 0.1634 0.1655
R-Squared 0.8007 0.7944 0.7891 0.7688 0.7048

Table 4: Evaluation metrics comparing M
(
Θ
(
D
)
, δ
)
2

and
(
M̄T+δk

)
2
.

A first observation is that, consistently, the cost metrics are higher and the R-squared values are lower
compared to the case studied in section 4.1.2, where the θ-vectors are known. However, the observed difference,
although significant, remains relatively moderate, which suggests the quality of the estimation of the θ-vectors
produced by Θ. However, to better interpret these results, it is important to note that this difference tends
to decrease relative to the temporal horizon. Thus, while the MAPE between M

(
θT , δ

)
1

and
(
M̄T+δ

)
1

increases from 2.7% for a 1-day trading horizon to 4.5% for a 3-month horizon (63 trading days), the MAPE
between M

(
Θ
(
D(i)

)
, δ
)
1

and
(
M̄T+δ

)
1

decreases for the same periods from 9% to 7.6%. Similarly, the MAPE
between M

(
θT , δ

)
2

and
(
M̄T+δ

)
2

decreases from 10.8% for a 1-day trading horizon to 11.4% for a 3-month
horizon, compared to a decrease from 18.6% to 16.5% for the same horizons when comparing M

(
θT , δ

)
2

and
(
M̄T+δ

)
2
. A first explanation for this phenomenon could be the decreasing significance of short-term

information contained in the state variables associated with higher discount factors, as it has a diminishing
impact on the conditional moments. However, these state variables are particularly challenging to estimate
due to the daily observation frequency, which explains the reduction in the cost gaps between M

(
Θ
(
D
)
, δ
)

and M
(
θT , δ

)
as δ increases. This phenomenon may also be partly caused by the variance of the empirical

estimator M̄T+δ. To isolate the impact of estimating the θ-vectors using Θ, it is valuable to directly compare
the estimator M

(
Θ
(
D
)
, δ
)

with the estimator M
(
θT , δ

)
. To investigate this further, we employ the same

evaluation procedure for Θ as discussed previously, but on the following test dataset:{{
D(i),M

(
θ
(i)
T , δk

)}
1≤i≤10,000

}
1≤k≤5

.

The resulting outcomes from this evaluation are presented in the following tables.

δ = 1 δ = 5 δ = 21 δ = 42 δ = 63

RMSE 0.0128 0.0114 0.0113 0.0115 0.0118
MAE 0.0078 0.0072 0.0072 0.0074 0.0077

MAPE 0.0851 0.0763 0.0757 0.0797 0.0840
R-Squared 0.9744 0.9767 0.9750 0.9729 0.9711

Table 5: Evaluation metrics comparing M
(
Θ
(
D
)
, δ
)
1

and M
(
θT , δ

)
1
.

δ = 1 δ = 5 δ = 21 δ = 42 δ = 63

RMSE 0.0209 0.0214 0.0222 0.0229 0.0235
MAE 0.0108 0.0111 0.0116 0.0121 0.0125

MAPE 0.1603 0.1492 0.1431 0.1421 0.1423
R-Squared 0.9031 0.9034 0.9029 0.9014 0.8997

Table 6: Evaluation metrics comparing M
(
Θ
(
D
)
, δ
)
2

and M
(
θT , δ

)
2
.

In a consistent manner, the majority of cost metrics demonstrate lower values, and the R-squared value
consistently shows higher values when using M

(
θT , δ

)
as targeted values instead of empirical moment estimators.
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Although the difference is relatively small for conditional expectation estimators, it becomes more significant
for conditional standard deviation estimators. Specifically, the R-squared is 10 to 20 points lower when using
M
(
θT , δ

)
2

as the targeted value compared to the sample standard deviation. This suggests that a significant
portion of the discrepancy between the estimator M

(
θT , δ

)
2

and the empirical estimator of the conditional
standard deviation can be attributed to the variance of the latter. In practical terms, this finding further
strengthens the notion that the future volatility distributions associated with the θ-vectors estimated by Θ

closely align with the actual future volatility distributions, not only in terms of the mean but also in terms of
the standard deviation.

4.1.3.2 Evaluation based on conditional distributions using the Kolmogorov-Smirnov test

In addition to evaluating the estimator function through conditional moments, it is important to examine
the consistency between the estimated θ-vectors and the true θ-vectors in terms of the associated conditional
distributions. To address this aspect, we conduct a statistical experiment to assess the adequacy of the
estimated θ-vectors by Θ.

The first step of this experiment involves estimating each θ-vector associated with each matrix D(i) using the
Θ method. Subsequently, we generate 100 simulations for each estimated vector, consideringhe the p time
horizons of interest to us: 1, 5, 21, 42, and 63 trading days. For each combination of

(
θ
(i)
T , θ̂

(i)
T

)
and for each

time horizon, we employ the Kolmogorov-Smirnov (KS) test to calculate the p-value between the simulated
volatility sample generated from the estimated θ-vector by Θ and the sample generated from the true θ-vector.
The p-value indicates the likelihood of observing a discrepancy as large as or larger than the one observed,
assuming both samples are drawn from the same distribution. By computing the proportion of non-rejection
of the null hypothesis of the KS test at different significance levels, we can evaluate the agreement between the
estimated and true θ-vectors regarding the underlying conditional distributions. The results of this analysis
are presented in the following table, providing valuable insights into the robustness and reliability of the
estimation procedure conducted by Θ.

