
HAL Id: hal-04751348
https://hal.science/hal-04751348v1

Submitted on 24 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Microscopic Interpretation of the Payne Effect in Model
Fractal-Aggregate Polymer Nanocomposite

Yang Wang, Gaëtan Maurel, Marc Couty, François Detcheverry, Samy
Merabia

To cite this version:
Yang Wang, Gaëtan Maurel, Marc Couty, François Detcheverry, Samy Merabia. Microscopic Inter-
pretation of the Payne Effect in Model Fractal-Aggregate Polymer Nanocomposite. Macromolecules,
2024, 57 (8), pp.3636-3646. �10.1021/acs.macromol.3c01495�. �hal-04751348�

https://hal.science/hal-04751348v1
https://hal.archives-ouvertes.fr


Microscopic Interpretation of the Payne Effect

in Model Fractal-Aggregate Polymer Nanocomposite
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ABSTRACT

Polymer nanocomposites (PNCs) are known to display exceptional non-linear mechanical proper-
ties, even for deformation amplitudes as low as a few percent. One of the most studied phenomenon
is the so-called Payne effect, a drop in storage modulus with increasing amplitude. Several mech-
anisms have been put forward to rationalize such effect, including filler network breaking, polymer
chain desorption and yielding of the polymer confined between the nanofillers. In this contribution,
we demonstrate that for PNCs involving fractal-like aggregates, the Payne effect may originate from
the alignment of the aggregates under the imposed flow direction. We reach this conclusion by
using a coarse-grained model, which combines an explicit representation of fillers with an implicit
description of the polymer matrix. We systematically characterize the effects of aggregate size and
polydispersity in the amplitude of the Payne effect. Moreover, we probe the mechanical response of
the model PNCs after a first cycle of deformation. We observe slow recovery kinetics of the original
storage modulus of the PNCs and relate this memory effect to the alignment of the aggregates. Our
findings should contribute to clarify the relation between the macroscopic mechanical response of
the PNCs and the mesoscopic state of the filler.

I. INTRODUCTION

Dispersing a tiny amount of solid filler within a poly-
mer matrix may change drastically the polymer rheol-
ogy [1–3]. Pure polymer matrices exhibit a low plateau
modulus and a linear response over a broad range of de-
formation amplitude. In contrast, polymer nanocompos-
ites (PNCs) feature both a larger elastic modulus and
even for small deformation amplitudes, strongly nonlin-
ear effects. Prominent among them is the so-called Payne
effect [4–12], which refers to the drop in storage modu-
lus occuring for typical deformation amplitudes between
0.1 and 10%. Both the amplitude and the critical de-
formation amplitude depend on the nanofiller volume
fraction. Alongside such nonlinear phenomena, it is well
known that the rheology of PNCs may strongly depend
on the mechanical history [13–15]: after a first deforma-
tion, PNCs do not recover instantaneously their original
storage modulus.
The microscopic mechanism underlying the Payne ef-

fect is still being debated. A variety of hypotheses has
been put forward, with at least four types of interpre-
tations. A first class of model relates the Payne ef-
fect to polymer chains disentanglements under deforma-
tion [16, 17]. A second scenario posits that the drop
in modulus is driven by polymer chains desorption or
debonding, hence breaking the links of the percolating
filler-network [11, 18–20]. Alternatively, the destruction
of the filler network due to breaking of the solid aggre-
gates or agglomerates is also invoked as a cause of stress
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softening [21–24]. Finally, it has been proposed that the
Payne effect originates in the yielding of glassy bridges
connecting neighbouring fillers [25–27]. In this latter
case, the slow recovery kinetics after a first deformation
is attributed to aging of the polymer confined between
nanofillers.

To the question of the Payne effect origin, it is likely
that there is not a single answer. The variety of available
fillers continues to expand both in terms of shape and
size [28, 29] and the resulting PNCs may differ consid-
erably in properties. The relevance of each mechanism
may depend on the particular system under investigation
and on the experimental conditions. Moreover, given the
complex physical chemistry PNCs, several mechanisms
can compete and contribute concurrently to the Payne
effect. The relevance of generic mechanisms can only be
assessed on a specific system.

