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Abstract

Nucleation in binary alloys is studied in the capillary approximation of classical theory. By
allowing both the size of the cluster and its composition to vary, the phase transition is in-
vestigated in a two-dimensional space. This parametrization allows to derive diffusivities of
the Fokker-Planck equation for the distribution function of clusters from the Cahn-Hilliard
equation. It is shown how kinetics, together with thermodynamics, determine the direction
of the nucleation current as well as the magnitude of the nucleation rate. The properties of
the critical clusters and the direction of the nucleation current at the saddle point are de-
rived for a generic model, from the binodal line to the spinodal limit. The critical clusters
are found to exhibit properties that are very similar to that of non-classical theories. Once
moderate supersaturation is reached, the interplay between kinetics and thermodynamics
is found to invalidate the classical picture by modifying the direction of the nucleation
current. The consequences on the magnitude of the rate of nucleation are discussed. The
model is then applied to decomposition of FeCr solid solutions and is shown to constitute a
reasonable sharp-interface approximation of the diffuse-interface theory of nucleation for
the determination of both the cluster properties and the nucleation rate.
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1. Introduction

Classical nucleation theory (CNT) [1–6] is usually the starting point of any model describ-
ing the initial stages of a phase transformation. Thermodynamics of CNT is most often
established within the capillary model [7], i.e. the embryo of the new phase is a sphere
separated from the mother phase by a sharp interface that gives rise to an energy penalty
proportional to the interface area. As opposed to the Gibbs model [8], the interface is not
treated as a separate entity but is assumed to belong to the cluster in the capillary approx-
imation. Various refinements have been proposed to improve the original theory [9], one
can mention for instance the Tolman correction, employed to account for the curvature ef-
fect on surface tension. In the usual application of classical nucleation theory, the embryo
is described by its size, or the number of atoms or molecules it contains, and is assumed
to present, whatever its size, the properties of the equilibrium phase, in terms of density,
composition, order or crystalline structure. Making this assumption and considering the
size as the only parameter of the theory is is not appropriate in some cases. This has been
evidenced experimentally and in many computational works, for the crystallisation of wa-
ter, colloids and proteins [10–13], or in crystallisation and precipitation of metallic alloys
[14–16], to name just a few examples. One way to relax this assumption is to consider
a diffuse interface, as done in the so-called Cahn-Hilliard theory of nucleation [17–21].
Such approaches, also known as square gradient or diffuse interface theories [22, 23], can
be seen as the first approximation to density functional theory [24–27]. The latter theories
are naturally more accurate than CNT in the determination of the critical cluster properties
and in the calculation of the nucleation barrier [9] since the sharp-interface approximation
is relaxed. The latter properties, evaluated at the saddle-point of the energy surface, result
from thermodynamic considerations. Nevertheless, the quantity of interest is primarily the
rate at which clusters overcome the nucleation barrier and enter into the growth regime,
given by the so-called nucleation rate. However, a proper calculation of this rate in the
framework of diffuse interface theories is non trivial since the energy landscape is highly
multidimensional in this case, which makes this problem difficult to solve. To our knowl-
edge, a proper determination of the nucleation rate has been attempted only very recently
in the phase-field framework [28, 29], consequently the approach is necessarily numerical.