δ = 1 δ = 5 δ = 21 δ = 42 δ = 63

Proportion (%) at a significance level of 0.1% 93.0 94.8 96.4 97.1 97.2
Proportion (%) at a significance level of 1% 84.7 88.4 90.2 91.9 91.9
Proportion (%) at a significance level of 5% 76.1 80.9 83.5 84.9 85.2
Proportion (%) at a significance level of 10% 68.5 73.2 76.4 77.8 77.5

Table 7: Proportion of non-rejection of the null hypothesis of the KS test.

The results obtained demonstrate a high level of consistency between the conditional distributions generated
from the estimated θ-vectors by Θ and those generated from the true θ-vectors. This consistency is evident
through significant proportions of non-rejection observed across different significance levels for the various time
horizons examined. Notably, even with a relatively high significance level of 10%, a substantial portion of
the sample (ranging from 68.5% to 77.5% depending on the time horizon) does not reject the null hypothesis,
indicating a strong agreement between the estimated and true θ-vectors concerning the associated conditional
distributions. These findings emphasize the robustness and reliability of the estimation procedure performed
by Θ in capturing the underlying future volatility distributions accurately.

Furthermore, it is interesting to note that the proportion of non-rejection of the null hypothesis increases with
the time horizon. This phenomenon can be explained by two main factors already discussed in section 4.1.2.
Firstly, as the time horizon increases, the data variability also increases, leading to conditional distributions
with a larger standard deviation and, consequently, a greater acceptance of the null hypothesis. Secondly, as
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the time horizon grows, the significance of short-term information contained in the state variables associated
with higher discount factors diminishes in its impact on the conditional distributions. However, these state
variables are particularly challenging to estimate due to the daily observation frequency.

4.2 Evaluation of estimation procedure using market data
The objective of the estimation procedure presented in this article is to make the RPDV model a robust model
for volatility prediction. The purpose of this section is therefore to evaluate the performance of the RPDV
model on real data according to this objective.

4.2.1 Market data sets

To evaluate the performance of Θ on real data, the tests conducted in this section utilize historical data
from 2000 to 2022 for five stock indices: S&P500, Nasdaq, FTSE, DAX, and Euro Stoxx 50. These historical
datasets consist of daily observations for each index, including its corresponding value and the realized volatility
over the day, annualized. To create the input matrices D for the estimator Θ, a rolling window approach is
employed. Specifically, a window of size 1260×2 is slid with a step of 1 trading day over the 22-year historical
period. This process generates the matrices D of dimension 1260× 2 that are used as inputs for the estimator
Θ. Furthermore, the prediction horizons considered are 1, 5, 21, 42, and 63 trading days. Therefore, from a
historical period of 5544 trading days (approximately 22 years), a total of 4222 (5544 - 1260 + 1 - 63) test
pairs are obtained:

{
D(i),

{
σ̃i+δk

}5
k=1

}4222

i=1
.

Figure 9: Example of joint evolution of the S&P500 and its realized volatility: the first 5 years are real data
used to estimate θT from Θ, followed by 10 simulated years using this θ-vector.

4.2.2 Comparison of model forecasts with benchmark volatility models

The objective of this section is to assess the performance of the RPDV model on market data presented in
section 4.2.1. For this purpose, we use as volatility forecaster, the estimator of E

[
σT+δ|D

]
:

σ̂T+δ = M
(
Θ(D), δ

))
1
,
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which we then compare with the following benchmark models from academic literature (Gatheral et al. 2019,
Rosenbaum and Zhang 2022):

• The autoregressive (AR) models of order 5 and 21 (with trading days frequency), which take the following
form for an order p model:

σt = a+

p∑
k=1

bk · σt−k.

• The heterogeneous autoregressive (HAR) models introduced by Corsi (2002) HAR

σ̂t = a+ b1σt−1 + b2

5∑
k=1

σt−k + b3

21∑
k=1

σt−k.

• The rough fractional stochastic volatility (RFSV) model introduced by Gatheral et al. (2019)

σ̂t = exp

(
cos(Hπ)

π

∫ t−1

−∞

σs

(t− s+ 1)(t− s)H+0.5
ds+

G(1.5−H)ν2

2G(H + 0.5)G(2− 2H)

)
.

where G(.) denotes the gamma function. In practice, we truncate the integral to 1260 trading days and
approximate it using a Riemann sum.

Each of these models is estimated using the data contained in the first column of the matrices D, which
represents the historical realized volatility over the past 1260 trading days (approximately 5 years). The
parameters of the AR and HAR models are estimated using the ordinary least squares method, while the
FSVM is estimated using the method proposed by Gatheral. The accuracy of these different forecasters is
evaluated by calculating the MSE between their respective forecasts and realized volatility, using the market
data considered in section 4.2.1.