There are, however, several reasons to believe that a
general scenario should be at work in the Payne effect.
First, it has been long recognized, since the early inves-
tigations by Payne, that the drop of the elastic modu-
lus is also observed in carbon black dispersed in a non-
polymeric solvent [30]. Recent experimental studies con-
firm that carbon black suspensions in a silicon oil dis-
play a non-linear rheology phenomenology typical of filled
elastomers [24, 31]. Two important implications follow as
regards the possible physical interpretations of the Payne
effect. On the one hand, chain entanglements can not
explain the drop of the elastic modulus in the non poly-
meric systems, as the molecular weight of the silicon oils
is less than the chain entanglement weight [31]. On the
other hand, because rheological measurements are typi-
cally performed far above the silicon oil glass transition
temperature, a glassy yielding mechanism is quite un-
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likely. Finally, another salient feature of the Payne effect
is the wide temperature range over which it occurs [5, 32].
All these considerations point to a generic mechanism of
the Payne effect, where the nanofiller aggregates play a
dominant role and the matrix –whether polymeric or not–
plays only a secondary role. In this article, we follow this
line of thought and focus on the coupling between the
aggregates and the imposed deformation to seek an in-
terpretation of the Payne effect.

We focus specifically on polymer nanocomposites that
involve fractal-like aggregates. Historically, the first
widely studied PNCs were based on fractal-like aggre-
gates made of carbon black. The interest in this type of
fillers is related to the tire industry, which makes exten-
sive use of carbon black fillers [2, 3]. More recently, silica
nanoparticles either well dispersed or forming aggregates
have been considered as alternative fillers [1]. Both car-
bon black and silica aggregates are made of hundreds of
primary particles attached in a ramified structure which
can reach 500 nm in size. Understanding their effect on
viscoelastic and mechanical properties has been a long-
standing quest [33–38].

While many puzzles remain in the understanding of
PNCs [39], the large size of fractal-like aggregates poses
a specific challenge. Simulation of polymeric materials
have long offered a direct access to chain structure and
dynamics [40, 41]. Yet, approaches based on a molecu-
lar description [19, 42, 43] or more coarse-grained models
such as DPD or slip-links [44–46] are applicable only to
PNCs with small fillers. They are difficult to exploit
with fractal-like aggregates with typical size of 100 nm,
because the relevant time and length scale remain mostly
unaccessible. For this reason, we introduced in a previ-
ous work [47] a new mesoscopic model for fractal-like ag-
gregate nanocomposites. Since polymeric chains are too
costly to model explicitly, the matrix is described im-
plicitly as a viscoelastic medium, in which interactinng
aggregate particles, still represented explicitly, evolve
through a generalized Langevin dynamics. Such a hy-
brid modeling makes it possible to simulate dozens of ag-
gregates and to account for aggregate interactions, size
and polydispersity. Within this framework, we previ-
ously investigated the viscoelastic properties of PNCs in
the linear regime [47].

In this study, we use our implicit medium model for
fractal aggregate nanocomposites to revisit the Payne
effect. We first quantify how the size, volume fraction
and polydispersity influence the amplitude of the phe-
nomenon. Next, we show that the underlying microscopic
mechanism involves the alignment of aggregates. Finally,
we consider memory dependent effects arising in cycling
protocols. The remainder of this article is structured as
follows. In Sec. II, we briefly present the model for poly-
mer and aggregates, the numerical method and choice
of parameters. Section III is devoted to the results on
Payne effect, orientation of aggregates and memory be-
havior. Section IV summarizes our findings.

FIG. 1. Implicit Medium Model. The range of length
scales accessible is approximately indicated for each numerical
method.

II. MODEL AND METHOD

The simulation of polymer nanocomposites has been
attacked through a variety of methods, which may be
grouped in two classes (see Fig. 1). The first class
relies on an explicit description of polymeric chains.
Molecular dynamics [10, 41, 48, 49] can efficiently han-
dle length scales that are characteristic of primary par-
ticles and polymer coil. More coarse-grained models
such as slip-links [50, 51] or dissipative particle dynam-
ics (DPD) [44, 52–54] give access to system an order of
magnitude larger, reaching the size of a single aggregate.
Yet, describing a large collection of aggregates – a re-
quirement to understand their interaction and the effect
of polydispersity – remains challenging. At the other end
of the scale spectrum, the second type of approach treats
the polymer nanocomposite as a continuum medium [55–
58], where chain configurations and many aggregate fea-
tures can not be accounted for. The implicit medium
model seeks to address the gap in scale arising in be-
tween the class of explicit methods and the continuum
approach. It is a hybrid approach that combines fea-
tures from both classes: the polymer matrix is described
implicitly as a continuum viscoelastic medium but the
aggregates are still modelled explicitly in a particle-like
description. Such a level of coarse-graining allows to sim-
ulate multi-aggregates systems.

To make the paper self-contained, we summarize below
our implicit medium model of fractal-like PNCs. An ex-
haustive description, including a discussion of the under-
lying assumptions and details of the numerical method,
can be found in Ref. [47].

