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Abstract

A phase-field model for diffusion-limited crystal growth is formulated that is capable of

handling highly anisotropic interfaces. It uses a Willmore regularization that yields corners

of finite size. An asymptotic analysis reveals that Herring’s law is recovered for the advancing

surfaces. The model is validated by conducting simulations of dendritic growth for low anis-

torpies and comparing the results to the data from the literature. The model makes it possible

to simulate high anisotropy dendrites for which the standard phase-field models are ill-posed.

In this regime, the interplay between a Herring instability on the dendrite flanks and the

corner regularization creates zig-zag shaped corrugations and leads to a non-monotonic trend

of tip velocity as a function of anisotropy strength.

1 Introduction

Crystal growth from a melt can produce a large variety of complex morphologies. In solidification,

the resulting microstructures determine many material properties. The phase-field method has

been hugely successful in capturing this pattern formation process in numerical simulations.

Dendrites are one of the most widespread solidification microstructures. Their morphology

is determined by the anisotropy of the solid-liquid interfacial free energy. Phase-field studies of

dendritic growth have mostly been limited to low and moderate anisotropy strengths. This is the

relevant case for metals which have atomically rough interfaces. However, for substances which

have atomically smooth (facetted) surfaces, the interfacial energy anisotropy is much stronger [1, 2].

When the interfacial anisotropy becomes so strong that certain surface orientations are ex-

cluded from the equilibrium shape, the equations of motion need to be regularized both in the

sharp-interface and phase-field treatments [3, 4]. A first regularization technique for phase-field

models was proposed by Eggleston et al. [5], but needs to be adapted to each functional form of

the interfacial anisotropy. More recently, a Willmore regularization was introduced in phase-field

models for surface diffusion [4, 6] and kinetically-limited crystal growth [7, 8]. This regularization

creates corners of fixed size α which bridge the forbidden orientations. Here, we use the combina-

tion of the latter model with the grand-potential formulation of alloy solidification[9, 10] to study

diffusion-limited dendritic growth with anisotropy of arbitrary strengths. An asymptotic analysis

enables us to make rigorous connection to the relevant sharp-interface problem.

In the next section, the regularized model is presented and benchmarked. Simulation results

generated using the model are reported and discussed in section after before concluding the article.
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2 Model Construction and Benchmarks

2.1 Model

The standard formulation of phase-field models is limited to moderate anisotropies with positive

interface stiffness for all orientations. To extend it to larger anisotropies, we add the Willmore

regularization proposed in Refs. [4, 8]. The core idea of this regularization is to mimic the approach

taken in the sharp-interface theory, namely, to penalize curvatures in the evolving crystal shape so

as to avoid sharp corners. To this end, a new term is added to the functional of the grand-potential

model for isothermal alloy solidification [9], which becomes

Ω =

∫ [
(ωsol(µ)− ωliq(µ))g(ϕ) + ωliq(µ) +

γ(θ(∇ϕ))

ϵ

(
fdw(ϕ) +

ϵ2

2
(∇ϕ)2

)
+ γ0

α2

2ϵ

(
f ′
dw(ϕ)

ϵ
− ϵ∆ϕ

)2
]
dV (1)

where ωsol and ωliq are the volumetric grand-potential densities of the crystal and the liquid phases,

respectively; µ is the diffusion potential; ϕ is the phase-indicator marking liquid and crystal phases

with the its values of 0 and 1, respectively; g(ϕ) is a function interpolating between 0 and 1 as

ϕ ranges over [0, 1]; fdw(ϕ) is the double-well potential; γ(θ(∇ϕ)) is the interfacial energy as a

function of orientation θ which in turn is specified using ∇ϕ; γ0 is the average of γ(θ); and ϵ is the

interface-width specifier. The bracketed expression in the last term of the functional is the diffuse

interface approximation of the local interface curvature. Hence this term penalizes curvatures of

either signs and creates smoothed corners of fixed size controlled by the Willmore regularization

parameter α. In contrast to just adding a (∆ϕ)
2
term [11, 12], this regularization preserves the

hyperbolic tangent interface profile known from the standard phase-field models.