In this work, we employ a different strategy by using the capillary model but with a
treatment of thermodynamics that does not fix the cluster composition and surface energy
to equilibrium [7, 30]. We remain in the CNT framework in order to derive an analytical
expression of the nucleation rate, the first quantity of interest in any nucleation theory. This
thermodynamic treatment was shown to essentially captures the main properties of the dif-
fuse critical nucleus [8, 18, 27, 30–34] and is therefore a good candidate for describing
nucleation in the whole binodal domain. This approach has been employed in many dif-
ferent applications of nucleation theory [8, 18, 27, 30–36]. It is known as the generalized
Gibbs theory [32] or sometimes as the modified CNT [36] but was first introduced in 1976
by Reiss et al. [30] as merely a more careful thermodynamics treatment of CNT. There-
fore, the latter model is not new but its couplings with the Cahn-Hilliard (CH) equation, as
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detailed in the following analysis, is original. In this work, we consider nucleation in solids
for a binary alloy and allow both the size of the clusters and their composition (atomic frac-
tion) to vary. We neglect elastic contributions, the latter being negligible, at nanoscale, in
many alloys [37]. In nucleation theory, parameters used to describe the clusters are known
as reaction coordinates [38–45]. Thus, our model presents two reaction coordinates: the
cluster size R, and its composition c. The fact that the composition of the cluster may
be different from equilibrium, given by the phase diagram, implies that the driving force
for nucleation can differ from the classical expression, and the surface energy depart from
its equilibrium value. This allows for a thermodynamics treatment closer to non-classical
diffuse-interface theories. In this letter, we determine the properties of the critical nucleus
but we are particularly interested in the nucleation dynamics, thus, we show how recent
theoretical developments [45–47] can be used to derive an explicit formulation of the nu-
cleation rate in the present model. This task is non trivial because one needs to determine
the direction of the current, that is, in general, not given by the direction of steepest descent
of the saddle surface as the kinetic characteristics of the system may deviate the nucleation
current. The nucleation rate results therefore from a complex interplay between thermody-
namics and kinetics. Here, we show how kinetics, imposed by the Cahn-Hilliard equation,
governs the nucleation rate of first order phase transitions in binary systems.

2. Governing equations

The classical method to study the kinetics of nucleation is based on the Fokker-Planck
equation for the distribution function of clusters f (R,c, t) [2, 45]:

∂ f
∂ t

=−∂Ji

∂xi
(1)

for i = R,c and xi = R,c with

Ji =−Di j
∂ f
∂x j

+ ẋi f . (2)

The first term of the RHS describes diffusion on the energy landscape, the second term
is a drift term. Fokker-Planck diffusivities Di j in this space are assumed to be constant
and taken at their value near the critical cluster. The Fokker-Planck equation is generally
considered in the size space with f a particle-size distribution function in this context (see
a textbook description in Ref. [48]) and has been studied in many different works related
to nucleation [49–52] and crystal growth [53–55]. In the present study, nucleation is in-
vestigated in a two-dimensional space of size R and composition c where f is therefore
the distribution function of clusters of size R and composition c at time t. Note that the
above equations are written in their dimensionless form, with R̃ = Rb−1/3 with b an atomic
volume. f has also been scaled by b−1 and is therefore dimensionless, as for the fluxes.
c is a rescaled composition, c = ν (c′− c′c), where c′ is the atomic fraction, ν and c′c are
parameters of the thermodynamic model, that we will explicit later. Time has been scaled
by τ = b5/3/

(
ν2MkT

)
with M the traditional mobility employed in the CH equation (in
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m5J−1s−1). Tildes are then omitted for sake of clarity and Einstein’s notations are used for
sake of conciseness. The work of formation ∆Ω, scaled by kT , determines the equilibrium
distribution corresponding to heterophase fluctuations:

f0 =Ce−∆Ω. (3)

with C a dimensionless normalization constant. ∆Ω is expanded around the saddle point of
the energy surface ∆Ω∗:

∆Ω = ∆Ω
∗+

1
2

Hi j (xi − x∗i )
(
x j − x∗j

)
(4)

where Hi j =
∂ 2∆Ω

∂xi∂x j
at the saddle point with, as before, i = R,c and xi = R,c. R∗ and c∗

denote the values at the saddle point. For this f0 we have Ji = 0 as the drift and diffusion
terms compensate, one finds

ẋi =−Di j
∂∆Ω

∂x j
(5)

Such drift coefficients maintain the distribution at equilibirum (Ji = 0) despite f0 is not
homogeneous in the (R,c)-space. Using the above result, one obtains for the fluxes

Ji =−Di j

(
∂ f
∂x j

+ f
∂∆Ω

∂x j

)
, (6)

which is also the form used by Langer [56, 57] in the so-called statistical theory of the
decay of metastable states. As Alekseechkin [45] we introduce the Z matrix as follows