A. Generalized Langeving Equation

Because aggregates are treated as collection of parti-
cles, it is sufficient to consider a single particle. Within
the implicit medium model, its dynamics is governed by
a generalized Langevin equation (GLE). For a particle
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with mass m, position r and velocity v, it reads as

m
dv(t)

dt
= Fc (r(t))−

∫ t

−∞

Γ(t− t′)v(t′) dt′+Fr(t). (1)

Here, Fc is the conservative force that describes inter-
actions with other particles, specifically a steric repul-
sion as described by a truncated Lennard-Jones poten-
tial [47]. The effect of the surrounding medium is en-
capsulated in two distinct forces: a drag force Fd =

−
∫ t

−∞
Γ(t− t′)v(t′) dt′ that accounts for the average

friction exerted by the matrix and a random force Fr in-
duced by thermal fluctuations. The memory kernel Γ(t)
involved in the drag force is related to the time correla-
tion function of the random force through the fluctuation-
dissipation theorem

〈Fr(t)Fr(t
′)〉 = kBT Γ(t− t′)I, (2)

where kB is Boltzmann’s constant, T the temperature
and I the identity matrix.
In our implicit description, the influence of the poly-

mer matrix arises only through the memory kernel Γ(t).
The generalized Stokes law [59] and correspondence prin-
ciple [60] indicate that the kernel Γ(t) is proportional to
the stress relaxation modulus Gp(t) of the medium:

Γ(t) = 6πRGp(t), (3)

where we assume a a spherical particle of radius R and
no-slip boundary condition at its surface. Throughout
this study, we use the simplest model of viscoelastic
medium, namely a Maxwell fluid whose stress relaxation
modulus decays exponentially with a single relaxation
time

Gp(t) = G0
p exp

(

−
t

τ0p

)

, (4)

with G0
p the plateau stress modulus and τ0p the terminal

relaxation time. Note that the method is nevertheless
applicable to other matrix rheology. The only require-
ment is that the memory kernel Γ(t) can be written as
a Prony series, i.e. a sum of decaying exponentials, each
with a given coefficent and relaxation time.
In contrast to traditional Brownian dynamics, the gen-

eralized Langevin equation involves both a correlated
noise and a friction force that is non-local in time, be-
cause it depends on the whole history of velocity taken
in the past. As a consequence, the simulation of Eq. (1)
requires a specific numerical method. We use here the
approach of Baczewski and Bond [61]. The principle is
to introduce new variables to rewrite the non-Markovian
GLE for particle motion as a Markovian evolution over
an expanded state space. New degrees of freedom are
thus necessary to describe the matrix behavior, but com-
pared to the number of variables required for an explicit
description of chains, their number is reduced by order
of magnitudes. Therein lies the efficiency of the implicit
medium approach.

B. Fractal-like aggregates

The solid fillers in our model are represented by groups
of spherical particles whose spatial structure may be cho-
sen at will. Those particles interact through the repulsive
part of a truncated Lennard-Jones potential with energy
ǫ and distance σ. As illustrated in Fig. 2, the aggregate
shape is maintained by two types of springs. The con-
nective springs link neighboring particles that are in con-
tact. The virtual springs connect each particle to three
other randomly chosen particles. The spring energy is
US(r) = k/2(r − lc)

2, where the spring constant k is a
constant but the rest length lc depends on the particular
spring considered. In addition to the repulsive interac-
tions, the spring forces are the second contribution to
the conservative term of Eq. (1). When the stiffness k
is high enough, the combination of repulsion and spring
networks is sufficient to maintain a quasi-rigid structure.
The resulting rigid aggregates are the primary objects
studied in this work. For comparison purpose, we will
also briefly consider individual particles and flexible ag-
gregates, wherein particles are linked through connective
springs only. Note that, while breaking of aggregates may
play a role in some real nanocomposites [62], here it is
entirely discarded.

FIG. 2. Model for fractal-like aggregates. (Left) DLA-
generated aggregate with size N = 20 and 50. (Right) Model
for rigid aggregates. Each particle is linked to its neighbors
through connective springs (grey lines) and through three vir-
tual springs (red lines), that maintain a quasi-rigid structure.

