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Abstract

This chapter is a review on the energy-based Constitutive Relation Error
(CRE) concept which has been developed for more than 40 years as a general
verification tool in finite element simulations. It turns out that this concept
is suitable to a posteriori compute some strict and effective bounds on the
discretization error for a large set of structural mechanics problems. We show
here the basic features of CRE-based error estimation, as well as more recent
developments dealing with goal-oriented error estimation or the control of
reduced order models. In addition, we also show how the CRE concept can be
beneficially used together with experimental information, in order to conduct
inverse analysis with model updating, as well as to question the relevance of
the employed mathematical model by using model selection, enrichment, or
learning. Illustrative examples are shown for these various applications of
the CRE concept.
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1. Introduction

Modeling and simulation have nowadays become a central engineering ac-
tivity, both in industry and in research. In this activity, a constant concern
has always been the mastering of mathematical and numerical models which
may attain high complexity levels [131]. Over the last 40 years, quantita-
tive tools have appeared in order to assess the quality of simulation results,
especially when derived from Finite Element (FE) analysis, with respect to
a reference mathematical model [2, 105, 33]; this topic is now known as
model verification and is extensively developed in computational mechanics.
While only estimates on the global discretization error were available un-
til the 1990’s, with associated local error indicators and adaptive strategies,
goal-oriented error estimation techniques have emerged since then in order
to address the key issue of evaluating the quality of local quantities of in-
terest resulting from a FE simulation and useful for design purposes. The
main idea in this achievement is that a quantity of interest can be written
globally, thus allowing the reuse of global error estimators [12, 142, 147].
However, accurate error estimation requires the approximate solution of an
adjoint problem [77].
In this broad context of FE model verification, we focus here on a general
approach referring to the Constitutive Relation Error (CRE) concept. It
provides for guaranteed, accurate, and fully computable error bounds, which
is a main advantage for robust design. It is based on a simple and consis-
tent idea: all exact equations of the mathematical problem defined over the
space-time domain (e.g., equilibrium and compatibility equations) should be
satisfied by so-called admissible fields except the constitutive relation which
is less reliable as empirically chosen and depending on experimental data; the
residual on the satisfaction of this constitutive relation thus constitutes an
(energy-based) error indicator for the approximate solution. Of course, the
construction of such admissible fields and in particular a fully equilibrated
dual field is a technical point in the approach [93, 97, 72, 123, 60, 111, 143].
Developed in the late 1970s for a posteriori error estimation on linear prob-
lems solved with FEM [92, 93, 53], the CRE concept has been extended and
applied to nonlinear time-dependent problems in structural mechanics over
the years (an overview can be found in [105, 115]) to perform global error es-
timation and lead adaptive procedures. These include (visco-)plasticity and
damage [70, 99, 102, 103, 141, 104], addressed through the standard ther-
modynamics framework of stable materials with internal variables [81, 74],

2



contact-friction problems [44, 117, 164], as well as dynamics [94, 43]. In this
framework, convexity and duality properties are a key point to recover math-
ematical properties for error bounds. Also, the CRE approach unifies a set
of powerful verification methods around the concept of equilibrium which is
actually the only way to recover mathematically guaranteed and fully com-
putable error bounds; let us mention in this category the (implicit) element
residual method with equilibration [9, 1], smoothing techniques with equi-
librium constraints [163, 20, 150], or the subdomain residual method with
flux-free technique [138, 45, 139].
During the last two decades, the CRE concept was extensively used to get
strict and accurate error bounds on outputs of interest, both for linear and
time-dependent nonlinear problems (e.g., see [107, 23, 24, 109, 110, 25, 113,
158, 114, 160, 161]). These works associated with key technical points often
lead to first bounds of this kind in the literature, taking all error sources
(time and space discretizations, iteration stopping) into account. Out of
standard FEM, the CRE concept was also applied to more advanced dis-
cretization techniques such as XFEM [71, 135, 136], isogeometric analysis
(IGA) [156, 30], non-conforming FEM [52, 61], domain decomposition tech-
niques [140, 149], stochastic approaches [108, 25], or MsFEM in multiscale
approaches [29, 31], as well as to PGD model reduction [112, 28, 30, 148].
Also, the CRE concept was recently implemented for model verification in
the context of deep learning, controlling generalization errors in approxima-
tions of elasticity problems obtained from a mixed form of Physics-Informed
Neural Networks (PINNs) [80].
Basic concepts of CRE and several of the CRE-based tools developed for a
posteriori model verification are reviewed in a first part of the chapter.

Another critical aspect to certify the quality of numerical simulations
outputs is to question the quality of the mathematical model itself, that is
its capability to represent a faithful abstraction of the physical system being
studied. This integrates the identification or updating of model parameters
from experimental measurements, leading to the solution of an inverse prob-
lem. In this context where the material behavior is a major component, the
CRE concept again appears as a sound, convenient, and powerful tool. First
developments were made in the 1990s for dynamics models [96, 41, 42, 100],
before being successfully used in many applications of inverse problems such
as forced vibrations [50, 11, 51, 8, 54, 153, 79, 55, 151, 57, 152], tran-
sient dynamics [5, 65, 128, 19], acoustics [48, 49, 162, 146], probabilistic
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models (when considering a family of similar structures) [106, 64], joint or
connexion identification problems [73, 132, 133], nonlinear material behav-
iors [128, 78, 120, 129], in-situ measurements [35, 21], or full-field measure-
ments from imaging [134, 14, 86, 76, 66, 129]. After first works in which
measurements were included as additional admissibility constraints, a more
flexible and effective strategy denoted as modified CRE (mCRE) was devel-
oped. It consists in a hybrid variational formulation where constraints on
measurements and other uncertain data are released. It thus proposes a gen-
eral framework driven by reliability of information: reliable theoretical and
experimental information (equilibrium, sensor position, etc.) is favored to
define admissibility spaces and is strongly enforced in the inversion process,
while complementary information (material behavior, sensor measurement
values, etc.) is released and satisfied at best. A residual associated with
this complementary information is then measured. The minimization of the
mCRE cost function, which is a nonlinear contraint optimization problem, is
then performed by means of an iterative two-steps algorithm where optimal
admissible fields are first computed, before minimizing with respect to model
parameters.
It was shown that the mCRE functional provides for an appropriate metric
in inverse problems, mixing a metric on discrepancy with measurements and
a metric on the modeling space. Its use presents interesting advantages for
identification purposes compared to some alternative techniques; out of im-
proved convexity properties (over its least-squares counterpart) and tolerance
to incompletely specified boundary conditions [18, 65, 54, 7], it has excellent
capacities to localize structural defects spatially [22, 63, 8, 14, 19, 10, 85, 58],
and it is very robust to noisy or corrupted measurements [5, 65, 128, 14].
Also, the system state estimated from mCRE (in terms of optimal admis-
sible fields) can be interpreted as an hybrid twin as defined in [39], with
a compromise between physics-based and data-based modeling, and taking
the best of both worlds by accounting for modeling bias while correcting
it from data (data-based enrichment of the a priori chosen mathematical
model). Moreover, the CRE term of the mCRE functional can be seen as
a quantitative modeling error indicator, which may be beneficially used for
optimal physics-constrained model definition from data. This may be per-
formed by selecting the appropriate model in a list of model classes (e.g.
constitutive law structures) [130], or by using deep learning techniques to
determine model ignorance [15, 16, 116]. Recently, the mCRE approach was
also extended to sequential data assimilation by inserting it into a Kalman
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filtering strategy [119, 56]. In the context of Structural Health Monitoring
(SHM) [62], this new methodology constitutes a powerful tool to perform
online SHM [34] and more generally address Dynamic Data Driven Appli-
cations Systems (DDDAS) challenges as defined in [46] in which data are
seamlessly integrated with digital twins.
The overall use of the CRE concept together with experimental data is de-
veloped in the second part of the chapter, with typical applications tackled
in recent works.

2. Model verification with the CRE concept

In this section, we first give the main features of the CRE approach, based
on duality analysis, for a posteriori error estimation in FEM simulation. We
go into further details for the elasticity case alone, even though extensions to
nonlinear time-dependent problems are also given. Then, we present more
recent works on the use of the CRE error estimate to control the quality of
reduced order modeling.

