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Abstract: This study proposes a new computational framework for multi-objective topology 1

optimization of conjugate heat transfer systems using a continuous adjoint approach. It relies on a 2

monolithic solver for the coupled steady-state Navier–Stokes and heat equations, that combines 3

finite elements stabilized by the variational multiscale method, level set representations of the 4

fluid-solid interfaces and immersed modeling of heterogeneous materials (fluid/solid) to ensure 5

that the proper amount of heat is exchanged to the ambient fluid by solid objects in arbitrary 6

geometry. At each optimization iteration, anisotropic mesh adaptation is applied in near-wall 7

regions automatically captured by the level-set, which reduces the computational burden related 8

to the call of the finite element solver, compared to classical optimization schemes working on 9

uniform grids with similar mesh refinement. Since we work here under the constraint of a given 10

number of nodes, the approach improves the accuracy in the geometric description of all layouts, 11

while allowing to transfer said accuracy to the state and adjoint simulation models. Both the 12

resolution and remeshing steps are performed in a massively parallel framework allowing for the 13

optimization of large scale systems. The developed solver is validated first by minimizing dissipation 14

in a flow splitter device, for which the method delivers relevant optimal designs over a wide range 15

of volume constraints and flow rate distributions over the multiple outlet orifices, while providing 16

superior accuracy over reference data computed on isotropic meshes (in the sense that the layouts 17

are more smooth, and the solutions are better resolved). The proposed scheme is then applied 18

to a two-dimensional heat transfer problem, using bi-objective cost functionals combining power 19

dissipation and thermal recoverable power. A comprehensive parametric study reveals a complex 20

arrangement of optimal solutions on the Pareto front, with multiple branches of symmetric and 21

asymmetric designs, some of them previously unreported. Finally, the algorithmic developments are 22

substantiated with several three-dimensional numerical examples tackled under fixed weights for 23

heat transfer and power dissipation, for which we show that the optimal layouts computed at low 24

Reynolds number, that are intrinsically relevant to a broad range of microfluidic application, can 25

also serve as smooth solutions to high-Reynolds-number engineering problems of practical interest. 26

Keywords: Topology Optimization; Fluid mechanics; Conjugate heat transfer; Level Set Method; 27

Anisotropic mesh adaptation; Pareto front; Thermal control 28

1. Introduction 29

Topology optimization is the mathematical science of optimal material allocation in a 30

volume under predefined objectives and constraints. Such an approach originates from solid 31

mechanics [1,2], where it has matured into a powerful, reliable and increasingly available 32

tool for engineers in the early stages of complex structural design processes [3,4], while 33

spreading to a variety of multiphysics applications modeled after partial di�erential equations; 34

see Refs. [5,6] for surveys of the evolving methods and applications. The mathematical 35
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foundation of topology optimization is rooted in iterative analysis and design update steps, 36

often steered by gradient evaluations. Its key advantage (compared the size and shape 37

optimization methods it has emerged from) is that it usually perform beyond expectations as 38

the final design has unconstrained complexity and can possibly meet conflicting requirements 39

and complex interdependencies between design parameters and system response. 40

In the context of fluid flow problems, topology optimisation becomes a question of 41

what is the best path for a fluid to flow in a prescribed design domain, or equivalently 42

where to enforce relevant boundary conditions for the flow problem. Leaving aside explicit 43

boundary methods, that represent the fluid-solid interface by edges or faces of a body-fitted 44

mesh, and have limited flexibility to handle complicated topological changes, the prevalent 45

classes of methods for topology optimization are the density and the level set methods. 46

Density methods rely on a Brinkman penalization of the solid domain, where the flow is 47

modeled as a fictitious porous material with very low permeability [1,7,8]. They manage 48

drastic topological changes, as the gradient information (or sensitivity) is distributed over 49

a large part of the domain, but can lead to spurious or leaking flows if the penalization 50

factor is not well-calibrated (since the velocity and pressure fields are computed in both 51

the solid and fluid regions). Level set methods conversely model the solid boundaries by 52

iso-contours of a level set function [9–11]. They lack a nucleation mechanism to create 53

new holes, due to the sensitivities being located only at the solid-fluid interface (which 54

is often relieved using initial designs with many holes), but easily handle complicated 55

topological changes (e.g., merging or cancellation of holes), and allow for well defined, crisp 56

interface representations while avoiding the intermediate material phases (grayscales) and 57

mesh-dependent spatial oscillations of the interface geometry (staircasing) often encountered 58

in density methods [12]. 59

The focus here is on conjugate convective heat transfer systems, in which temperature 60

variations occur within the fluid and solid material due to thermal interactions dominated 61

by conduction in the solid and convection in the solid. This is a matter of great engineering 62

interest, as many industries have embraced the ability of topology optimization to improve 63

the performances and cut the production costs of thermal devices like heat exchangers (to 64

regulate process temperatures and ensure that machinery, chemicals, water, gas, drugs or 65

food remain within safe operating conditions), finned surfaces, microelectronic equipment 66

and heat sinks, and deliver more compact designs with less mass, less frictional losses 67

and better thermal e�ciency. In this context, the early related literature can be broadly 68

classified into two categories: pure heat conduction problems maximizing heat evacuation 69

from singular tree-like optimal structures of high conduction material, and pure fluid flow 70

problems minimizing the power dissipated inside the domain (alternatively minimizing drag 71

or maximizing the outlet flow uniformity) from complex channel layouts in the di�usion 72

and convection dominated regimes; see [13,14] for recent reviews and references therein. 73

Since then, the topology optimization of coupled thermal-fluid problems (that combine both 74

aspects, and thus require dual objective function strategies to increase heat transfer while 75

keeping dissipation as low as possible) has become an active field of research. Although 76

variants of the level set method have received attention recently [15–17], the vast majority 77

of available studies implement a density-based monolithic approach [18–26] to overcome the 78

fact that the fluid-solid interface is constantly changing over the optimization process, which 79

makes using either a constant heat transfer coe�cient or some specific surrogate model 80

to model the heat transfer between the fluid and its surrounding ine�ective. A variety of 81

models have been used, ranging from oversimplified (dismissing the thermal conductivity 82

di�erences between the solid and fluid regions [22] or numerically imposing a constant solid 83

temperature [21]), to highly realistic (full coupling of flow and heat transfer under dual 84

objective function strategies [18]). 85

The norm in topology optimization is to employ fixed finite element meshes with uniform 86

(or close-to-uniform) element size, small enough that all relevant physical phenomena are 87

reliably captured, but not so small that the cost of performing the optimization becomes 88

una�ordable. A recent trend has been to use adaptive remeshing techniques to maintain a 89
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competitive computational cost. Such an approach consists in generating a coarse base grid, 90

then in adding recursively finer and finer subgrids in the regions requiring higher resolution, 91

either until a maximum level of refinement is reached, or until the local truncation error 92

drops below a certain tolerance (for more sophisticated implementations endowed with error 93

estimation routines). Within the context of pure fluid flow problems, particular emphasis 94

has been put on (but not limited to) adaptive meshing refinement (AMR) schemes, using 95

both density [27,28] and level set methods [29,30]; see also [31] for an application to phase 96

field methods1 and [32,33] for recent e�orts applying a di�erent remeshing scheme to a 97

combination of level set functions and adaptive body-conforming meshes for several coupled 98

physics applications, including convective heat transfer. 99

There is still ample room for progress, though, as almost all adaptive algorithms 100

applied so far to fluid flow topology optimization support only isotropic size maps. Fluid 101

dynamics conversely involves convection dominated phenomena for which anisotropic meshes 102

are highly desirable [34], especially in the vicinity of the solid boundaries, where the fluid 103

velocity exhibits steep gradients in the wall-normal direction and skin-friction plays a 104

defining role. The premise of this study is that the ability to generate highly stretched 105

elements in boundary layer regions can substantially increase the accuracy of the geometric 106

representation (compared to what is often seen in topology optimization of flow problems) 107

and naturally convey said accuracy to the numerical solution without sophisticated inter- 108

polation or discretization techniques. We note that this is all perfectly in line with the 109

recommendations made in [14] to improve upon the current state of the art. Nonetheless, our 110

literature review did not reveal any other study combining anisotropic mesh adaptation and 111

topology optimization of thermal-fluid problems, besides the (pure fluid flow) density-based 112

optimisation of Stokes flow in Ref. [28], possibly because of the notorious di�culty of finding 113

spatial discretization schemes that meet the level of robustness required by automatic 114

anisotropic mesh adaptation. 115

This research intends to fill the gap by introducing a novel numerical framework 116

for topology optimization of conjugate heat transfer systems governed by the coupled 117

Navier–Stokes and heat equations. The latter combines level set methods and anisotropic 118

mesh adaptation to handle arbitrary geometries immersed in an unstructured mesh. The 119

governing equations are solved by a variational multiscale (VMS) stabilized finite element 120

method supporting elements of aspect ratio up to the order of 1000:1 [35]. The same 121

numerical method is used to solve the adjoint Navier–Stokes and heat equations underlying 122

the sensitivity analysis needed to evolve the level set function. The metric map providing 123

both the size and the stretching of mesh elements in a very condensed information data 124

is derived from the level set. A posteriori anisotropic error estimator is then used to 125

minimize the interpolation error under the constraint of a prescribed number of nodes in 126

the mesh. The latter can be adjusted over the course of optimization, meaning that the 127

base grid can be either refined or coarsened on demand (in contrast with AMR, whose 128

total number of mesh elements cannot be controlled, and whose mesh cannot be coarsened 129

further than its base configuration). This is expected to achieve further speed-ups (by 130

reducing the cost of modelling the solid material away from the interface) and also to help 131

improve manufacturability of the optimal design, which remains an issue as most classical 132

topology optimization methods render organic designs that can be di�cult to translate into 133

computer-aided design models. 134

The paper is organized as follows: the topology optimization equations are formulated 135

in Sec. 2. The immersed, stabilized finite element numerical framework and anisotropic 136

mesh adaptation algorithm used to perform the design update step are described in Secs. 3 137

and 4, respectively. The details of the implemented topology optimization algorithm are 138

provided in Sec. 5. Finally, numerical experiments showcasing the potential of the approach 139

to increase the recoverable thermal power while minimizing the dissipated power in two 140

1 Another class of interface capturing schemes that remain less popular due to the larger computational
cost and the di�culty of numerically discretizing the biharmonic phase-field equation.
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dimensional (2-D) and three-dimensional (3-D) systems are presented in section 6; with 141

particular attention paid to highlighting the improved accuracy during all stages of the 142

optimization. Finally, the numerical cost is discussed in section 7, where we also debate the 143

generalization to high-Reynolds number regimes. 144

2. Gradient-based model for conjugate heat transfer topology optimization 145

2.1. Governing equations 146

In the following, we denote by W a fixed, open bounded domain in Rd (with d the space 147

dimension), with boundary ˆW oriented with inward-pointing normal vector n. Throughout 148

this study, W = Wf ∪Ws is the disjoint reunion of a fluid domain Wf and a solid domain 149

Ws, separated by an interface G = Wf ∩Ws, whose position we seek to optimize with respect 150

to a certain measure of performance. The boundary ˆWf of the fluid domain is split into 151

interface, inlet Gi (defined as the combined boundary of all surfaces where fluid enters 152

the domain), and outlet Go (the combined boundary of all surfaces where fluid leaves the 153

domain). The boundary ˆWs of the solid domain is split into interface, isothermal Giso (the 154

combined boundary of all surfaces where temperature is prescribed), and adiabatic (the 155

combined boundary of all surfaces where heat is exchanged with no gain or loss). 156