As a convenient approximation to aggregate fillers used
in real PNCs, the aggregate morphology is generated by
a diffusion-limited aggregation (DLA) process [63, 64].
Given their limited size, the resulting objects are not
truly fractal but may be qualified as ”fractal-like“ be-
cause of their branched disordered structure. They can
be characterized by the radius of gyration Rg and aspect
ratio [47]. In the following, both monodisperse and poly-
disperse aggregates will be considered. Monodisperse ag-
gregates have a fixed size N , that is obtained by stopping
the DLA process after N particles. Polydisperse aggre-
gates are characterized by the probability distribution

P (N ) =
Nα

Γ(α+ 1)βα+1
exp

(

−
N

β

)

, (5)

with α and β parameters and Γ is the gamma function.
We choose a most frequent aggregate size Nmax = αβ =
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20 and a mean 〈N〉 = (α + 1)β = 30, resulting in a
polydispersity around 30%. This choice is representative
of the large polydispersity often observed in experimental
systems [37].

C. Explicit shearing

In a previous study [47], we investigated the rheology
of the PNCs in the linear regime. In that case, proper-
ties such as the stress relaxation modulus G(t) are ac-
cessible via the linear response theory and Green-Kubo
relation from the correlation function measured at equi-
librium [65]. In contrast, we focus here on the non-linear
regime and the non-equilibrium process by which shear
flow is imposed needs to be simulated explicitly. To do
so, together with Lees-Edwards boundary conditions [66],
we use the SLLOD algorithm [67, 68]. Specifically, we as-
sume a homogeneous shear flow uext = γ̇yex, with γ̇ a
fixed shear rate. The velocity v of Eq. (1) is then the
relative velocity between the particle and the polymer
matrix. Note that when considering oscillatory shear im-
posed, it is assumed the linear velocity profile is estab-
lished on a time scale shorter than all other processes.

Quantity Symbol Simulation Real value
Energy kBT 1 4.1 10−21 J
Particle diameter σ 1 9.4 nm
Polymer terminal time τ0

p 1 1 ms
Polymer plateau modulus G0

p 100Punit 0.5 MPa

TABLE I. Choice of units and parameters for the typical poly-
mer nanocomposite considered in simulation.

D. Parameters

Within the implicit model, it is natural to take the
particle diameter σ as unit length, the polymer relax-
ation time τ0p as unit time and kBT as unit energy. The

polymer plateau modulus is set to G0
p = 100Punit, with

Punit = kBT/σ
3 the unit pressure. Such a choice of

parameters corresponds physically to a nanocomposite
at room temperature, made of particles with diameter
σ = 9.4 nm, and dispersed in a polybutadiene matrix
of molecular weight 40K for which G0

p = 0.5MPa and

τ0p = 1ms [69]. Table I collects the choice of units and
default values. Other numerical parameters are similar
to those of Ref. [47].
As regards the aggregates, the main physical parame-

ters we focus on are the aggregate size N , the monodis-
perse or polydisperse character and the volume frac-
tion φ [70]. Results shown below are generated with sys-
tems containing typically 103 particles. With aggregate
size N ranging between 20 and 50, this implies a num-
ber of aggregates Na of a few dozens, which is sufficient

to account for interactions between aggregates and poly-
dispersity. An average over ten independent simulations
was systematically taken to improve statistics.

E. Stress tensor

The main quantity of interest is the stress tensor

σαβ = −
1

V

∑

i<j

〈Fij,αRij,β〉. (6)

Here, α and β denote the x, y or z component, Fij is the
force applied by particle i on particle j, Rij is the vector
joining particle i to particle j, and indices i and j run over
all particles in the system. We note that in this definition,
only the contribution from the aggregates is taken into
account. The contribution from the polymer matrix is
constant, and for clarity of comparison, is not shown in
what follows. If not mentioned otherwise, σ refers to the
σxy component, with the x-axis in the direction of flow
and the y-axis in the direction of shear.

III. RESULTS

A. Non-linear rheology

In the linear regime, the storage modulus G′ and the
loss modulus G′′ may be obtained from a Fourier trans-
form of the stress relaxation modulus G(t) computed at
equilibrium [71]. In the nonlinear regime [72–76], such
a Green-Kubo approach is not valid any more and the
dynamic moduli needs to be defined from the time re-
lation between instantaneous stress and strain. Here we
assume an oscillatory shear where the imposed deforma-
tion γ(t) is sinusoidal with frequency ω and amplitude γ0.
The resulting stress σ(t) involves only a phase difference
in the linear regime but higher order harmonics in the
non-linear regime:

γ(t) = γ0 sin (ωt) , (7a)

σ(t) =
∑

m odd

σm,0 sin (mωt+ δm) . (7b)