2.1. Reference elasticity problem and FEM approximation

We consider an open bounded domain Ω ⊂ Rd (d = 1, 2, 3) with Lipschitz
boundary ∂Ω, occupied by an elastic material (Fig. 1). We assume that a
displacement field ud ∈ [H1/2(∂1Ω)]

d is prescribed on ∂1Ω ⊂ ∂Ω (Dirichlet
boundary condition) with ∂1Ω ̸= ∅, and that tractions Fd ∈ [H−1/2(∂2Ω)]

d are
prescribed on the complementary part ∂2Ω (Neumann boundary condition)
such that ∂1Ω ∩ ∂2Ω = ∅ and ∂1Ω ∪ ∂2Ω = ∂Ω. A body force field fd ∈
[L2(Ω)]d may also be given in Ω. We assume small displacements, quasi-
static loading, and isothermal conditions.
The associated (well-posed) problem consists in finding the solution pair
(u, σσ) which satisfies:

• kinematic equations:

u ∈ [H1(Ω)]d ; u|∂1Ω = ud (1)

• equilibrium equations:

σσ ∈ [L2(Ω)]d(d+1)/2
sym ; ∇ · σσ + fd = 0 in Ω ; σσn|∂2Ω = Fd (2)

• constitutive relation:
σσ = C (ϵϵ(u)) (3)
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ϵϵ(u) ≡ 1
2
(∇u +∇Tu) denotes the linearized strain tensor, σσ is the Cauchy

stress tensor, and C is the elasticity tensor.

Figure 1: Configuration of the reference problem.

We introduce the following admissibility spaces:

• the space Uad of kinematically admissible displacement fields:

Uad ≡
{
v ∈ [H1(Ω)]d| v satisfies (1)

}
(4)

• the space Sad of statically admissible stress fields:

Sad ≡
{
ττ ∈ [H(div,Ω)]d| ττ satisfies (2)

}
(5)

Introducing the vectorial space Uad,0 associated with Uad, equilibrium equa-
tions can be rewritten in the following weak form of the principle of virtual
work:

−
∫
Ω

σσ : ϵϵ(v)dΩ +

∫
Ω

f · vdΩ +

∫
∂2Ω

F · vdS = 0 ∀v ∈ Uad,0 (6)

Based on the thermodynamics framework with standard formulation in-
troduced in [81] for stable materials, the constitutive relation may be ex-
pressed by means of a free energy (positive and convex) potential ψ, or its
dual ψ∗, as:

σσ =
∂ψ

∂ϵϵ
or ϵϵ =

∂ψ∗

∂σσ
(7)
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Duality is here defined by the work bilinear form, by means of the Legendre-
Fenchel transform [125]:

ψ∗(σσ) ≡ sup
ϵϵ

[σσ : ϵϵ− ψ(ϵϵ)] (8)

Remark 1. In the linear elasticity case, the constitutive relation reads:

σσ = Kϵϵ(u) (9)

where K is the symmetric positive definite Hooke tensor. The associated
thermodynamic potentials are then quadratic and read:

ψ(ϵϵ) =
1

2
ϵϵ : Kϵϵ ; ψ∗(σσ) =

1

2
σσ : K−1σσ (10)

Using a conforming FE method, and approximation uh ∈ Uad of u is
computed with associated approximate stress field σσh /∈ Sad. This leads
to the discretization error field eh = uh − u, and the objective of model
verification is to compute an a posteriori estimate on this error measured in
some given norm (to start, in the global energy norm).

2.2. CRE definition and a posteriori estimation on discretization error

The CRE measure refers to the previously introduced Legendre-Fenchel
duality, and is related to the symmetrized Bregman divergence used in statis-
tics. For any displacement field û ∈ Uad and any equilibrated stress field
σ̂σ ∈ Sad, we define the CRE functional ECRE as:

ECRE : Uad×Sad 7→ R ; E2
CRE(û, σ̂σ) ≡

∫
Ω

[
ψ(ϵϵ(û))+ψ∗(σ̂σ)−σ̂σ : ϵϵ(û)

]
dΩ ≥ 0

(11)
It corresponds to a measure of the residual on the constitutive relation for
the admissible pair (û, σ̂σ) ∈ Uad × Sad, and it naturally yields the following
property:

E2
CRE(û, σ̂σ) = 0 ⇐⇒ (û, σ̂σ) satisfies the constitutive relation (3) over Ω

⇐⇒ (û, σ̂σ) corresponds to the exact solution (u, σσ)
(12)

Remark 2. In the linear elasticity case, the CRE functional reads:

E2
CRE(û, σ̂σ) =

1

2

∫
Ω

(σ̂σ −Kϵϵ(û)) : K−1(σ̂σ −Kϵϵ(û))dΩ (13)
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A geometrical interpretation of the CRE measure is given in Fig. 2: for a
given point (û, σ̂σ) ∈ Uad×Sad, the value ψ(ϵϵ(û)) corresponds to the area in
blue, ψ∗(σ̂σ) to the area in red, and σ̂σ : ϵϵ(û) is the area in grey. The residual
quantity ψ(ϵϵ(û)) + ψ∗(σ̂σ)− σ̂σ : ϵϵ(û) is then the remaining blank area.

Figure 2: Geometrical representation of the CRE measure for a general elastic behavior.

Let us now define the following error functionals on displacement and
stress fields (related to potential and complementary energy functionals):

eu(e) ≡
∫
Ω

[
ψ(ϵϵ(u+ e)) + ψ(ϵϵ(u))− σσ : ϵϵ(u+ e)

]
dΩ ∀e ∈ [H1(Ω)]d

eσ(S) ≡
∫
Ω

[
ψ∗(σσ + S) + ψ∗(σσ)− (σσ + S) : ϵϵ(u)

]
dΩ ∀S ∈ [H(div,Ω)]d

(14)
where (u, σσ) is the exact solution pair of the elasticity problem. It results
that these error functionals and the fully computable CRE functional are
interlinked by the following property:

eu(û− u) + eσ(σ̂σ − σσ) = E2
CRE(û, σ̂σ) ∀(û, σ̂σ) ∈ Uad × Sad (15)

This property is due to the orthogonality
∫
Ω
(σ̂σ−σσ) : ϵϵ(û−u)dΩ = 0 coming

from admissibility constraints.

Taking û = uh, the equality (15) is the key to obtain a guaranteed upper
bound on a global norm of the discretization error uh−u. In the case of linear
elasticity for instance, it corresponds to the Prager-Synge equality [145]:

∥uh − u∥2K + ∥σ̂σ − σσ∥2K−1 = ∥σ̂σ −Kϵϵ(uh)∥2K−1 = 2.E2
CRE(uh, σ̂σ) (16)
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with ∥ • ∥2K ≡
∫
Ω
ϵϵ(•) : Kϵϵ(•)dΩ and ∥ • ∥2K−1 ≡

∫
Ω
• : K−1 • dΩ the energy

norms on displacement and stress fields, respectively. This yields the follow-
ing guaranteed and fully computable upper bounding on the discretization
error, provided any stress field σ̂σ ∈ Sad is available:

∥eh∥K ≤
√
2ECRE(uh, σ̂σ) (17)

Two geometrical representations of the CRE philosophy are now given for
linear elasticity (see Fig. 3). The first one, classical, is in the space of stress
fields with inner product ⟨σσ1, σσ2⟩ ≡

∫
Ω
σσ1 : K

−1σσ2dΩ and associated energy
norm. It illustrates the orthogonality property involved in the Prager-Synge
equality (16). The distance between σ̂σ and σσh, that is

√
2.ECRE(uh, σ̂σ), is an

upper error bound on the discretization error ∥u− uh∥K.
The second one, not classical but that will be later reused, is in the space
of strain-stress couples s = (ϵϵ, σσ). This space is equipped with the energy
inner product ⟨s1, s2⟩ ≡

∫
Ω
(ϵϵ1 : Kϵϵ2 + σσ1 : K

−1σσ2)dΩ and associated energy
norm. We denote (Ad) the space of (kinematically and statically) admissible
couples, and Γ the space (linear here) associated with the constitutive law.
The exact solution of the well-posed problem (1)-(3) is defined by the inter-
section between (Γ) and (Ad). It is then easy to show that the value ECRE
exactly corresponds to the distance from the solution ŝ = (ϵϵ(uh), σ̂σ) ∈ (Ad)
at hand to (Γ), with orthogonal projection. The stress field σσm obtained
after projection is the average field σσm = 1

2
(σ̂σ + σσh). The Prager-Synge

theorem reads in this framework:

⟨s− ŝ, s− ŝ⟩ = 2.E2
CRE(ŝ)

and ⟨s−ŝ, s−ŝ⟩ is the squared of the distance to the exact solution represented
in red in Fig. 3.

Figure 3: Geometrical representations of the CRE concept.

9



2.3. Practical computation of admissible fields

The quality of the bounding derived from the CRE (e.g., (17)) depends
on that of the statically admissible stress field σ̂σ at hand. The suitable
construction of such a fully equilibrated stress field is actually the key and
technical point of the CRE concept; it may be addressed by means of vari-
ous techniques available in the literature. A natural one is to approximately
solve in parallel the dual elasticity problem by means of equilibrium elements
which enforce equilibrium by construction [47, 69, 89, 124]. This provides for
the sharpest error bounds in practice, but it requires the use of specific ap-
proximation functions with challenging implementation in commercial finite
element software (since it refers to a non-conventional numerical architec-
ture) out of solving an additional global problem with large computational
effort.
Alternative techniques rather aim at post-processing the FE solution at hand,
as the approximate stress field σσh already satisfies some weak equilibrium
properties (in the FE sense). These techniques usually involve local indepen-
dent computations over the FE mesh. Let us mention:

• the hybrid-flux technique also known as Element Equilibration Tech-
nique (EET), initially developed in [93, 97], which is quasi-explicit. It
consists in constructing equilibrated tractions on element edges, before
solving local problems at the element level over the FE mesh. Several
variants of this technique were proposed over the years [98, 67, 111,
144, 159, 27, 4] to improve performance or easiness of implementation;

• flux-free techniques developed in [138, 45, 72, 123, 139], which are
simpler to analyze and implement than the hybrid-flux technique as
they circumvent the need to construct equilibrated tractions on ele-
ment edges. Nevertheless, they require to solve local problems over
patches of elements and are therefore more expensive [40];

• techniques based on a mixed formulation and the use of Raviart-Thomas-
Nédélec (RTN) elements [53, 118, 157, 60, 61].