Mathematically, the problem is characterized by a set of physical variables determined 157

as the solutions of partial di�erential equations (PDEs), themselves derived from modeling 158

considerations and serving as constraint during the optimization. Here, the level set method 159

is used to localize and capture the interface between the fluid and solid domains from the 160

zero iso-value of a smooth level set function, classically the signed distance function defined 161

as 162

Ï(x) =
�������������

−dist(x, G) if x ∈ Wf ,
0 if x ∈ G ,
dist(x, G) if x ∈ Ws ,

(1)

with the convention that Ï < 0 in the fluid domain. The immerse volume method (IVM, 163

more details in Sec. 3) is then used to extend to the whole domain W the coupled steady 164

incompressible Navier–Stokes and heat equations governing the flow motion in the fluid 165

domain Wf . Simply put, the IVM fills Ws with a fictitious fluid mimicking a solid phase, but 166

avoids introducing discontinuities at the interface. It then solves fluid-like equations in the 167

whole domain W, using non-homogeneous material properties adequately interpolated over a 168

small layer around the zero level-set (whose thickness is user-defined and does not increase 169

in size during the optimization, unlike the homogenization method or any other generalized 170

material method) and otherwise equal to their fluid and solid values. Such an approach is 171

simpler that the Ersatz material approach [36], that adds a Brinkman penalization term to 172

the Navier–Stokes equations and has clear connections to density-based methods through 173

the material distribution [30]. This yields the monolithic formulation 174

∇ ⋅u =0 in W , (2)
flu ⋅ ∇u =−∇p+∇ ⋅ (2µÁ(u)) in W , (3)

flcpu ⋅ ∇T =∇ ⋅ (k∇T ) in W , (4)

where u is the velocity, p the pressure, Á(u) = (∇u+∇u
T )�2 the rate of deformation tensor, 175

and fl and µ are phase dependent density, dynamic viscosity, thermal conductivity and 176

specific heat. 177

We seek here to minimize a cost function J that we assume can be formulated as a 178

surface (rather than volume) integral over all or any part of inlet and/or outlet (as is most 179

often the case in topology optimization), i.e., 180

Js = �
Gi∪Go

Jds . (5)
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This is done using the continuous adjoint method to find the cost function sensitivity 181

to variations of a design variable — physically representing deformations of the interface 182

under the form of local surface normal displacements. In short, the desired sensitivity to a 183

displacement — at some specific point of the interface is given by 184

”—Js = �
G

—µ(∇ũ ⋅n) ⋅ (∇u ⋅n)ds+�
G

—k(∇T̃ ⋅n)(∇T ⋅n)ds ,

where (ũ, T̃ ) are the adjoint velocity and temperature solution to the adjoint Navier–Stokes 185

and heat equations written in monolithic formulation as 186

∇ ⋅ ũ =0 in W , (6)
−flu ⋅ ∇ũ+ fl∇u

T ⋅ ũ =∇p̃+∇ ⋅ (2µÁ(ũ)) in W , (7)
−cpu ⋅ ∇T̃ =∇ ⋅ (k∇T̃ ) in W , (8)

with p̃ the associated adjoint pressure. The main steps of the method are described in I, 187

together with the boundary conditions appended to both the state and adjoint equations; 188

see also [37–39] for further deepening on the topic. This enables e�cient design update 189

schemes via first-order gradient descent methods, for instance the simplest steepest-descent 190

algorithm implemented herein moves down the cost function, in the direction of the steepest 191

slope using 192

— = −µ(∇ũ ⋅n) ⋅ (∇u ⋅n)− k(∇T̃ ⋅n)(∇T ⋅n) , (9)

up to a positive multiplicative factor to control the step taken in the gradient direction. 193

2.2. Multi-objective optimization 194

A classical objective in topology optimization of conjugate heat transfer is to maximize 195

heat transfer in the domain without increasing the mechanical pumping power that need 196

be spent to overcome friction and move the fluid through the device (nor blocking the 197

fluid flow). This is done in some studies by maximizing heat transfer under prescribed 198

pressure drop values [22,25], and in others by minimizing pressure drop under prescribed 199

heat transfer performance [40]. As further explained in Sec. 6, we rather use here multi- 200

criteria optimization and minimize the linear weighted sum of a hydraulic cost function 201

J‹ associated to dissipation (to minimize) and a thermal cost function JQ measuring heat 202

transfer e�ciency (to maximize, the minimization applies to −JQ). This yields 203

J = (1−Ê)J‹ −ÊJQ , (10)

where Ê ∈ [0; 1] is the so-called thermal weigh, a scalar-valued factor weighing the priority 204

given to each objective function (Ê = 0 in the pure hydraulic limit, and Ê = 1 in the pure 205

thermal limit). In practice, a single point concurrently minimizing both objectives usually 206

does not exist. The solution to such a problem thus aims at identifying the Pareto front [41], 207

i.e., the subset of designs that best manage trade-o�s between conflicting criteria, in the 208

sense that further optimizing one cost function decreases the performance of the other one 209

(after which the final design is selected from the Pareto optimal subset by a human decision 210

maker based on subjective preferences). 211

3. Computational methods 212

A primitive pseudo-code of the procedure for solving the above topology optimization 213

problem is provided in Alg. 1, to repeat until a maximum number of iterations or a 214

convergence threshold has been reached. In a nutshell, this is done here using a finite 215

element immersed numerical framework combining implicit representation of the di�erent 216

domains, level set description of the interface, and anisotropic remeshing capabilities. For 217

the sake of readability, the mesh adaptation algorithm and parallel computational framework, 218

whose implementation in the context of fluid flow topology optimization makes for the main 219



Version February 19, 2024 submitted to Fluids 6 of 43

Algorithm 1 Simplified update scheme
Require: Anisotropic mesh adapted to initial interface position

1: loop

2: Compute state
3: Compute adjoint
4: Compute cost function sensitivity
5: Set displacement in the direction of steepest slope
6: Update interface position
7: Generate anisotropic mesh adapted to new interface position

novelty of this study, are presented in the following as stand-alone sections. In the remainder 220

of this section, we walk through each of the other steps and review the various problems 221

involved and the numerical methods for solving them. 222

3.1. Variational multiscale modeling 223

We solve all equations (i.e., state, adjoint, level set) using equal order linear/linear 224

approximations for both the velocity and pressure variables, a scheme very desirable in the 225

context of the large-scale, three-dimensional applications considered here due to its simplicity 226

of implementation and a�ordable computing cost. To this end, we solve stabilized weak 227

forms cast in the Variational Multiscale (VMS) framework, that enhance the stability of the 228

Galerkin method via a series of additional integrals over element interior (as a linear/linear 229

discretization otherwise breaks the Babuska–Brezzi condition, which results in spurious 230

node-to-node oscillations). The basic idea is to split all quantities into coarse and fine scale 231

components, corresponding to di�erent levels of resolution, and to approximate the e�ect of 232

the fine scale (that cannot be resolved by the finite element mesh) onto the coarse scale via 233

consistently derived residual based terms. The various coarse scale variational problems 234

solved by VMS are provided in J, together with additional details about the implicit/explicit 235

discretization in space. 236

3.2. Immersed volume method 237

The monolithic immersed volume method (IVM) is used to combine the fluid and 238

solid phases of the problem into a single fluid with variable material properties; see [42,43] 239

for details regarding the mathematical formulation in the context of finite element VMS 240

methods. Simply put, this amounts to solving the state equations (2)-(4) and adjoint 241

equations (6)-(8) on a unique mesh of the domain W in which the fluid and solid domains 242

Wf and Ws are immersed, using the level set method to achieve interface tracking between 243

the two di�erent domains. Using the level set function (1) as criterion for anisotropic mesh 244

adaptation (more details provided in Sec. 4) ensures that individual material properties 245

can be distributed accurately and smoothly as possible over the smallest possible thickness 246

around the interface (classically by linear interpolation of the fluid and solid values, using a 247

smooth Heaviside function computed from the level set to avoid discontinuities by creating 248

an interface transition with a thickness of a few elements). The IVM approach is especially 249

relevant to the thermal coupling problems tackled in this research, as having composite 250

conductivity and specific heat means that the amount of heat exchanged at the interface 251

then proceeds solely from the individual material properties on either side of it, and removes 252

the need for a heat transfer coe�cient. 253

In practice, we compute the composite thermal conductivity as the harmonic mean of 254

the solid and fluid values, i.e., 255

1
k
= 1

kf
H‘(Ï)+ 1

ks
(1−H‘(Ï)) , (11)
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where H‘ is the smoothed Heaviside function on the fluid domain defined as 256

H‘(Ï) =
���������������

1 if Ï < −‘ ,
1
2
�1− Ï

‘
− 1

fi
sin�fi Ï

‘
�� if �Ï� ≤ ‘ ,

0 if Ï > ‘ ,

(12)

and ‘ is a regularization parameter set to 2h⊥. This ensures continuity of the heat flux 257

across the interface, as obtained from a steady, no source, one dimensional analysis of the 258

heat flux when the conductivity varies stepwise from one medium to the next (see [44] for 259

detailed derivation and analysis, and [45] for proof of the gain in numerical accuracy with 260

respect to the classical arithmetic mean model). All other properties (density, dynamic 261

viscosity and thermal heat capacity ) are constant and equal to the fluid values, and we set 262

the velocity to zero at all grid nodes located inside the solid domain Ws. This can be seen 263

as a hard penalty (compared to using a very high solid to fluid viscosity ratio to ensure 264

that the velocity is zero in the solid domain) preventing the fluid from leaking across the 265

immersed interface, that holds numerically because anisotropic mesh adaptation ensures 266

that the interface does not intersect arbitrarily the mesh elements (it precisely aims at 267

aligning the mesh element edges along the interface), which may otherwise compromise the 268

accuracy of the finite element approach. 269

3.3. Interface update scheme 270

Once the sensitivity analysis has output a displacement — in the direction of the steepest 271

slope, the position of the level set is updated solving a transport equation with normal 272

velocity —n�D· , where D· is a pseudo-time step to convert from displacement to velocity 273

(of no physical relevance since we are not concerned by the absolute displacement of a given 274

point on the interface, only by its relative displacement with respect to its neighbors). This 275

equation is posed in the whole domain W, which is because the normal vector recovered at 276

the interface as n = ∇Ï���∇Ï�� is easily extended to W using (1). The main problem with 277

this approach is that the level set after transport is generally no longer a distance function, 278

which is especially problematic when a specific remeshing strategy depending on the distance 279

property is used at the interface (as is the case here). As a result, the distance function 280

needs to be reinitialized, which is done here using a coupled convection-reinitialization 281

method wherein the level set function is automatically reinitialized during the resolution of 282

the transport equation. In practice, the signed distance function is cut o� using a hyperbolic 283

tangent filter, as defined by 284

„ = E tanh�Ï

E
� , (13)

with E the cut-o� thickness (so the metric property is asymptotically satisfied in the vicinity 285

of the zero iso-value). This filtered level set is then evolved solving the auto-reinitialization 286

equation 287

ˆ· „+ a· ⋅ ∇„ = S , (14)

where we note 288

a· = —

D·
n+ ⁄

D·
sgn(„) ∇„

��∇„�� , S = ⁄

D·
sgn(„)�1− � „

E
�2� , (15)

and ⁄ is a parameter homogeneous to a length, set to the mesh size h⊥ in the direction 289

normal to the interface. Such an approach is shown in [46–48] to reduce the computational 290

cost and to ensure a better mass conservation compared to the classical Hamilton–Jacobi 291

method in which both steps are performed in succession). Moreover, since the filtered level 292

set defined in (13) is bounded, Dirichlet boundary conditions „ = ±E are easily appended 293
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to Eq. (14) to explicitly design fluid and solid sub-regions of ˆW (in practice, we impose 294

fluid at the inlet and outlet, and solid everywhere else). 295

4. Anisotropic mesh adaptation 296

4.1. Construction of an anisotropic mesh 297

The main idea of anisotropic, metric-based mesh adaptation is to generate a uniform 298

mesh (with unit length edges and regular elements) in a prescribed Riemannian metric 299

space, but anisotropic and well adapted (with highly stretched elements) in the Euclidean 300

space. Assuming that, in the context of metric-based adaptation methods, controlling the 301

interpolation error su�ces to master the global approximation error, the objective can be 302

formulated as finding the mesh, made up of at most Nn nodes, that minimizes the linear 303

interpolation error in the L
1 norm. Following the lines of [49,50], an edge-based error 304

estimator combined to a gradient recovery procedure is used to compute, for each node, a 305

metric tensor that prescribes a set of anisotropic directions and stretching factors along 306

these directions, without any direct information from the elements, nor any underlying 307

interpolation. The optimal stretching factor field is obtained by solving an optimization 308

problem using the equi-distribution principle under the constraint of a fixed number of 309

nodes in the mesh, after which a new mesh is generated using the procedure described 310

in [51], based on a topological representation of the computational domain. 311

4.2. Edge error estimate 312

Given a mesh Wh of the domain W, we denote by x
ij the edge connecting a given 313

node x
i to x

j ∈ S(i), where S(i) is the set of nodes connected to x
i, and the number of 314

such nodes is noted as �S(i)�. Also, given a regular analytical (scalar) function Â defined 315

on W, and its P1 finite element approximation Âh computed on Wh, we follow [49] and 316

estimate the interpolation error along the edge x
ij as the projection along the edge of the 317

second derivative of Â. This is obtained projecting along the edge a Taylor expansion of the 318

gradient of Â at x
j to give 319

Áij = �gij ⋅xij � , (16)

where the i and j superscripts indicate nodal values at nodes x
i and x

j , respectively, 320

g
i = ∇Â(xi) is the exact value of the gradient at x

i, and g
ij = g

j − g
i is the variation of 321

the gradient along the edge. Although Eq. (16) involves only values of the gradient at 322

the edge extremities and can thus be evaluated without resorting to ressource expensive 323