Here γ0 is the amplitude of shear deformation, σm,0 and
δm are respectively the amplitudes and phase difference
of shear stress at order m. The order number can only be
odd because the stress response is assumed to be of odd
symmetry [73, 74, 76]. The nonlinear regime is entered
when harmonic terms whith m > 1 can not be neglected.
In practice, for all results shown below the amplitudes
σm,0 and phase differences δm are obtained by a fit of
the stress by Eq. (7b), where the sum is restricted to
three terms m = 1, 3 and 5. The storage and the loss
modulus of order m, G′

m and G′′
m respectively, can then
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be calculated from

G′
m(ω) =

σm,0

γ0
cos δm, (8a)

G′′
m(ω) =

σm,0

γ0
sin δm. (8b)

The loss factors δm, defined from tan δm = G′′
m/G′

m, may
also be used to quantify the elastic or viscous nature of
system response. From now on, we fix the frequency of
oscillations to ω = 1 in units of 1/τ0p , a value lying in the

lower part of the frequency spectrum, of order 103 Hz.

B. Payne effect

Figure 3 shows the dynamic moduli of a weakly rein-
forced system as a function of the strain amplitude. Two
features needs to be highlighted. First, both storage and
loss moduli drop for strain amplitudes γ0 ≥ 0.2. Sec-
ond, the linear term (m = 1 in Eq. (8a)) is completely
dominant up to γ0 ≥ 0.2. Above this value, which signals
the beginning of the nonlinear regime, the next harmonic
m = 3 becomes significant, with an amplitude that is al-
most one-half of the primary term when γ0 ≃ 1. Alterna-
tively, the non-linearity of the PNC elastic response can
be made apparent with a Lissajous figure. As shown in
Fig. 3.right, the instantaneous stress is plotted as a func-
tion of the shear deformation. At small deformation am-
plitude γ0, the curve is perfectly elliptical because strain
and stress differ only by a phase difference, indicative of
a perfect viscoelastic behavior. In contrast, at large am-
plitude, the curve develops an inverted sigmoidal shape
with pronounced horns, a departure from elliptic shape
that is characteristic of non-linearity. Note that the area
enclosed by the Lissajous curve is the average energy dis-
sipated per unit volume and per cycle. Though the higher
harmonics are not negligible, we focus, in the following,
for simplicity on the primary term m = 1. The storage
and the loss moduli plotted below correspond to G′

1 and
G′′

1 , if not mentioned otherwise.

We investigate now how the amplitude of the Payne
effect depends on the microscopic parameters character-
izing the aggregates. Figure 4 compares the storage and
loss moduli of flexible and rigid fractal aggregates PNCs.
Two preliminary remarks are in order. First, we note
that in the linear regime (γ0 < 0.1), the results obtained
with the non-equilibrium oscillatory shear imposed with
SLLOD are similar to those obtained previously using
Green-Kubo relation and equilibrium simulations [47].
Such an agreement between two different techniques con-
firms the consistency of the approach. Second, both flex-
ible and rigid aggregates induce an increase in dynamic
moduli G′ and G′′, with an enhancement in amplitude
of one order and two orders of magnitude respectively.
Because of the weak volume fraction of filler considered
here (φ = 10%), the reinforcement factor remains rela-
tively moderate but is known to increase at higher volume
fraction [47].

For all systems and conditions explored, we observe
a reduction of storage and the loss moduli at large de-
formation amplitude (Fig. 4.left), in agreement with the
typical phenomenology observed in PNCs [1]. This sug-
gests that only minimal ingredients – repulsive aggregates
in a viscous matrix – are needed to generate a Payne ef-
fect, which therefore can be expected on a generic basis.
This observation is also consistent with recent experimen-
tal investigations which show evidence of a large drop of
the elastic modulus in carbon black aggregates dispersed
in oil [24]. In the next section, we will interpret this
phenomenon by looking at the change of orientation of
the aggregates during shear flow. Before doing so, we
characterize the Payne effect in our model fractal aggre-
gate PNCs, by showing its dependence on the aggregates
properties: filler type, aggregate size, polydispersity and
volume fraction.

The Payne effect is partly influenced by the type of
filler. The main difference is the reduction factor of G′

that is higher for rigid aggregates. The reduction fac-
tor of G′′ is quite similar, around a factor 3 within the
range of shear amplitude explored. From now on, we fo-
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cus on the rigid aggregates because they represent the
most interesting and realistic case. The influence of ag-
gregate size is shown in Fig. 4.middle. For monodisperse
aggregates with a fixed volume fraction φ = 10%, the
aggregate size is increased from N = 20 to 50. The
general effect on the moduli is a shift to higher values,
up to a threefold increase, but leaving the curve aspect
mostly unchanged. In particular, the values of the dy-
namic moduli found at the largest deformation probed
(γ0 = 1) are always nearly 2−3 times smaller than those
found in the linear regime. This implies that in relative
terms, the amplitude of the Payne effect is independent
of the aggregate size.