The results presented in table 8 demonstrate that, in most of the cases examined, the RPDV predictions
outperform alternative models in terms of forecast accuracy. However, it is important to note that the
predictive ability of RPDV heavily relies on the specific time horizon being considered. Specifically, for all
1-day horizon forecasts, the MSE-based performance of RPDV is inferior to that of the AR models or RFSV.
Nevertheless, its relative performance significantly improves for the 5 trading days horizon, where it becomes
the most accurate model in 3 out of 5 cases. Moreover, for longer time horizons such as 1, 2, and 3 months,
RPDV consistently outperforms other volatility forecasters. In general, as the time horizon increases, RFSV
forecasts tend to outperform those of other models.

The differential performance based on the considered time horizons could be attributed to two different
reasons. The first one is the chosen model. This one is purely path-dependent, whereas empirical data
suggests that volatility dynamics are also driven by exogenous frictions (Guyon and Lekeufack 2023/Parent
2023). Additionally, the kernels associated with the variables R1 and R2 follow a power law, while shifted
power law kernels better fit market data according to Guyon and Lekeufack (2023). Therefore, using a
model with more flexible kernels and incorporating an exogenous component of volatility could improve the
performance of the approach. The second possible cause could be the estimation method itself. Indeed, unlike
the other models considered, Θ is trained only using synthetic data with a constant observation time step of
1

252 of a year, whereas the real data has an uneven observation frequency due to factors such as the presence
of weekends. Thus, the empirical observation gap between two consecutive weekdays is 1

365 of a year, and
3

365 of a year between Friday and the following Monday. This bias can have a relatively strong impact on the
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estimation of volatility at a short time horizon and tends to be smoothed out as the time horizon increases.
Nevertheless, this is currently a limitation of the proposed estimation method that is worth highlighting. To
address this limitation, one potential approach is to incorporate a combination of synthetic and real data in
the training of Θ. By including real data with varying observation frequencies, the model can better adapt
to the characteristics of empirical data. Additionally, introducing noise or biases in the training data can
enhance the robustness of the θ-vector estimation and help reduce potential biases.

AR(5) AR(21) HAR RFSV RPDV
SPX δ = 1 0.0030 0.0031 0.0036 0.0031 0.0033
SPX δ = 5 0.0052 0.0052 0.0052 0.0051 0.0050
SPX δ = 21 0.0087 0.0083 0.0081 0.0080 0.0076
SPX δ = 42 0.0106 0.0100 0.0098 0.0094 0.0087
SPX δ = 63 0.0111 0.0103 0.0103 0.0099 0.0089
Nasdaq δ = 1 0.0021 0.0022 0.0027 0.0022 0.0028
Nasdaq δ = 5 0.0039 0.0040 0.0039 0.0038 0.0040
Nasdaq δ = 21 0.0064 0.0063 0.0059 0.0057 0.0058
Nasdaq δ = 42 0.0076 0.0072 0.0069 0.0066 0.0064
Nasdaq δ = 63 0.0080 0.0075 0.0073 0.0069 0.0065
FTSE δ = 1 0.0038 0.0039 0.0042 0.0038 0.0040
FTSE δ = 5 0.0055 0.0053 0.0053 0.0052 0.0053
FTSE δ = 21 0.0086 0.0077 0.0076 0.0073 0.0074
FTSE δ = 42 0.0101 0.0090 0.0088 0.0083 0.0083
FTSE δ = 63 0.0107 0.0094 0.0093 0.0088 0.0086
DAX δ = 1 0.0026 0.0026 0.0031 0.0026 0.0029
DAX δ = 5 0.0045 0.0044 0.0042 0.0042 0.0041
DAX δ = 21 0.0075 0.0067 0.0064 0.0062 0.0060
DAX δ = 42 0.0090 0.0082 0.0076 0.0073 0.0068
DAX δ = 63 0.0096 0.0086 0.0081 0.0078 0.0072
Stox50 δ = 1 0.0039 0.0040 0.0046 0.0039 0.0042
Stox50 δ = 5 0.0062 0.0061 0.0061 0.0060 0.0058
Stox50 δ = 21 0.0099 0.0091 0.0088 0.0084 0.0081
Stox50 δ = 42 0.0110 0.0105 0.0101 0.0095 0.0090
Stox50 δ = 63 0.0114 0.0106 0.0105 0.0099 0.0092

Table 8: MSE for the AR, HAR, RFSV and RPDV predictors.