Hessian reconstruction methods, this however requires the gradient of Â to be known and 324

continuous at the nodes, which in turn requires full knowledge of Â. Meanwhile, only 325

the linear interpolate Âh is known in practice, whose gradient is piecewise constant and 326

discontinuous from element to element (although its projection along the edges is continuous 327

since it depends only on the nodal values of the field). 328

A recovery procedure is thus used to build a continuous gradient estimator defined 329

directly at the nodes. It is shown in [49] that a suitable error estimate preserving second- 330

order accuracy is obtained substituting the reconstructed gradient for the exact gradient 331

in (16), to give 332

Áij = �ḡij ⋅xij � , (17)

where ḡ
ij = ḡ

j − ḡ
i and we denote by ḡ

i the recovered gradient of Âh at node x
i. The latter 333

is defined in a least-square sense as 334

ḡ
i = argmin

g∈Rd
�

j∈S(i)
�(g−∇Âh) ⋅xij �2 , (18)



Version February 19, 2024 submitted to Fluids 9 of 43

for which an approximate solution using the nodal values as sole input is shown in [49] to be 335

ḡ
i = (Xi)−1⋅ �

j∈S(i)
(Âh(xj)−Âh(xi))xij , (19)

where X
i is the length distribution tensor defined as 336

X
i = 1
�S(i)� �j∈S(i)

x
ij ⊗x

ij , (20)

that gives an average representation of the distribution of the edges sharing an extremity. 337

4.3. Metric construction 338

In order to relate the error indicator Áij defined in (17) to a metric suitable for mesh 339

adaptation purposes, we introduce the stretching factor sij as the ratio between the length 340

of the edge x
ij after and before the adaptation. The metric at node x

i is sought to generate 341

unit stretched edge length in the metric space, that is, 342

(sijx
ij)T ⋅Mi ⋅ (sijx

ij) = 1 , ∀j ∈ S(i) , (21)

for which an approximate least-square solution is shown in [49] to be 343

M
i = ��

d

�S(i)� �j∈S(i)
s

2
ijx

ij ⊗x
ij��
−1

, (22)

provided the nodes in S(i) form at least d non co-linear edges with x
i (which is the case 344

if the mesh is valid). The metric solution of (22) is ultimately computed setting a target 345

total number of nodes Nn. Assuming a total error equi-distributed among all edges, the 346

stretching factor is shown in [50] to be 347

sij =
����
�
i

Ni(1)
Nn

����

2
d

Á
−1�2
ij , (23)

where Ni(1) is the number of nodes generated in the vicinity of node x
i for a unit error, 348

given by 349

Ni(1) = ��det
�
�

d

�S(i)� �j∈S(i)
Á

1�2
ij

x
ij

�xij � ⊗
x

ij

�xij �
�
�
�
�
−1�2

. (24)

4.4. Level set-based adaptation criteria 350

In order to simplify and clarify the presentation, the main steps needed for metric 351

construction at the nodes is summarized in algorithm 2. In practice, the sole variable 352

used for error estimation purpose is the filtered level set defined in (13), as it satisfies 353

the metric property in a thin layer around the interface (in particular it preserves the 354

zero iso-value of Ï, which is the only relevant information for mesh adaptation purposes), 355

but avoids unnecessary adaption of the mesh further away from the interface (where the 356

interpolation error is close-to-zero, due to ��∇„�� ∼ 0). This means that the criterion for mesh 357

adaptation is purely geometric, i.e., the same mesh is pre-adapted around the fluid-solid 358

interface, then used to compute all quantities needed to perform the next design update 359

step. Nonetheless, it is worth mentioning that the approach also supports more complex 360

adaptation criteria featuring physical quantities, thus providing the ability to dynamically 361

adapt the mesh during the simulations. The common method to adapt a mesh to several 362



Version February 19, 2024 submitted to Fluids 10 of 43

Algorithm 2 Anisotropic mesh adaptation algorithm
Require: Anisotropic adapted mesh

1: Set number of nodes Nn

2: Compute Âh on current mesh
3: for each node x

i
do

4: Compute length distribution tensor X
i using (20)

5: Compute nodal recovered gradient.ḡi using (19)
6: for all edges x

ij
do

7: Compute edge recovered gradient ḡ
ij

8: Compute edge-based error Áij using (17)
9: Compute stretching factor sij using (23)

10: Compute metric M
i using (22)

11: Generate new mesh by local improvement in the neighborhood of the nodes and edges [51]
12: Interpolate Âh on new mesh using classical linear interpolation

variables is to combine the metrics corresponding to each individual variable using metric 363

intersection algorithms, which is known to incur a relatively high computational cost and 364

to have potentially non-unique, suboptimal outcome. Conversely, the present approach 365

allows building directly a unique metric from a multi-component error vector combining 366

level set and any relevant flow quantity of interest, as definition (17) is easily extended 367

to account for several sources of error [52]. Indeed, if we consider Â = (Â1 , Â2 , . . . , Âp) a 368

vector consisting of p scalar variables, it comes out straightforwardly that the error is now a 369

vector Áij = (Áij,1 , Áij,2 , . . . , Áij,p), whose L
2 norm can serve as simple error value for the 370

edge from which to compute the stretching factor (23) and ultimately, the metric solution 371

of (22). For instance, the 2d+ 5 sized nodal vector field defined as 372

Âh(xi) = ����
„

i
h

max
j∈S(i)„

j
h

,
u

i
hk∈{1...d}��ui

h�� ,
��ui

h��
max
j∈S(i) ��uj

h�� ,
T

i
h

max
j∈S(i)T

j
h

,
ũ

i
hk∈{1...d}��ũi

h�� ,
��ũi

h��
max
j∈S(i) ��ũj

h�� ,
T̃

i
h

max
j∈S(i) T̃

j
h

���� ,

(25)

can be used to combine adaptivity with respect to the norm and direction of the state and 373

adjoint velocity vectors and with respect to the state and adjoint temperatures, in addition 374

to the level set. Because all fields are normalized by their respective global maximum, a 375

field much larger in magnitude cannot dominate the error estimator, meaning that the 376

variations of all variables are fairly taken into account. This benefits problems involving 377

more complex physics (here, heat transfer, but also turbulence, fluid-structure interaction, 378

multiple phases, possibly in interaction with one another), all the more so in the context 379

of topology optimization, as the di�erence in the spatial supports of the state and adjoint 380

quantities (due to the non-normality of the linearized evolution operator [53]) may otherwise 381

yield conflicting requirements in terms of the regions of the computational domain most in 382

need of refinement. 383

5. Numerical implementation 384

5.1. Geometrical constraints 385

Fluid flow topology optimization is generally performed under geometrical constraints, 386

typically, constant or upper bounded surfaces and/or volumes to avoid the two extreme cases 387

of the solid domain clogging the entire design domain (as in pressure drop minimization 388

problems), or disappearing altogether (as in drag minimization problems). This is usually 389

done adding penalty terms to the Lagrangian (each of which consists of an empirical penalty 390

parameter multiplied by a measure of violation of the constraint), whose variations with 391

respect to the state and design variables snowballs into the derivation of the adjoint problem 392

and of the cost function sensitivity. Here, the constraint of a constant volume of fluid 393
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Vtarget is applied a posteriori, i.e., we solve the unconstrained problem presented in Sec. 2 394

(in the sense that no penalty term is added to the Lagrangian, although the optimization 395

remains subject to Navier–Stokes as state equations). Once the convective level set method 396

presented in Sec. J.5 has updated the interface position, a first pass of anisotropic mesh 397

adaptation is performed, after which the volume of the fluid domain is computed as 398

VÏ = �
W

H‘(Ï)dv , (26)

where H‘ is the same smoothed Heaviside function on the fluid domain defined in (12). A 399

simple dichotomy approach is then used to optimize a constant deformation ”Ï meant to 400

enlarge (”Ï < 0) or shrink (”Ï > 0) the fluid domain, until the di�erence �VÏ+”Ï − Vtarget� 401

between the actual and target volumes drops below a certain tolerance, at which point 402

we cut o� Ï + ”Ï and perform a second pass of mesh adaptation. Two points are worth 403

mentioning: first, because each o�set changes the min-max values of the truncation, the 404

above procedure requires knowledge of the level set Ï (not just the filtered level set „). 405

A brute force algorithm therefore performs beforehand a complete reconstruction of the 406

distance function from the zero iso-value of „, as only the filtered level set (not the level 407

set) is evolved during the convection-reinitialization step. Second, only small deformations 408

are considered so that no intermediate mesh adaptation passes are required. By doing so, 409

the total cost has been found to be essentially that of performing the second pass of mesh 410

adaptation (not shown here for conciseness). 411

5.2. Steepest descent update rule 412

In practice, the displacement used to perform the update step is defined as 413

— = −◊
—0‰G(x)

max
W

—0‰G(x)�
l

’(��x−x
l
s��) , (27)

where —0 is the steepest descent estimate estimated from (9), ◊ > 0 is a descent factor 414

controlling the step taken in the gradient direction, and ‰G and ’ are activation functions 415

between 0 and 1 ensuring that the design is fittingly updated only in relevant regions of the 416

computational domain. More details are as follows: 417

• ‰G is a binary filter returning a value of 1 only at nodes within a distance E of the 418

interface. This is because the normal vector in a level set framework is recovered as 419

n = ∇„���∇„��, so the displacement is non-zero in the whole fluid domain, even far from 420

the interface where n has unit norm because ��∇„�� only tends asymptotically to zero. 421

In return, the update step can break down numerically at nodes nearly equidistant 422

from two subparts of the interfaces (for instance the centerline of a channel). 423

• ’ is a smooth filter assigning 0 value to some subset X
l
s ∈ ˆW that can be either a point 424

or a curve, and ��x−X
l
s�� is the shortest-path distance to X

l
s. Such subsets are singled 425

out prior to optimization, because the flow there may be driven to a singularity, and ill- 426

defined velocity gradients may cause large, unphysical displacements. Such singularities 427

can be dealt with numerically by appending fluid/solid Dirichlet boundary conditions 428

to the level set convection-reinitialization problem. Nonetheless, they must not be 429

included in the normalization step to avoid forcing excessively small displacements 430

along the remaining part of the interface, and thereby considerably slowing down the 431

convergence rate of the iterative optimization process. We use here hyperbolic tangent 432

filters 433

’(r) = 1
2
+ 1

2
tanh�–s tan�−fi

2
+ fi

2
r

rs + ‘s1
+ ‘s2�� , (28)
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increasing from 0 to 1 within a distance of 2rs from the singularity, with rs a transition 434

radius such that 435

4rs <min
l,m
��Xl

s −X
m
s �� , (29)

to prevent overlaps, –s a steepness parameter controlling the sharpness of the transition, 436

and ‘s1,2 small regularization parameters to avoid local discontinuities. 437

Ultimately, the above filtering and normalization steps ensure that the level set is 438

updated using a displacement that is non-zero only in a thin layer of thickness E about the 439

interface, minus a certain number of singular subsets. 440

5.3. Descent factor 441

It follows from Eq. (27) that the descent factor ◊ physically represents the maximum 442

displacement amplitude over the update region of interest. In practice, though, the actual 443

numerical displacement (estimated from the di�erence between zero iso-value of the filtered 444

level set before and after transport) has been found to be well below its theoretical value. 445

This is because the state and adjoint velocities are forced to zero is the solid domain, so 446

the fluid component of the displacement (driven by the velocity gradients) is also zero 447

everywhere in the solid, except in a very narrow region about the interface. As a result, it 448

is not possible to explicitly control the displacement achieved numerically at each iteration. 449

A simple scheme to do so would have been to repeatedly evolve the interface with a small 450

descent factor until the di�erence between the cumulated and target displacement drops 451

below a certain tolerance, but the interface can be evolved only once per update step, as the 452

gradient information is lost if the displacement happens to be in the direction of the solid 453

(for the same reason mentioned above). We thus tune the descent factor manually on a case 454

by case basis, for the achieved displacement to be slightly smaller than the cut-o� thickness. 455

This has been found to be a satisfactory trade-o� between accuracy and numerical e�ort, as 456

the number of iterations required for convergence remains a�ordable, and the position of 457

the evolved interface is accurately tracked (displacements larger than the cut o� thickness 458

conversely move the level set into regions of the computational domain lacking the proper 459

mesh refinement, which has been found to ultimately a�ect the accuracy of the interface 460

representation). 461

5.4. Parallel resolution 462

The resolution of the various physical problems considered herein (e.g., Navier–Stokes, 463

adjoint Navier–Stokes, heat equation, adjoint heat equation, level-set advection) requires to 464

compute, store and solve large-scale linear systems (or non-linear systems that may lead to 465

the resolution of several linear systems if an implicit discretization scheme is used). To this 466

end, the resolution step makes a clear distinction between those large systems that need to 467

be stored and solved, and their local contributions at the element levels: all finite element 468

formulations are only implemented sequentially at the element level, then assembled and 469

solved in parallel using the PETSc library [54], that o�ers a wide range of parallel data 470

structures (linear and non-linear solvers as well as preconditioners) and can be run on large 471

computing clusters. Here, only semi-implicit and explicit discretization schemes are used; 472

see J), and the associated linear systems are su�ciently well conditioned to be solved by 473

iterative methods. We thus use the Generalized Minimal Residual (GMRES) algorithm with 474

block Jacobi incomplete LU preconditioning, and consider the solutions to be converged if 475

the absolute residuals are less than 10−6. 476

5.5. General algorithm 477

Figure 1 shows the flowchart of the implemented topology optimization algorithm, in 478

which anisotropic mesh adaptation is key to capture the interface with the highest precision 479

possible. The necessary algorithmic parameters common to all examples documented in the 480

following are given in Tab. 1. Note, as a consequence of the level set-based technique used 481
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Start

Initialize level set
Generate initial adapted mesh

Compute
• state solution from (2)-(4)
• adjoint solution from (6)-(8)
• sensitivity and normalized displacement from (27)

Uniform
displacement? Stop

Yes

No

Update level set using convection-reinitialization method (14)
Generate anisotropic mesh adapted to new level set (1st pass)

Volume constraint
satisfied?