We refer to [33] for more details on all these techniques, and to [143] for a
comparative analysis of performance of some of them on engineering exam-
ples.

10



Remark 3. It can be shown that using the hybrid-flux (or EET) technique
to construct σ̂σ, a lows error bound is also available from the CRE func-
tional [93, 33]; it is of the form ECRE(uh, σ̂σ) ≤ C∥uh − u∥ where C is a
constant independent of the mesh size, and it sproves that the constructed
error estimate has the same convergence rate as the true discretization error.
A lower bound can also be obtained using a mixed formulation with RTN
elements.

Remark 4. We also mention that uh is usually chosen as the kinematically
admissible field û in (15). Nevertheless, in the case of quasi-incompressible
materials with additional kinematic constraints, a correction should be brought
to uh to ensure admissibility [95].

2.4. Illustrative example

We report here a numerical experiment taken from [143]. A linear elas-
ticity problem, with isotropic and homogeneous material behavior, is con-
sidered on a three-dimensional physical domain (which represents the hub
of the main rotor of an helicopter). The mechanical structure is clamped
on part of its boundary, and is subjected to unit tractions t, normal to the
boundary surface, on another part of its boundary. The considered geometry
and mesh, made of 1978 linear tetrahedral elements (17,694 dofs), are shown
in Fig. 4.

t

t

t

t

x

z

y

Figure 4: Model problem (left) and associated FE mesh (right). Colored planes represent
clamped boundary parts.

A conforming FEM is used to compute an approximate solution uh. In
this example, a selected region of the structure plays an essential role for
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design purposes and engineering interest. The magnitude (with Frobenius
norm) of the FE stress field in this region is shown in Fig. 5.

Figure 5: Magnitude of the FE stress field in the selected region of interest.

A posteriori error estimation is then performed using the presented CRE
concept and bound (17). The magnitude of the admissible stress field σ̂σ,
obtained using a hybrid-flux equilibration technique as a post-processing of
σσh, as well as the spatial distribution of the obtained CRE error estimate√
2.ECRE(uh, σ̂σ), are shown on Fig. 6.

Figure 6: Magnitude of the admissible stress field (left), and spatial distribution of relevant
local contributions to the error estimate (right).

2.5. Extension to complex nonlinear mechanics problems

We now extend the CRE concept to dissipative material behaviors with
standard formulation involving internal variables [81, 74], such as viscoplas-
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ticity. For the sake of conciseness, we use some global notations to handle
all mechanical quantities. We thus introduce the following generalized quan-
tities:

s =

[
σσ
Y

]
ee =

[
ϵϵe
X

]
ep =

[
ϵϵp
−X

]
e = ee + ep (18)

where ϵϵe (resp. ϵϵp) denotes the elastic (resp. plastic) part of the strain
tensor, vector X gathers additional internal variables, and vector Y gathers
the associated thermodynamic forces. The local dissipation then reads:

d = σσ : ϵ̇ϵp −Y · Ẋ = s · ėp (19)

where y · x denotes the duality product between variables x and y.

In this thermodynamic framework, two pairs (ψ, ψ∗) and (φ, φ∗) of con-
jugate convex potentials (defined from the Legendre-Fenchel transform) are
introduced; they describe the two complementary parts of the overall mate-
rial behavior:

• state equations:

ee = Λ(s) =
∂ψ∗

∂s
(or s =

∂ψ

∂ee
) (20)

• evolution laws:

ėp = B(s) =
∂φ∗

∂s
(or s =

∂φ

∂ėp
) (21)

In practice, the potential ψ refers to the Helmholtz free energy, while φ is a
convex non-negative dissipation potential ensuring stability conditions.

Remark 5. When φ∗ is not differentiable at some points (usual case in
elasto-plasticity), the evolution laws should be replaced by ėp ∈ ∂sφ

∗ where
∂sφ

∗ denotes the sub-differential of φ∗ defined as:

∂sφ
∗ ≡ {ėp such that φ∗(s)− φ∗(s) ≥ ėp · (s− s) ∀s} (22)
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Considering an admissible solution (êe, êp, ŝ) over the space-time domain
Ω × [0, T ], with êe + êp = ê, residuals on these two parts (20) and (21) are
naturally defined in a similar way as in Eq. (11):

ηψ(êe, ŝ) = ψ(êe) +ψ∗(ŝ)− ŝ · êe ; ηφ( ˙̂ep, ŝ) = φ( ˙̂ep) +φ∗(ŝ)− ŝ · ˙̂ep (23)

Residuals ηψ and ηφ are here local in space and time quantities. The following
CRE measure is then introduced at time t ∈ [0, T ] [101]:

E2
CRE|t(ê, ŝ) =

∫
Ω

ηψ(êe, ŝ)dΩ +

∫ t

0

∫
Ω

ηφ( ˙̂ep, ŝ)dΩdτ ≥ 0 (24)

This CRE measure vanishes when (ê, ŝ) corresponds to the exact solution of
the problem. In other cases, it integrates error sources coming from space
and time discretizations, as well as iteration stopping, and it can be linked
to the exact error (see [99, 105, 115] for details).

Remark 6. An alternative definition of the CRE measure, known as the
dissipation error [99], consists in integrating state equations in admissibility
conditions (so that êp = ê− Λ(ŝ)), and to measure the residual on evolution
laws alone.

The construction of an admissible solution can again be conducted from
the approximate solution (eh, sh) given by the FE method, and known at
discrete time points tn (with kinematic constraints and weak FE equilibrium
satisfied at these time points). This approximate solution is first extended
across the whole time-space domain, in order to satisfy kinematic constraints
and weak FE equilibrium at any time t ∈ [0, T ], then an equilibration tech-
nique similar to those defined for the elasticity case (see Section 2.3) is used
to compute an admissible solution (ê, ŝ). Let us note that admissible ad-
ditional internal variables (X̂, Ŷ) can be easily constructed by solving local
problems related to the minimization of the CRE functional. All details on
this construction of an admissible solution can be found in [99, 102, 105].

2.6. Extension to the control of PGD reduced order modeling

Reduced order modeling (ROM) has received a growing interest and has
been an active research topic over the last 20 years [38], in particular to
efficiently address parameterized models associated with multi-query simu-
lations such as encountered in inverse analysis, uncertainty propagation, or
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optimization. ROM circumvents the curse of dimensionality, that is the expo-
nential increase in the number of dofs with respect to the number of parame-
ters, that rapidly leads to unaffordable computations when using brute-force
numerical methods. Among the list of ROM techniques, the Proper Gen-
eralized Decomposition (PGD) appears very attractive in many engineering
applications (see [37] for a review). It is based on a modal representation
of the solution, defined as a linear combination of separated variable func-
tions (modes); variables include space, time, but also parameters seen as
extra-coordinates of the problem and related to geometry, material proper-
ties, loading, boundary or initial conditions, etc. This representation (i.e.,
low-rank canonical format approximation) reads:

uPGD(x, t,p) =
M∑
m=1

Xm(x).Tm(t).Π
K
k=1ζk,m(pk) (25)

where p = [p1, p2, . . . , pK ]
T is the vector of parameters. PGD modes are

computed in an offline phase, then the obtained PGD approximation (which
explicitly depends on model parameters) can be used in the online phase
with cheap and fast evaluation on light computing platforms. This makes
the approximation of high-dimensional solutions computationally tractable.
A main concern in the use of PGD reduced models is to assess their reliability,
that is to control the accuracy of PGD outputs. This requires to adaptively
set the number M of modes which have to be computed in the truncated
sum (25), as well as the discretization technique (mesh and time step sizes)
used to compute these modes. For this purpose, a robust approach for the
verification of PGD models was designed using the CRE concept in [112]. It
provides for quantitative error bounds, as well as indicators on contributions
of the various error sources (that are space/time discretizations and trunca-
tion of the PGD representation) to drive a greedy adaptive algorithm. The
approach is based on a specific processing of the approximate PGD solution
at hand in order to construct admissible fields over the whole parametric do-
main. Performances were shown in [112, 25, 3, 28] on some numerical experi-
ments exhibiting various situations in terms of models and hyper-parameters.