4.2.3 Evaluation by density

The evaluation of standard deviations for conditional volatility distributions is not directly possible from
historical data since, by definition, we only have a single realization for each date. Therefore, we proceed
indirectly by using the approximation of volatility distributions with the log-normal distribution introduced
in section 2.3. In this framework, our estimator for the volatility distribution at horizon T + δ at time T is
the log-normal distribution LN

(
m̃T+δ, (s̃T+δ)

2
)

, where:

m̃T+δ = log
(
M
(
Θ(D), δ

)
1

)
− 0.5

(
s̃T+δ

)2
and

(
s̃T+δ

)2
= log

(M
(
Θ(D), δ

)
2

M
(
Θ(D), δ

)
1

)2

+ 1

 .
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Using the properties of the log-normal distribution, we define the estimator of the cumulative distribution
function (CDF) of σT+δ at time T as follows:

F̂T+δ(σ) = 0.5 + 0.5 · erf
(
log(σ)− m̃T+δ

s̃T+δ

√
2

)
. (21)

We then proceed to calculate the proportion of observed realized volatility values that fall within different
confidence intervals constructed based on this estimated CDF. Specifically, we compute the included proportion
of the sample that falls within:

• the bilateral confidence interval [α/2 : 1− α/2]:

p1−α =

∑N
k=1 1

{
α
2 ≤ F̂Tk+δ

(
σTk+δ

)
≤ 1− α

2

}
N

,

• the upper unilateral confidence interval [α : 1]:

p
(+)
1−α =

∑N
k=1 1

{
α ≤ F̂Tk+δ

(
σTk+δ

)}
N

,

• the lower unilateral confidence interval [0 : 1− α]:

p
(−)
1−α =

∑N
k=1 1

{
F̂Tk+δ

(
σTk+δ

)
≤ 1− α

}
N

.

These calculations are performed for the following values of α: 0.05, 0.1, 0.25, 0.5. The idea is then to
compare the theoretical proportion, which should be 1− α, with the calculated proportions p1−α, p(+)

1−α, and
p
(−)
1−α. Indeed, the closer the calculated proportions p1−α, p

(+)
1−α, and p

(−)
1−α are to 1 − α, the stronger the

indication that F̂Tk+δ is a reliable estimator of the conditional distributions of volatility at horizon δ.

The figures reported in the table 9 demonstrate that our estimator of conditional volatility distributions
generally provides a good approximation of the actual conditional distributions. The proportions of realized
volatility included in the estimated confidence intervals are typically close to the theoretical proportions (i.e.,
1 − α), indicating that the estimator effectively captures the characteristics of the conditional distributions.
This, in turn, suggests that M

(
Θ
(
D
)
, δ
)
2

produces a good estimation of conditional standard deviations.
However, it should be noted that, as already mentioned in section 4.2.2, the quality of the model estimations
is quite sensitive to the considered time horizon. Thus, while the difference between the theoretical proportion
and the observed proportion inside the confidence intervals is around 10 points in most cases for a 1-day
horizon, this difference is almost always less than 5 points for horizons equal to or greater than 1 month.

Another interesting point is that the narrower the confidence interval, the more accurate the model estimation,
in the sense that the empirical proportions approach the theoretical proportions. Moreover, the empirical
proportions are generally lower than the theoretical proportions, especially when considering wider confidence
intervals. This phenomenon can be explained by several factors. The first, which is certainly the most
important, is that observations outside the confidence intervals are simply the result of a poor model prediction
for a part of the sample. This hypothesis is supported by the fact that these discrepancies are strongly
correlated with the model’s relative performance reported in table 8. Another factor explaining this discrepancy
is an underestimation by the model of the conditional standard deviations. In fact, even if the model
perfectly predicted the conditional means, such an underestimation of the standard deviations would lead
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to p1−α < 1 − α. Finally, part of this difference could be also explained by the use of the log-normal
approximation. Indeed, with constant mean and standard deviation, the kurtosis of the volatility distributions
directly generated from RPDV model tends to be slightly higher than their log-normal approximations (it can
be seen in figure 1).