ẋi =−Di j
∂∆Ω

∂x j
=−Di jH jk (xk − x∗k) =−Zik (xk − x∗k) , (7)

thus, Z = DH. Once this matrix is known, the nucleation rate I, at steady state, can be
calculated as [45]:

I =C (2π)
p−2

2
|λ |√
|detH|

e−∆Ω∗
. (8)

with λ the negative eigenvalue of the matrix Z. p is the dimensionality of the space un-
der consideration, p = 2 in the (R,c)-space. Note that the above result is dimensionless,
I (bτ)−1 is the practical rate (in unit volume and unit of time). One shall also notice that
the normalization constant C depends on the considered space. The above result for the
nucleation rate derived by Alekseechkin [45] coincides with the previous expression of the
nucleation rate proposed by Trinkaus in his seminal paper [41], which was a more explicit
formulation of Stauffer’s result [39]. It is also identical to the classical result obtained by
Langer [56]. In order to evaluate the nucleation rate, as given by Eq.8, we first need to de-
rive Z to calculate the eigenvalue. The Z matrix results from a complex interplay between
thermodynamics and kinetics. Indeed, one needs a thermodynamic model to evaluate the
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work of formation ∆Ω∗ and then H, as well as kinetic information to compute the matrix
D. The latter may sometimes be obtained directly from microscopic considerations. How-
ever, the direct calculation of D is impossible in some cases when, for instance, the local
environment around the nucleus needs to be considered [52]. At this stage, one has to spec-
ify a model for the thermodynamics of the system, to compute H, and a dynamic model.
For the latter, we start with the usual Cahn-Hilliard equation for the time evolution of a
composition profile cp (⃗r), here in its dimensionless form:

∂cp (⃗r)
∂ t

= ∇
2
µ (⃗r) (9)

with µ (⃗r) = b δ∆Ω

δcp(⃗r)
. For spherical clusters, the radial composition profile cp (r) needs to

satisfy the following boundary conditions ∂cp (r)/∂ r = 0 in r = 0 and r → ∞ and cp (r) =
c0, the initial composition, in r → ∞. We then employ the method proposed by Lutsko [46,
47]. It relies on a parametrization of the density profile in order to derive from the Cahn-
Hilliard equation a dynamical equation for R and a separate one for c, the two parameters
of our nucleation theory. The detailed procedure can be found in Refs.[46, 47] in the
framework of the dynamical density functional theory. The latter calculation is applied to
the Cahn-Hilliard equation in the present analysis and is briefly reproduced in the following.
This will allow us to derive the matrix Z imposed by the CH dynamics and therefore λ .
The simplest parametrization is that considered in CNT, inside the cluster the composition
is uniform (and equal to c, or c∗ at the saddle point), outside the matrix composition is also
uniform and is equal to c0, that of the initial phase, i.e. cp (r) = c for r < R and cp (r) = c0
otherwise. We first introduce the quantity n(r) in the sphere of radius r as follows

n(r) =
∫

r′<r
cp

(⃗
r′
)

d⃗r′. (10)

We then integrate the dynamical equation (Eq.9) and use Gauss’ theorem to convert the
integral to a surface integral, one obtains:

1
4πr2

∂n(r)
∂ t

=
∂ µ (⃗r)

∂ r
. (11)

Multiplying by ∂n/∂R and integrating one more time leads, for the parameterized n(r) =
n(r,R,c), to the following set of equations

ẋi =−g−1
i j H jk (xk − x∗k) (12)

with i = R,c and xi = R,c. The g−1
i j are the coefficient of the inverse matrix of g, given by

[47]

gi j =
∫

∞

0

1
4πr2

∂n(r)
∂xi

∂n(r)
∂x j

dr. (13)

Eq.12 is an approximated result for any finite parametrization of the concentration profile.
In the current model two parameters (R,c) are used to describe the nucleus, where c is the
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uniform composition of a cluster of size R separated from the matrix by a sharp-interface.
This implies n = 4πr3c/3 for r < R and n = 4πR3c/3+ 4π

(
r3 −R3)c0/3 otherwise. A

more sophisticated parametrization shall result in a more realistic description of the dy-
namics [35, 47, 58, 59]. Nevertheless, our description is consistent with CNT and we
expect it to be valid in the very first stages of growth and therefore appropriate for the
calculation of the nucleation rate. The g matrix is thus evaluated from Eq.13 at the saddle
point, in R = R∗ and c = c∗. Comparing Eq.12 to Eq.7 necessarily implies Z = g−1H, i.e.
g−1 = D. This is one of the main results of this letter, allowing us to derive the nucleation
rate (Eq.8) from the macroscopic CH equation.