We report here an illustration taken from [30] and dealing with the cou-
pled use of IGA and PGD to effectively simulate problems with parameter-
ized geometry, for shape optimization purposes. An elasticity problem is
considered over a plate with a hole at the center, and submitted to a biaxial
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traction loading (Fig. 7). The material is supposed to be linear and isotropic,
the plane stress assumption is made, and only a quarter of the plate is studied
due to symmetry conditions. The hole radius R is chosen as a geometrical
parameter, with R ∈ [1, 2]. The geometry is represented with NURBS func-
tions (see the control mesh in Fig. 7), and its parametrization is defined by
means of a mapping from the IGA parametric space to the physical space.
Parameters are then related to the coordinates and weights of control points
defined at the coarsest-mesh level used to represent the geometry (Fig. 8).

Figure 7: Definition of the elasticity problem on the holed plate (left), and IGA represen-
tation of the geometry (right).

Figure 8: Configuration of the initial coarse IGA mesh for different values of R.

PGD model reduction is then performed with a separation between space
and geometry variables; the first three PGD modes in space and in geometry
parameters are displayed in Fig. 9 and Fig. 10, respectively.
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Figure 9: First three PGD modes in space (from left to right) in the IGA parametric space
Ω.

Figure 10: First three PGD modes in parameter R.

Using the PGD enables to describe the resulting manifold of parametric
solutions with reduced CPU cost (e.g., the PGD solution evaluated for R ∈
{1, 1.5, 2} is shown in Fig. 11). Therefore, virtual charts can be built for
shape optimization, with explicit and continuous dependency of the solution
to design variables.
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Figure 11: Approximate 3-mode PGD solution for various values of R.

In this framework, a posteriori error estimation is conducted from CRE to
quantitatively assess error sources (discretization & truncation), control the
quality of the approximate PGD solution (for any geometry in the design do-
main) with guaranteed error bounds, and feed an adaptive algorithm that op-
timizes the computational effort and memory space for a prescribed accuracy.
The CRE-based approach involves the implementation of the hybrid-flux
equilibration technique developed for IGA in [156]. After computing the first
PGD mode, the evolution of the global error estimate ECRE(uPGD(·,p), σ̂σp)
with respect to R is reported in Fig. 12. It shows that the highest error level
is made for the smallest value R = 1. Results of the adaptive process are also
given in Fig. 12. They indicate that mesh refinements are necessary when
computing PGD modes 4 and 5.

Figure 12: Evolution of the estimate ECRE(uPGD(·,p), σ̂σp) with respect to R after com-
puting the first PGD mode (left), and evolution of error estimator (in red) and indicators
on PGD error (in green) and discretization error (in blue) along the greedy adaptive pro-
cess (right).
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3. Goal-oriented error estimation with the CRE concept

In this section, we present some of the advances performed in the last 20
years for goal-oriented error estimation, that is estimation of the discretiza-
tion error on local quantities of interest, with the CRE concept. They mainly
concern technical points, and various applications to engineering problems.

3.1. Quantity of interest and adjoint problem

For the sake of clarity, we first deal with a linear elasticity problem with
constitutive relation given by (9). We consider a quantity of interest Q which
is a linear continuous functional of u (e.g., local average of a displacement
or stress component). It is written under the following global form:

Q(u) =

∫
Ω

(
σ̃σΣ : ϵϵ(u) + f̃Σ · u

)
dΩ +

∫
∂2Ω

F̃Σ · udS (26)

where (σ̃σΣ, f̃Σ, F̃Σ) are extraction functions which define Q; they correspond
to pre-stress, body force, and tractions, respectively, and they are defined
explicitly or implicitly.

The objective is to assess the discretization error on Q, that is Q(uh) −
Q(u). For this, and to get a relevant error bound, a classical practice is to
refer to the adjoint problem with displacement-stress solution pair (ũ, σ̃σ). In
the present case, the adjoint problem remains an elasticity problem loaded
with (σ̃σΣ, f̃Σ, F̃Σ), and with homogeneous Dirichlet boundary conditions on
∂1Ω (ũ ∈ Uad,0). The weak form of adjoint equilibrium equations reads:∫
Ω

σ̃σ : ϵϵ(v)dΩ = Q(v) =

∫
Ω

(
σ̃σΣ : ϵϵ(v) + f̃Σ · v

)
dΩ+

∫
∂2Ω

F̃Σ·vdS ∀v ∈ Uad,0

(27)
We assume that an approximate adjoint solution (ũh, σ̃σh) is computed from
FEM (with a possibly different mesh compared to the one used for primal
approximate elasticity solution), and that a statically admissible field ˆ̃σσ sat-
isfying (27) is recovered using one of the techniques defined in Section 2.3.

3.2. CRE-based error bound

In order to get a goal-oriented error bound from the CRE, we use the
following hypercircle property:

E2
CRE(uh, σ̂σ) = 2∥σσ − σ̂σm∥2K−1 with σ̂σm =

1

2
(σ̂σ + σσh) (28)
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which is a direct consequence of the Prager-Synge equality (16). It then
yields:

Q(u)−Q(uh) =

∫
Ω

σ̃σ : ϵϵ(u− uh)dΩ

=

∫
Ω

ˆ̃σσ : ϵϵ(u− uh)dΩ

=

∫
Ω

( ˆ̃σσ −Kϵϵ(ũh)) : ϵϵ(u− uh)dΩ +

∫
Ω

ϵϵ(ũh) : (σσ − σσh)dΩ

=

∫
Ω

( ˆ̃σσ −Kϵϵ(ũh)) : K
−1(σσ − σσh)dΩ +

∫
Ω

ϵϵ(ũh) : (σ̂σ − σσh)dΩ

=

∫
Ω

( ˆ̃σσ −Kϵϵ(ũh)) : K
−1(σσ − σ̂σm)dΩ +Qcorr

(29)
where

Qcorr =

∫
Ω

( ˆ̃σσ −Kϵϵ(ũh)) : K
−1(σ̂σm − σσh)dΩ +

∫
Ω

ϵϵ(ũh) : (σ̂σ − σσh)dΩ

=
1

2

∫
Ω

( ˆ̃σσ +Kϵϵ(ũh)) : K
−1(σ̂σ − σσh)dΩ

(30)

is a computable correction term. Consequently, from the Cauchy-Schwarz
inequality and the property (28), a fully computable CRE-based upper error
bound is obtained [107]:

|Q(u)−Q(uh)−Qcorr| ≤ ∥σσ − σ̂σm∥K−1 .∥ ˆ̃σσ −Kϵϵ(ũh)∥K−1

≤ ECRE(uh, σ̂σ).ECRE(ũh, ˆ̃σσ)
(31)

The quantity Q(uh) + Qcorr can be interpreted as a corrected approximate
value of the quantity of interest Q(u). Furthermore, the estimate (31) can
also be written as:

|Q(u)−Q(uh)| ≤ max
θ=±1

|Qcorr + θ.ECRE(uh, σ̂σ).ECRE(ũh, ˆ̃σσ)| (32)

Remark 7. The value of the calculated error bound depends on the meshes
used to solve the reference and adjoint problems. It is always possible, by
refining the mesh of the adjoint problem alone, to control the value of the
error on Q. In general, a local refinement (near the domain of interest) of
the mesh used to solve the adjoint problem is very effective [23, 136].
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Remark 8. The bound (31) is based on the Cauchy-Schwarz inequality as
nearly all error bounds, and this may give a crude upper bound as its does not
take spatial locality into account. In [114], a new bounding technique using the
Saint-Venant principle and homothetic domains was derived, giving sharper
bounds. The idea is to decompose the domain Ω in two disjoint zones: (i)
zone ωλ, parameterized with scalar value λ, surrounding the zone where the
quantity of interest is defined; (ii) complementary zone Ω/ωλ. We can then
write Q(u)−Q(uh)−Qcorr = qωλ

+ qΩ/ωλ
.

Bounding the term qΩ/ωλ
can be easily and accurately performed from the

Cauchy-Schwarz inequality applied over Ω/ωλ, as ẼCRE|Ω/ωλ
remains small

in practice. Bounding the other term qωλ
is more technical; it leans on an

inequality, related to Saint-Venant’s principle, of the form:

||σσ − σ̂σh||K−1|ωλ
≤ (

λ

λ
)1/k||σσ − σ̂σh||K−1|ωλ

+ γλ,λ (33)

where ωλ is a homothetic domain of ωλ, parameterized by scalar value λ ≥ λ
(Fig. 13), k is a computable (Steklov) constant that depends on the geometry
of ωλ (and obtained analytically or numerically by solving an additional local
eigenvalue problem), and γλ,λ is a known term. In practice, λ is chosen the
highest possible while ensuring ωλ ⊂ Ω, and λ the smallest possible with ωλ
surrounding the zone of interest. The exponential decrease with respect to
λ/λ in (33) is the key point to avoid overestimation.