p0.95 p
(+)
0.95 p

(−)
0.95 p0.90 p

(+)
0.90 p

(−)
0.90 p0.75 p

(+)
0.75 p

(−)
0.75 p0.50 p

(+)
0.50 p

(−)
0.50

SPX δ = 1 0.86 0.90 0.91 0.80 0.85 0.85 0.65 0.72 0.72 0.44 0.50 0.50
SPX δ = 5 0.89 0.92 0.91 0.83 0.88 0.85 0.67 0.74 0.69 0.44 0.53 0.47
SPX δ = 21 0.90 0.92 0.93 0.85 0.88 0.88 0.70 0.74 0.71 0.46 0.52 0.48
SPX δ = 42 0.90 0.92 0.94 0.86 0.87 0.89 0.71 0.75 0.73 0.48 0.52 0.48
SPX δ = 63 0.91 0.92 0.94 0.86 0.88 0.89 0.73 0.75 0.74 0.49 0.52 0.49
Nasdaq δ = 1 0.87 0.90 0.91 0.81 0.85 0.86 0.65 0.70 0.73 0.43 0.47 0.53
Nasdaq δ = 5 0.89 0.93 0.89 0.82 0.88 0.83 0.68 0.75 0.70 0.45 0.51 0.49
Nasdaq δ = 21 0.89 0.93 0.92 0.84 0.88 0.86 0.69 0.75 0.72 0.46 0.50 0.50
Nasdaq δ = 42 0.90 0.92 0.94 0.85 0.88 0.88 0.71 0.75 0.73 0.48 0.52 0.48
Nasdaq δ = 63 0.90 0.92 0.94 0.86 0.88 0.88 0.72 0.75 0.74 0.49 0.51 0.49
FTSE δ = 1 0.86 0.88 0.89 0.79 0.82 0.82 0.63 0.68 0.68 0.42 0.47 0.52
FTSE δ = 5 0.88 0.89 0.92 0.82 0.83 0.87 0.65 0.71 0.73 0.43 0.49 0.51
FTSE δ = 21 0.90 0.91 0.93 0.84 0.86 0.86 0.68 0.72 0.74 0.46 0.49 0.51
FTSE δ = 42 0.90 0.92 0.94 0.85 0.86 0.88 0.69 0.72 0.75 0.47 0.50 0.50
FTSE δ = 63 0.91 0.91 0.94 0.85 0.86 0.88 0.70 0.72 0.76 0.48 0.50 0.50
DAX δ = 1 0.88 0.89 0.91 0.83 0.83 0.87 0.66 0.71 0.73 0.45 0.50 0.50
DAX δ = 5 0.89 0.90 0.94 0.84 0.85 0.89 0.68 0.73 0.75 0.47 0.51 0.49
DAX δ = 21 0.90 0.91 0.94 0.86 0.86 0.90 0.69 0.73 0.76 0.49 0.50 0.50
DAX δ = 42 0.91 0.91 0.94 0.86 0.87 0.91 0.70 0.73 0.77 0.49 0.50 0.50
DAX δ = 63 0.91 0.91 0.94 0.87 0.87 0.92 0.71 0.73 0.78 0.50 0.50 0.50
Stox δ = 1 0.87 0.89 0.91 0.82 0.84 0.83 0.65 0.70 0.70 0.43 0.49 0.51
Stox δ = 5 0.89 0.91 0.92 0.84 0.86 0.85 0.67 0.71 0.71 0.45 0.50 0.50
Stox δ = 21 0.90 0.92 0.92 0.85 0.87 0.87 0.69 0.73 0.72 0.48 0.51 0.49
Stox δ = 42 0.91 0.92 0.94 0.86 0.88 0.88 0.70 0.73 0.73 0.49 0.51 0.49
Stox δ = 63 0.91 0.92 0.94 0.87 0.87 0.88 0.71 0.73 0.74 0.50 0.50 0.50

Table 9: Proportions of realized volatility samples included in estimated confidence intervals.

5 Conclusion
The present article has introduced an innovative deep estimation method for volatility models, specifically
designed for volatility forecasting within the theoretical framework of Bayesian decision theory. To illustrate
this method, the article focused on estimating a version of the RPDV model.

The objective of the proposed approach was formally outlined in Section 2. It involves constructing an
estimator function for the considered model that, from a historical matrix of price and realized volatility data,
returns optimal parameters and state variables according to Bayesian decision theory principles and based
on the criterion defined in this section. This criterion, arising from a forecasting objective across different
horizons, has been defined as a function of the first two conditional moments of volatility at various time
horizons.

The estimation method itself has been exposed in section 3. It involves 2 NNs. The first one, denoted as
Θ, serves as the estimator function. It takes a historical matrix of price and realized volatility data as input
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and returns a θ-vector containing the parameters and state variables defining a Markovian approximation of
the RPDV model at a specific time instant. The second neural network, denoted as M, estimates the mean
and standard deviation of the volatility under the considered RPDV model for a given pair of θ-vector and
time horizon. This NN thus addresses the absence of an analytical formula for these moments. The proposed
estimation method first involves training this neural network M, and then, in a second step, training Θ

through interaction with M. In this approach, M is used to compute the cost of the θ-vectors predicted by Θ,
thereby adjusting the parameters of the neural network Θ accordingly. Importantly, it has been demonstrated
that under certain conditions, following the proposed estimation procedure, Θ behaves asymptotically as a
Bayesian estimator aligned with the volatility prediction objective outlined in section 2. Consequently, the
outputs of Θ offer estimations of the optimal θ-vectors tailored to the specified forecasting goal.

Section 4 presents a comprehensive evaluation of the practical effectiveness of the estimator function Θ

using both synthetic and market data. The evaluation on synthetic data demonstrates that the estimated
θ-vectors by Θ yield volatility distribution estimates that closely align with the real distributions at different
time horizons. These results highlight the efficacy of the proposed estimation method within the analytical
framework, where the estimation data are noise-free and generated from the model being estimated. The
evaluation using market data, spanning 22 years of data from 5 stock indices, provided insights under less
favorable conditions. The results showed a generally positive outcome, although with more mixed findings
compared to the tests conducted on synthetic data. Notably, the model’s performance as a volatility forecaster
varied depending on the chosen time horizon. For the 1 trading day volatility forecast, the model exhibited
lower performance compared to benchmark forecasters such as AR and RSFV. However, for a 1-week horizon
(5 trading days), the model’s performance became comparable to, or even slightly better than, the benchmark
models. Moreover, the model consistently outperformed other models for longer horizons of 1 month or more,
including the HAR and RSFV models that are known for their effectiveness in volatility prediction over longer
timeframes.