The governing equations derived from this functional are as follows:

τ
∂ϕ

∂t
=− 1

ϵ
(ωsol(µ)− ωliq(µ)) g

′(ϕ)− 1

ϵ2
γ(θ(∇ϕ))f ′

dw(ϕ)

+∇ · [γ(θ(∇ϕ))∇ϕ] +
1

ϵ2
∇ ·

[(
fdw(ϕ) +

ϵ2

2
|∇ϕ|2

)
∇∇ϕ (γ(θ(∇ϕ)))

]
+ γ0

α2

ϵ4
(
ϵ2∇2ϕ− f ′

dw(ϕ)
)
f ′′
dw(ϕ)− γ0

α2

ϵ2
∇2

(
ϵ2∇2ϕ− f ′

dw(ϕ)
)

(2a)

∂µ

∂t
=

[
∇ · ([(Dsol −Dliq)h(ϕ) +Dliq]∇µ)− (csol(µ)− cliq(µ))

c,µ
f ′(ϕ)

∂ϕ

∂t

]
(2b)

where Dsol and Dliq are the diffusion coefficients, and csol and cliq are the compositions of the solid

and the liquid phases, respectively. The symbol c,µ is used to denote
(

dcsol
dµ − dcliq

dµ

)
g(ϕ) +

dcliq
dµ .

h(ϕ) and f(ϕ) are interpolation functions like g(ϕ), and τ is an inverse mobility parameter.

Matched asymptotic analysis demonstrates that the generalized Stefan problem is recovered

by the model of Eq. (2) except for the Gibss-Thomson relation, which is replaced by Herring’s

law:

τ̃ vn = (ωliq(µ)− ωsol(µ))− (γ(θ) + γ′′(θ))κ+ γ0α
2

(
κ3

2
+ κss

)
(3)

where vn and κ are respectively the normal velocity and the curvature of the solid-liquid boundary;

κss is the surface Laplacian of curvature. τ̃ is a constant that describes the strength of interface

attachment kinetics.
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In the current article, the focus is on diffusion-limited growth. Hence, we choose the phase-field

relaxation parameter τ such that the interface attachment kinetics τ̃ is zero, following methods

analogous to those developed by Almgren [13]. In this preliminary study, we use equal diffusivities

in the liquid and the solid (Dsol = Dliq) and denote the common value by D.

2.2 Dendritic growth for low anisotropies

We tested Eq. (3) by standard benchmarks such as kinetically-limited and diffusion-limited planar

front growth and critical nucleus evolution, with excellent success. For low anisotropies where

the regularization terms are not required (α = 0), as a first non-trivial benchmark problem,

we simulated dendritic growth for low anisotropies. An anisotropic crystal seed growing at the

expense of a supersaturated infinite matrix develops into a dendritic pattern and eventually enters

a steady-state. We compared the simulated operating state with the results of Karma-Rappel [14].

We chose the following forms for the various functions: fdw(ϕ) = 18ϕ2(1−ϕ)2, g(ϕ) = ϕ3(10−
15ϕ+ 6ϕ2), f(ϕ) = ϕ, ωsol(µ) = −µ2/4A− µceqsol, ωliq(µ) = −µ2/4A− µceqliq, and

γ(θ) = γ0 (1 + ϵ4 cos(4θ)) . (4)

These choices relate the various thermo-physical parameters of the current model to those of

Karma-Rappel’s in the following manner: supersaturation ∆ matches up with
(ceqliq−c0)
(ceqliq−ceqsol)

where c0

is the liquid’s far-field as well as the initial composition, the interface width 2
√
2W0 scales as 2ϵ/3,

the capillary length d0 coincides with γ0

2A(ceqsol−ceqliq)
2 , u of Ref. [14] corresponds to µ

2A(ceqsol−ceqliq)
, and

finally, the diffusion coefficient D and the anisotropy strength ϵ4 are the same across both the

treatments.

By keeping the set {ceqliq, c
eq
sol, A} fixed, physical situations corresponding to various ∆−W0−d0

combinations of TABLE II of Karma-Rappel are simulated by choosing the c0 − ϵ − γ0 triplets

accordingly. The spatial discretizations and the grid sizes chosen for each simulation are exactly

identical to those listed in the table. The recovered steady-state dendrite tip speeds are within

2 − 7% of the expected values for all the cases tested. Growth profiles simulated for various

anisotropy strengths ϵ4 using the parameter set of Table 1, which corresponds to the dimensionless

parameter set of ∆ = 0.55, D = 4.0 and d0 = 0.1385 of Karma and Rappel, are reported in Fig. 1a).