Yes

No

Recover target volume (26)
Generate anisotropic mesh adapted to new level set (2nd pass)

Figure 1. Flowchart of performance topology optimization procedure.

to enforce the volume of fluid constraint, convergence is achieved not when the displacement 482

is identically zero (as would be the case using a penalized Lagrangian approach), but when 483

the displacement is uniform along the interface. This is not easily done on the fly, though, 484

so we rather iterate until a maximum number of iterations has been reached and evaluate 485

convergence a posteriori. 486

6. Numerical benchmarks 487

6.1. Preliminaries 488

This section assesses the e�ciency of the numerical framework through a series of 489

topology optimization problems showcasing the accuracy to which the optimal interfaces are 490

captured in the simulation model. Several cases are considered in 2-D and 3-D, for which we 491

aim at maximizing heat transfer in the domain while minimizing the total pressure losses in 492

the fluid channels. A bi-objective optimization strategy is used, that consists in minimizing 493

the linear weighted sum (10) of two criteria inspired from [37] and [55], namely an hydraulic 494

cost function J‹ measuring the net inward flux of total pressure through the boundaries (to 495

minimize) and a thermal cost function JQ measuring the recoverable thermal power from 496

the domain through the inlet and outlet flow boundary conditions (to maximize). Since the 497
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h⊥ = 0.0001 Min. interface normal mesh size
Dt = 0.1 CFD Numerical time step

E = 0.005 Level set cut o� thickness�”Ï� = [0.0005; 0.001] Initial volume recovery o�set
rs = 0.0125 Transition radius

–s = 2.1 Sharpness parameter(‘s1, ‘s2) = (0.0005, 0.005) Regularization parameters
Table 1. Algorithmic parameters.

orientation of the normal n yields u ⋅n�Gi
> 0 and u ⋅n�Go < 0, this is expressed in the form 498

of (5) as 499

J‹ = ptot(u ⋅n) = (p+ 1
2

fl(u ⋅u))(u ⋅n) , and JQ = flcpT (u ⋅n) . (30)

In all cases, a reference design domain is chosen under the form of a cubic or cuboid 500

(parallelepipedic) cavity, with cylindrical inlet and outlet at which parabolic profiles normal 501

to the boundary are prescribed, as defined by 502

ui,o = ui,o
�
�1−

4r
2

e
2
i,o

�
�n , (31)

with r the distance to the inlet/outlet center, ei (resp. eo) the inlet diameter (resp. the 503

outlet diameter) and ui (resp. uo) the inlet centerline velocity (resp. the outlet centerline 504

velocity, adjusted for the mass flow exiting through the outlet to match exactly that entering 505

through the inlet). For each case, the control parameters are the Reynolds (built here on 506

inlet diameter and maximum inlet velocity) and Prandtl numbers. 507

The remainder of the practical implementation details are as follows: 508

• All design domains are initialized with solid inclusions coming in various shapes 509

and sizes. From experience, the flow topology optimization problems tackled in the 510

following are essentially insensitive to the initial design provided a su�cient large 511

number of inclusions is used (additional mechanisms for seeding solid inclusions could 512

be added to the proposed framework, but however lie outside the scope of this study). 513

• The admissible error on the target volume is set to 1% in 2-D, and 5% in 3-D. 514

• The fluid is systematically conveyed into and out of the design domain using leads of 515

length li (the same at all inlets) and lo (the same at all outlets) appended normal to 516

the boundary. This is for numerical consistence, as the exact problem formulation in 517

the literature may vary depending on the case, and it is not always clear whether such 518

leads should be included in the design domain (which they are here, although they are 519

not considered in the volume constraint, neither in definition of the target volume nor 520

in the computation of the volume of fluid). 521

• The singular subsets excluded from the displacement normalization step are the sharp 522

intersections between the leads and the boundary of the cavities. Note, this is not a 523

consequence of explicitly representing the leads, as the exact same procedure has been 524

found suitable without such appendage. In practice, since all inlets and cylindrical 525

outlets are cylindrical, each smooth filter ’ therefore transitions from 0 to 1 over a 526

circle of radius 2rs (in 2-D) or a torus of minor radius 2rs and major radius equal to 527

the inlet/outlet radius (in 3-D). 528

• The leads are excluded from the displacement normalization step, for which we simply 529

add to the max argument of (27) a binary filter returning a value of 0 at all nodes 530

located inside the pipes. This is again to avoid slowing down the convergence rate of 531

the iterative optimization process, as the maximum displacement is otherwise located 532
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Figure 2. Set-up of the two-dimensional single pipe problem with heated walls. The orange and
light gray shade denote hot isothermal and adiabatic walls, respectively.

in the leads (because the easiest way to minimize the dissipated power is to suppress 533

the flow by having the solid entirely clogging the leads). 534

• Without seeking to optimize the performance, all optimization runs have been found 535

to converge within a few hundreds iterations, which is essentially the number of steps 536

used to fulfill the fluid volume constraint (more details in the following) while ensuring 537

that the displacement achieved at each iteration remains below the level set cut-o� 538

thickness. 539

• All 3-D meshes (resp. 2-D meshes) have been checked to have an element-to-node ratio 540

close to 5 (resp. close to 2), as should be for denses mesh made up of tetrahedral (resp. 541

triangular) elements. In order to ease the comparison with the available literature, 542

the mesh information is thus documented in the following in terms of its equivalent 543

number of elements, defined as Nel = 5Nn (resp. Nel = 2Nn). 544

6.2. Two-dimensional splitter device with two outlets 545

In order to provide a first verification and characterization of the method, we consider 546

a purely hydraulic (Ê = 0) problem aiming at minimizing power dissipation in a 2-D flow 547

splitter device, a classical example of functional unit used for continuous separation and 548

collection of particles in microchannels [56], and a class of flow that has received attention 549

as a relevant example of topology optimization in fluid dynamics [57,58]. The design domain 550

sketched in Fig. 2 is a square cavity of unit height, with a single inlet at the bottom and two 551

outlets at the left size on the left and right sides. The aim is to determine the optimal design 552

that connects the inlet to the outlets, subject to the constraint that the fluid must occupy 553

20% percent of the cavity, and the flow must be distributed evenly over the multiple outlet 554

orifices for each outlet to have 1/2 of the fluid flow entering through the inlet; see Tab. 2 for 555

provision of the remaining problem parameters. The initial design shown in Fig. 4 consists 556

of spherical occlusions arranged for the initial volume of fluid to fill about 50% of the cavity, 557

in violation of the volume constraint. This is because many more smaller inclusions are 558

needed to recover the proper volume, which would either dramatically increase the surface 559

of the interfaces that needs be captured (and thus, the number of mesh elements needed to 560

maintain the numerical accuracy), or risk clogging the fluid path due to insu�cient mesh 561

refinement. As shown in the convergence history presented in Fig. 3, there is thus an initial 562

transient during which the cost function, albeit low, has little physical meaning, as the 563

constraint value is decreased up to the point where it reaches the target within the desired 564

tolerance, and the cost function adjusts until a feasible minimum is found. 565
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W = [0; 1]×[0; 1] Design domain
d = 2 Problem dimensionality

Vtarget = 0.25 Target volume of fluid
VÏ,0 = 0.50 Initial volume of fluid

Re = 2 Reynolds number
ui = 0.3 Inlet centerline velocity

ei = 0.125 Inlet diameter
li = 0.4 Inlet leads length

xi1 = (0.8125,−0.4) Inlet center coordinates
uo1 = 0.1 Outlet 1 centerline velocity
uo2 = 0.1 Outlet 2 centerline velocity

eo = 0.1875 Outlet diameter
lo = 0.125 Outlet leads length

xo1 = (−0.125, 0.21875) Outlet 1 center coordinates
xo1 = (−0.125, 0.78125) Outlet 1 center coordinates

Nn = 30000 Nb. mesh nodes
Nel = 60000 Nb. mesh elements

Table 2. Numerical parameters for the two-dimensional flow splitter device problem.

A total of 500 iterations has been run with 30000 mesh elements. The optimization 566

goes through several complex stages, e.g., merging or cancellation of holes, all accurately 567

represented on anisotropic adapted meshes, as evidenced by the selected samples shown 568

in Fig. 4. Also, all meshes exhibit the expected refinement and deformation, with coarse 569

and regular elements away from the interface between solid and fluid (all the more so in 570

the solid domain, where only a few ten elements are used), but fine, extremely stretched 571

elements on either side of the interface (for the velocity to smoothly transition to zero across 572

the boundary layer). In return, the interfaces are sharply captured, not only at optimality 573

but during all stages of the optimization (even in the leads). Ultimately, the optimal duct 574

for this case is a wide pipe splitting at mid length into two almost identical (in terms of 575

diameter), thinner pipes, each connecting to an outlet. This layout stands as the better 576

trade-o� between transporting fluid the shortest way, and transporting it in the widest 577

possible pipe, and is consistent with the results documented in Ref. [57], although the 578

optimal shapes therein exhibit quality issues (staircase e�ects) in smoothly curved regions, 579

and anisotropic mesh adaptation represents a tremendous improvement in this regards. The 580

same trends are observed when assessing the sensitivity of the designed layout to variations 581

in the design conditions, such as the volume of fluid allowed in the layout, or the ratio of 582

flow rate at the outlets. This is evidenced in Fig. 5(a) showing the final ducts optimized 583

for several volume of fluid constraints in a range from 10 to 50%. Overall, the obtained 584

results show that decreasing the volume of fluid simply slims down the optimal channels, 585

but increases the dissipated power, which is because most energy is dissipated by shear at 586

low Reynolds numbers, so an optimal flow pipe is preferably as short and wide as possible 587

(note, the analysis overlooks the mass of the layout, that obviously puts a limit on how 588

much fluid should be allowed in a practical device). Similarly, we show in Fig. 5(b) the final 589

ducts optimized for several flow rate ratios ranging from 1:9 (i.e., 10% at the lower outlet 590

vs. 90% at the upper outlet) to 9:1. The results show that the larger the flow rate at a 591

certain outlet, the thicker the channel, which is fully consistent with the previous findings. 592

Ultimately, less power is dissipated if the flow rate is larger at the lower outlet, with the 1:9 593

optimal lower than its 9:1 counterpart by 25%. This is simply because a larger lower flow 594

rate makes for a shorter path from the inlet to the outlet, and the cost of bending the fluid 595

stream shortly after the inlet is low, given that most fluid flows in the (shorter) inner region. 596
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Figure 3. Convergence history for the two-dimensional flow splitter device presented in Fig. 2.
All cost function values made non dimensional using the inlet diameter and maximum inlet velocity
(equivalently, using flu3

i ei as reference cost functional value). The grey shade indicates the iterations
during which the volume constraint is adjusted to its target value.

Figure 4. Hydraulic optimization of the two-dimensional flow splitter device presented in Fig. 2.
From left to right and from top to bottom: the zero iso-value of the level set function and associated
anisotropic adapted meshes are sampled over the course of optimization using the parameters given
in Tab. 2. The associated volume of fluid are 49.5%, 45.4%, 40.6%, 34.7%, 24.8% and 24.9%,
respectively.

6.3. Two-dimensional single pipe with heated walls 597

The second case study is a two-dimensional conjugate heat transfer problem that has 598

received substantial attention in the recent literature [26,32,55,59]. The design domain 599

shown in Fig. 6 is a square cavity of unit height. It has a single inlet on the left side 600

and a single outlet on the right side lined up in front of each other, and is discretized 601

with 50000 elements. A cold fluid is flowing from the inlet, and is heated by the top and 602

bottom walls, subject to a fixed (hot) temperature. All other walls (cavity and leads) are 603

insulated from the surroundings with zero heat absorbed or released (i.e., adiabatic). The 604

solid is set to be 10 times more di�usive than the fluid, which allows using fluid to insulate 605

thermically inner regions from the cold inlet temperature. The aim is to determine the 606

optimal design that connects the inlet to the outlets subject to the constraint that the fluid 607
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(a)

(b)

Figure 5. Sensitivity of the optimal design against (a) the volume of fluid allowed in the design
domaine, and (b) the fraction of fluid leaving the design domain through the lower outlet, for
the two-dimensional flow splitter device presented in Fig. 2. All cost function values made non
dimensional using the inlet width and centerline inlet velocity (equivalently, using flu3

i ei as reference
cost functional value).