ωλ̄ωλ

λ̄

λ
Ωc

ωλ̄ωλ

λ̄

λ

Figure 13: Homothetic domains ωλ and ωλ defined in a cracked structure when considering
different quantities of interest: local mean of a component of σσ (left), and stress intensity
factors in the vicinity of the crack (right).

3.3. Numerical illustration

To illustrate the performance of the CRE-based goal-oriented error es-
timation approach, we again consider the numerical example described in
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Section 2.4, but now focusing on the accuracy on a specific quantity of inter-
est. It is chosen as the average, over a critical three-dimensional subdomain
ω of the structure, of the zz component of the stress tensor (z is the axial
direction of the structure): Q(u) = 1

|ω|

∫
ω
σzz(u)dω. The subdomain ω is

shown in Fig. 14 and includes about 15 finite elements.
The reference value of the quantity of interest (computed using a very

fine mesh) is Q(u) = 33.24. Using FEM, we obtain the approximate value
Q(uh) = 28.18. To obtain a bound on Q(u) − Q(uh), we implement the
bounding (31) with refined mesh for the adjoint problem. It yields that
the exact value Q(u) satisfies 31.17 ≤ Q(u) ≤ 34.29 (the correction term
Qcorr is such that Q(uh) +Qcorr = 32.73). We observe that the actual exact
value indeed satisfies these bounds, and that the lower (resp., upper) bound
underestimates (resp., overestimates) the exact value of Q by only 6% (resp.,
3%). The bound thus yields a very accurate estimate.

Figure 14: Representation of the subdomain of interest ω. The value of the stress field (in
the Frobenius norm) in the neighborhood of ω is indicated.

3.4. Non-intrusive approach

As noticed before, the accuracy of the error bounds on Q can be controlled
solving the adjoint problem with a locally refined mesh. However, this has
the drawback to require remeshing. An alternative, qualified as non-intrusive
as the initial mesh is not changed, was proposed in [24, 110]. It consists in a
local enrichment of the adjoint solution, using a Partition of Unity Method
(PUM), with known handbook functions that aim at representing the high
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gradient part of (ũ, σ̃σ). The approach is thus similar to that proposed in
XFEM or GFEM except that no additional dof is introduced here (the sin-
gularity comes from the adjoint loading). We present the method in the
linear elasticity case, but extensions to time-dependent problems can also be
found in [24, 158].

The enrichment functions which are used, denoted (ũhand, σ̃σhand) in the
following, correspond to generalized Green’s functions and represent the
(quasi-)exact adjoint solution in a (semi-)infinite domain subjected to the
adjoint loading. These functions are obtained either analytically or pre-
computed numerically with a fine mesh and sufficiently large domain. An
example of such a function, corresponding to a localized pre-stress loading
σ̃σΣ, is given in Fig. 15.
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Figure 15: Quasi-exact stress field in a (quasi-) infinite domain subjected to a local pre-
stress in a squared region: σ̃σhand

xx (left), σ̃σhand
yy (center), σ̃σhand

xy (right).

Handbook functions are inserted in the adjoint solution using the parti-
tion of unity defined by linear FE shape functions Ni associated to vertices
i of the initial mesh (Ni(xj) = δij). The enrichment is introduced locally,
and consequently only a set of nPUM vertices is used. The enrichment region

ΩPUM ⊂ Ω is defined as {x ∈ Ω,
∑nPUM

i=1 Ni(x) ̸= 0}; it can be divided in two
disjoint subregions ΩPUM

1 and ΩPUM
2 such that:

nPUM∑
i=1

Ni(x) =


1 in ΩPUM

1

a ∈ ]0, 1[ in ΩPUM
2

0 in Ω/(ΩPUM
1 ∪ ΩPUM

2 )

(34)

In practice, ΩPUM
1 is such that it contains the zone of interest ΩΣ in which

the quantity Q is defined, i.e. the region that supports extraction functions.
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Therefore, the displacement solution to the adjoint problem is searched
under the form:

ũ(x) =
nPUM∑
i=1

ũhand(x)Ni(x) + ũres(x) (35)

where ũres is a residual solution, usually very regular, to be computed. The

enrichment part
∑nPUM

i=1 ũhandNi enables to reproduce local high gradients of
ũ whereas the residual part ũres enables to correct the enrichment part in
order to satisfy boundary conditions of the adjoint problem on ∂Ω. The new
expression of σ̃σ is deducted from (35):

σ̃σ(x) = σ̃σhandPUM(x) + σ̃σres(x) (36)

with σ̃σhandPUM = Kϵϵ(
∑nPUM

i=1 ũhandNi), and σ̃σ
res = Kϵϵ(ũres) the residual stress

field. Of course, σ̃σhandPUM = σ̃σhand in ΩPUM
1 .

Once the set of nPUM enriched vertices is defined, the new adjoint problem
consists in finding ũres ∈ Uad,0 such that:∫
Ω

σ̃σres : ϵϵ(v)dΩ =

∫
Ω

(
σ̃σΣ : ϵϵ(v) + f̃Σ · v

)
dΩ−

∫
Ω

σ̃σhandPUM : ϵϵ(v)dΩ

=

∫
ΩPUM

1

(
σ̃σΣ : ϵϵ(v) + f̃Σ · v − σ̃σhand : ϵϵ(v)

)
dΩ−

∫
ΩPUM

2

σ̃σhandPUM : ϵϵ(v)dΩ

= −
∫
∂ΩPUM

1

σ̃σhandn12 · vdS −
∫
ΩPUM

2

σ̃σhandPUM : ϵϵ(v)dΩ ∀v ∈ Uad,0

(37)
where n12 is the outgoing normal from ΩPUM

1 to ΩPUM
2 . The loading consists

in tractions −σ̃σhandn12 on ∂ΩPUM
1 and a pre-stress −σ̃σhandPUM in ΩPUM

2 .

An accurate approximation (ũresh , σ̃σresh ) of the residual solution can be ob-
tained with the initial mesh; the enrichment technique is thus non-intrusive
in the sense that operators (stiffness matrix, mesh connectivities) defined for
the primal problem can be reused without any change to solve the adjoint
problem; only the loading has to be modified. The computation of an admis-
sible stress field ˆ̃σσ is also performed in a non-intrusive way: one first defines
a stress field ˆ̃σσres that satisfies (37), with the same method as that used to
compute σ̂σ; we then define:

ˆ̃σσ = σ̃σhandPUM + ˆ̃σσres (38)
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Eventually, we obtain the following bounding:

|Q(u)−Q(uh)−Qcorr| ≤ ECRE(uh, σ̂σ).ECRE(ũresh , ˆ̃σσres) (39)

where the right-hand side is independent of the enrichment (ũhand, σ̃σhand).
In practice, the CRE measure ECRE(ũresh , ˆ̃σσres) on the residual adjoint solu-
tion is small, and (39) provides for very accurate bounds on the local error
without remeshing.

The non-intrusive approach also permits one to consider a quantity of in-
terest which is pointwise in space. In such as case, the loading of the adjoint
problem is defined from Dirac functions, with possibly infinite energy solu-
tion. A classical method would consist in regularizing the quantity of interest,
using for instance weighting functions (so-called mollifiers) [147], in order to
preserve the regularity of the adjoint solution; the initial quantity of interest
is then replaced with a weighted local average. With the non-intrusive ap-
proach, truly pointwise quantities can be addressed without resorting to any
regularization, by using Green functions as local enrichment. In many cases,
these functions can be determined analytically in a (semi-)infinite domain,
e.g. see [122]; an example of such a function is given in Fig. 16. In more
complex situations (anisotropic material for instance), Green functions may
be obtained implicitly.

σ̃hand
xx σ̃hand

yy σ̃hand
zz

˜Σ = δ(O)z ⊗ z

Ox y

z

Figure 16: Stress field associated to a pointwise pre-stress in a 3D infinite domain.

Remark 9. In addition to the non-intrusive approach, a technique was in-
troduced in [110] in order to conserve guaranteed error bounds on nonlinear
pointwise quantities of interest (such as the Von Mises equivalent stress).
This technique is based on a decomposition of Q with projection properties in
order to take higher-order terms into account in the bounds. It leads to the
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introduction of a set of extractors, and therefore to the parallel solution of a
set of adjoint problems.

3.5. Extension to nonlinear problems

The goal-oriented approach using the CRE concept was extended to non-
linear materials behaviors in [107, 109]. In this context, and to preserve the
property of guaranteed error bounds, a key point is the integration of the
quantity of interest in terms of finite variations. This leads to the introduc-
tion of an auxiliary problem called the mirror problem, nonlinear and very
similar to the primal problem, as a substitute to the classical (linear) adjoint
problem. The mirror problem naturally coincides with the adjoint problem
in the linear case.

Using notations of Section 2.5, the studied quantity of interest is written
as:

Q =

∫ T

0

∫
Ω

[
σσ : δ ˙̃Σ−Y · δ ˙̃X

]
dΩdt =

∫ T

0

∫
Ω

s · δ ˙̃eΣdΩdt (40)

with the extraction function δ ˙̃eΣ ≡
[

δ ˙̃Σ

−δ ˙̃X

]
satisfying δ ˙̃eΣ = 0 at t = T .