In the traditional application of CNT, when only the size of cluster is considered, ap-
plying Eq. 8 gives for the nucleation rate

I =Cg−1
RR

√
|HRR|

2π
e−∆Ω∗

(14)

where the Zeldovich result is recovered, as it must. In the one-dimensional theory, one
has gRR = 4π (R∗

c)
3 (c̄− c0)

2, with c̄ the cluster composition at equilibrium, as given by
the phase diagram. R∗

c is the critical radius. Moreover, HRR = −8πγ [52], where γ is the
dimensionless surface tension. Using gRR and HRR in the above equation for the nucleation
rate coincides with the result derived in ref.[52] for diffusion-limited nucleation that, as
expected, the dynamics of the CH equation also reproduces.

In the (R,c)-space, the first element of g is unchanged and we find, from Eq.13, for the
other elements: gRc = gcR = 4π (R∗)4 (c∗− c0)/3 and gcc = (8π/15)(R∗)5. R∗ and c∗ are
respectively the radius and the composition of the critical cluster in the two-dimensional
theory. Now that g is known, one needs to derive H so as to calculate Z and then its eigen-
value λ . For this purpose, one has to determine ∆Ω, the work associated to the formation
of a cluster of size R and composition c. Still in dimensionless units, we write:

∆Ω =−4
3

πR3gn +4πR2K (c− c0)
2 (15)

where the surface energy term is proportional to (c− c0)
2, as inspired by squared-gradient

theories [8, 17, 35, 36]. K is a constant, determined from the surface energy at equilibrium,
K = γ/(c̄− cb)

2. In the one-dimensional theory, c= c̄ and c̄−c0 ≈ c̄−cb, the classical form
of the surface energy is recovered. gn is the driving force for nucleation, and depends on c.
We can now evaluate H. We find HRR =−8πK (c∗− c0)

2, HRc = HcR =−8πR∗K (c∗− c0)

and Hcc = −4π (R∗)3 G/3+ 8π (R∗)2 K, G = ∂ 2gn/∂c2 is evaluated at the saddle point,
i.e. for c = c∗. Finally we need to provide a thermodynamic model for the free energy
density (g) to calculate the driving force for nucleation as gn = g(c0)+(c− c0) [∂g/∂c]c0

−
g(c). In the following, we use a generic g = −A

(
c2/2+ c4/4

)
for c = ν (c′− c′c), but a

more realistic Landau-type or CALPHAD model shall be employed for any quantitative
calculations, if intended [28]. This g function mimics a symmetric phase diagram of critical
composition c′c with ν−1 the difference between the critical composition and the binodal
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limit. A is a dimensionless constant that allows us to control the magnitude of the driving
force. The binodal limit is located at the scaled composition cb = −1 and the spinodal
at cs = −1/

√
3. We study the nucleation regime in the whole binodal domain, for the

composition of the initial metastable phase c0 going from cb to cs. In nucleation theory,
the properties of the critical clusters (R∗,c∗) corresponds to the saddle point of the energy
surface, the latter is unstable and satisfies ∂∆Ω/∂R = 0 and ∂∆Ω/∂c = 0 in R∗, c∗. The
energy at the saddle point gives the nucleation barrier ∆Ω∗. One finds that c∗ must satisfy

(c− c0)
dgn

dc
= 3gn (16)

and is independent on surface energy, c∗ = c0 +
√

6c2
0 −2 for our choice of g. The critical

radius is given by

R∗ =
2K (c∗− c0)

2

g∗n
(17)

with g∗n = gn (c∗,c0), and the nucleation barrier by

∆Ω
∗ =

4π

3
R∗2K (c∗− c0)

2 . (18)

3. Results and discussion

We are interested in comparing our results to the classical picture, for which the critical
parameters are denoted by R∗

c and ∆Ω∗
c . As already mentioned, in the classical treatment

the composition is set to its equilibrium value c∗c = c̄ = 1. In this comparison, we scale
the critical composition as follows (c∗− c0)/(c∗c − c0), the critical size is scaled by R∗

c and
the nucleation barrier by ∆Ω∗

c . Results are therefore independent on K and A. The cluster
properties are given in Fig.1.