Figure 6. Set-up of the two-dimensional single pipe problem with heated walls. The orange and
light gray shade denote hot isothermal and adiabatic walls, respectively.

must occupy 40% percent of the cavity (twice as mush as the straight parallel pipe fitting 608

exactly to the inlet and outlet). All other problem parameters, including Reynolds and 609

Prandtl numbers, are given in Tab. 3. Note, because the inlet and outlet diameters are the 610

same, mass conservation demands the same velocity condition to be prescribed at the inlet 611

and outlet. We do not share the view expressed in [26] that this is ill-posed, in the sense 612

that it does force the algorithm to identify acceptable trade-o�s between both hydraulic 613

and thermal for heat and mass transfer optimization without yielding broken flow paths, 614

dead ends or non-physical artifacts, which is the desired goal. Moreover, the argument that 615

the optimization is limited by the fact that the sole variables left to optimization are the 616
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W = [0; 1]×[0; 1] Design domain
d = 2 Problem dimensionality

Vtarget = 0.4 Target volume of fluid
VÏ,0 = 0.4 Initial volume of fluid

Re = 4.5 Reynolds number
Pr = 5 Prandtl number (fluid)

ks�kf = 10 Solid to fluid thermal di�usivity ratio
Tw = 10 Hot wall temperature

ui = 1 Inlet centerline velocity
Ti = 0 Inlet cold temperature

e = 0.2 Inlet diameter
li = 0.1 Inlet leads length

xi = (−0.1, 0.5) Inlet center coordinates
uo = 1 Outlet centerline velocity

eo = 0.2 Outlet diameter
lo = 0.1 Outlet lead length

xo = (1.1, 0.5) Outlet 1 center coordinates
Nn = 25000 Nb. mesh nodes
Nel = 50000 Nb. mesh elements

Table 3. Numerical parameters for the two-dimensional single pipe problem with heated walls.

pressure (not total pressure) drop between the inlet and outlet, and the outlet temperature 617

(which removes the need to explore, e.g., converging or narrowing channels designs aimed at 618

increasing the fluid velocity), while true in this particular setting, does not hold if multiple 619

inlets/outlets or di�erent inlet/outlet diameters are used. 620

We show in Fig. 7 distinct optimal designs computed by increasing progressively the 621

thermal weigh, to which we come back below for further discussion. At this stage, the 622

point of interest is that all related optimization runs go through several complex stages 623

all accurately represented on anisotropic adapted meshes made up of extremely stretched 624

elements on either side of the interface. This is evidenced by the selected samples shown 625

in Figs. 8-9, where the main di�erence compared to the hydraulic case in Sec. 6.2 is the 626

finer element size used to discretize the inner solid domain (here the same as in the inner 627

fluid domain) to accurately resolve heat conduction. This is all the more important given 628

that the increased non-linearity of the optimization problem at large thermal weighs (where 629

there is almost no contribution from the hydraulic cost function) yields strongly anisotropic 630

material distributions, that require adequately capturing the formation and destruction of 631

very fine cross-flow fluid structures whose diameter can be below 1/20 the inlet diameter. 632

For low thermal weighs, the optimal design is a single, straight pipe connecting the 633

inlet to the outlet, as evidenced in Fig. 8(a). This is because the contribution of the thermal 634

cost function is negligible, so the only objective is to minimize the fluid power dissipation, 635

hence short and wide pipes. In return, the optimal pipe is as wide as allowed by the volume 636

constraint, with increased cross section halfway though (compared to the inlet and outlet) 637

to minimize shear. Increasing Ê adds more priority to increase the recoverable thermal 638

power, which opens the possibility to depart from the straight pipe even at the cost of some 639

increase in the hydraulic objective. In this regards, our results highlight the existence of 640

two distinct branches of solution, referred to as symmetric and asymmetric. 641

Symmetric designs feature a solid core forming at the center of the cavity, hence 642

dividing the lead into a lower and an upper pipe, as shown in Fig. 8(b). This increases both 643

the dissipated power and the recoverable thermal power, as it lengthens the distance over 644

which the fluid travels, but moves both pipes towards the hot walls, and heats up the fluid 645

without any temperature losses associated to heat flux conduction through the solid (as the 646

solid thermal conductivity is 10 times that of the fluid). The asymmetric designs presented 647

in Fig. 9(a) conversely feature a single pipe bending into either the lower or the upper half 648
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(a)

(b)

(b)

Figure 7. Optimal designs sorted by weighting Ê for the two-dimensional single pipe device with
heated walls presented in Fig. 6. (a) Low and intermediated thermal weighs. The dashed lines
denote the results obtained at large thermal weighs, further presented by the close-ups in (b-c) for
(b) symmetric and (c) asymmetric designs.

of the domain, which is a di�erent trade-o� involving both less recoverable thermal power 649

and less dissipated power, as the fluid is heated up at only one out of the two hot wall, but 650

travels in a wider pipe. 651

Increasing the thermal weigh forces the fluid along the hot walls to expand the 652

exchange surface. Beyond a certain threshold, the symmetric solid core splits vertically into 653

an increasing number of subcores, as a network of fluid strips forms to act as a large thermal 654

resistance breaking the horizontal temperature gradient to reduce the core heat conduction; 655

see Fig. 8(c). Meanwhile, in Fig. 9(b), the asymmetric bent pipe gives way in to the more 656

complex Z-shaped pipe successively forcing the flow along the top and bottom walls (yet 657

another trade-o� that increases both the recoverable thermal power and the dissipated 658

power, as the heat exchange surface doubles, but the fluid travels in a thinner and longer 659

pipe.), whose solid layout eventually fragments vertically near the Z edges to make the most 660

of the low conductivity of the fluid; see Fig. 9(c). 661

Upon comparing the above design to those in Ref. [55] (the closest study to our work 662

in the available literature), the following remarks can be made: 663
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(a) (b) (c)

Figure 8. Multi-objective optimization of the two-dimensional single pipe device with heated walls
presented in Fig. 6. From top to bottom: the zero iso-value of the level set function and associated
anisotropic adapted meshes are sampled over the course of optimization using the parameters
given in Tab. 3. (a) Straight pipe solution with Ê = 0.4. (b) Solid core solution with Ê = 0.7. (c)
Fragmented core solution with Ê = 0.987.

• anisotropic adapted meshes dramatically improve the accuracy of all geometric repre- 664

sentations, as most results in the recent available literature exhibit obvious staircase 665

e�ects in all curved regions. 666
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(a) (b) (c)

Figure 9. Multi-objective optimization of the two-dimensional single pipe device with heated walls
presented in Fig. 6. From top to bottom: the zero iso-value of the level set function and associated
anisotropic adapted meshes are sampled over the course of optimization using the parameters given
in Tab. 3. (a) Bent pipe solution with Ê = 0.85. (b) Z pipe solution with Ê = 0.97. (c) Fragmented
Z pipe solution with Ê = 0.998.

• the solid and fragmented core solutions are generally consistent, although they show 667

up in [55] at surprisingly much lower values of Ê (an issue already raised in [26]) and 668

with lesser horizontal symmetry at large thermal weights (which may be because the 669
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Figure 10. Fragmented core solutions computed under various initial designs under thermal weigh
Ê = 0.987.

Figure 11. Pareto frontier for bi-objective topology optimization of the single pipe device with
heated walls. The red symbols are the near-optimal design for which both the dissipated power
and the recoverable thermal power approach their single objective optimization value.

authors in the aforementioned study do not impose a specific target volume of fluid, 670

but only an upper bound). 671

• asymmetric designs are noticeably absent from [26,55] and from other studies tackling 672

variations of this problem. Again the explanation may lie in the constraint on the 673

maximum volume of fluid, in the sense that for a given asymmetric design minimizing 674

the cost function under a certain thermal weigh, a more e�cient symmetric design 675

may exist at a smaller volume of fluid. Asymmetric designs are reported in [32], for 676

which the authors allude to the use of unstructured meshes, but we believe they are 677

rather the consequence of di�erent flow regimes, as the aforementioned study considers 678

a much higher Reynolds number of 400 and a much lower Prandtl number of 0.05, and 679

the present use of unstructured meshes does not alters the solutions symmetry. 680

• similar formation fluid strips to act like a heat insulation material at large Ê is 681

documented in [55]. While it is a robust mechanism, in the sense that even a non- 682

fragmented solid cores and Z pipes computed at a slightly smaller thermal weigh end 683

up breaking up, we have found the way the solid layout splits to be very sensitivity to 684

the optimization path. This is evidenced in Fig. 10 showing a series of fragmented core 685

designs generated by varying the initial design under constant thermal weigh. The 686

number of subcores and the subcores arrangements doe vary, but they yield identical 687

cost functions (and thermal cost functions) within 1%, which suggests that fragmented 688

solutions are actually flat minimizers. 689
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Figure 12. Set-up of the three-dimensional single pipe problem with heated walls: one single hot
stripe. The orange and light gray shade denote hot isothermal and adiabatic walls, respectively.

• non-physical designs (e.g., broken flow paths, dead ends and total fluid flow blockage, 690

all highly undesirable from manufacturing point of view) have been obtained at much 691

higher values of Ê > 0.999, which is when the contribution of the hydraulic cost function 692

becomes negligible. This may have to do with the modeling of the solid material, as 693

a porous media does allow solutions with no fluid connection between the inlet and 694

outlet flows, while the IVM rigorously forces the solid velocity to zero. 695

Additional testing has been performed in the attempt to clarify the connection between 696

the various branches of solutions (although not the intended scope of this study). The 697

main findings are threefold: first, the straight pipe solution exists up to Ê ∼ 0.7, after 698

which its centerline shifts increasingly in the upper domain (or lower domain, by vertical 699

reflectional symmetry) and the solution evolves continuously into the bent pipe solution. 700

Second, the solid core solution branches o� the straight pipe at about Ê ∼ 0.64 (this has been 701

estimated using a branch-tracking technique in which the design is initialized with a solid 702

core solution computed at a slightly larger thermal weigh), then evolves continuously into 703

the fragmented core solution. Finally, the connection between the bent and Z pipe solutions 704

remains uncertain: both solutions have been found to coexist over a range of thermal weighs 705

from 0.94 to 0.98, where they yield almost identical cost functions. Meanwhile, we could 706

not manage to have a bent pipe continuously turn into a Z, regardless of the value of Ê 707

and the number of update steps (up to several ten thousands). This raises the possibility 708

that the Z pipe solution may branch o� subcritically from the bent pipe solution, leading to 709

hysteresis (testing this hypothesis is uneasy due to the di�culty of consistently generating 710

Z pipe solutions unless a branch-tracking technique is used, which is why the optimization 711

run documented in Fig. 9(b) does not start from the classical design with solid occlusions). 712

Finally, Fig. 11 recasts the obtained results into the Pareto frontier of the multi-objective 713

optimization problem. Interestingly, it turns out that the Pareto-e�cient subset consists 714

exclusively of straight, bent and Z pipes (although the fragmented core solutions equally 715

dominate at very high influences of the thermal objective function). Interestingly, the 716

close-to-convex shape of the Pareto front means that a few solutions provide an acceptable 717

trade-o� by having both single cost functions close to their single objective optimization. 718

This corresponds here to the bent pipe at Ê 0.97 and the Z pipe at Ê = 0.95, for which the 719

recoverable thermal power is below its single objective maximum by less than 10% (the 720

dissipated power is 7 times as large as its single objective minimum, which is not small 721

strictly speaking, but very reasonable given that the worst performance is actually by a 722

factor of 100). 723

6.4. Three-dimensional single pipe with heated walls 724

The last test case stands as a three-dimensional counterpart of the two-dimensional 725

conjugate heat transfer problem considered in Sec. 6.3. The setting inspired from [17] is 726

depicted in Fig. 12, with detailed problem parameters given in Tab. 4. The design domain 727

is a cuboid cavity of unit height and aspect ratio 2:1:1, with a single inlet on the left and a 728

single outlet on the right, again lined up in front of each other. A cold fluid is flowing from 729
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W = [0; 2]×[0; 1]×[0; 1] » » Design domain
d = 3 » » Problem dimensionality