The starting seed size is the same for all the trials. The depicted interface profiles also correspond

to the same but a later timestep. That means, the trend of dendrite tips becoming faster and

sharper as anisotropy strength is increased can be witnessed to be correctly reproduced by our

simulations. Curves in Fig. 1aa) correspond to concentration profiles along the dendrite axis. The

concentration in the liquid next to the tip decreases with increasing anisotropy, which is of course

consistent with the Gibbs-Thomson effect.

Table 1: Table showing the material, modeling and simulation parameter set used for benchmark-

ing the model.

ceqliq ceqsol A γ0 D Grid discretization ϵ τ ∆t

0.9 0.1 0.78125 0.1385 4.0 ∆x = ∆y = 0.2 7.5
√
2∆x ϵ

(ceqsol−ceqliq)
2

D
2A

47
360 0.2 (∆x)2

D
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Figure 1: Results obtained using the presented model (Eq. (2)). The plots show the ϕ = 0.5

contours of the simulations for various anisotropy strengths for a) the traditional dendritic growth,

i.e., with α = 0, b) growth under constant supersaturation, i.e., by holding µ constant, and c)

non-zero regularization parameter. Also shown are the concentration profiles along the central

axis of the rightward growing dendrite arms of the cases a) and b) in sub-figures aa) and cc),

respectively.

2.3 Growth under constant driving force

In order to benchmark the regularization terms, we switched off the coupling to transport, started

with an initial circular seed of 5 grid cells, and let it grow under the drive of a constant supersat-

uration until it occupies a certain percentage of the simulation domain, at which point, volume

preservation is imposed for further evolution by a Lagrange multiplier implementation. The mate-

rial and simulation parameter-sets used are identical to those above. Results for various anisotropy

strengths and α held fixed at 0.5 (in the same units) are reported in Fig. 1b). Except for corners,

these contours were seen to be in excellent agreement with the respective Wulff shapes.

3 Results and Discussion

For ϵ4 > 1/15, ranges of interface orientations around θ = 0, θ = ±π/2, and θ = π become

unstable, and the standard phase-field model becomes ill-posed. With our regularized model,

however, dendrites can be simulated for ϵ4 larger than 1/15. This is illustrated in Figs. 1c) and 2

for a value of α = 3.61× d0 and otherwise the same parameter set used for Fig 1a).

Fig. 1c) shows growth contours of crystals for various anisotropies evolved for different times

to facilitate better visualization. The typical dendritic shape persists even for large anisotropies,
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Figure 2: Crystal growth morphologies and steady-state tip velocities predicted by the present

model for various anisotropy strengths ϵ4.

which indicates that growth is still diffusion-limited. Corrugations of zig-zag shape appear behind

the tip for large enough anisotropy strengths. Fig. 1cc) shows that the concentration fields remain

smooth even for high anisotropies.

For a quantitative evaluation of the tip operating state, one arm is followed for long times in

a moving simulation box. The tip morphologies are illustrated in the snapshot pictures in Fig 2,

and the steady-state tip velocity is given by the solid curve (with error bars) in the graph. The tip

growth speed first increases as a function of anisotropy strength, then passes through a maximum,

and slowly decreases beyond. Moreover, the tip velocity, which is constant for low anisotropies,

starts to oscillate beyond the maximum. The error bars in Fig. 2 indicate the minimum and

maximum velocities of the oscillation cycles. These observations can be interpreted as follows.

Three different regimes can be identified. For ϵ4 smaller than 1/15, the dendrite is smooth

everywhere, and the regularization only slightly modifies the anisotropic needle crystal shape.

Therefore, it is not surprising to recover the familiar behavior of increasing of growth speed with

anisotropy strength. This trend continues for a range of anisotropies beyond ϵ4 = 1/15. In this

regime, the dendrite tip is a corner, but the dendrite flanks remain smooth for a considerable

distance behind the tip. Eventually, corrugations start to develop on the dendrite flank, because

the interface enters an unstable orientation range around θ = π/2. Since with increasing anisotropy

strength the unstable ranges get larger, the corrugations develop closer and closer to the tip until

these undulations induce an oscillation of the tip speed itself. The velocity oscillations can likely

be explained by the modification of the diffusion field created by these zig-zags.