At low supersaturation (c0 slightly above cb), the properties of the critical cluster con-
verge to that of classical picture. However, they are found, as expected [8, 18, 27, 30–33]
to rapidly differ from the classical results when increasing the degree of metastability of
the initial phase, as c0 increases. The results of diffuse interface theories are recovered
when approaching the spinodal line, the size of the critical cluster diverges, its composition
decreases and tends toward that of the initial phase. Concomitantly the nucleation barrier
vanishes (Fig.1). The latter quantity intervenes in the exponential part of the nucleation
rate and has therefore a drastic impact on its magnitude. Then one calculates the negative
eigenvalue of the Z matrix. In the considered (R,c)-space, one finds

Z =
2K
R∗3 Z′ (19)

with Z′
RR = 9, Z′

Rc = −3R∗
[
7−5X (c∗− c0)

2
]
/(c∗− c0), Z′

cR = −30(c∗− c0)/R∗ and

Z′
cc = 60− 45X (c∗− c0)

2. X = G
3g∗n

. Interestingly, one remarks that the eigenvalue of Z′
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Fig. 1. Properties of the critical clusters compared to the classical picture: R∗/R∗
c ,

(c∗− c0)/(c∗c − c0) and ∆Ω∗/∆Ω∗
c as a function of the initial phase composition in the whole

binodal domain.

tends to −1 when c0 approaches the binodal limit, in this case λ −→−2K/R∗3, which is the
value of the classical theory λc, calculated as HRR/gRR. The main advantage of the present
model is that we arrive at a fully analytical expression for both Z′ and its eigenvalue λ ′:

λ
′ =

Z′
RR +Z′

cc −
√

∆′

2
(20)

with ∆′ = (Z′
RR −Z′

cc)
2+4Z′

RcZ′
cR. λ ′ only depends on X (c∗− c0)

2 and is found to decrease
with supersaturation.

Figure 2 shows the eigenvalues λ of the present model , i.e. in the two-dimensional
space of size R and composition c, as a function of c0 (for K = 0.15 and A=1). For com-
parison, the values corresponding to the classical treatment are also reported, λc, when the
size if the only parameter of the theory. λ is found to significantly depart from λc once
moderate supersaturation is reached. It reaches a maximum and then decreases when ap-
proaching the spinodal domain. A similar behavior has been recently evidenced in diffuse
interface theories [29]. The fact that the eigenvalue departs from λc at high supersaturation
suggests that nucleation differs from the classical picture. In classical theory, the cluster
size is the unstable variable and evolves as R(t) ∼ exp(|λc| t) in the overcritical region,
according to Eq.7. Any departure from λc implies that R is no more the unstable coordi-
nate. In order to understand this effect, one has to determine the direction of the nucleation
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Fig. 2. Eigenvalue |λ | and its classical value |λc| as a function of the initial phase composition. λ

is calculated in the two-dimensional space of size R and composition c and λc corresponds to the
usual one-dimensional version of CNT, i.e. the only parameter is the size and the cluster
composition is set to its equilibrium value.

current. Once the matrix Z is known, one can show that the flux is lying on the line of
direction θ calculated as [45]

tanθ =
λ ′−Z′

RR
Z′

Rc
. (21)

λ ′ only depends on X (c∗− c0)
2 and Z′

RR is constant. Z′
Rc also depends on X (c∗− c0)

2 and
increases with R∗. In the present model, the latter is proportional to d = K/A at fixed super-
saturation. Therefore, as d increases, the nucleation current progressively aligns with the
R-axis, up to c0 −cb ∼ 0.32 for which Z′