Vtarget = 0.4 » » Target volume of fluid
VÏ,0 = 1.8 » » Initial volume of fluid

Re = 12 » » Reynolds number
Pr = 83.5 » » Prandtl number

ks�kf = 10 » » Thermal conductivity ratio
Tw = 10 » » Hot stripe temperature

Dxh = 0.2 » » Hot stripe width
xh1 = 1 0.5 » Hot stripe 1 center coordinate

- - xh2 = 1.5 Hot stripe 2 center coordinate
ui = 1 » » Inlet centerline velocity
Ti = 0 » » Inlet cold temperature

e = 0.2 » » Inlet diameter
li = 0.1 » » Inlet leads length

xi = (−0.1, 0.5, 0.5) » » Inlet center coordinates
uo = 1 » » Outlet centerline velocity

eo = 0.2 » » Outlet diameter
lo = 0.1 » » Outlet lead length

xo = (2.1, 0.5, 0.5) » » Outlet 1 center coordinates
Nn = 1000000 » » Nb. mesh nodes
Nel = 5000000 » » Nb. mesh elements

Table 4. Numerical parameters for the three-dimensional single pipe problem with heated walls.

the inlet, and is heated by the cavity walls, with the di�erence that only a finite stripe at the 730

middle of the cavity walls is maintained at a constant (hot) temperature, and all remaining 731

walls (cavity and leads) are considered adiabatic. In what follows, the thermal weigh is set 732

fo Ê = 0.95 to add more priority to increase the recoverable thermal power. Note, although 733

the configuration has two reflectional symmetries, we do not reduce the computational cost 734

by modeling only a quarter of the domain together with symmetry boundary conditions, 735

which is feasible [60] but would not allow assessing the method in the context of large scale 736

systems. The entire domain is thus discretized with 5000000 mesh elements, and we let 737

symmetry eventually arise as a result of the optimization process. 738

The initialization shown in Fig. 13 corresponds to a fluid box filled with islands of solid 739

spherical inclusions occupying about 10% of the cavity. The fluid thus fills initially 90% of 740

the cavity, well above the 20% volume constraint, hence the same approach as in Sec. 6.2 741

is used, in which the constraint value decreases during the early stage of the optimization 742

process, up to the point where it reaches the target within the desired tolerance. Again, the 743

method is found to handle well the various topological changes occurring over the course 744

of optimization, and all anisotropic adapted meshes exhibit extremely stretched elements 745

regardless of the interface complexity, that allow sharply representing the fluid and solid 746

domains (also, the edges of the hot stripe) and accurately computing the solutions during 747

all stages of optimization. In the optimal solution shown in Fig. 13, the fluid flows in and 748

out of the cavity through single, straight pipes. This is because the hot stripe is far from 749

the inlet/outlet sections, so there is a good proportion of the cavity where the thermal 750

cost function contributes little to nothing, and the best trade-o� is to minimize power 751

dissipation. Similarly to what could be observed in 2-D, a solid core forms in the stripe 752

region. The latter divides the inlet pipe into a near-perfect symmetrical network of 8 pipes, 753

that quickly merge themselves to deliver the fluid to the outlet via a complex 4-element 754
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Figure 13. Multi-objective optimization of the three-dimensional single pipe device with heated
walls (one single hot stripe) presented in Fig. 12. The zero iso-value of the level set function
and associated anisotropic adapted meshes are sampled over the course of optimization using the
parameters given in Tab. 4. The associated volume of fluid (from top to below) is as follows: 90%,
42.9%, 20.6%, 20.5% and 20.4%, respectively.

comb-like arrangement (one per face of the cavity). This forcesthe fluid along the hot walls 755

and eventually merging into a thin, square annulus shaped to the hot stripe to maximize the 756

fluid heat up. As illustrated in Fig. 14, the optimal features thin inclusions of fluid attached 757

to the main pipes. This is essentially reminiscent of the two-dimensional fragmentation 758

mechanism observed at such large thermal weigh, where fluid is used to insulate thermically 759

the inner pipes from the cold inlet temperature. The present optimal design is overall close 760

to that documented in [17], but the pipe arrangements di�er in the hot region, most likely 761
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Figure 14. Optimal design of the three-dimensional single pipe device with heated walls (one
single hot stripe) presented in Fig. 12, together with stream-wise and cross-wise cuts at positions
shown by the grey planes. The colors hue corresponds to the temperature profile.

(a) (b)

Figure 15. Set-up of the three-dimensional single pipe problem with heated walls: one single
upstream hot stripe vs. two hot stripes. The orange and light gray shade denote hot isothermal
and adiabatic walls, respectively.

because the authors in the aforementioned reference optimize the thermal recoverable power 762

by imposing an upper bound threshold for the pressure drop (which yields to a di�erent 763

trade-o�). 764

Two other cases have been considered to assess the capability of designing more complex 765

shapes by giving more importance to the thermal cost function. The associated setups 766

depicted in Fig. 15 di�er by the number and position of hot stripes, namely the first case 767

(case 1) has one stripe shifted upstream against the inlet, tand the second one (case 2) 768

has two stripes against the inlet and outlet arranged symmetrically with respect to the 769

middle of the cavity; see Tab. 4 for provision of other detailed problem parameters and 770

Figs. 16-17 for illustration of the corresponding optimization runs using anisotropic adapted 771

meshes. For case 1, the main features of the baseline optimal discussed hereinabove carry 772

over, with the di�erence that the solid core moves upstream to follow in the footsteps of the 773

hot stripe, hence the inlet lead immediately splits into a similar network of 8 pipes. For 774

case 2, the presence of two separated hot spots yields a di�erent optimal, with the 8 pipes 775

reconfiguring into 4 wider pipes to transport fluid the shortest way downstream and avoid 776

the cost of bending. These pipes then widen to form four quasi triangular prisms shaped to 777

the downstream stripe (to maximize the fluid heat up) before merging to connect to the 778

outlet. In both cases, the optimal designs shown in Fig. 18 exhibit the same thin inclusions 779

of fluid attached to the main pipes to benefit from the insulating low-conductivity of the 780

fluid. 781

7. Discussion 782

7.1. Numerical cost 783

It is worth noticing that the number of nodes used here is actually quite large and 784

mostly useful during the early stage of optimization. This is because the surface of the 785

interfaces (perimeter in 2-D) that needs be captured is initially dramatically large to the 786
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Figure 16. Multi-objective optimization of the three-dimensional single pipe device with heated
walls (one single upstream hot stripe) presented in Fig. 15(a). The zero iso-value of the level set
function and associated anisotropic adapted meshes are sampled over the course of optimization
using the parameters given in Tab. 4. The associated volume of fluid (from top to below) is as
follows: 90%, 43.0%, 20.4%, 20.5% and 20.4%, respectively.

many solid inclusions, then decreases substantially after the first dozens of iterations, as has 787

been found computing the surface area 788

SÏ = �
W

”‘(Ï)dv , (32)
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Figure 17. Multi-objective optimization of the three-dimensional single pipe device with heated
walls (two hot stripes) presented in Fig. 15(b). The zero iso-value of the level set function and
associated anisotropic adapted meshes are sampled over the course of optimization using the
parameters given in Tab. 4. The associated volume of fluid (from top to below) is as follows: 90%,
54.4%, 31.9%, 20.6% and 20.3%, respectively.

where ”‘ is the Dirac function 789

”‘(Ï) =
���������

1
2‘
�1+ cos�fi Ï

‘
�� if �Ï� ≤ ‘ ,

0 if �Ï� > ‘ ,
(33)

smoothed with the same regularization parameter ‘ as the Heaviside function (12). Also, 790

the anisotropic mesh adaptation algorithm refines the mesh in hierarchical importance of the 791
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(a)

(b)

Figure 18. (a) Optimal design of the three-dimensional single pipe device with heated walls (one
single upstream hot stripe) presented in Fig. 15(a), together with stream-wise and cross-wise cuts
at positions shown by the grey planes. (b) Same as (a) for the device with heated walls (two hot
stripes) presented in Fig. 15(b). The colors hue corresponds to the temperature profile.

level set gradient. If new geometrical features appear in the solution (associated with high 792

gradients), the mesh is automatically coarsened in regions with lower gradient and refined 793

near the newly emerging features. If the number of nodes is large (as has been the case so 794

far), the decrease in the interface surface area allows resolving finer, more complex patterns 795

without degrading the accuracy in other parts of the design domain, because the coarsened 796

regions are actually over-resolved. This shows through the progressive mesh refinement in 797

the fluid domain in the various figures, as more and more elements become available to 798

improve the mesh in other regions of the domain. 799

Figure 19 presents detailed timing results obtained by averaging (and normalizing to 800

achieve unit average time per iteration) dedicated update steps of the various multi-objective 801

conjugate heat transfer cases performed on 64 cores (200 steps in 2-D, 100 steps in 3-D). In 802

2-D, the cost of an iteration is dominated by that of computing the state solution (which 803

takes about 10 Navier–Stokes iterations representing 55% of the total cost), and otherwise 804

by that of adapting the mesh (about 20% of the total cost). Using the same number 805

of processors, the cost of a 3-D iteration is larger than its 2-D counterpart by roughly 806

three orders of magnitude, the cost of which is essentially that of the two passes of mesh 807

adaptation (about a cumulative 70% of the total cost, although the cost of the first pass is 808

much larger since (i) the volume constraint is not applied at each design step, only when 809

the di�erence between the actual and target volumes exceeds the 5% tolerance, and (ii) less 810

elements and nodes need to be moved and migrated across processors. Meanwhile, the cost 811

of both geometrically reinitializing the signed distance function level set and of optimizing 812

the volume constraint o�set is very a�ordable, as it represents less than 2% in total, with 4-5 813

dichotomy iterations needed to reach the desired accuracy. All three 3-D cases yield almost 814

identical timing results, the only di�erence being in the cost of the volume constraint step, 815

as the frequency at which consecutive corrections are applied depends on the geometrical 816

specifics of the layout under consideration. This gives hope that the same conclusions may 817

carry over to other multiple inlet/outlet duct flow problems of same dimensionality, tackled 818

with comparable parameters. The close similarity carries over to the absolute run times 819

per iteration shown in Fig. 20, meaning that the total run times in Tab. 5 are essentially 820

driven by the number of design steps needed to converge (that in turn is driven by the 821
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(a) (b) (c) (d)

Figure 19. (a) Computational cost of the implemented algorithm, as obtained averaging 200
update steps of the 2-D single pipe problem with heated walls presented in Fig. 2. (b) Same as
(a) for 100 update steps of the 3-D single pipe problem with one centered hot stripe presented in
Fig. 12. (c-d) Same as (b) for the 3-D single pipe problem with (c) one upstream hot stripe and (d)
two hot stripes presented in Fig. 15. All simulation parameters are those provided in Tabs. 2 and 4.
The LS and LSF labels stand for level set (LS) and filtered level set (LSF), respectively.

Figure 20. Average run time per iteration for the various 3-D cases documented in Fig. 19.

number of steps needed to recover the proper volume of fluid). The reported run times, 822

while large in a vacuum, are actually much lower than those that required to converge on 823

a fixed uniform grid with similar mesh refinement. To give a taste, discretizing the single 824

inlet/single outlet case with a uniform element size of 5× 10−3 would require about 140M 825

elements, even though this would not su�ce to match the interface value achieved herein. 826

It is also worth emphasizing in this regards that we did not seek to optimize e�ciency, 827

neither by adjusting the initial design (we actually used numerous inclusions on purpose to 828

showcase the ability of the method to support complex topological changes), nor by fine 829

tuning the descent factor (the only requirement being that the displacement achieved at 830

each step must be below the cut-o� thickness of the level set for the evolved interface to 831

remain accurately tracked). 832

7.2. High-Reynolds-number flows 833

We keep in mind that all cases reported herein are low-Reynolds-number, making 834

the approach very relevant for a broad range of microfluidic applications, for instance the 835

optimal design of microchannel heat sinks. Conversely, the significance of the computed 836

optima as solutions to actual industrial heat exchanger problems is questionable, given the 837

high Reynollds number at play. It lies out of the scope to tackle such cases right away, as the 838

adjoint-based sensitivity analysis of high-Reynolds-number flow has its challenges, including 839

the need to evaluate all sensitivities from time-dependent adjoint solutions to be solved 840

repeatedly backwards in time, which is close to intractable in 3-D without sophisticated 841

integration, interpolation and/or checkpointing schemes. Relevance is thus assessed a 842
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64 » » Nb. cores
270h 340h 240h Run time
800 1000 700 Nb. design steps
200 200 200 Nb. steps to target volume

Table 5. Run times for the various 3-D cases documented in Fig. 19.