Here, δ is a symbol indicating that δ ˙̃eΣ should be interpreted as a finite but
relatively small variation, even though no linearization is carried out.

The mirror problem is then introduced, with a similar structure a for the
primal problem except that time now goes backward. It is written with δ-
quantities, over the space-time domain Ω×[0, T ] with time variable τ = T−t,
and it consists in finding the solution pair (δ ˙̃e, δs̃) which satisfies the following
conditions:

• δ ˙̃e = δ ˙̃ee + δ ˙̃ep is kinematically admissible

• δs̃− δs̃Σ is statically admissible

• δẽe = Λ(δs̃) (state equations)

• δ ˙̃ep = B̃(δs̃) ≡ B(sh + δs̃)−B(sh) (evolution laws)

• δs̃ = δ ˙̃e = 0 at τ = 0 (initial conditions)

(41)

sh is the approximate FE solution of the primal problem, and δ ˙̃eΣ ≡ B̃(δs̃Σ)+
Λ(δ ˙̃sΣ).
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Let (δ ˙̃eh, δs̃h) be the FE solution of the mirror problem, and (δ
˙̃̂
e, δˆ̃s) an

associated admissible solution over Ω× [0, T ]. The following relation holds:

Q−Qh−Qcorr =

∫ T

0

∫
Ω

(
s−ŝm

)
·
(
δ
˙̃̂
ep−B̃(δˆ̃s)

)
dΩdt−C(s−sh, δs̃Σ)+C(s−sh, δˆ̃s)

(42)
with ŝm = 1

2
(ŝ+ sh) and:

Qcorr =−
∫ T

0

∫
Ω

[(
˙̂e− ėh

)
·
(
δs̃Σ − δˆ̃s

)
−
(
ŝ− sh

)
· δ ˙̃̂e

+
(
ŝm − sh

)
·
(
B̃(δˆ̃s)− δ

˙̃̂
ep
)]
dΩ dt

ėh =Λ(ṡh) +B(sh)

δ
˙̃̂
ep|t =

[
δẽh,τ −Λ(δŝτ )

]
|τ=T−t

C(∆s, δs) =

∫ T

0

∫
Ω

[∆s · δėp −∆ėp · δs]dΩ dt with ∆ėp = B̃(∆s)

(43)

The C-terms in (42) are very small provided the finite variations (s−sh) and
δs̃Σ are small; C is called the model nonlinearity indicator.

Upper error bounds can then be derived from (42); all details can be
found in [107, 109]. Illustrations of such bounds can be found in [23] for
viscoelasticity (taking history effects into account), in [158] for dynamics, or
in [113] for viscoplasticity. Furthermore, the general case where the material
operator B is not defined using two dual potentials (convex functions) but is
simply maximum monotonous is given in [109].

4. Model updating with the CRE concept

In this section, we now couple the CRE concept with experimental data
in order to address inverse problems and perform parameter identification.

4.1. Inverse analysis for parameter identification

We come back to the reference (here linear) elasticity problem given in
Section 2.1, but we now place in a general and practical identification con-
text at the structural scale. It corresponds to a ill-posed problem in which
∂1Ω∩∂2Ω ̸= ∅ potentially, with additional experimental information available
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in terms of observations dobs given by sensors (see Fig. 17). These may be
local or distributed kinematic quantities measured from strain gauges, cam-
eras, optic fibers, etc. They are used to identify a set p ∈ P of unknown (or
only partially known) scalar constitutive parameters, such as elastic moduli,
associated with material properties and feeding the overall model by means
of the Hooke tensor K(p). The goal is to infer the missing knowledge on
these parameters, usually chosen dimensionless, by exploiting the overabun-
dant experimental information available. The procedure thus falls into the
larger framework of inverse problems in which the best fit is searched by
comparing model outputs d(u(p)) and observed outputs dobs.

A major concern is the fact that the inversion process is plagued with
several error and uncertainty sources, in particular:

• measurement noise (out of possible systematic measurement error) caused
by the limited accuracy of sensing devices and signal processing. Con-
sidering an additive measurement noise ϵ, quantified or not, the ob-
served outputs read dobs = dtrue + ϵ with dtrue the physical (undis-
turbed) observation value;

• model bias caused by an always approximate virtual representation of
the physical reality. As a consequence, there is no value of p such that
d(u(p)) = dtrue.

Measurement and model uncertainties combine in the difference d(u(p)) −
dobs between model prediction and experimental data. Therefore, a sound
inversion procedure should account for these uncertainties. Also, we do not
account for discretization error here, but it may additionally be taken into
account (e.g., see [13]).
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Figure 17: Configuration of the reference inverse problem.

In the following, we reuse admissibility spaces Uad and Sad defined in (4)
and (5), respectively, and we introduce the additional space:

US
ad,0 ≡

{
v ∈ [H1(Ω)]d| v|∂Ω\∂2Ω = 0

}
⊃ Uad,0 (44)

The weak form of equilibrium equations for the ill-posed inverse problem
then reads:

−
∫
Ω

σσ : ϵϵ(v)dΩ +

∫
Ω

f · vdΩ +

∫
∂2Ω

F · vdS = 0 ∀v ∈ US
ad,0 (45)

4.2. CRE-based model inversion

During the 1990s, the CRE functional was directly used to tackle the
previously described inverse problem, as an alternative to conventional least
square approaches used for parameter identification or updating. When un-
known parameters are constitutive parameters, it is indeed a natural idea to
consider a cost function that measures a residual on constitutive equations
(which are less reliable than other equations of the problem) from an admis-
sible solution. These equations are thus released with primal (displacement)
and dual (stress) variables treated independently, so that the inverse prob-
lem is regularized by a lower constraint from the model. In this context of
inverse analysis, the CRE functional is related to Kohn-Vogelius functionals
introduced independently in conductivity imaging (electrical impedance to-
mography) [91]. It leads to a primal-dual formulation of inverse problems,
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with physics-guided regularization (see [36] for a mathematical description
on these aspects).

For the considered inverse problem, the CRE-based inverse strategy con-
sists in choosing the CRE functional (11) as a cost function, and integrating
the available experimental data as additional constraints to be fulfilled in
a new definition of the admissibility space [96, 75, 68, 17]. Denoting by
(A+

d ) this enriched admissibility space, in which observations are prescribed
in addition to standard kinematic and static constraints, the resulting (con-
strained) optimization problem reads:

popt = argmin
p∈P

[
min

(û,σ̂σ)∈(A+
d )
E2
CRE(û, σ̂σ;p)

]
; E2

CRE(û, σ̂σ;p) =
1

2
∥σ̂σ−K(p)ϵϵ(û)∥2K−1

(46)
This nonlinear problem is in practice solved iteratively, with sequential par-
tial minimization over admissibility and parameters spaces. We note that the
optimal admissible solution (ûopt, σ̂σopt) ∈ (A+

d ) obtained at the end of the
process satisfies a relation which is in general different from the constitutive
relation of the model, except in the idealistic case where all admissibility
conditions are compatible with the constitutive relation. This mismatch is
directly measured by the CRE functional, with ECRE(ûopt, σ̂σopt;popt) > 0.

The CRE strategy for inverse problems can be geometrically interpreted
as shown in Fig. 18 (left). The minimal distance is searched between an
admissible solution (û, σ̂σ) ∈ (A+

d ) and the manifold (Γp) generated by the
parametrized constitutive model. In most situations, (A+

d ) ∩ (Γp) = ∅.
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Figure 18: Geometrical interpretation of the CRE concept in inverse problems with (A+
d )∩

(Γp) = ∅ (left), and of the mCRE with (A−
d ) ∩ (Γ+obs

p ) = ∅ (right).

4.3. Modified CRE

In the original CRE-based inversion procedure described above, strongly
enforcing measured data as admissibility constraints is often inappropriate
as these data are polluted with measurement noise, if not corrupted. A
more flexible and effective approach consists in using a modified version of
the CRE functional, called modified CRE (mCRE) and initially studied for
model updating in vibration problems [96, 100]. This version conforms with
a general philosophy in which a distinction is made between:

• reliable information on the inverse problem, such as equilibrium equa-
tions, location of sensors, or known boundary conditions;

• questionable information, such as the constitutive relation, noisy ob-
servation values, or imperfectly known boundary conditions (when ap-
plicable, e.g. see [65, 54]).