Rc = 0, i.e. 7−5X (c∗− c0)
2 = 0. At this supersat-

uration, the nucleation current is necessarily aligned with the composition axis (θ −→ π/2),
which becomes the unstable variable of the nucleation process, contrary to the classical
picture. Above this limit, θ < 0 and the direction of nucleation current is given by θ +π .
The direction of the flux is reported on Fig.3. We observe that the direction of the flux
remains parallel to the R-axis at low supersaturation (θ ≈ 0). At c0 − cb ∼ 0.32, θ −→ π/2
and the composition is found to play the role of the unstable variable, revealing a rapid
enrichment of the critical cluster with no change in size. Interestingly, for low d values,
the direction of the nucleation current is found to rapidly deviates from that of the classi-
cal picture, i.e. θ = 0 and R is the unstable variable. Figure 4 shows the energy surface
∆Ω(R,c) for c0 − cb = 0.3, K = 0.15 and A = 1. First of all, one remarks that the flux
direction significantly departs from the steepest descent direction, evidencing the interplay

ix



between thermodynamics and kinetics. Moreover, the critical cluster are dilute (poor in so-
lute) and, according to the direction of the nucleation current, will experience concomitant
growth in size and enrichment. This enrichment process can even result in a reduction of
size at high supersaturation (Fig.3). Near the spinodal limit the flux direction (approaching
π) makes the cluster shrinks with little change in composition. This is counter-intuitive, but
the flux direction describes the very first stages of deterministic growth. Once the nucle-
ation barrier is overcome, the dynamics is expected to rapidly make supercritical clusters
both enrich and grow.

Fig. 3. Direction of the nucleation current as a function of the initial composition, for various
d = K/A values.

We find various plausible nucleation pathways near the saddle-point: first the classical
regime is recovered near the binodal limit, the cluster grows with the equilibrium compo-
sition. Then an intermediate regime can be seen when supersaturation increases, during
which a change in size and composition occurs simultaneously. At a given supersaturation
value (Z′

Rc = 0), composition becomes the unstable reaction rate, the cluster enriches with
no change in size. The specific value of c0 depends on the driving force gn and is therefore
model dependent. For our generic choice of g, the transition occurs at relatively high su-
persaturation. Any classical double-well function is expected to lead to a similar behavior.
Finally when approaching the spinodal limit, the cluster shrinks in size with a composition
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Fig. 4. A contour plot of the energy surface ∆Ω for c0 − cb = 0.3. The direction of the flux (black
line), as well as that of steepest descent at the saddle-point (dashed blue line), are shown. The
saddle point is located at (R∗,c∗) = (1.44,0.27). The basin of metastable states is located on the
left of the red dashed line.

that is close to that of the initial phase. One needs to mention that those scenario corre-
spond to saddle-point nucleation. Near the spinodal line, the nucleation barrier vanishes
and thermal fluctuations are expected to favor ridge-crossing. Nevertheless, the interplay
between kinetics and thermodynamics is found to invalidate the classical picture at mod-
erate supersaturation. Once the direction of the nucleation current and the eigenvalue are
determined, it remains to calculate the normalization constant to evaluate the nucleation
rate with Eq.8. It can be in principle determined from the condition of statistical equilib-
rium, as in classical theory [45], but we employ a different approach and determine this
constant from mass conservation, as follows:∫

Vm

4πR3

3
c′ f0dcdR = c′0. (22)

The integration is performed over the metastable states (Vm), approximated as the region
on the left side of the stable direction at the saddle-point (see Fig.4). Figure 5 shows the
dimensionless nucleation rate, still for A = 1, K = 0.15 and we use, arbitrarily, ν−1 =
0.353 and c′c = 0.5 to reproduce the α/α ′ FeCr phase diagram at 773K [28]. For sake of
comparison the classical rate is also reported. The nucleation rate of the present theory is
found orders of magnitude larger than the classical result, primarily as the nucleation barrier
is lower but also due to the eigenvalue departure from its classical value. The nucleation
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rate is also found to exhibit a maximum at high supersaturation, near the spinodal limit, as
recently evidenced in the diffuse-interface nucleation theory [29]. An effect that our model
also captures.