1.74 1.62 1.59 Re = 12
2.23 1.94 1.89 Re = 1.2× 104

Table 6. Performance of the optimal layouts under various high-Reynolds-number settings. All
cost function values made non dimensional using the inlet diameter and maximum inlet velocity
(equivalently, using flu3

i e2

i as reference cost functional value).

posteriori by performing high-Reynolds-number simulations of several shapes generated over 843

the course of optimization (the only requirement being that the volume of fluid constraint 844

be satisfied). Results are reported here for the one single upstream hot stripe case presented 845

in Fig. 15, for which 800 time-steps have been carried out at Re = 1.2× 104, after which the 846

cost function has been averaged over an additional 200 time-steps. The results pertaining 847

to the last three shapes in Fig. 16 are reported in Tab. 6, together with their baseline 848

counterparts obtained at Re = 12. We also provide in Fig. 21 3-D instantaneous streamlines 849

colored by the temperature, to emphasize that the flow undergoes a increasingly complex 850

swirling motion after crossing the solide core, that keeps being accurately resolved by virtue 851

of the anisotropic mesh adaptation procedure. While the cost function increases with Re 852

(which has been found to be because the optimal heat transfer performance decreased), 853

it is interesting to note that the optimal shape keeps performing best even at such high 854

Reynolds number, and that its superiority with respect to the other two shapes is more 855

pronounced (the improvement in the cost function being respectively by 8.5% and 1.8% at 856

Re = 12, but 15.2% and 2.5% at Re = 1.2× 104). This suggests that the present approach 857

can deliver relevant robust and practical solutions to real-life heat exchanger applications. 858

8. Conclusion 859

The present study proves feasible to perform topology optimization of conjugate heat 860

transfer systems using anisotropic meshes adapted under the constraint of a fixed number of 861

nodes. The proposed approach combines a level set method to represent the boundary of the 862

fluid domain by the zero iso-value of a signed distance function, and stabilized formulations 863

of the state, adjoint, and level set transport equations cast in the Variational Multiscale 864

(VMS) framework. The method has been shown to allow for drastic topology changes during 865

the optimization process. Nonetheless, the main advantage over existing methods is the 866

ability to capture all interfaces to a very high degree of accuracy using adapted meshes 867

whose anisotropy matches that of the numerical solutions. The approach also considerably 868

decreases the cost of improving the numerical precision, as the number of nodes needs be 869

increased only in the anisotropy direction, hence only 2 times as many nodes are required 870

to improve the resolution by a factor of 2, as opposed to 4 and 8 times in classical 2-D 871

and 3-D isotropic calculations. This gives hope that the method can ease the transition 872
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(a)

(b)

Figure 21. (a) Representative steady 3-D streamlines colored by the temperature computed at
Re = 12 for the last three shapes in Fig. 16 by the magnitude of velocity. (b) Same as (a) for the
instantaneous streamlines computed at Re = 1.2× 104.

to manufacturable CAD models closely resembling the optimal topology, with important 873

applicability to the engineering of low mass, high e�ciency thermal devices, including heat 874

exchangers, heat sinks or cold plates. 875

The method has been tested on several examples of bi-objective minimization weighing 876

power dissipation and recoverable thermal power, including a large scale three-dimensional 877

example involving several dozen million state degrees of freedom. The obtained optimal 878

designs agree well with the existing literature, which assesses the relevance of the present 879

implementation for engineering various thermal fluidic devices, and that even at non-small 880

Reynolds numbers, as has been assessed a posteriori from dedicated simulations comparing 881

the performance of various shapes generated over the optimization process. It is worth 882

emphasizing in this regards that we did not seek to optimize e�ciency, neither by adjusting 883

the initial design, nor by fine tuning the descent factor (the only requirement being that the 884

displacement achieved at each step must be below the cut-o� thickness of the level set for 885

the evolved interface to remain accurately tracked). Future work should aim at improving 886

the numerical e�ciency, for instance by adding nucleation mechanisms to alleviate the need 887

for initial design with holes, as this makes it di�cult to fulfill the proper volume constraint 888

from the outset, and requires substantial mesh refinement to avoid clogging the fluid path 889

in the early stage of optimization. Other research directions include application to complex 890

physics more representative of real life situations (e.g., multiphase flows, fluid-structure 891

interactions), as well as assessment of multi-component adaptation critera taking into 892

account the di�erence in the spatial supports of the state and adjoint solutions, to further 893

improve the accuracy of the gradient evaluations. 894
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Appendix I Adjoint-based sensitivity analysis 912

Appendix I.1 General setting 913

This first appendix presents the main steps of the adjoint method used to derive the 914

sensitivity of the cost function sensitivity to a design variable — representing deformations of 915

the interface under the form of local surface normal displacements. We recall that the fluid is 916

characterized by its density flf , dynamic viscosity µf , thermal heat capacity cpf and thermal 917

conductivity kf . Conversely, the solid is only characterized by a thermal conductivity ks. 918

The flow motion in the fluid domain Wf is modeled after the coupled steady incompressible 919

Navier–Stokes and heat equations, hence 920

∇ ⋅u =0 in Wf , (A34)
flf u ⋅ ∇u =−∇p+∇ ⋅ (2µf Á(u)) in Wf , (A35)

flf cpf u ⋅ ∇Tf =∇ ⋅ (kf∇Tf ) in Wf , (A36)

with open flow boundary conditions 921

u =ui on Gi , (A37)
Tf =Ti on Gi , (A38)
u =uo on Go , (A39)

∇Tf ⋅n =0 on Go , (A40)

consisting of a prescribed velocity and temperature at the inlet, and a prescribed velocity 922

and zero heat flux at the outlet (with outflow velocity adjusted for the total amount of 923

mass flow exiting through the outlet to match exactly that entering through the inlet). 924

Finally, we assume zero velocity at the interface, together with a (Robin) convective heat 925

flux condition, i.e., 926

u =0 on G , (A41)
kf∇Tf ⋅n =÷(Tf −T

�) on G , (A42)

where T
� is a reference temperature and ÷ is a heat transfer coe�cient driving the budget 927

of heat-flux and temperature variance between the fluid and solid domains (as it is widely 928

recognized that neither isothermal nor isoflux boundary conditions can realistically mimic 929

actual heat transfer in practical applications, especially when the thermal di�usivity of the 930

solid and the fluid are of the same order of magnitude [61]). 931

The problem of minimizing the cost function subject to coupled Navier–Stokes and 932

heat equations as state equations is tackled using the continuous adjoint method [37–39]. 933

One first forms the Lagrangian 934

L = �
Gi∪Go

J ds−�
Wf

p̃∇ ⋅u dv −�
Wf

ũ ⋅ (flf u ⋅ ∇u+∇p−∇ ⋅ (2µf Á(u))dv

−�
Wf

T̃f ⋅ (flf cpf u ⋅ ∇Tf −∇ ⋅ (kf∇Tf ))dv , (A43)
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featuring the adjoint pressure p̃ as the Lagrange multiplier for the continuity equation (A34), 935

the adjoint velocity ũ as the Lagrange multiplier for the momentum equations (A35), and 936

the adjoint temperature T̃f as the Lagrange multiplier for the heat equation (A36). One 937

then seeks to decompose the variation of L due to a change in the interface position into 938

individual variations with respect to the adjoint, state and design variables. The variation 939

with respect to the adjoint variables 940

”(ũ,p̃,T̃f )L =−�Wf

”p̃∇ ⋅u dv −�
Wf

”ũ ⋅ (flf u ⋅ ∇u+∇p−∇ ⋅ (2µf Á(u))dv

−�
Wf

”T̃f ⋅ (flf cpf u ⋅ ∇Tf −∇ ⋅ (kf∇Tf ))dv , (A44)

is trivially zero as long as (u, p, Tf ) is solution to the above coupled Navier–Stokes and heat 941

equations, in which case L = J . After integrating by parts, the variation with respect to the 942

state variables is 943

”(u,p,Tf )L =�Wf

(∇ ⋅ ũ)”p dv

+�
Wf

(−flf u ⋅ ∇ũ+ flf∇u
T ⋅ ũ−∇p̃−∇ ⋅ (2µf Á(ũ))− flf cpf Tf∇T̃f ) ⋅ ”u dv

+�
Wf

(flf cpf u ⋅ ∇T̃f +∇ ⋅ (kf∇T̃f ))”Tf dv

+�
Gi∪Go

ˆuJ ⋅ ”u ds+�
ˆWf

(p̃n+ 2µf Á(ũ) ⋅n+ flf (u ⋅n)ũ+ flf cpf Tf T̃f n) ⋅ ”u ds

−�
Gi∪Go

ˆpJGn ⋅ (−”pn+ 2µf Á(”u) ⋅n)ds−�
ˆWf

ũ ⋅ (−”pn+ 2µf Á(”u) ⋅n)ds

+�
Gi∪Go

ˆTf
J”Tf ds+�

ˆWf

((kf∇T̃f ⋅n+ flf cpf (u ⋅n)T̃f )”Tf − kf T̃f∇”Tf ⋅n)ds ,

(A45)

on behalf of the viscous stress being purely tangential in incompressible flows. At this stage, 944

adjoint equations and boundary conditions are designed to ensure ”(u,p,Tf )L = 0, which 945

requires the domain and boundary integrals to vanish individually in (A45). Keeping in 946

mind that we work here under the assumption of a fixed interface (since the design variable 947

is constant) and that the cost function does not depend on the quantities on the wall, we 948

obtain the linear, homogeneous problem 949

∇ ⋅ ũ =0 in Wf , (A46)
−flf u ⋅ ∇ũ+ flf∇u

T ⋅ ũ =∇p̃+∇ ⋅ (2µf Á(ũ))+ flcpTf∇T̃f in Wf , (A47)
−cpf u ⋅ ∇T̃f =∇ ⋅ (kf∇T̃f ) in Wf , (A48)

driven by the non-homogeneous boundary conditions 950

ũ =− ˆpJGn on Gi , (A49)
T̃f =0 on Gi , (A50)
ũ =− ˆpJGn on Go , (A51)

kf∇T̃f ⋅n+ flf cpf (u ⋅n)T̃f =− ˆTf
JG on Go , (A52)

ũ =0 on G , (A53)
kf∇T̃f ⋅n =÷T̃f on G , (A54)

associated to (A37)-(A42), including an interface adjoint convective heat flux condition 951

using the same heat transfer coe�cient ÷. The key di�erence between the state and adjoint 952

equations lies in the minus sign in front of the convective term of Eqs. (A47)-(A48), to reflect 953
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that adjoint information is convected upstream, not downstream, due to the non-normality 954

of the linearized evolution operator [62]. Expressing the interface perturbations after [63] as 955

”u = —∇u ⋅n , ”Tf = —∇Tf ⋅n , (A55)

the variation with respect to the design variable (now encompassing the domain deformation) 956

is ultimately computed as 957

”—Js ≡ ”—L =—�
G
(p̃n+ 2µf Á(ũ) ⋅n+ flf cpf Tf T̃f n) ⋅ (∇u ⋅n)ds

+—�
G

kf (∇T̃f ⋅n)(∇Tf ⋅n)ds− —�
G

T̃f (kf∇(∇Tf ⋅n) ⋅n)ds . (A56)

which reduces to 958

”—Js =—�
G

µf (∇ũ ⋅n) ⋅ (∇u ⋅n)ds

+—�
G

kf (∇T̃f ⋅n)(∇Tf ⋅n)ds− —�
G

T̃f (kf∇(∇Tf ⋅n) ⋅n)ds , (A57)

due to the incompressibility of the state and adjoint solutions [37]. The simplest steepest- 959

descent algorithm implemented herein therefore moves down the cost function, in the 960

direction of the steepest slope using 961

— = −µf (∇ũ ⋅n) ⋅ (∇u ⋅n)− kf (∇T̃f ⋅n)(∇Tf ⋅n)+ T̃ (kf∇(∇Tf ⋅n) ⋅n) , (A58)

up to a positive multiplicative factor to control the step taken in the gradient direction. 962

Appendix I.2 Extension to the IVM-VMS resolution framework 963

In practice, the heat transfer coe�cient ÷ ensuring that the fluid and solid exchange 964

the proper amount of heat remains an unknown. Computing said coe�cient is no small 965

task, as it often requires solving an inverse problem to assimilate relevant experimental 966

data, which in turn requires such data to be available. Such a lack of availability is generally 967

acknowledged to be a limiting issue for practical applications, especially for topology 968

optimization where varying the shape, amount, and distribution of the solid domain is 969

integral to the optimization process itself. The immersed volume method underlying this 970

research combines both the fluid and solid phases into a single fluid with variable material 971

properties. It thus solves Navier–Stokes and heat equations 972

∇ ⋅u =0 in W , (A59)
flu ⋅ ∇u =−∇p+∇ ⋅ (2µÁ(u)) in W , (A60)

flcpu ⋅ ∇T =∇ ⋅ (k∇T ) in W , (A61)

identical to (A34)-(A36), but with variable density, viscosity, thermal heat capacity and 973

thermal conductivity, adequately interpolated over a small layer around the interface, and 974

otherwise equal to their fluid and solid values. This allows dropping altogether the interface 975

thermal condition (and thus alleviates the need for a heat transfer coe�cient) because the 976



Version February 19, 2024 submitted to Fluids 37 of 43

amount of heat exchanged at the interface is entirely determined by the individual material 977

properties heat on either side of it, hence the associated boundary conditions 978

u =ui on Gi , (A62)
T =Ti on Gi , (A63)
u =uo on Go , (A64)