Only reliable information is enforced through a revisited definition of the
admissibility space denoted (A−

d ), while remaining information is released
and satisfied at best when minimizing an appropriate residual functional
denoted EmCRE. The inverse procedure thus reads:

popt = argmin
p∈P

[
min

(û,σ̂σ)∈(A−
d )
E2
mCRE(û, σ̂σ;p)

]
(47)

Considering for instance that only the constitutive relation and observa-
tion values are uncertain (i.e., (A−

d ) = Uad × Sad), the mCRE functional
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reads:

E2
mCRE(û, σ̂σ;p) = E2

CRE(û, σ̂σ;p) +
α

2
(d(û)− dobs)

TG−1
obs(d(û)− dobs) (48)

where Gobs is a scaling matrix and α is a positive scalar weight. Therefore,
the mCRE cost function appears as a weighted combination between the
CRE functional, which can be seen as a regularization term accounting for
modeling error, and a classical least squares term of misfit between model
predictions and observations. The optimal admissible solution (ûopt, σ̂σopt)
obtained at the end of the inversion process results from a trade-off between
modeling and experimental information, thus naturally defining a hybrid twin
with data-based correction of the model ignorance as defined in [39].

A geometrical interpretation of the mCRE strategy is given in Fig. 18
(right); the minimal distance is searched between an admissible solution
(û, σ̂σ) ∈ (A−

d ) and a manifold (Γ+obs
p ) generated by the parametrized consti-

tutive model and noisy observations, with (A−
d ) ∩ (Γ+obs

p ) = ∅.

Remark 10. The setting of the scalar weight α is a key aspect of the mCRE
approach to avoid over-fitting or over-smoothing. Its influence on the quality
of the mCRE-based inversion was illustrated in several works [51, 65, 8, 162].
Limit values of α correspond: (i) to the classical least-squares minimization
with no modeling error taken into account a priori (emphasis put on satis-
fying the constitutive relation), when α → 0; (ii) to the pure CRE mini-
mization with prescribed experimental data (46), when α → ∞. The value
of α should be conveniently set with regards to a priori quantitative informa-
tion. This may be performed using the L-curve method [82], as implemented
for mCRE in [86]. It may also be performed using the Morozov discrepancy
principle [126, 127], as investigated in several recent works [129, 58], which
relates the target distance between model predictions and observations to the
measurement noise level.

Remark 11. A stochastic interpretation of the mCRE metric can be given [51],
referring to the Bayesian inference framework and MAP estimator [155].
As an alternative to considering modeling error at measurement points by
means of a covariance matrix (which is usually poorly known if not ne-
glected), the mCRE strategy integrates modeling error in a global manner
that allows for more flexibility in the model structure. It comes with a pdf
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πmod ∝ e−
E2
CRE(û,σ̂σ;p)

α , incorporated in the likelihood function, that quantita-
tively reflects the confidence on modeling.

The minimization (47) of the mCRE functional is again performed by
means of an iterative two-steps algorithm (alternating direction strategy of
block Gauss-Seidel type), in which optimal admissible fields are first com-
puted (for fixed p), before minimizing the obtained cost function with respect
to model parameters (for fixed admissible fields). Also, a convergence crite-
rion is defined, such as a threshold ϵ on the value of the mCRE cost function
(defined from a reference energy value). The algorithm thus reads:

0. Initialize the parameter set p(0) and define the stopping criterion
threshold ϵ
Iteration loop (iteration n+ 1)

1. Compute optimal admissible fields (û(n+1), σ̂σ(n+1)):

(û(n+1), σ̂σ(n+1)) = argmin
(û,σ̂σ)∈(A−

d )

E2
mCRE(û, σ̂σ;p

(n)) (49)

2. Update model parameters:

p(n+1) = argmin
p∈P

FmCRE(p) ; FmCRE(p) = E2
mCRE(û

(n+1), σ̂σ(n+1);p)

(50)

3. Stop if FmCRE(p
(n+1)) ≤ ϵ, or increment n and go to Step 1

Alternatively, the stopping criterion may be based on the stagnation of the
mCRE functional along successive iterations; this latter criterion may be
more appropriate in some cases, particularly when the model has large bias.

Properties of the coupled system obtained at Step 1, resulting from the
constrained minimization with search of the saddle point of a Lagrangian
functional, were mathematically studied [7] and play a fundamental role in
the qualitative and computational aspects of the mCRE minimization. It
was shown that this specific system leads to a unique and stable solution
(provided data is abundant enough) even in the case of missing information
on boundary conditions for the forward problem. In addition, optimized
numerical methods may be used to solve the coupled system. As an exam-
ple, a (block) successive over-relaxation (SOR) technique was used in [8] in
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the case of large-scale inverse identification, enabling for the use of existing
parallel FE codes with minimal modifications. Also, the Sherman-Morrison-
Woodbury formula was used in [120].
In Step 2 of the iterative algorithm, the nonlinear minimization may be
advantageously conducted using a steepest descent approach. This takes ad-
vantage of good convexity properties of the mCRE functional, and of the fact
that the gradient of this functional is easily computed using the adjoint-state
method and available fields obtained at Step 1. In practice, a backtracking
line search (Armijo-Goldstein rule) may be used to set the step length in the
gradient algorithm, but other methods (e.g. BFGS or Gauss-Newton) may
also be used.

Also, when p contains a large number of parameters (e.g. when de-
scribing a parameter field [8]), the spatial distribution of the cost function
FmCRE(p) may be used to select and update only parameters that contribute
most to the mismatch [50], in addition to detecting corrupted sensors. This
is the so-called localization step, performed at the end of Step 1. The as-
sociated hierarchical updating, with correction of parameters in zones with
high local error alone (similarly to mesh adaptation procedures), is associ-
ated with a minimization problem in a lower-dimension parameter space. It
thus reduces the computational cost and participates in the regularization
process by guiding the identification/updating (since naturally favoring an
optimal configuration close to the initial one). Zones may correspond to sub-
structures in engineering applications, or to finite elements when identifying
a parameter field, and additional techniques such as clustering can also be
used [58].

Remark 12. A goal-oriented variant of the mCRE approach was proposed
in [26, 59], with automatic selection of the subset of parameters impacting a
quantity of interest for identification purposes. This leads to a reduced com-
putational cost while ensuring the accuracy of the prediction on the quantity
of interest.

Remark 13. The iterative procedure used to minimize the mCRE functional
is multi-query, as a series of similar systems (with different values for p)
needs to be solved to define the saddle-point of the Lagrangian and compute
gradients of the cost function. Therefore, to highly reduce the computational
cost, ROM techniques may be used [50, 21, 27].
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4.4. Numerical illustration

In the following numerical illustration, coming from a work reported
in [129], we consider a numerical experiment with a biaxial test shown in
Fig. 19. A cross-shaped specimen is biaxially loaded in a multiaxial testing
machine. The studied material is made of a vinylister matrix reinforced by
glass fibers. The quasi-uniform distribution of fiber orientations leads to an
isotropic elastic behavior prior to heterogeneous matrix cracking and fiber
breakage. We also consider experimental data in terms of full-field mea-
surements obtained from quantitative imaging by means of Digital Image
Correlation (DIC) techniques [154, 84]. The measurement zone is indicated
with the red rectangle in Fig. 19; the experimental displacement field uobs is
measured by taking images with a CDD camera (resolution of 1008 × 1016
pixels) at the various loading steps. The reference picture for the DIC analy-
sis is shown in Fig. 20; the DIC mesh is made of 781 nodes, also corresponding
to the simulation mesh in the mCRE-based identification strategy.

Figure 19: Biaxial test of a cross-shaped composite specimen: experimental setup, mea-
surement zone, and loading evolution.
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Figure 20: Reference picture for the DIC analysis and FEM discretization mesh for DIC.

Placing in the linear elasticity regime of the composite specimen (at time
t = t5 that is with a loading F = 5 kN), we wish to identify the Poisson
ratio ν from mCRE and experimental information. The displacement field
obtained from DIC is shown in Fig. 21. In order to implement the Morozov
principle, we define the weighting factor as α = 10β.UT

0K0U0 where U0 and
K0 are discretized displacement field and stiffness matrix associated with a
reference solution. The obtained Morozov curve is shown in Fig. 22. When
β is too small, there is a loss of information contained in the measurements
and over-smoothing of the solution, resulting in values of the model-data
discrepancy term larger than 1. Nevertheless, the curve does not go too high
for small β, as admissible fields which are compared to measurements are
already constructed from both model and measurements, so that model cor-
rection from experimental data is already performed. The curve indicates
that the optimal weight value is here β = 0. For this value, the evolution of
the mCRE cost function and its two components is displayed in Fig. 22; the
attractive convexity property can be clearly observed. The identified value
is νopt/ν0 = 1.24± 0.14. We represent in Fig. 23 the admissible fields û and
v̂ (associated with the admissible stress field), and their difference, obtained
at the end of the identification process. Discrepancies between û and v̂ are
not so small as there is modeling error; large differences between both fields
in the bottom left corner indicate that damage starts initiating there, as
confirmed by experimental observations. We also show the comparison be-
tween the kinematically admissible field and the measured displacement field.

In order to show a practical interest of mCRE, we solve the identification
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problem with reduced measurement zone. We analyze three configurations
(see Fig. 24) in which we restrict experimental information in a subregion
Ω̃m corresponding to 64%, 36%, and 16% of the initial measurement zone
Ωm, respectively. In this process, admissibility conditions remain defined
over the whole domain. The analysis with Morozov’s principle (in order to
set α) and the evolution of the mCRE functional are also shown in Fig. 24.
Identification results are reported in Fig. 25, where we show the identified
value νopt and its confidence interval for the various configurations. It appears
that identification error increases with restricted experimental information,
but it remains limited in all cases.