The reasons put forward to explain the differential performance based on the considered time horizon are
of two kinds: the first is related to the chosen volatility model, the second to the estimation procedure
itself. Regarding the first reason, a model allowing more flexible kernels and enabling the incorporation of
an exogenous component of volatility could be better adapted to capture the empirical dynamics of volatility,
thereby improving short-term forecasting. Regarding the estimation procedure itself, the fact that Θ is
trained solely on synthetic data with a constant observation time step, while the observation frequency
varies for empirical data, could introduce a bias in the prediction of state variables, which diminishes as the
prediction time horizon decreases. To address this limitation, one potential approach could be to incorporate
a combination of synthetic and real data in the training of Θ. Additionally, introducing noise or biases in the
training data may also enhance the robustness of the θ-vector estimation and help reduce potential biases.
These avenues for improvement could refine the estimation framework presented in this article, which already
demonstrates promising results, particularly in utilizing RPDV as a volatility predictor for medium to long
horizons.
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Appendix A Approximation of the RPDV model

A.1 Stochastic differential equations for Markovian approximation of the RPDV
model

We aim to solve the following SDE:

dR1,i,t = γi

(
dPt

Pt
− (κ1R1,t +R1,i,t) dt

)
,

To consider the dynamics of R1,i,t, we set g (R1,i,t, t) = eγitR1,i,t and apply the Itô lemma:

de−γitR1,i,t = γie
γitR1,i,tdt+ eγitdR1,i,t = γie

γit

(
dPt

Pt
− κ1R1,tdt

)
.

Consequently:

R1,i,t = R1,i,0e
−γit + γi

∫ t

0

e−γi(t−u)

(
dPu

Pu
− κ1R1,udu

)
.

Thus:
n∑

i=1

w1,iR1,i,t = R1,t =

n∑
i=1

γiw1,ie
−γ1,itR1,i,0 +

∫ t

0

n∑
i=1

γiw1,ie
−γ1,i(t−u)

︸ ︷︷ ︸
K̃1(t−u)

(
dPu

Pu
− κ1R1,udu

)
,

If follows that

lim
t→+∞

R1,t =

∫ t

0

K̂(t− u)

(
dPu

Pu
− κ1R1,udu

)
.

Analogously, with

dR2,i,t =
(
(σt)

2 − κ2R2,t − γiR2,i,t

)
dt,

by applying same steps, we obtain:

n∑
i=1

w2,iR2,i,t = R2,t =

n∑
i=1

γiw2,ie
−γ2,itR2,i,0 +

∫ t

0

n∑
i=1

w2,ie
−γ2,i(t−u)

(
(σu)

2 − κ2R2,t

)
du.

and therefore

lim
t→+∞

R2,t =

∫ t

0

K̂(t− u)
(
(σu)

2 − κ2R2,t

)
du.

A.2 Approximation of the power law kernel
In the original article (Parent 2022), it is shown that vectors Wj and Λj can be determined using the work of
Abi Jaber (2019) based on the expression of the kernel Kj(τj) = τ−αj as the Laplace transform of a positive
measure. However, this method has several drawbacks. The first is that the convergence between Kj and K̂j
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is relatively slow with respect to n, the number of exponential kernels that make up K̂j . Consequently, when
n is small (n ≤ 10), there exists kernels of the same form (and with the same n) that better approximate the
power kernel in the L2 sense . Furthermore, the discount coefficients obtained through this method depend
on α. While this is not inherently a problem, it complexify the estimation problem in practice. For these
reasons, an alternative approximation of Kj is used here, in which the discount coefficients are constant (they
do not depend on αj) and only the weight vector Wj vary.

In order to fix Λj , we start to remark that the inverse of the discount coefficients γj,i corresponds to the
duration of (Rj,t)i. Based on that, we start by defining the shortest and longest durations as τ− = γ−1

j,1 and
τ+ = γ−1

j,n, respectively. In this case, we set τ− = 1
10000 and τ+ = 1000 expressed in years. Subsequently,

we perform a uniform logarithmic discretization between these two bounds to determine the values of the
remaining n− 2 discounting coefficients (γj,i)2≤i≤n−1, as follows:

γj,i = exp

(
log(τ−) +

log(τ+)− log(t−)

n− 1
(i− 1)

)−1

.

The idea is to have a set of exponential kernels with durations distributed in such a way as to be able to well
approximate any power law kernel K(τ) = τ−α with α ∈]0 : 1[. With the value of Λj fixed, we then solve the
following least-square problem:

argmin
Wj≥0n

∥∥yj −AjWj

∥∥2
with 0n a n-dimensional vector of zeros,

Aj =


γj,1e

−γj,1τ1 ... γne
−γj,nτ1

...
. . .

...
γj,1e

−γj,1NτN ... γne
−γj,nτN

 , yj =

 τ1−α

...

τN
−α

 .

In order to evaluate the quality of the approximation obtained by this method, we will compare it with the
method proposed by Abi Jaber (2019), using n = 10 in both cases. Accordingly, we compute the L1 and
L2 norms of the difference over the time interval [ 1

10000 : 10] between power-law kernels and their associated
approximations using each of these 2 methods. Table 10 reports the results obtained.