∇T ⋅n =0 on Go , (A65)
u =0 on Gi

w ∪ Ga
w , (A66)

T =Tw on Gi
w , (A67)

∇T ⋅n =0 on Ga
w . (A68)

Provided the velocity is zero in the solid domain (either because a very high value of 979

the solid-to-fluid viscosity ratio is used, or, as is the case here, because the constraint is 980

hard-coded; see Sec. 2) and the no-slip interface condition is satisfied, the convective term 981

vanishes in (A61), that reduces to the pure conduction equation for the solid, together with 982

prescribed temperature and zero heat flux conditions at the solid isothermal and adiabatic 983

walls, respectively. 984

The exact same approach is applied to the adjoint equations, by solving adjoint 985

Navier–Stokes and heat equations 986

∇ ⋅ ũ =0 in W , (A69)
−flu ⋅ ∇ũ+ fl∇u

T ⋅ ũ =∇p̃+∇ ⋅ (2µÁ(ũ))+ flcpT∇T̃ in W , (A70)
−cpu ⋅ ∇T̃ =∇ ⋅ (k∇T̃ ) in W , (A71)

identical to (A46)-(A48), but with variable density, viscosity, thermal heat capacity and 987

thermal conductivity, together with boundary conditions 988

ũ =− ˆpJGn on Gi , (A72)
T̃ =0 on Gi , (A73)
ũ =− ˆpJGn on Go , (A74)

k∇T̃ ⋅n+ flcp(u ⋅n)T̃ =− ˆT JG on Go , (A75)
ũ =0 on Gi

w ∪ Ga
w , (A76)

T̃ =0 on Gi
w , (A77)

∇T̃ ⋅n =0 on Ga
w . (A78)

Assuming the adjoint velocity is zero in the solid domain (again this is hard-coded in the 989

present context of extremely stretched, anisotropic mesh elements), Eq. (A71) reduces to the 990

pure conduction equation for the solid with zero adjoint temperature at the solid isothermal 991

walls and zero adjoint heat flux at the solid adiabatic walls, just as what would be obtained 992

adding the solid conduction equation to the Lagrangian (A43) and evaluating the variation 993

with respect to the state variables. Finally, we compute the steepest-descent displacement 994

as 995

— = −µ(∇ũ ⋅n) ⋅ (∇u ⋅n)− k(∇T̃ ⋅n)(∇T ⋅n)+ T̃ (k∇(∇T ⋅n) ⋅n) . (A79)

Since ∇(n.n) = 0 due to the normal vector having unit norm, it can be shown that 996

∇(∇T ⋅n) ⋅n = (∇(∇T ) ⋅n) ⋅n+ (∇∧n) ⋅ (n∧∇T ) , (A80)

and thus 997

∇(∇T ⋅n) ⋅n = (∇∧n) ⋅ (n∧∇T ) , (A81)
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because the second derivatives vanish due to the use of P1 linear finite element approxima- 998

tions. Also, since the normal vector in a level set framework is computed as n = ∇„���∇„��, 999

we have 1000

∇� „

��∇„�� � = n− „

��∇„��3 H(„) ⋅ ∇„ , (A82)

where H is the Hessian of „. Since „ = 0 by design on the interface, we thus have 1001

∇∧n = ∇∧∇� „

��∇„�� � = 0 . (A83)

It follows that 1002

∇(∇T ⋅n) ⋅n ≡ 0 , (A84)

and Eq. (A79) reduces to 1003

— = −µ(∇ũ ⋅n) ⋅ (∇u ⋅n)− k(∇T̃ ⋅n)(∇T ⋅n) . (A85)

The last step in the process is to specify the state derivatives of the cost function, that, for 1004

the present linear weighted sum of dissipated power (hydraulic component) and recoverable 1005

thermal power (thermal component) 1006

J = (1−Ê)(p+ 1
2

fl(u ⋅u))(u ⋅n)−ÊflcpT (u ⋅n) , (A86)

are given by 1007

ˆpJ = (1−Ê)(u ⋅n) , ˆuJ = (1−Ê)(ptotn+ fl(u ⋅n)u)−ÊflcpTn , ˆT J = −Êflcp(u ⋅n) .
(A87)

Appendix J Coarse scale VMS variational problems 1008

This second appendix is devoted to the stabilized finite element numerical framework 1009

used to compute all solutions of interest on anisotropic adapted meshes and to perform the 1010

design update steps. For the sake of simplicity in the notations (and as long as it does not 1011

lead to ambiguity), we omit in what follows the distinction between all continuous variables 1012

(e.g., domains, solutions, operators) and their discrete finite element counterparts, as well 1013

as the dependency of all variables on the iteration of the optimization process. In practice, 1014

the state equations are solved sequentially, i.e., we solve first the Navier–Stokes equations, 1015

then use the resulting velocity to solve the heat equation. Due to the reversal in space-time 1016

directionality (and thus in causality), the adjoint equations are also solved sequentially but 1017

in reverse order, i.e., we solve first the adjoint heat equation, then use the resulting adjoint 1018

temperature to solve the adjoint Navier–Stokes equations. 1019

Appendix J.1 Navier–Stokes equations 1020

In practice, the state solution is computed by time-stepping the unsteady Navier– 1021

Stokes equations with large time steps to accelerate convergence towards a steady state (the 1022

stopping criterion being here for two consecutive time steps to di�er by less than 10−6 in 1023

L
∞ norm). In order to deal with the time-dependency and non-linearity of the momentum 1024

equation, the transport time of the time scale is assumed much smaller than that of the 1025

coarse scale. In return, the fine scale contribution to the transport velocity is neglected, and 1026

the fine scale is not tracked in time (although it is driven by the coarse-scale, time-dependent 1027

residuals and therefore does vary in time in a quasi-static manner). In-depth technical and 1028

mathematical details together with extensive discussions regarding the relevance of the 1029
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approximations can be found in [64]. Ultimately, the coarse scale variational problem to be 1030

solved is formulated as 1031

�
W
(flˆtu+ flu ⋅ ∇u) ⋅w dv +�

W
2µÁ(u) ∶ Á(w)dv −�

W
p(∇ ⋅w)dv +�

W
(∇ ⋅u)q dv

− Ne�
k=1
�

Wk

·1r1 ⋅ (flu ⋅ ∇w)dv − Ne�
k=1
�

Wk

·1r1 ⋅ ∇q dv − Ne�
k=1
�

Wk

·2r2(∇ ⋅w)dv = 0 , (A88)

where we have considered a discretization of W into Ne non-overlapping elements (triangles 1032

or tetrahedrons), Wk is the domain ocuppied by the kth element, and r1 and r2 are the 1033

momentum and continuity residuals 1034

−r1 = flˆtu+ flu ⋅ ∇u+∇p , −r2 = ∇ ⋅u , (A89)

whose second derivatives vanish since we use linear interpolation functions. Finally, ·1 and 1035

·2 are the ad-hoc stabilization coe�cients defined in [43,65], computed on each element 1036

from a characteristic size h (here, the element diameter in the direction of the velocity, 1037

to support using anisotropic meshes with highly stretched elements [66]), and velocity u 1038

(here, the average L
2 norm of the nodal element velocities). Equation (A88) is discretized 1039

with a first-order-accurate time-integration scheme combining semi-implicit treatment of 1040

the convection term, implicit treatment of the viscous, pressure and divergence terms, and 1041

explicit treatment of the stabilization coe�cients. 1042

Appendix J.2 Heat equation 1043

The coarse scale variational problem for the heat equation reads 1044

�
W
(flcpu ⋅ ∇T )s dv +�

W
k∇T ⋅ ∇s dv − Ne�

k=1
�

Wk

·3r3flcpu ⋅ ∇s dv − Ne�
k=1
�

Wk

·4r3flcpu�� ⋅ ∇s dv = 0 ,

(A90)

where u�� is the (normalized) velocity projected along the direction of the temperature 1045

gradient defined as 1046

u�� = u ⋅ ∇T

��∇T ��2∇T , (A91)

r3 is the heat equation residual 1047

−r3 = flcpu ⋅ ∇T , (A92)

and ·3,4 are mesh-dependent stabilization parameters acting both in the direction of the 1048

solution and of its gradient, that proceed from the stabilization of the ubiquitous convection- 1049

di�usion-reaction equation [67,68], whose definition is given in [69,70]. Equation (A90) is 1050

solved with implicit treatment of the convection term and conduction terms (as the convection 1051

velocity is taken as a given) and explicit treatment of the stabilization coe�cients. 1052

Appendix J.3 Adjoint heat equation 1053

Since the adjoint heat equation (8) is formally identical to its state counterpart (save 1054

for the change in the sign of the convection velocity), its coarse scale variational problem 1055

deduces straightforwardly as 1056

−�
W
(flcpu ⋅ ∇T )s dv +�

W
k∇T ⋅ ∇s dv + Ne�

k=1
�

Wk

·3r3flcpu ⋅ ∇s dv + Ne�
k=1
�

Wk

·4r3flcpu�� ⋅ ∇s dv

−�
Go

fl(u ⋅n)T̃ s ds =�
Go

ˆT Js ds , (A93)
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and features the same residual r3 and stabilization coe�cients ·3,4 as in J.2. Note, Eq. (A93) 1057

also includes boundary terms evaluated at the outlet, which is because the integration by 1058

part of the conductive term unveils a boundary term 1059

�
ˆW
(k∇T ⋅n)s ds = −�

Go

(fl(u ⋅n)T̃ + ˆT J)s ds , (A94)

due to the adjoint outflow thermal condition (A52). In practice, though, preliminary tests 1060

have assessed that the adjoint thermal power term flcp(u ⋅n)T̃ consistently dominates by at 1061

least four orders of magnitude over the heat flux term k∇T̃ ⋅n. We thus end up simplifying 1062

the numerical implementation using the approximate condition 1063

T̃ = −Ê on Go , (A95)

and solve the scale variational problem (without boundary term) 1064

−�
W
(flcpu ⋅ ∇T )s dv +�

W
k∇T ⋅ ∇s dv

+ Ne�
k=1
�

Wk

·3r3flcpu ⋅ ∇s dv + Ne�
k=1
�

Wk

·4r3flcpu�� ⋅ ∇s dv = 0 , (A96)

with implicit treatment of the convection term and conduction terms (as the convection 1065

velocity is taken as a given) and explicit treatment of the stabilization coe�cients. 1066

Appendix J.4 Adjoint Navier–Stokes equations 1067

Application of the stabilized formulation, as described above, to the adjoint Navier– 1068

Stokes equations yields the following coarse scale variational problem 1069

�
W
(−flu ⋅ ∇ũ+ fl∇u

T ⋅ ũ) ⋅w dv +�
W

2µÁ(ũ) ∶ Á(w)dv

+�
W

p̃(∇ ⋅w)dv −�
W

flcpT∇T̃ ⋅w dv +�
W
(∇ ⋅ ũ)q dv

− Ne�
k=1
�

Wk

·1r̃1 ⋅ (−flu ⋅ ∇w)dv − Ne�
k=1
�

Wk

·1r̃1 ⋅ ∇q dv − Ne�
k=1
�

Wk

·2r̃2(∇ ⋅w)dv = 0 .

(A97)

The associated momentum and continuity residuals read 1070

−r̃1 = −flu ⋅ ∇ũ+ fl∇u
T ⋅ ũ−∇p̃ , −r̃2 = ∇ ⋅ ũ , (A98)

and the stabilization coe�cients ·1,2 are the same as those in J.1. This implicitly amounts 1071

to neglecting the additional stabilization stemming from the fl∇u
T ⋅ ũ term describing the 1072

production of adjoint perturbations, that has been found to have no e�ect on the numerical 1073

results, as the problems considered herein are in the convection (not reaction) dominated 1074

limit. 1075

Appendix J.5 Interface update scheme using the convective level set method 1076

The auto-reinitialization level set problem (14) is solved with an SUPG method, 1077

whose stabilization proceeds from that of the ubiquitous convection-di�usion-reaction 1078

equation [67,68]. The associated variational problem is formulated as 1079

�
W
(ˆ· „+ a· ⋅ ∇„)› dv −�

Wk

·5r5a· ⋅ ∇› dv =�
W

S› dv , (A99)

with residual 1080

−r5 = ˆ· „+ a· ⋅ ∇„−S , (A100)
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and stabilization coe�cient defined in the convection-dominated limit in [65]. It is easily 1081

checked that all terms scale as 1�D· , so we can set D· = 1 without any loss of generality be- 1082

cause the solution is ultimately independent on the pseudo-time step value. Equation (A99) 1083

is solved with semi-implicit treatment of the convection term (as the convection velocity a· 1084

depends on main unknown „) and explicit treatment of the source term and stabilization 1085

coe�cients. 1086
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