Fig. 5. Dimensionless nucleation rates, in dotted line the classical rate, the solid line corresponds
to rate of the present theory.

We conclude this article by applying the model to decomposition of FeCr solid solu-
tions [15, 60]. The ”c2-c4” free energy density, as well as CALPHAD models [61, 62],
are not suitable for quantitative calculations in the FeCr system since they both overesti-
mate the spinodal limit, predicted by thermodynamics databases to be near 0.3 at 773K.
Atom probe tomography experiments show that the latter is, in fact, below 25 at.% of Cr
[63]. In the diffuse-interface theory developed by Lunéville et al. [28, 29, 37], a ”c6” term
was added to the Landau free energy and the coefficients were adjusted to reproduce both
the binodal and the spinodal limits at 773K. The same free energy density is employed
in our model. In terms of the rescaled composition c = ν (c′− c′c), the free energy reads
a2c2/2+ a4c4/4+ a6c6/6 with a2 = −0.0035, a4 = −0.654 and a6 = 0.665, with again
ν−1 = 0.353 and c′c = 0.5. For the surface energy we use the value given in refs.[28, 29],
0.55 eV/nm2 i.e. K = 0.106 in the present model. The chemical mobility is also needed
to calculate the nucleation rate and can be derived from the interdiffusion coefficient in the
α phase (Dα ), close to 10−17 cm2/s [64]. M is then determined from Dα = MGα with
Gα the Hessian of the free energy density that we evaluate at the equilibirum composition.
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The model is applied to a Fe0.81Cr0.19 alloy, the critical cluster properties are derived from
Eqs.16 and 17, critical clusters are found to contain 44 at.% of Cr and their radius is close to
1 nm, in good agreement with experiments [60] and diffuse-interface predictions [28, 29].
The nucleation barrier is calculated from Eq.18 and is equal to 5.17 kBT. The nucleation
rate is given by Eq.8 and is close to 2x10−8 nm−3s−1, in very good agreement with the
rate derived in the diffuse-interface theory [37]. The model is then applied in a Fe0.80Cr0.20
alloy. At this initial composition, critical clusters shall contain 40 at.% of Cr and their
radius is 0.86 nm. As expected the nucleation barrier is lower and is equal to 1.98 kBT.
The nucleation rate is two order of magnitude larger and is close to 2.4x10−6 nm−3s−1, in
very good agreement also with the rate seen in atomistic kinetic Monte Carlo simulations
[15, 64]. Classical nucleation is known to fail at predicting both the thermodynamics and
kinetics of decomposition of FeCr solid solutions, and of other metallic alloys [16], since
it overestimates the nucleation barrier. In this case the diffuse-interface formalism is rel-
evant but rarely used in practice, due to the complexity of its kinetic aspect [29, 56]. The
present capillary model, coupled to the Cahn-Hilliard dynamics, is shown to constitute a
reasonable sharp-interface approximation of the diffuse-interface theory of nucleation for
the determination of both the clusters properties and the nucleation rate.

4. Conclusion

By allowing the composition of clusters to vary in the capillary approximation of classical
nucleation, one shows how the growth kinetics imposed by the Cahn-Hilliard equation
influences the nucleation process in binary alloys. We find that the classical picture prevails
at low supersaturation only, when the size is the unstable variable. When the degree of
metastability of the initial phase increases the direction of the nucleation current is modified
and the eigenvalue of the nucleation problem is found to be non-monotonic. In terms of
nucleation pathways it means that the classical regime is recovered near the binodal limit,
the cluster grows with the equilibrium composition. Then an intermediate regime can be
seen when supersaturation increases with a concomitant change in size and composition.
Moreover, it is found that the clusters properties, as well as nucleation rates, are similar
to diffuse-interface theory predictions in the entire metastable region. A more detailed
analysis shall be performed to estimate the accuracy of the model, as compared to the
diffuse-interface theory of nucleation.
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