The effect of polydispersity is illustrated in Fig. 4.right.
For comparison, we also plot the result for two monodis-
perse systems with sizes N = 20 and 30, which are re-
spectively the most frequent size and the mean size of
the polydisperse system. The polydisperse curve is not a
simple reweighting of the monodisperse curves. In partic-
ular, the storage modulus is higher in the linear regime,
and very close to the N = 30 curve in the nonlinear
regime. This suggests that the largest aggregates with
size exceeding N = 30 that may be present in the poly-
disperse system yields a significant contribution to the
storage modulus, in spite of their small number. On
the other hand, for the loss modulus in the non-linear
regime, the polydisperse curve does lie in between the
two monodisperse curves. Overall, this indicates that a
polydisperse system can not be understood as superposi-
tion of monodisperse systems but involves specific effects
between aggregates of different sizes.

Finally, the Payne effect appears to have a simple de-
pendence on volume fraction, as illustrated in Fig. SM1 of
Supplementary Material (SM). Increasing φ from 10% to
15% only results in an overall shift of the moduli curves.
Note however that, because of the challenge in gener-
ating configurations of rigid aggregates, in particular for
the monodisperse system [47], this observation holds only
for the moderate volume fraction that could be tested
and that the behavior may be different at higher volume

fraction.

C. Aggregate orientation

We now seek a microscopic interpretation of the
Payne effect in our model of fractal aggregates polymer
nanocomposite. In contrast to what happens at equilib-
rium, the aggregates simulated under explicit shear are
subject to a finite deformation that may alter their shape
and orientation. To quantify the phenomenon and assess
its role in the Payne effect, we characterize the aggregate
conformation by using the gyration tensor [77]

S =
1

N

N
∑

n=1

xnx
T
n , (9)

where x
T
n is the transpose of xn = rn − rcm, rn the posi-

tion of the nth particle and rcm the position of the center

of mass. As a real symmetric matrix, S can be diagonal-
ized and the eigenvalues λ1 > λ2 > λ3 and eigenvectors
define respectively the extent and orientation of the cor-
responding ellipsoid. Because the distribution of aspect
ratio κ = λ1/λ3 deviates significantly from unity [47], it is
meaningful to associate to each aggregate the orientation
of its principal axis. In practice, this definition must be
slightly amended. Because the aggregates are not strictly
rigid but can slightly deform, the largest eigenvalue may
switch from one axis to the other between two successive
time steps. In that case, we choose the eigenvector in the
current step which has maximum overlap with the eigen-
vector in the previous step. In this way, jumps in orienta-
tion are avoided and the orientation and main axis of all
aggregates evolve continuously. It is also convenient to
introduce an orientation angle θ, as shown in Fig. 5.left.
With the matrix velocity along ex and the shear along
ey, θ denotes the angle between ex and the projection of
the main axis in the x− y plane.
To quantify any ordering trend in aggregates, we con-

sidered P (cos θ), the distribution of orientation angle co-
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of orientation angle at various time points under large shear deformation (γ0 = 0.5). System parameters are: N = 20 and
φ = 10%, as in Fig. 3. (Right) Schematic of the aggregate orientation at small and large shear amplitude. At low γ0, the
distribution of the orientation of the aggregates is isotropic. By contrast, at high γ0, the aggregates tend to align with each
other.

sine, computed at different times throughout the shear
oscillation period and averaged over all periods in steady
state. In the linear regime (γ0 = 0.1, not shown), there is
no recognizable trend in P (cos θ), suggesting an isotropic
orientation of aggregates that is consistent with their ini-
tial state. In contrast, in the nonlinear regime (γ0 = 0.5),
the distribution P (cos θ) is strongly peaked at a position
that depends on the time considered, as can be seen in
Fig. 5.middle. In particular, when the instantaneous de-
formation is extremal (time points where γ(t) = ±γ0),
the aggregates tend to align along the principal shear di-
rections (θ = ±π/4). Large amplitude shear deformation
does affect the orientation of aggregates and the steady
state they reach is different from the initial equilibrium
state that was isotropic.