α 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1∥∥K̂1 −K
∥∥
L1(T )

2.443 1.475 0.873 0.586 0.518 0.489 0.563 0.844 1.604∥∥K̂2 −K
∥∥
L1(T )

0.016 0.026 0.041 0.065 0.107 0.188 0.355 0.449 0.970∥∥K̂1 −K
∥∥
L2(T )

0.618 0.22 0.105 0.218 1.391 9.51 65.5 436.14 2809.4∥∥K̂2 −K
∥∥
L2(T )

0.0004 0.004 0.033 0.228 1.412 8.11 43.8 66.51 470.8

Table 10: Comparison of two power-law kernel approximation methods based on L1 and L2 norms evaluated
over the time interval [ 1

10000 : 10]. K̂1 is the approximation method introduced by Abi Jaber, while K̂2 uses
the method proposed in this section.

Based on the metrics considered, the method proposed here generally provides a better approximation of the
power-law kernel than Abi Jaber’s method for most of the considered α values. If we focus on the L1 norm
criterion, this method produces systematically a better approximation for all the considered α values. When
we consider the L2 norm criterion, Abi Jaber’s approximation outperforms the method introduced in the
present section for the cases where α is equal to 0.5 and 0.6. However, even in these two cases, the difference
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in performance is very small.

Figure 10: Examples of approximations of two power-law kernels using 2 different approximation methods.
Kernel K̂1 is obtained using the Abi Jaber approximation, while kernel K̂2 is obtained using the approximation
described in this section.

Appendix B Parameters of the log-normal approximation
to the conditional volatility distribution

We want to express m and s in terms of E
[
σT+δ|θT

]
and Var

[
σT+δ|θT

]
given:

E
[
σT+δ|θT

]
= em+ s2

2 , Var
[
σT+δ|θT

]
=
(
es

2

− 1
)
e2m+s2 .

It is clear that the first equation can be rewrite as

m = log
(
E
[
σT+δ|θT

])
− s2

2
.

Injecting this result in the second equation, we obtain:

Var
[
σT+δ|θT

]
=
(
es

2

− 1
)
e2log(E[σT+δ|θT ])

Var
[
σT+δ|θT

]
=
(
es

2

− 1
)

E
[
σT+δ|θT

]2
s2 = log

(
Var [σT+δ | θT ]
E [σT+δ | θT ]2

+ 1

)

Therefore,

m = log
(
E
[
σT+δ|θT

])
− 0.5 log

(
Var [σT+δ | θT ]
E [σT+δ | θT ]2

+ 1

)
.
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Appendix C Proofs of convergence results

C.1 Convergence of the estimation procedure of the function M

Proposition 1 Let be θ
(1)
T , ..., θ

(n1)
T a sequence of i.i.d. random variable following π, and

{
M̄

(1)
T+δk

}
1≤j≤p

, ...,{
M̄

(n1)
T+δk

}
1≤j≤p

a sequence of sets such as ∀ i, k, M̄
(i)
T+δk

is an unbiased estimator of M
(
θ
(i)
T , δk

)
calculated

from a sample of size n2. If it exists M⋆, such as M⋆ (θT , δk) = M (θT , δk) , ∀ θT : π (θT ) ̸= 0 and
δk ∈ {δ1, ..., δp}, thus ∀ M̂⋆ solution to

arg min
M

1

n1

n1∑
i=1

p∑
k=1

∥∥∥M(
θ
(i)
T , δk

)
− M̄

(i)
T+δk

∥∥∥2
2
,

M̂⋆ (θ, δk) = M (θT , δk) , ∀ θT : π (θT ) ̸= 0 and δk ∈ {δ1, ..., δp}.

Proof of proposition 1. The density being by definition positive or zero, we have the following inequality:∫
R2n+9

(
min
M

p∑
k=1

∥∥M (θT , δk)−M (θT , δk)
∥∥2
2

)
dπ(θT ) ≤ min

M

∫
R2n+9

p∑
k=1

∥∥M (θT , δk)−M (θT , δk)
∥∥2
2
dπ(θT ).

In addition, ∀ M ∈ R2, M is the unique solution to

arg min
M̂

∥∥M− M̂
∥∥2
2
.

It follows that if it exists M⋆ such as M⋆(θT , δk) = M(θT , δk), ∀ θ : π (θT ) ̸= 0, and δk ∈ {δ1, ..., δp}, thus
∀ M̂⋆ solution to

arg min
M

∫
R2n+9

p∑
k=1

∥∥M (θT , δk)−M (θT , δk)
∥∥2
2
dπ(θ),

M̂⋆(θT , δk) = M(θT , δk), ∀ θ : π (θ) ̸= 0. Moreover, because M̄
(i)
T+δk

is an unbiased estimator of M
(
θ
(i)
T , δk

)
calculated from a sample of size n2

7 :

lim
n2→+∞

M̄
(i)
T+δk

= M
(
θ
(i)
T , δk

)
.