While the corrugations may seem reminiscent of the sidebranches in solidfication dendrites,

they are created by an altogether different mechanism. Whereas sidebranches result from a selec-

tive amplification of thermal noise along the flanks of a dendrite [15, 14], here the corrugations

are created by a Herring instability that only sets in when the interface orientation reaches an

unstable range. In our simulations, this instability is triggered by the time-dependent dendrite

shape without the explicit addition of the thermal fluctuations.

For a comprehensive understanding, the dependence of the operating state on all of the pa-
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rameters should be investigated. As a first step in this direction, simulations were repeated for

two more values of the surface energy γ0, viz. γ0 = 0.175 and γ0 = 0.100 corresponding to the

red and green data points of Fig. 2, respectively. As expected from the standard scaling theory of

dendritic growth, lowering the surface energy makes dendrites sharper and faster. However, the

tip velocity does not exactly follow the scaling v ∝ 1/γ0 predicted by solvability theory [16]. This

is due to the presence of the corner size α as an additional length scale in the problem.

The present simulations have remained limited to the symmetric model (Dsol = Dliq). However,

solvability theory for low anisotropy dendrites predicts that unequal diffusivities do only modify

the selection constant, whereas the qualitative behavior remains the same [17]. There is no reason

to assume that it would be different for high anisotropy dendrites. Hence we expect that our main

results, namely the zig-zagged corrugations and the non-monotonic trend in the tip velocities,

should not be affected by the diffusivity ratio.

4 Conclusion

We have demonstrated that our regularized phase-field model can be used to explore the physics

of dendritic growth at large anisotropies. The presence of a stable corner on the dendrite tip leads

to a continuation of needle crystal growth beyond the limit ϵ4 = 1/15. For a better theoretical

understanding of these new solutions, we are presently exploring an extension of the linearized

microscopic solvability theory [17] to the current problem, namely the generalized Stefan problem

with the Gibbs-Thomson condition replaced by the Herring’s equation.
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[8] Thomas Philippe, Hervé Henry, and Mathis Plapp. A regularized phase-field model for

faceting in a kinetically controlled crystal growth. Proceedings of the Royal Society A,

476(2241):20200227, 2020.

[9] Mathis Plapp. Unified derivation of phase-field models for alloy solidification from a grand-

potential functional. Physical Review E, 84(3):031601, 2011.

[10] Abhik Choudhury and Britta Nestler. Grand-potential formulation for multicomponent phase

transformations combined with thin-interface asymptotics of the double-obstacle potential.

Physical Review E, 85(2):021602, 2012.

[11] StevenWise, Junseok Kim, and John Lowengrub. Solving the regularized, strongly anisotropic

cahn–hilliard equation by an adaptive nonlinear multigrid method. Journal of Computational

Physics, 226(1):414–446, 2007.

[12] AA Wheeler. Phase-field theory of edges in an anisotropic crystal. Proceedings of the Royal

Society A: Mathematical, Physical and Engineering Sciences, 462(2075):3363–3384, 2006.

[13] Robert F Almgren. Second-order phase field asymptotics for unequal conductivities. SIAM

Journal on Applied Mathematics, 59(6):2086–2107, 1999.

[14] Alain Karma and Wouter-Jan Rappel. Quantitative phase-field modeling of dendritic growth

in two and three dimensions. Physical review E, 57(4):4323, 1998.

[15] JS Langer. Dendritic sidebranching in the three-dimensional symmetric model in the presence

of noise. Physical Review A, 36(7):3350, 1987.

[16] Angelo Barbieri, Daniel C Hong, and JS Langer. Velocity selection in the symmetric model

of dendritic crystal growth. Physical Review A, 35(4):1802, 1987.

[17] A Barbieri and JS Langer. Predictions of dendritic growth rates in the linearized solvability

theory. Physical Review A, 39(10):5314, 1989.

7


	Introduction
	Model Construction and Benchmarks
	Model
	Dendritic growth for low anisotropies
	Growth under constant driving force

	Results and Discussion
	Conclusion