Schematically, the simulation data suggests the follow-
ing picture (Fig. 5.right): while aggregates orientation
in the linear regime is unbiased, aggregates in the non-
linear regime tend to align with each other and rotate
simultaneously. At the extreme points of the shear cycle
(γ(t) = ±γ0), when shear reverses direction, the aggre-
gates align with the principal shear direction. Since the
phenomenon occurs simultaneously with the Payne ef-
fect, it appears as one underlying mechanism. Indeed,
alignment of aggregates reduce repulsive interactions be-
tween them, and presumably the ability to resist de-
formation, hence the drop in moduli. We have found
this simple picture to apply equally in monodisperse and
polydisperse systems, and conclude that it plays a sig-
nificant role in the Payne effect of our implicit medium
model.

As a side remark, we note that the rigid aggregates
considered here are unbreakable and quite resistant to de-
formation. A quantitative measure of deformation may
be given by the ratio υ = λ1(t)/λ1(t = 0) between the in-
stantaneous largest eigenvalue λ1(t) and its initial value.
At equilibrium and in the linear regime, the probability
distribution P (υ) is peaked around unity, with deviation
above 10% that are negligible. Under large deformation,
larger deviation, up to 20%, may happen. However, over-

all, the deformation of aggregates remains limited and the
main effect appears to lie in their orientation.

D. Memory-dependent rheological behavior

We now explore the consequences of the alignment of
the aggregates on the memory dependent rheological be-
havior of the PNCs systems. Having shown that large
amplitude oscillations induce an orientation ordering of
aggregates, we are lead to the question: does the biased
orientation of aggregates survive when reducing the am-
plitude or does the system lose memory of its partial
ordering? The system is now submitted to a non triv-
ial deformation history, as shown in Fig. 6.left. Using
step-wise change of 10%, the deformation amplitude is
first increased from γ0 = 0.1 to 1 then decreased back
to 0.1, thus defining the loading branch and the unload-
ing branch of a cycle. For every value of γ0, the system
is left for more than 600 oscillation periods, a time gen-
erally sufficient to reach a steady state and record the
dynamic moduli.
Shown in Fig. 6.middle are the results for polydisperse

aggregates with volume fraction φ = 10%. While the
storage and the loss moduli exhibit a monotonous de-
crease during the loading process, they do not trace back
their initial path during the unloading process, but define
a clearly distinct branch. Compared to the initial state,
the final state has moduli approximately 30% lower. The
difference is also visible in the time-dependence of the
stress σ(t) averaged over successive periods (Fig. 6.right).
At high amplitude γ0 = 0.5, the stress signal, though
clearly involving higher harmonics, is almost identical in
the loading and unloading branches. At low amplitude
γ0 = 0.1, the stress, though sinusoidal in both branches,
is significantly reduced in the unloading process.
If the final state after one cycle is different from the

initial state, it is nonetheless conceivable that given suf-
ficient time, the system would eventually relax toward
the initial state. This hypothesis was tested with simula-
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in steady state in the loading and the unloading processes at deformation amplitude γ0 = 0.1 (top) and γ0 = 0.5 (bottom).

tions ten times longer than the usual duration, and that
include 6000 cycles, while keeping the deformation am-
plitude fixed to γ0 = 0.1. Both the mono- and the poly-
disperse aggregate systems display very little evolution
in their storage and loss moduli. This suggests that the
oriented stationary state induced by large shear defor-
mation persists and that the system remains ”locked” at
least over time scales accessible in our simulations (typi-
cally 1 s).

To further assess the memory effects, we finally con-
sider multiple cycles, with a series of three cycles of
loading-unloading process. The result shown in Fig. 7
for polydisperse aggregates at φ = 17% is representative
of the behavior seen in systems with different size dis-
tribution or volume fraction. It appears that the initial
state is never recovered. Rather, the second and third
cycles entirely overlap with the unloading branch of the
first cycle, suggesting that the memory of orientational
ordering is maintained throughout. To confirm this in-
terpretation, we have examined the distribution of orien-
tation angles, which show no drastic evolution after the
first cycle [78]. To get a quantitative measure, we use the
nematic order parameter

ζ = 2〈cos2 θ〉 − 1, (10)

where 〈...〉 denotes an ensemble average, taken at the ex-
treme points of the shear cycle (where γ(t) = ±γ0). As
shown in the inset of Fig. 7, the orientational order is
strongly enhanced after the first cycle, but show a much
weaker evolution, if any, in the two subsequent cycles.
It thus appears that aggregates are oriented at high de-
formation amplitude during the loading process of the
first cycle, and essentially maintain their ordered state
afterwards. This points to a memory effect relating the
microscopic state of aggregates and the macroscopic rhe-
ological properties of the nanocomposites.
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FIG. 7. Memory-dependent effect: three cycles. Stor-
age and loss modulus along three cycles of shear deformation
amplitude. Aggregates are polydisperse and φ = 17%. (Inset)
Nematic order parameter ζ of Eq. (10).