Similarly, by the law the of large numbers

lim
n1→+∞
n2→+∞

1

n1

n1∑
i=1

p∑
k=1

∥∥∥M(
θ
(i)
T , δk

)
− M̄

(i)
T+δk

∥∥∥2
2
=

∫
R2n+9

p∑
k=1

∥∥M (θT , δk)−M (θT , δk)
∥∥2
2
dπ(θT ).

Therefore, using previous results, under the existence condition of M⋆, ∀ M̂⋆ solution to

arg min
M

lim
n1→+∞
n2→+∞

1

n1

n1∑
i=1

p∑
k=1

(
M
(
θ
(i)
T , δk

)
− M̄

(i)
T+δk

)2
,

M̂⋆ (θT , δk) = M (θT , δk) , ∀ θT : π (θT ) ̸= 0 and δk ∈ {δ1, ..., δp}. QED.

7We assume here that, ∀ θT : π (θT ) ̸= 0 and [0 : δp], σT+δk has finite variance.
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C.2 Convergence of the estimation procedure of the estimator function Θ

Proposition 2 Let θ
(1,1)
t0 , ..., θ

(n1,1)
t0 be a sequence of i.i.d. random variables following π, D(1), ...,D(n1)

a set of time-series such that D(i) is generated from the M-RPDV associated with the θ-vector θ
(i)
t0 , and

θ
(1,2)
T , ..., θ

(n1,2)
T the set of values taken by θ at time tN for each time series D(i). If there exists Θ⋆ such that

for all D : Pπ(D) ̸= 0, Θ⋆(D) is a Bayes estimator of θT under the posterior measure π, then for any Θ̂⋆

solution to the optimization problem

arg min
Θ

lim
n1→+∞

1

n1

n1∑
i=1

L

(
θ
(i)
T ,Θ

(
D(i)

))
,

Θ̂⋆(D) is a Bayes estimator of θT under the posterior measure πD, ∀ D : Pπ(D) ̸= 0.

Proof of proposition 2. The expectation of the cost under the prior measure π is defined by:

Eπ

[
L
(
θT ,Θ(D)

)]
=

∫
RN×2
+

EπD

[
L
(
θT ,Θ(D)

)]
dPπ(D).

Using this expression, and given density being by definition positive or zero, we have the following inequality:∫
RN×2
+

(
min
Θ

EπD

[
L
(
θT ,Θ(D)

)] )
dPπ(D) ≤ min

Θ
Eπ

[
L
(
θT ,Θ(D)

)]
.

It follows that if it exists Θ⋆ such as ∀ D : Pπ(D) ̸= 0, Θ⋆(D) is a Bayes estimator of θT under the posterior
measure πD, if Θ̂ is solution to

min
Θ

Eπ

[
L
(
θT ,Θ

(
D
)]
,

Θ̂(D) is a Bayes estimator of θ under the posterior measure πD, ∀ D : Pπ(D) ̸= 0.

In addition, if D(1), ...,D(n) is a set of i.i.d. of time-series such as D(i) ∼ Pπ, by the law of large numbers

lim
n3→+∞

1

n1

n1∑
i=1

L

(
θ
(i)
T ,Θ

(
D(i)

))
= Eπ

[
L
(
θT ,Θ(D)

)]
.

Combining the above propositions, if there exists Θ⋆ such that for all D : Pπ(D) ̸= 0, Θ⋆(D) is a Bayes
estimator of θT under the posterior measure π, then for any Θ̂⋆ solution to the optimization problem

arg min
Θ

lim
n1→+∞

1

n1

n1∑
i=1

L

(
θ
(i)
T ,Θ

(
D(i)

))
,

Θ̂⋆(D) is a Bayes estimator of θT under the posterior measure πD, ∀ D : Pπ(D) ̸= 0. QED.
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Appendix D Annex results

D.1 Value of the integral of K̂ over R+

We compute the integral of K̂ over R+:∫ ∞

0

K̂(u)du =

∫ ∞

0

n∑
i=1

wiγie
−γi(t−u)du

=

n∑
i=1

[
wie

−γi(t−u)
]∞
0

=

n∑
i=1

wi.

D.2 Standard deviation of a BSS process

The avriance of an integral of the form
∫∞
0

K̂(u)dWu can be computed as follows:

Var

(
n∑

i=1

∫ ∞

0

wiγie
−γiudWu

)
=

∫ ∞

0

(
n∑

i=1

wiγie
−γi(t−u)

)2

du

=

∫ ∞

0

n∑
i=1

n∑
j=1

wiwjγiγje
−(γi+γj)(t−u)du

=

n∑
i=1

n∑
j=1

wiwjγiγj
γi + γj

.

It follows that:

Std

(
n∑

i=1

∫ ∞

0

wiγie
−γiudWu

)
=

√√√√ n∑
i=1

n∑
j=1

wiwjγiγj
γi + γj

e−(γi+γj).

D.3 The variance of the volatility process
The variance of the volatility process is equal to:

Var (σT+δ) = Var
(
β0 + β1R1,T+δ + β2

√
R2,T+δ

)
= (β1)

2Var (R1,T+δ) + (β2)
2Var

(√
R2,T+δ

)
+ 2β1β2ρT+δ

√
Var (R1,T+δ)Var

(√
R2,T+δ

)
.
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