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Time-domain Brillouin scattering (TDBS) is a technique that involves generating a coherent acoustic 

pulse (CAP) at GHz frequencies using a picosecond/femtosecond pump laser pulse. This method 

operates by detecting the interaction between a time-delayed probe laser pulse and the CAP [1-2]. The 

resulting signal comprises Brillouin oscillations, whose time-varying frequency is directly related to the 

local optical and elastic properties of a transparent material. In an anisotropic elastic solid, three types of 

bulk waves can propagate: one quasi-longitudinal and two quasi-shear. Depending on the polarization of 

each wave, given by the propagation direction in the crystalline axis, and the probe laser polarization up 

to three distinct Brillouin frequencies can be detected. The detected signal is in terms of time-delay 

between the CAP generation and the probe laser allowing to follow the CAP. The instantaneous 

frequency allows to extract the product of the refractive index at the probe wavelength and the acoustic 

wave velocity at a given time delay, representing the properties at the CAP position. By knowing the 

refractive index, it is possible to extract the acoustic velocity as a function of depth allowing depth 

profiling along z direction. Then by doing a 2D lateral scan in the x-y plane, it is possible to reconstruct 

the 3D map of bulk velocity. This method has been demonstrated for imaging coexisting grains of water 

ice VI and VII [3]. Varying the non-hydrostatic pressures and repeating the 3D extraction leads to 4D 

imaging, i.e., space (3D) + pressure (1D), which allows to follow the pressure-induced movement of 

interfaces. 

To control the non-hydrostatic pressure, a membrane diamond anvil cell (DAC) is employed. It is based 

on two diamond anvils with working surface of 0.3 mm diameter, which allow to apply pressure up to 

150 GPa. A 20 nm-thick Au layer is deposited on the bottom diamond acting as an opto-acoustic 

transducer (OAT). The water ice is sandwiched between the OAT and the top diamond. Figures 1a-b 

show the optical images of water ice VII at 2.3 and 4.5 GPa, respectively. The experimental setup 

employs asynchronous optical sampling (ASOPS) with a 535 nm probe laser, focused through the top 

diamond at the OAT/water ice VII interface to a beam diameter at 1/e2 in intensity of 2.6 µm by a 50x, 

0.45 NA microscope objective. The pump laser has 515 nm wavelength and is focused from the 

opposite side at the bottom diamond/OAT interface to a beam diameter at 1/e2 in intensity of 5.7 µm 

by a 20x, 0.4 NA microscope objective. At each pressure step, a 2D scan is performed with 93x93 points 

and a 1.5 µm lateral step leading to 4D imaging. The thermal background is filtered out using a third-
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Fig. 1. Experimental data on water ice VII in a DAC at 2.3 GPa (first row) and 4.5 GPa (second row).
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