IV. CONCLUSION

To summarize, we explored here the non-linear me-
chanical behavior of a simple model of fractal aggregates
dispersed in a viscoelastic matrix. We found a phe-
nomenology typical of real PNCs, in particularly the drop
of the elastic modulus for strain amplitudes on the order
of 10%. Additionaly, we saw that the non-linearity of the
stress response is dominated by the first term (m = 1
in Eq. 8a) and higher non-linear terms with m ≥ 3 are
subdominant. We also investigated the effects of the ag-
gregate size and polydispersity in the drop of the elastic
modulus.

We related the existence of a Payne effect in our system
to a collective alignement of aggregates. At low shear
amplitude (γ < 0.1), the distribution of aggregate ori-
entation is isotropic. The shear flow does not perturb
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strongly such initial state and one finds a relatively high
value of the storage modulus. By contrast, when the
shear amplitude is larger, γ0 > 0.5, the elastic modu-
lus which measures the stress response of the system de-
creases, because the aggregates are oriented by the shear
flow (Fig. 5).

At high filler volume fractions, the collective orien-
tation of the aggregates should have even more dras-
tic influence on the modulus drop. In the absence of
deformation, or for low deformation amplitude γ0, the
system should be in a jammed state, as steric interac-
tions between the aggregates severely hinder their mo-
bility, and the elastic modulus should be relatively high.
This scenario is consistent with a recent theoretical pic-
ture [79]. When deformed sufficiently, aggregate aligne-
ment reduces the number of contacts between aggregates,
and presumably the ability to resist deformation, hence
the drop in moduli. Our observations are also reminis-
cent of shear-induced alignement of anisotropic particles
reported in granular and colloidal systems [80–82], and
more generally of self-organization of periodically sheared
particle suspensions [83]. Whether a precise analogy can
be established remains to be investigated and deserves a
devoted study.

The interpretation we propose is rather generic and
should be at play in any composite system made of fractal
or loose aggregates. In particular, our implicit medium
model accounts neither for polymer chain bonding nor
for glassy layers which may surround the nanoparticles.
From this perspective, our interpretation is in line with
recent experimental findings [24] and early experimental
investigations of Payne [30, 84], which both reported a
large drop modulus for dispersions of carbon black aggre-
gates in oil. In such a system, polymer bonding, entangle-
ments or glassy layers are quite unlikely, they nonetheless
display a Payne effect typical of PNCs. That being said,
we expect our interpretation to be equally relevant for

polymeric systems. In many PNCs, the shear orienta-
tion of the aggregates - whether fractal or not- is poten-
tially a key phenomenon and should compete with other
mechanisms depending on temperature or the physical
chemistry features of the systems considered.
We also highlighted the role of the aggregate orienta-

tion in the memory effects of the elastic moduli. First,
large deformations change the orientation state of ag-
gregates, with a collective alignment that persists for a
significant time thereafter. This results in stress-strain
curves that depend on the mechanical history of the sys-
tem, and a relative stress softening of the system. Our
simulations show that these effects persist for times much
longer than the matrix terminal relaxation time. Indeed,
due to the steric constraints between the aggregates, the
return back to the initial state of isotropically-distributed
aggregates, is a rather slow process, as revealed by the
time evolution of the nematic order parameter.
Our aim in this study was to propose a microscopic

interpretation of the Payne effect in a simple model of
fractal aggregate polymer nanocomposites, in order to
disentangle several possible causes of this effect. Yet,
starting from the present description, several directions
may be pursued to seek an improved modeling of real
PNCs. The first deals with interaction between aggre-
gates. They were supposed purely repulsive here, which
is sufficient to avoid any overlap during shear deforma-
tion. But the interaction between real aggregates could
be attractive at large distances, either because of long
range van der Waals interactions or to take into account
in an effective manner the possible polymer chain bond-
ing between neighbouring nanoparticles. Preliminary re-
sults show that an attractive interaction between aggre-
gates has a significant effect on the loss properties of the
system, which deserves to be studied exhaustively. An-
other perspective is to adopt a realistic modeling of the
viscoelastic properties of the matrix, in both the linear
and non-linear regimes of deformation.
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FIG. SM1. Influence of aggregate volume fraction: storage and loss moduli for various volume fraction φ. and aggregate size
N = 20. The dashed lines show the moduli computed from the Green-Kubo relation and equilibrium simulations [47].