Figure 21: Horizontal and vertical components of the measured displacement field.
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Figure 22: Evolution of the model-measurement mismatch term as a function of β, and
evolutions of the mCRE functional and its two components as a function of ν for β = 0.

Figure 23: Spatial representation of admissible fields û, v̂, their difference, and uobs − û.
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Figure 24: Various configurations with effective measurement zone Ω̃m, evolution of the
measurement mismatch term as a function of β, and evolutions of the mCRE functional
and its two components as a function of ν for optimal β.

Figure 25: Identification results with restricted experimental information.
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4.5. Towards sequential data assimilation

In the Dynamic Data Driven Applications Systems (DDDAS) framework,
data is acquired sequentially and iteratively in time. A dedicated numerical
process thus needs be used to infer noisy sequential measurement streams
and recursively recover material state and model parameters. In this con-
text, the mCRE was beneficially coupled in recent years with Kalman fil-
tering and prediction/correction scheme (see Fig. 26) for sequential data
assimilation [119, 56]. It leads to the Modified Dual Kalman Filter (MDKF)
algorithm, benefiting from advantages of both mCRE and Kalman filtering
approaches with increased robustness and capability for real-time data as-
similation (e.g., using parallel computations); it permits to track evolving
model parameters such as structural damage. In the MDKF strategy, the
mCRE functional is actually used as a new metric in the observation space
(compared to the classical L2-norm metric).

Figure 26: Sketch of the Kalman filtering recursive scheme with ovale shapes corresponding
to confidence envelops of Gaussian distributions.

As an illustration, we detail a practical industrial application of MDKF
reported in [56]. It deals with data assimilation on damageable structural
systems in the context of earthquake engineering. The objective was to mon-
itor in real-time, and from sparse acceleration measurements, the changing
modal signature of a complex reinforced concrete specimen placed on a shak-
ing table and undergoing nonlinear damage phenomena when submitted to
low-frequency dynamic loadings (Fig. 27). The experimental database con-
sisted in a sequence of gradually damaging tests, with some accelerometers
placed on the structure, and the mCRE was written in the frequency do-
main. A typical result is given in Fig. 28, showing the predicted evolution of
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the first eigenfrequency. One can clearly observe the frequency drops due to
progressive structural damage during the dynamics test; these are effectively
captured in real-time by means of the updated digital twin. This further en-
ables an appropriate evolving online command on the shaking table, within a
state feedback control strategy, taking into account the interaction between
actuators, table, and the damaging specimen (all details can be found in [56]).

Figure 27: Concrete specimen anchored on the shaking table, and FE model with sensor
locations.

Figure 28: Predicted evolution of the first eigenfrequency using MDKF.

41



5. Model selection with the CRE concept

In this last section, we indicate some recent works which take advantage
of the CRE measure, seen as a modeling error indicator defined over the
whole domain, in order to improve the initial constitutive model. Whereas
the structure of this model was supposed to fit within a given parametric
representation in the previous section, here this structure is let free and is
searched as optimal with respect to experimental observations. In other
words, the constitutive model is adjusted so that it is consistent with data
content and noise. A geometrical interpretation of the approach is given in
Fig. 29.

Figure 29: Geometrical interpretation of model selection from CRE information.

5.1. Model enrichment

A first possibility is to adaptively select the optimal constitutive model
in a manifold M of model classes with increasing complexity levels (i.e., in
a hierarchical list of model classes). Deviations between model predictions
and observations are then adjusted so that model complexity and outputs re-
main consistent with data and measurement noise level. Using identification
with mCRE, this model selection strategy was illustrated in [130] using the
inverse problem with full-field measurements shown in Section 4.4, when the
specimen is loaded in its nonlinear regime. The CRE term of the mCRE func-
tional is then post-processed to drive the model complexity; a perfect match
between model and measurements would correspond to a relative CRE value
of the order of 1 when normalization and the Morozov principle are imple-
mented. We show below the relative value of the CRE term for various model
classes with increasing relevance with regards to the DIC measurements.

42



Table 1: Relative CRE value for various model classes
Model class Relative CRE value
Isotropic elasticity 17.56
Orthotropic elasticity 3.27
Elasto-plasticity (Prandtl-Reuss) 2.29

5.2. Model learning

Another possibility to enhance the constitutive law representation is to
learn model ignorance from data. This refers to data-driven modeling of
complex materials from deep learning, which has become a very active re-
search work [87, 121, 83] with pioneering contributions in [90, 88]. In this
context, and relying on the mCRE framework, the NN-mCRE approach for
unsupervised learning of state and evolution laws with a neural network (NN)
was investigated in [15, 16]. This approach naturally focuses the strategy on
what needs to be learnt, that is the constitutive relation, and it permits a
data-based enrichment of an a priori constitutive model.
NN-mCRE aims at learning thermodynamic potentials (ψ, φ) introduced in
Section 2. It integrates all the recent trends on learning (physics-informed,
physics-augmented, transfer learning) by: (i) the specific definition of the loss
function which exactly corresponds to the mCRE functional, with a priori
physics constraints that are strongly enforced and clear convergence criteria;
(ii) the chosen architecture of the NNs, employing input convex NNs (ICNNs)
developed in [6] (see Fig. 30), to ensure thermodynamics consistency (addi-
tional classes of symmetry may also be added in the network architecture);
(iii) the physics-guided initialization of the NNs, using a preliminary super-
vised training from an a priori constitutive model. Furthermore, it was shown
that hyper-parameters of the NN-mCRE approach (learning rate, number of
epochs, batch size, etc.) could be automatically and adaptively tuned, which
is an important feature for online training as envisioned in DDDAS applica-
tions such as integrated SHM [32, 34]. The NN-mCRE approach performs
by solving the minimization problem (47) where p now denotes weights and
biases in ICNNs used to represent thermodynamic potentials.
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Figure 30: ICNN architecture used fo represent the thermodynamic potential.

We illustrate the NN-mCRE method using a reference non-quadratic po-
tential ψ on state equations, that distinguishes behaviors in traction and
compression along the longitudinal axis of a beam specimen; it reads in 2D
and in the small strain regime:

ψ(ϵϵ) =
1

2
E+⟨ϵ11⟩2+ +

1

2
E−⟨ϵ11⟩2− +

1

2
Eϵ222 +Gϵ212 (51)

where ⟨•⟩+ (resp. ⟨•⟩−) denotes the positive (resp. negative) part. This
potential is learnt from data, initializing the ICNN network with a linear
elasticity model (quadratic potential). The database includes different load-
ing cases with a combination of pure bending, traction and compression, and
additional Gaussian measurement noise. Some results are given in Fig. 31,
where we show how the constitutive model bias is correctly learnt during the
NN-mCRE process (with high robustness to noise) and how the convergence
rate of the training is insensitive to initial user-defined hyper-parameters
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Figure 31: Initial and final potentials defined by the neural network, and convergence of
the error for various initial learning rates.

Eventually, we also mention the recent work [116] in which data-driven
material modeling from the CRE concept is discussed. A major aspect is that
it answers the question of the mathematical model form of the most general
data-driven model for stable materials (elasto-visco-plastic) taking physics
and material science knowledge into account. It is shown that the data-
driven model is the minimizer of the CRE functional, and can be obtained
by implementing convex optimization with often explicit formulations.
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[70] Gallimard L, Ladevèze P, Pelle JP (1996) Error estimation and adap-
tivity in elastoplasticity. International Journal for Numerical Methods
in Engineering 39:189–217

[71] Gallimard L, Panetier J (2006) Error estimation of stress intensity fac-
tors for mixed-mode cracks. International Journal for Numerical Meth-
ods in Engineering 68(3):299–316

[72] Gallimard L (2009) A constitutive relation error estimator based on
traction-free recovery of the equilibrated stress. International Journal
for Numerical Methods in Engineering 78(4):460–482

[73] Gant F, Rouch P, Louf F, Champaney L (2011) Definition and updating
of simplified models of joint stiffness. International Journal of Solids and
Structures 48:775–784

[74] Germain P, Nguyen QS, Suquet P (1983) Continuum thermodynamics.
Journal of Applied Mechanics 50:1010–1020

[75] Geymonat G, Hild F, Pagano S (2002) Identification of elastic parame-
ters by displacement field measurement. Comptes Rendus de l’Académie
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[102] Ladevèze P, Moës N, Douchin B (1999) Constitutive relation error
estimations for (visco) plasticity finite element analysis with softening.
Computer Methods in Applied Mechanics and Engineering 176:247–264
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[135] Panetier J, Ladevèze P, Louf F (2009) Strict bounds for computed
stress intensity factors. Computers & Structures 871(15-16):1015–1021
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